
Back-Pressure Routing and Rate Control for ICNs

Jung Ryu, Vidur Bhargava, Nick Paine, and Sanjay Shakkottai
Wireless Networking and Communications Group (WNCG)

Department of Electrical and Computer Engineering
The University of Texas at Austin

{jung.ryu, shakkott}@mail.utexas.edu and {vidurbhargava, nick.a.paine}@gmail.com

ABSTRACT
We study a network composed of multiple clusters of wire-
less nodes. Within each cluster, nodes can communicate di-
rectly using the wireless links; however, these clusters are far
away such that direct communication between the clusters
is impossible except through “mobile” contact nodes. These
mobile contact nodes are data carriers that shuffle between
clusters and transport data from source to destination clus-
ters. There are several applications of our network model
(e.g., clusters of mobile soldiers connected via unmanned
aerial vehicles).
At the same time, much interest has been garnered by

cross-layer design for wireless networks in order to improve
efficiency and better allocate resources. In this paper, we
focus on queue based cross-layer technique known as back-
pressure algorithm. The algorithm is known to be through-
put optimal, as well as resilient to disruptions in the network,
making it an ideal place to start when designing communi-
cation protocols for our intermittently connected network.
In this paper, we design a back-pressure routing/rate con-

trol algorithm for intermittently connected networks (ICNs).
We implement a modified back-pressure routing algorithm
on a 16-node experimental test bed, discuss some of the is-
sues regarding design and implementation, and present our
experimental results.

Categories and Subject Descriptors: C.2.1 [Network
Architecture and Design]: Distributed networks; Wireless
communication; Packet-switching networks

General Terms: Algorithms, Experimentation

Keywords: Intermittently connected networks, back-pressure
routing

1. INTRODUCTION
There recently has been much interest in intermittently

connected networks. Practical use of such networks include
connecting rural villages in under-developed countries via
satellites or network of buses to ferry data; or in military

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’10, September 20–24, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0181-7/10/09 ...$10.00.

settings, where clusters of autonomous combat robots rely
on reconnaissance aerial vehicles flying over-head in order to
exchange battle field information and to coordinate attacks.
In either case, building a communication network might take
too much time as these combat units must be deployed at
moments notice, and wireless connections might be suscep-
tible to enemy jamming or the ranges might not be large
enough.

In networks with extremely high delay and intermittent
connectivity, currently existing communication protocols suf-
fer serious performance degradation. Routing information,
for example, might not be stable since these networks use
mobile nodes to provide some level of connectivity – as mo-
biles move in and out of networks, connections come and go.
Further, protocols that depend on congestion signals from
the network might not work properly if the signals arrive
with high delays. Current research is expanding to incorpo-
rate mobile nodes and connections that have high delays into
traditional networks in order to increase capacity, reliability
and functionality.

In this paper, we consider a network of clusters of nodes
connected via “mobile” nodes (see Figure 1 for an example).
We assume that these mobiles move in periodic patterns. In-
ternally, each cluster has many nodes connected via a (multi-
hop) wireless network. Each cluster has at least one gate-
way node. (We will call the other nodes in a cluster internal
nodes.) These gateways are the designated representatives
of the clusters, and they are the only ones able to commu-
nicate with the mobiles – traffic from one cluster to another
cluster (inter-cluster traffic) must be funneled through the
gateways, both in the source cluster and in the destination
cluster. The mobiles and gateways exchange packets (pick-
ups and drop-offs) on contact. Each contact is made over
a high capacity link and is long enough for a large quantity
of data to be exchanged. The mobiles then move between
clusters, and on contact with a gateway in the destination
cluster, packet drop-offs are made.

A concrete example of the intermittently connected net-
works (ICNs) we consider in our paper is as follows: there
are clusters of soldiers that are geographically separated in
the battle field. The soldiers in the same cluster are con-
nected wirelessly. However, the soldiers in different clusters
must rely on unmanned aerial vehicles (UAVs) to provide
connectivity because the range of the wireless devices is not
large enough. These UAVs fly between clusters in some (ap-
proximately) pre-specified pattern (more generally, any er-
godic mobility pattern) for the purpose of connecting differ-
ent clusters. The UAVs can take seconds or minutes to fly

from one cluster to another, and when a UAV visits a clus-
ter, it can pick up or drop off data to one of the designated
soldiers with a special device that can communicate with the
UAVs - the special device must have the capability to take
advantage of the brief, but high capacity contact that UAVs
provide. Within a cluster, the data is routed to and from
the designated soldiers via the internal wireless network.
A key challenge in the network above is the fact that in-

termittently connected networks have several time-scales of
link variability. For instance, wireless communication be-
tween soldiers within the same cluster is likely to occur at
a time-scale several orders of magnitude faster than com-
munication across clusters (which needs to use the mobile
carriers, namely, UAVs). In this context, there are essen-
tially two time-scales: (a) within a cluster, where wireless
links are formed in an order of tens of milliseconds, and (b)
across clusters where the time-scale could be tens of sec-
onds, to minutes. To communicate from one node to an-
other node in the same cluster poses no significant problem
– one can use existing protocols such as TCP. However, for
two nodes in two different clusters to communicate, they
must use the mobile nodes, as these mobiles move between
clusters to physically transport data. Hence, the mobile
communication time scale is many, many times greater than
the electronic communication time scale. Any communica-
tion protocol that relies on fast feed-back (in the order of
milliseconds to tens/hundreds of milliseconds) incurs severe
performance degradation. The mobiles may be able to trans-
port a large quantity of data (of the order of mega or giga
bytes) in one “move,” but to move from one cluster in one
part of a network to another part still takes time (of the
order of seconds to minutes).
The design and development of communication protocols

for intermittently connected networks, therefore, must start
with an algorithm with as few assumptions about the un-
derlying network structure as possible. The back-pressure
routing algorithm [24] was introduced nearly two decades
ago by Tassiulas and Ephremides with only modest assump-
tions about the stability of links, their“anytime”availability,
or feasibility of fast feed-back mechanism; yet remarkably
it is throughput optimal (throughput performance achieved
using any other routing algorithm can be obtained using the
back-pressure algorithm [24]) as well as resilient to changes
in the network. Over the years, there has been much contin-
ued effort to further develop back-pressure type algorithms
to include congestion control and to deal with state-space
explosion and delay characteristics [14, 22, 5, 15, 1, 30, 29,
13, 27]. However, the traditional back-pressure algorithm
will lead to extremely poor performance in intermittently
connected networks. This is because the performance of the
back-pressure algorithm in the heterogeneous connectivity
setting of the ICNs is governed by the link with the “poorest
delay performance”, and this “poorly” performing link can
“poison” the performance of the other links in the network.
However, we do believe that the back-pressure algorithm is a
reasonable starting point for developing rate control/routing
protocols for intermittently connected networks. In this pa-
per, we design, implement and evaluate the performance of a
rate control mechanism along with a back-pressure like rout-
ing/scheduling algorithm specially tailored for ICNs. As we
shall see later, by modifying the back-pressure algorithm to
take into account the different time-scales, we can achieve
very similar performance to that predicted by theory.

����� ����� ����� ���������������

��	
����
���
���������

������� �������

�������	�������	�

�������	�������	�

Figure 1: A simple, intermittently connected line
network: There are two wireless clusters, each clus-
ter operating at a different frequency (thus clusters
do not interfere/directly communicate with each
other), and with one mobile node connecting these
clusters.

The back-pressure routing is a per-packet dynamic rout-
ing algorithm, where per-destination queues are maintained
at each node. At each time, a packet currently at a node n

(and destined to node d) is forwarded to a neighbor m if the
backlog at node m (for destination d) is smaller than that
at node n. Thus, the packets create backlog gradients over
the network, and each packet sent out afterwards reaches d

by following the positive gradient difference over each hop.
An analogy that helps in understanding is that of water flow
that reaches the sink by seeking the largest drop in elevation
as it flows – paths that do not reach the sink will end up ac-
cumulating pool of water until no more water can flow along
those paths. The back-pressure algorithm is throughput op-
timal, and resilient to the changes in the network and forms
the basis of our implementation, see Section 3 for details.

Another solution that can be used in intermittently con-
nected networks is to use replication based strategy. How-
ever, in the scenario that we consider in this paper, we
can exploit the periodic mobile movement pattern to ob-
tain throughput optimal performance of back-pressure rout-
ing (note however that the patterns need not be known
in advance for our algorithm to work). Replication-based
algorithms such as epidemic routing for DTNs are more
suitable for networks with random and unpredictable mo-
bile movements; such algorithms result in lower throughput
since multiple copies of a piece of data need to be forwarded
and stored (and therefore not throughput optimal). How-
ever, in certain scenarios, one is not necessarily interested in
throughput optimality and just having connectivity is sat-
isfactory. For example, if one is interested in a single file
transfer in a general delay-tolerant setting and whether file
is completely received is the only concern, the replication-
based strategies are potentially a better choice than our BP-
based algorithm.

2. MOTIVATION: DIFFICULTIES WITH
CLASSICAL BACK-PRESSURE

Consider a simple, intermittently connected line network
as shown in Figure 1. We have two clusters, and each cluster
is on a different 802.11a channel (5.26 GHz and 5.30 GHz,
respectively). We have two gateways (1.104 and 2.103) rep-
resenting the 5.26GHz and 5.30GHz clusters, respectively.
Between these two clusters, we have a“mobile” contact node
0.100 that moves from one cluster to the other every ten
seconds. On contact, the mobile and the gateways (the des-
ignated nodes in the cluster that can communicate with the
mobiles) can exchange 12MB of data (6MB in each direc-

tion). Finally, there are two flows; an inter-cluster flow orig-
inating from 1.100 and an intra-cluster flow originating from
2.101, and both flows are destined for 2.100.
In this network, routing is straightforward. But the ques-

tion here is:
What is the rate at which these flows can transmit data? An
even more basic question is: Can these flows attain high and
sustainable throughput1, provided that the link capacity be-
tween the mobiles and gateways is high enough (albeit with
extreme delays)? How close can we get to the maximum
throughput allowed by the network? Can we obtain utility-
maximizing rate allocation over an ICN?
The answer to this is clearly a negative, if TCP is used

for rate control, and we shall see that even with traditional
back-pressure [24, 5] algorithms that have a theoretical guar-
antee that the above is possible, in a practical setting, the
answer still seems to be negative!
To put the above statement in context, we know back-

pressure (BP) routing/rate control algorithm is throughput
optimal [24], meaning that if any routing/rate control algo-
rithm can give us certain throughput performance, so can
back-pressure algorithm. Contra-positively, if back-pressure
algorithm can not, no other algorithm can do so. Further, a
rate controller based on utility maximization can be added
to this framework [5] that is theoretically utility maximizing,
and it chooses rates that (averaged over a long time-scale)
lead to high and sustainable throughput corresponding to
the rates determined via an optimization problem [5].
To see the performance of a traditional BP based rout-

ing/rate control algorithm, let us look at Figure 2(a), where
we plot the rate trace of the two (inter- and intra-cluster)
flows. (Each source uses the BP congestion algorithm [14,
22, 5, 15] which we will describe later). In these plots, we can
see that the inter-cluster traffic performs very poorly, even
though the mobile-gateway contact has enough capacity.
The reason is simple – the BP congestion control uses the
local queue length as a congestion signal, and between two
successive contacts that can be seconds or minutes apart,
the inter-cluster packets have no where to go, and the queues
build up to the point that the inter-cluster source mistakenly
believes that the network has low-capacity (and low-delay)
links, whereas we have high-capacity (but high-delay) links.
Because of this, the inter-cluster source is not able to fill the
buffer with enough packets at the gateway to fully utilize
the contacts (see Figure 2(a)).
Importantly, this rate achieved by the inter-cluster traffic

is much lower than that predicted by the theory (the theory
predicts that intra-cluster rate is ≈ 200KBps, and the inter-
cluster rate ≈ 100KBps). This is because the theoretical
results hold only when the utilities of users are scaled down
by a large constant – this is to (intuitively) enable all queues
in the network to build up to a large enough value in order to
“dilute” the effects of the “burstiness” of the intermittently
connected link. In the measurements here, the utilities have
not been globally scaled to such a sufficiently large value,
thus the inter-cluster rate is exceedingly low.
Furthermore, even if the inter-cluster source is aware of

the presence of these intermittent mobile-gateway links and
therefore can transmit at the correct rate (i.e., a genie com-
putes the rate and tells this to the source), the problem can
manifest itself in another way.

1By “high”we mean close to the maximum throughput pos-
sible, and by “sustainable” we mean stochastically stable.

Consider the same network as in Figure 1, but we just
have one inter-cluster flow from 2.100 to 1.100 (now in the
opposite direction to what is shown in the Figure). We run
the traditional BP algorithm (with no rate controller, as the
genie has solved this problem) and fix the source rate at
200KBps. In this case, there is large backlog that builds up
not only at node 2.103 (the intermittently connected node),
but also at node 2.101 which is an “internal” node (see Fig-
ure 2(c)). Note that this happens, even though node 2.101 is
nicely connected and has no intermittent connectivity issues.
This is what we alluded to in the introduction where the in-
termittently connected links “poisoned” the performance at
all other links. In this case, since the backlog at the in-
termittently connected node 2.103 is necessarily large, node
2.101 can “push” packets into 2.103 only if its own backlog
is larger; this effect thus makes all queues in the 5.30 GHz
cluster to be large. The problem of large queues everywhere
in this second genie-assisted setup is exacerbated as the net-
work size increases. In particular, in our second, larger scale
experiments with multiples clusters (see Figure 12), we were
even unable to complete a single run of the experiment with
traditional BP due to exceedingly long queues within all
clusters.

2.1 Main Contributions
In this paper, we designed, implemented and empirically

studied the performance of a modified back-pressure algo-
rithm that has been coupled with a utility based rate con-
troller for an intermittently connected network.

1. We built a testbed for evaluating rate control, rout-
ing and scheduling over intermittently connected net-
works. This testbed consists of Linux-based wireless
(802.11a) nodes, with a modified MadWifi device driver
and a programmable router (using Click [9]). These
nodes are organized into several clusters, with inter-
mittent connectivity across these clusters provided by
“carrier” nodes. These carrier nodes connect intermit-
tently to various clusters via an Ethernet switch with
time-varying connectivity (this switch emulates mobil-
ity pattern of the carrier, via a predetermined switch-
ing schedule).

2. Using this testbed, we first showed that the traditional
back-pressure algorithms coupled with a utility func-
tion based rate controller is not suitable for intermit-
tently connected networks, and leads to a large diver-
gence between theoretically predicted rates and actual
measurements (shown for a line network). This is be-
cause of the time-scale mismatch between the intra-
cluster and inter-cluster communications.

3. We have then studied a modified back-pressure (BP)
algorithm, that along with a utility-based rate con-
troller loosely decouples the time-scales at the inter-
cluster and intra-cluster levels. With this time-scale
decoupling, (and unlike the traditional BP algorithm)
we now observe a much better match between theory
and measurements for a line network. We also present
measurement results for a larger sized network (three
clusters with two carrier nodes providing intermittent
connectivity). A key advantage of this modified BP al-
gorithm is that it maintains large queues only at nodes
which are intermittently connected; at all other nodes,

0 2 4 6 8 10
0

50

100

150

200

250

300

350

400

450

500

Time (mins)

R
at

e
(K

B
ps

)

Rate trace (traditional BP)

1.100 to 2.100
2.101 to 2.100

Intra−cluster rate

Inter−cluster rate

(a) Rate traces under traditional BP

0 2 4 6 8 10
0

50

100

150

200

250

300

Time (mins)

Q
ue

ue
 le

ng
th

 (
pk

ts
)

Gateway queue trace (traditional BP)

Queue length at 1.104

(b) Queue traces at 1.104

0 2 4 6 8 10
0

1000

2000

3000

4000

Time (mins)

Q
ue

ue
 le

ng
th

 (
pk

ts
) Queue length at 2.100 (traditional BP)

0 2 4 6 8 10
0

1000

2000

3000

4000

Time (mins)

Q
ue

ue
 le

ng
th

 (
pk

ts
) Queue length at 2.101 (traditional BP)

Large queue build−up

Large queue build−up

(c) Queue traces at 2.100 and 2.101 with
fixed 200KBps source rate

Figure 2: Problems with traditional BP in intermittently connected networks: either low inter-cluster rate
or large queues at every node

the queue sizes remain small. In addition, the nodes
that are not intermittently connected are not aware of
the presence of the intermittent links.

4. Finally, we present a practical implementation of shadow
queues developed by the authors in [3]. Using our im-
plementation, we observe that we have a nice trade-off
between controlling the end-to-end inter-cluster delay
and the network capacity utilization.

3. BACK-PRESSURE ALGORITHM
We begin with a mathematical overview of the back-pressure

(BP) algorithm [24]. The time is slotted, with t denoting tth

time slot. We represent the network by a graph G = (N ,L),
where N corresponds to the set of nodes in the network
and L being the collection of links. We denote µ(n1,n2)[t]
to be the transmission rate (measured in packets/time-slot)
of link (n1, n2) ∈ L between n1, n2 ∈ N at time t, and
~µ[t] = {µ(n1,n2)[t], (n1, n2) ∈ L}. Finally Γ is the convex
hull of the collection of all feasible transmission rates in the
network. We observe that ~µ[t] and Γ could depend on the
interference model used for the network. (We also refer to
[18] and Section 5 for additional details).
Let f[s,d] denote the flow from s to d. F denotes the set of

all flows. Let x[s,d] be the rate at which s generates data for
d, and let ~x = {x[s,d], [s, d] ∈ F}. Let C denote the capacity
region of the network under Γ.
Each node in the network maintains a queue for every

other node in the network. Let q
j
i [t] denote the length of

queue for node j maintained at node i; the queue for node
i maintained at i is assumed to be zero for all time slots,
i.e. qii [t] = 0 ∀t. In each time slot t, each node n obtains
queue information from its neighbor m ((n,m) ∈ L). Define
P

j

(n,m)[t] = qjn[t]− qjm[t]. Let

j(n,m)[t] = argmax
j

P
j

(n,m)[t]. (1)

In each time slot t, the network computes (1) and ~µ[t] such
that

~µ[t] = argmax
~µ∈Γ







∑

(m,n)∈L

µ(m,n)P
j(m,n)[t]

(m,n) [t]







. (2)

After the computation, node m transmits µ(m,n)[t] packets
out of queue j(m,n)[t] to node n in time slot t. Note that the

maximization problem (sometimes called the MaxWeight
problem) eq. (2) can be solved in a distributed way for a
wired network, but is a global problem for wireless networks
due to the coupled interference constraint and therefore is
an NP-hard problem.

The above routing and scheduling algorithm is proven to
be throughput optimal [24]; i.e. BP stabilizes all queues in
the network if at all possible to do so under any algorithm,
and the capacity region under BP is the largest possible.
There are also many extensions available that deal with the-
oretically addressing both the distributed aspects as well as
lowering the complexity [1, 3, 30].

3.1 Rate Control and Utility Maximization
More recently, utility maximization has been addressed in

a back-pressure framework [14, 22, 5, 15, 1] to address rate
control issues.

We use the formulation in [1] to describe the idea here.
Each flow f[s,d] originating from s and destined for d has
a utility function Uf[s,d](xf[s,d]) which is a function of the
rate xf[s,d] it is served at. Let sf and df denote the source
and the destination of the flow f , respectively. We assume
that all utility functions are strictly concave, with contin-
uous derivatives. The utility maximization problem is the
following:

max
~x∈C

∑

f∈F

Uxf
(xf). (3)

Let xf [t] denote the rate at which the flow f is served in
time slot t. The rate control algorithm that maximizes (3)
is the following. In each time slot t, the source sf injects

κ > 0 packets into the queue q
df
sf if and only if

U
′
f (xf [t])− βq

df
sf [t] > 0, (4)

where β > 0 is a control parameter and U ′
f is the first deriva-

tive of flow f ’s utility function. The parameter β controls
how close to the optimal rate allocation the system performs,
but this comes at the price of longer queues. We also refer
to [1] for a discussion on this implementation.

4. IMPLEMENTATION
Our implementation consists of two parts. The first part

is the modification of the MadWifi wireless device driver to
support differentiated levels of channel access on a frame

by frame basis through varying MAC contention parame-
ters such as AIFS and the contention window sizes. The
second part is our implementation of the modified back-
pressure routing algorithm on the Click Modular Router [9]
which utilizes the modified MadWifi to approximately solve
the MaxWeight optimization problem (2) without a global
knowledge. We describe each part below.
Each node has a Via C7 1GHz processor with up to 1GB

of memory and runs Linux 2.6.31. It also had an Atheros
5212 802.11a/b/g wireless card and an Ethernet port. We
put all our nodes in the monitor mode and used the modified
MadWifi driver.
MAC and PHY: We modified the MadWifi driver so that it
supports four hardware queues, with each queue having dif-
ferent AIFS, CWmax and CWmin values shown in Table 1.
(When two wireless transmissions contend for access to the
same channel, the wireless transmission with smaller MAC
parameter values will statistically have more access.) Each
hardware queue is given a priority number ranging from 0
to 3. The modified device driver inspects the TOS field of
the IP header of a packet, and injects it into the hardware
queue with the same priority number as the TOS field. Our
modification is very similar to the one in [27], with only mi-
nor differences. The differences essentially stem from the
fact that we use only four priority levels, whereas [27] uses
eight levels. The more substantial difference between our
work and that in [27] is in the algorithms for rate control, as
well as the implementation at the routing layer. The work in
[27] focuses on modifying TCP to work with back-pressure
over a traditional wireless network. However, over an in-
termittently connected network such as ours, TCP breaks,
thus requiring a new approach for the rate control. Further-
more, from the implementation perspective, we use the Click
router for supporting a variety of routing and rate control
algorithms. By separating the MAC contention resolution
implementation from the BP routing/rate control algorithm
in Click, we are able to study the effects of the two sepa-
rately.
Routing and Rate Control: We have implemented the tradi-
tional as well as the modified back-pressure algorithm (pre-
sented in Section 5) in Click Modular Router. Each packet
(with 1KB payload) that is sent out is assigned a value be-
tween 0 to 3 that is written to the TOS field. The assigned
value depends on the queue length difference that the wire-
less transmission source has with the next-hop destination.
Each node broadcasts a beacon on its wireless card every
500msecs. The beacon contains the information about the
queues the node maintains. The nodes also use the beacons
to discover their neighbors. All data packets received by a
node is acknowledged and the ACKs sent to the transmitting
node also contains the queue information. Thus, ACKs and
beacons are used to calculate eq. (1). The transmitting node
retransmits a data packet if an ACK for that packet is not
received within 250msecs. The hop-by-hop ACK guarantees
that all packets are received correctly by the final destina-
tion, and the ACKs are also used to throttle the transmission
rate. We did not use any RTS-CTS in our implementation.
A source node inspects the queue for its destination every

5msecs. It runs the back-pressure rate control algorithm in
eq. (4) with κ = 3; i.e., it generates three packets if (4)
is positive, and generates zero packets other-wise (let this
variable be NumGen). Then it uses the following update

algorithm to estimate the rate x (in Bps):

x = 0.999x+ 0.001
packet size*NumGen

5msecs

Note that this is simply an exponential filtering of the rate
estimate, based on NumGen (we refer to [1] for a discussion
of this implementation).

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

500

Time (secs)

R
at

e
(K

B
ps

)

Rate trace

1.100 to 1.101 with modification
1.102 to 1.103 with modification
1.100 to 1.101 without modification
1.102 to 1.103 without modification

Flows get the same rate
without modification

Flow with higher utility gets higher
rate than flow with lower utility

 with modification

Figure 3: Rate allocations under modified and un-
modified MadWifi. Modified MadWifi can give
more channel access (thus higher rate) to flows with
higher utility.

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Priorities (0=highest, 3=lowest)

%
 o

f t
ra

ns
m

is
si

on
s

Priority vs. % of transmissions

1.100 to 1.101
1.102 to 1.103

Figure 4: Priority vs. % of TX: Flows with “higher”
utility can get more rate by trying to access the
channel more aggressively. This aggressive access is
facilitated by smaller AIFS and contention windows.

Effect of the Modifications: To see how important the mod-
ifications are to the utility maximizing BP algorithm (i.e.,
rate control + BP), we ran a simple experiment with four
wireless nodes (labeled 1.100, 1.101, 1.102 and 1.103) on the
5.26GHz channel. There are two single-hop flows in this
experiment (however, all four nodes are in the same colli-
sion domain). The nodes 1.100 and 1.102 transmit to 1.101
and 1.103, respectively, with the utility functions U(x) =
400 log(x) and U(x) = 800 log(x), respectively, where x is
measured in Bps by the sources. If the queue difference
between the source and the destination is greater than or
equal to 20, between 19 and 17, between 16 and 15, and
lower than or equal to 14, we assign TOS levels 0, 1, 2 and
3, respectively (we represent this mapping by the threshold
array L = {20, 16, 14}).

Priority # 0 1 2 3
AIFS 1 3 5 7

CWmin 1 7 31 255
CWmax 7 63 255 1023

Table 1: MAC scheduling parameters of the four
MadWifi hardware queues

The optimal rate allocation for our simple experiment is
for the flow from 1.102 to 1.103 to have twice as much rate
as the flow from 1.100 to 1.100. With the modified wire-
less device driver, we indeed obtain a rate allocation that
is very close to the optimal (see Figure 3). However, with
no modifications, the rates allocated to both flows are the
same. The source 1.102 has a higher marginal utility func-
tion and therefore can maintain a larger queue, which in
turn translates into assigning more urgent priority to more
of its outgoing packets (see Figure 4). (The figure does not
capture the ACKs that were always transmitted for each
data packet with priority 0.)
Finding the optimal threshold array L can be difficult,

and suboptimal levels can have severe impact on the perfor-
mance. To illustrate this, we conduct another experiment
with three wireless nodes (from 1.101 – 1.102 – 1.103, on
5.26GHz) in a line.
The long flow from 1.101 to 1.103 has the utility function

K1 log(x1) and the short flow from 1.102 to 1.103 has the
utility function K2 log(x2). Let f1 and f2 be the fraction of
time that the links 1.101-1.102 and 1.102-1.103 are active,
respectively. Due to the coupled wireless interference con-
straint, f1 + f2 ≤ 1. The optimal rate allocation can then
be obtained by solving

maximize K1 log(x1) +K2 log(x2) (5)

subject to f1 + f2 ≤ 1

x1 ≤ f1C

x1 + x2 ≤ f2C

assuming that both links 1.101-1.102 and 1.102-1.103 have
the same link capacity C. (C is the one hop transmission
rate between two nodes with no other transmissions in the
range and was measured to be around 465KBps.)
If K1 = K2 = 200, the optimal rate allocation is such

that the short flow 1.102-1.103 is allocated twice as much
rate as the long flow 1.101-1.103, since 1.101-1.103 requires
two transmissions for every packet to reach the destination.
Using queue difference levels L = {25, 13, 5} (i.e. when the
queue difference is ≥ 25, priority 0 is assigned to the packets,
etc.), we were able to obtain a near optimal allocation (thin
trace lines in Figure 5(a)). However, when using the queue
difference levels L′ = {25, 18, 10}, we obtained a suboptimal
allocation (thick trace lines). In particular, the short flow
from 1.102 to 1.103 suffers 25% reduction in throughput.
The reason is that the queue difference levels were set too
high. In order to maximize eq. (2), links with more weight

P
j(m,n)

(m,n) should receive more channel access (at the cost of

causing interference to links with lower weight). However,
because the difference levels were set too high, links received
similar rates, even though they had different weights. It
is difficult to know what the optimal difference levels are
before hand, as the optimal levels are driven in part by the
β parameter in eq. (4) and the choice of the utility functions.

When we use queue difference levels L′ = {25, 5, 2}, we
were able to produce a suboptimal allocation with K1 = 800
and K2 = 200. In this setting, the long flow from 1.101 to
1.103 should be allocated twice as much rate as the short flow
from 1.102 to 1.103. Indeed, with the same queue difference
levels L, we got close to the optimal allocation (see Figure
5(b)).

We will use the optimal rate allocations in this line net-
work as a benchmark against which we compare the rate
allocations of the modified BP algorithm for intermittently
connected networks in the next section. So for the sake
of completeness, we include the case when K1 = 400 and
K2 = 200 in Figure 5(c). In this case, the rate allocation
should be equal for both the short and the long flows.

On our MadWifi+Click platform, we will implement a
modified BP algorithm for intermittently connected networks.
We emphasize that the focus of this paper is not an im-
plementation of traditional back-pressure routing with the
modified driver; rather, our aim is to decouple the two time
scales (mobile-gateway and internal-internal) in such net-
works. In order to do this, we need the MAC algorithm to
support differentiated levels of contention, and we need the
results from this single time-scale 1.101-1.102-1.103 line net-
work against which we can compare our results to see how
effectively we achieve our goal.

5. BACK-PRESSURE IN ICN
We begin with a description of the modified back-pressure

algorithm for intermittently connected networks. The issue
that the traditional back-pressure algorithm would suffer in
a multiple time-scale environment (such as an intermittently
connected network) was identified in [18]. The authors in
[18] have proposed a modified BP algorithm to address this
issue, where the time-scales at the inter-cluster and intra-
cluster levels have been (loosely) decoupled by a hierarchical
BP approach. Essentially, there are two BP algorithms op-
erating, each at different queue-scales and time-scales, and
the coupling between them occurs at the gateway nodes. In
this paper, we build on their work in order to (i) study rate
control, (ii) to address real implementation concerns, and
(iii) to study the performance improvements that we can
measure in a real network.

5.1 A Modified BP Algorithm
We present a simplified version of the algorithm described

by the authors in [18]. Consider slotted time t. We assume
that the time duration between two contacts as measured
at the gateways is T time slots, where T is a very large
number. A time slot is the time scale of one wireless packet
transmission, and T is the time scale of the mobility (thus, a
time slot is roughly a few milliseconds long, and T is roughly
> 103 to reflect the mobility time scale which is seconds
or minutes long). Within each cluster, the back-pressure
routing algorithm runs as it was originally designed.

In brief, the gateway nodes advertise their queue-lengths
scaled down by a factor T within their respective clusters.
All other nodes in the cluster advertise their queue lengths
without any scaling, and the back-pressure algorithm oper-
ates within the cluster based on the advertised queue lengths
(and not the actual queue lengths). However, when a gate-
way comes in contact with a mobile, it uses its actual queue
length to compute the back-pressure (i.e., eq. (1)) between
itself and the mobile.

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

Time (mins)

R
at

e
(K

B
ps

)
Rate trace

1.101 to 1.103 (optimal)
1.102 to 1.103 (optimal)
1.101 to 1.103 (suboptimal)
1.102 to 1.103 (suboptimal)

Short flow
(with optimal levels)

Short flow
(with suboptimal levels)Long flows

(a) K1 = K2 = 200. The short flow rate
should be two times the long flow rate.

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

Time (mins)

R
at

e
(K

B
ps

)

Rate trace

1.101 to 1.103 (optimal)
1.102 to 1.103 (optimal)
1.101 to 1.103 (suboptimal)
1.102 to 1.103 (suboptimal)

Long flows

Short flows

(b) K1 = 800, K2 = 200. The long flow
rate should be two times the short flow
rate.

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Time (mins)

R
at

e
(K

B
ps

)

Rate trace

1.101 to 1.103
1.102 to 1.103

(c) K1 = 400, K2 = 200. The long and
short flows should get the same rate.

Figure 5: Rate allocations in 1.101-1.102-1.103 line network. We can control which flow gets more rate by
controlling the utility function parameters K1 and K2. As K1 increases relative to K2, the long flow gets more
and more rate. These figures also highlight how improper selection of queue difference levels can impact rate
allocation performance (thick trace lines).

A packet from a source eventually gets to the gateway of
the cluster in which the destination lies. This destination
gateway g maintains two queues for each node n in the same
cluster as itself. One queue is to receive inter-cluster packets
destined for node n from the mobiles (call this queue q̂ng).
The length of q̂ng is used for back-pressure routing with the
mobiles. Once an inter-cluster traffic packet destined for n

arrives at the gateway g, it is put into q̂ng . The other queue
(call it qng) is the intra-cluster queue within the destination
cluster: This is the queue length advertised by the gateway
for back-pressure computation within this cluster (qng can
also be used to relay intra-cluster packets for n.) In each
time slot t, g transfers η (η << R, where R is the num-
ber of packets transferred between mobiles and gateways on
contact) packets from q̂ng to qng if and only if

q̂ng [t]

T
≥ q

n
g [t]. (6)

Once put into qng , the inter-cluster packets are routed to the
destination using back-pressure routing in the destination
cluster.
Also, to reduce the number of queues to be maintained by

each node in our implementation, a gateway that receives
packets destined for a different cluster (i.e., is a way-point
gateway), does not send out the inter-cluster packets to the
internal nodes within its cluster. This way, an internal node
only has to maintain a queue for every other node in the
same cluster as itself and only for the other nodes in dif-
ferent clusters that are destinations of inter-cluster traffics
originating from the same cluster.
The algorithm in [18] requires the knowledge of the time

scale difference between the wireless packet transmission and
the mobility. But in fact, even a rough estimate (anything
Θ(T)) of the difference is good enough and their throughput
optimality result would still hold. The best scaling factor T
would be the ratio of the time duration it takes the mobiles
to make two contacts to the intra-cluster time slot; however,
this is difficult to measure precisely. If too large estimate is
used for T , it would result in longer queues at the gateways
and longer time before the inter-cluster rates converge. If
too small estimate is used, this would result in fluctuations
in the instantaneous inter- and intra-cluster rates. This rate
fluctuations can be seen in Figures 6(a), 6(b), and 6(c).
In order to speed up our experiments so that they may

be conducted in a reasonable amount of time, we choose
the time scale of the mobility to be of the order of tens
of seconds, which is long enough for Θ(1000) wireless 1KB
packet transmissions on 802.11a channels. To make sure that
the bottleneck is not the mobile-gateway part of the network
(more interesting case happens when congestion occurs in a
different cluster), we choose R to be the same order as T .

5.2 Verification on a Line Network

5.2.1 Utility Maximizing Performance
We experimentally verify the modified back-pressure al-

gorithm on a simple intermittently connected line network
shown in Figure 1. We used a 100Mbps Cisco switch to em-
ulate the mobile-gateway contacts. Each gateway node is
equipped with one wireless card and an Ethernet port. The
gateways use the wireless card to communicate with the in-
ternal nodes and the Ethernet port to communicate with
the “mobile.”

On each contact, up to 6000 packets can be transferred.
Each packet has a payload of 1KB, in addition to IP and
Ethernet and the modified BP headers (roughly 6MB per
contact). The mobile contact node switched clusters every
10 seconds, so two consecutive contacts at a gateway are 20
seconds apart. Thus, the average rate (averaged over many
contacts) from the source cluster (the left cluster) to the
destination cluster (the right cluster) is 300KBps. We also
chose T = 6000 and L = {25, 13, 5}.

The purpose of the modified BP algorithm is to have the
inter-cluster traffic source be totally unaware of the mobile-
gateway contacts, and to disturb any intra-cluster traffic as
little as possible. We also want to obtain utility maximiz-
ing rate allocation, even though the clusters are physically
separated.

Let x1 denote the inter-cluster rate, and x2 denote the
intra-cluster rate. The utility functions for inter- and intra-
cluster traffics are

U1(x1) = K1 log(x1)

and

U2(x2) = K2 log(x2),

respectively. We made sure the only bottleneck is the des-
tination cluster. (If the bottlenecks are either the source

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

Time (mins)

R
at

e
(K

B
ps

)
Rate trace

1.100 to 2.100
2.101 to 2.100

Inter−cluster rate

Intra−cluster rate

(a) K1 = K2 = 200. Intra-rate should be
2× inter-rate.

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

Time (mins)

R
at

e
(K

B
ps

)

Rate trace

2.101 to 2.100
1.100 to 2.100

(b) K1 = 400, K2 = 200. Intra- and
inter-rates should be equal.

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

450

Time (mins)

R
at

e
(K

B
ps

)

Rate trace

1.100 to 2.100
2.101 to 2.100

Inter−cluster rate

Intra−cluster rate

(c) K1 = 800, K2 = 200. Inter-rate
should be 2× intra-rate.

Figure 6: Rate allocation in the network shown in Figure 1 (compare against optimal rate allocations in
Figures 5(a), 5(b), and 5(c)). The presence of the intermittent link is hidden both to the inter- and intra-
cluster sources since they achieve the same rates in the network shown in Figure 1 as in the two-hop 1.101-
1.102-1.103 line network.

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

Time (mins)

Q
ue

ue
 le

ng
th

 (
pk

ts
)

Queue length at 1.100

(a) Inter-cluster source 1.100

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6
x 10

4

Time (mins)

Q
ue

ue
 le

ng
th

 (
pk

ts
)

Gateway 1.104 queue length

(b) Source gateway 1.104

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6
x 10

4

Time (mins)

Q
ue

ue
 le

ng
th

 (
pk

ts
)

Gateway 2.103 queue length

(c) Dest. gateway 2.103

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

Time (mins)

Q
ue

ue
 le

ng
th

 (
pk

ts
)

Queue length at 2.101

(d) Intermediate node 2.101

Figure 7: Queue traces under the modified BP. Large queues are confined only to gateways and mobiles.
Internal nodes have small queues. (K1 = K2 = 200)

0 1 2 3 4 5

x 10
5

0

10

20

30

40

Packet #

D
el

ay
 (

m
in

s)

Packet delay from 1.100 to 2.100

0 2 4 6 8 10

x 10
5

0
2000
4000
6000
8000

10000

Packet #

D
el

ay
 (

m
se

c)

Packet delay from 2.101 to 2.100

(a) Inter-cluster delay vs. intra-
cluster delay

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

2

4

6

8

10

12

14

16

18

20

Packet #

D
el

ay
 (

m
in

s)

End−to−end delay without looping

End−to−end delay from 1.100 to 2.100

(b) End-to-end delay from 1.100 to
2.100 without looping

0 1 2 3 4

x 10
5

0

3

6

9

12

15

Packet #

D
el

ay
 (

m
in

s)
End−to−end delay using shadow packets

1 shadow for every 2 data
0.5 shadow for every 2.5 data

0.5 shadow for 2.5 data

1 shadow for 2 data

(c) End-to-end delay from 1.100 to
2.100 using shadow packets

Figure 8: Inter-cluster delay: we can improve delay performance by preventing packet “looping” and by using
shadow packets. Note the significant reduction in delay as we back-off from the capacity region boundary by
using shadow packets. (K1 = K2 = 200)

cluster or the mobile-gateway contacts, this could easily be
learned by the source.) Thus, the optimal rate allocation is
the solution to the maximization problem (5) (with f1 and
f2 denoting the fraction of time the wireless channel 2.103-
2.101 and 2.101-2.100 are active, respectively). In summary:

• Recall that the traditional BP rate controller fails to
give an optimal rate allocation (unless a large scaling
is done, resulting in large queue sizes), and resulted
in low inter-cluster rates as seen in Figure 2(a). How-
ever, using the modified BP, we get a high, sustained
throughput for both the inter- and intra-cluster flows,

and their rates are (shown Figures 6(a), 6(b) and 6(c))
close to the theoretically computed values. The rates
are also close to the ones (with optimal queue dif-
ference levels) shown in Figures 5(a), 5(b) and 5(c).
Thus, the modified BP successfully hides the presence
of the intermittent links.

• We also verify that large queues occur only at gate-
ways; we plot the queue trace at the source and the
destination gateways in Figures 7(b) and 7(c). The
queues at internal nodes 1.100 and 2.102 are small as
seen in Figures 7(a) and 7(d). We note that under

the traditional back-pressure algorithm, large queues
are maintained at every node in the source cluster to
achieve sustained rates – see Figure 2(c). This is due
to the “burstiness” of the intermittent links.

5.2.2 End-to-End Delay: Shadow Packets
We compare the end-to-end delay that inter- and intra-

cluster packets see. Since inter-cluster packets must pass
through the gateways and mobiles with large queues, they
incur large delays. However, intra-cluster packets need not,
and hence incur relatively smaller delays. This can be seen
in Figure 8(a). One factor causing the large inter-cluster
packet delay is that some packets are “looping” between the
gateways and the mobile. (“Looping” through large FIFO
queues a few times can increase delays significantly.) When
we prevent this looping, we get much smoother delays (but
still large), as seen in Figure 8(b).
Another factor that contributes to the large inter-cluster

delays is that our utility-maximizing rate controller oper-
ates very close to the boundary of the capacity region. This
is known to require large queues and can thus cause long
delays. The authors in [3] deal with this problem by in-
troducing the notion of shadow packets and queues. Their
essential idea here is to trade-off throughput for low delays.
Our implementation of shadow packets is as follows:
Shadow packet implementation: For every κ = 3 packets
that the inter-cluster source injects into its queue accord-
ing to eq. (4), it marks one red (or shadow). The other two
packets are marked blue. These shadow packets are dummy
packets and do not contain any useful data (but still have
1KB payload). The blue packets contain real data. Thus,
the real, useful rate is 0.66x. The gateways and mobiles
have two FIFO sub-queues for each inter-cluster destination.
The red and blue packets are separated into these two sub-
queues. The blue packets get transmission priority over the
red packets, i.e. shadow packets are transmitted if and only
if there are no blue packets that can be served. The total size
(blue queue size + red queue size) is used for back-pressure
routing.
The end-to-end delay with shadow packets is shown in Fig-

ure 8(c). (We also did another experiment where we send 1
shadow packet for every 5 data packets on average.) The de-
lay curve first increases as we first need to build large queues
at the gateways and mobiles. But as the real packets have
priority, only the dummy, shadow packets are left behind to
hold the steady-state queue sizes required for back-pressure
to work. The inter-cluster delay decreased from roughly
15mins (Figures 8(a) and 8(b)) to roughly 1-2mins using
shadow packets. Note that as we send fewer shadow packets
per data packet, the delay decreases slower. This is because
it takes longer for enough shadow packets to accumulate up
to the steady-state queue size.

6. EXPERIMENTAL RESULTS ON A
LARGER NETWORK

We implemented the modified back-pressure algorithm on
our 16-node test bed. The network we conducted our ex-
periment is shown in Figure 12. The nodes in each cluster
were placed only a few feet apart. (The clusters were on
different channels.) Each node in a cluster uses packet fil-
tering based on the source IP address; so for example, 1.101
can accept packets only from 1.102 and is only aware of

1.102’s presence. Thus, 1.101 will only transmit to 1.102.
We are aware that any transmission from, say, 1.101 causes
interference on all other transmissions because the wireless
range is large enough to cover the entire cluster. However,
a node can receive only one transmission at a time, and a
failed transmission from, say, 1.103 (which will also transmit
to 1.102 only) to 1.102 due to the interference caused by a
simultaneous transmission from 1.101 would not have been
received by 1.102 anyways even if the nodes were placed
farther apart. (We are aware that the way we have closely
laid out the nodes to conduct our experiment does not com-
pletely model the network depicted in Figure 12. For exam-
ple, as depicted in the figure the nodes 1.103 and 1.101 are
supposedly placed far apart, but they are within each other’s
transmission range. Thus, there can be a collision between
transmissions from 1.101 and 1.103 in the depicted network,
but not in our physical network (because of CSMA). How-
ever, in practice the carrier sensing range of 802.11 is larger
than the transmission range. Hence, the network we are
actually modeling is where the nodes 1.101 and 1.103 are
out of each other’s transmission range, but still within the
carrier sense range.) Thus, placing the nodes close does not
make our experimental results less valid.

Using a 100Mbps switch to emulate the mobile-gateway
contacts, up to 6000 packets can be transmitted between a
mobile and a gateway (so up to 12000 packets total) per
contact. We picked T = 6000, κ = η = 3, and used queue
difference levels L = {25, 13, 5}. After the contact is fin-
ished, the mobiles pick one of the other two gateways ran-
domly, and initiate another contact 14 seconds later. We
are aware that 14 seconds is not long enough to model most
mobility in the real world. However, we picked 14 seconds to
speed up our experiments so that we can have many contacts
within a reasonable amount of time. (In case the intermit-
tent connectivity time scale is of hours/days, our BP-based
algorithm could result in very long queues since our data
sources transmit at a high and stable rate for throughput
optimality. However, in such cases, one potentially would
be more interested in just connectivity in applications like
a single file transfer; in such cases, replication-based algo-
rithms seem to be a better choice.) Finally, all flows have
the same utility function of 200 log(·) in this study.

In summary, we have the following results from our ex-
periment on the network in Figure 12:

• We observe that even in this larger network, the intra-
cluster queues remain very small (between 10-15 pkts).
See Figures 11(b) and 11(a). Only the inter-cluster
flows suffer large delays due to longer queues (between
104 and 3× 104 pkts).

• Furthermore, using our implementation of the shadow
queues and packets (the idea was proposed by the au-
thors in [3]; we have developed an implementation for
intermittently connected networks), we can “back-off”
from operating on the boundary of the throughput re-
gion (i.e., utility optimal), and improve the delay per-
formance for the inter-cluster flows; the inter-cluster
delay decreased from ≈ 20 mins (blue, solid trace in
Figure 10) to ≈ 2 mins using our shadow packets (red,
dashed traces in Figure 10).

• To get a baseline on the approximate values we should
expect, we used the fluid deterministic optimization

0 1 2 3 4

x 10
5

0

10

20

30

Packet #

D
el

ay
 (

m
in

s)
Delay from 3.100 to 1.102

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

10

20

30

Packet #

D
el

ay
 (

m
in

s)

Delay from 1.100 to 2.101

Using shadow pkts

Using shadow pkts

Figure 10: Inter-cluster delays in the network in
Figure 12 (red, dashed=using 1 shadow packet for
every 2 data packets)

(that ignores ACKs, collisions, retransmissions) to ob-
tain the “optimal” rate allocations to be x1 = 106,
x2 = 83, x3 = 191, x4 = 146 and x5 = 87 (all KBps).
Our experimental numbers are x1 = 84, x2 = 68,
x3 = 120, x4 = 107 and x5 = 86 (all KBps). The rates
differ from the fluid approximation anywhere from a
few percent to about 33%. One source of the discrep-
ancy is that the theoretical framework as in eq. (5) as-
sumes a fluid model with no contention loss and expo-
nential back-offs. However, there are many packet col-
lisions that trigger the exponential back-offs that de-
crease the“link capacity”in the (idealized) fluid model.
Another source of the discrepancy is that the theory
does not model the ACKs. We used at least one ACK
for each data packet over each hop (so there are two
channel accesses to deliver a packet each hop). All
ACKs are transmitted at priority 0 (highest priority)
and are about 80B long (IP+BP+queue information).

7. RELATED WORKS
The back-pressure algorithm, in one form or another, has

been implemented in wireless mesh networks in [27, 17, 13,
21, 10]. [27] improves TCP performance over a wireless ad-
hoc network by utilizing the back-pressure scheduling algo-
rithm with backlog based contention resolution algorithm.
[17] improves multi-path TCP performance by taking ad-
vantage of the dynamic and resilient route discovery algo-
rithmic nature of BP. The authors in [13] have implemented
and studied back-pressure routing over a wireless sensor net-
work. They have used the utility-based framework of the
traditional BP algorithm, and have developed implemen-
tations with good routing performance for data gathering
(rate control is not studied in [13]). Their chief objective
is to deal with the poor delay performance of BP. [21] is

an implementational study of how the performance of BP is
affected by the network conditions, such as the number of
active flows, and under what scenarios backlog based con-
tention resolution algorithm is not necessary. [10] studies
utility maximization with queue-length based throughput
optimal CSMA, for single-hop flows (no routing or intermit-
tent connectivity). Lastly, [1] is not an implementation, but
discusses a lot of issues related to BP routing with rate con-
trol implementation. Our study differs from all of them in
that we focus on the disparate time-scales issue in an inter-
mittently connected network (thus, queues throughout the
network get “poisoned” with the traditional BP), and study
modifications that loosely decouple the time-scales for effi-
cient rate control.

Initially, the approach taken in intermittently connected
networks and DTNs for routing was based on packet replica-
tions. The simplest way to make sure packets are delivered
is to flood the “mobile” portion of the network so that the
likelihood of a packet reaching the destination increases as
more and more replicates are made [26]. A more refined
approach is to control the number of replicates of a packet
so that there is a balance between increasing the likelihood
and still leaving some capacity for new packets to be in-
jected into the network [2, 20, 4, 26, 12]. Another refined
approach is to learn the intermittently connected topology
and use this knowledge to route/replicate through the“best”
contacts and encounters and avoid congestion [7, 8, 19, 25,
11].

[16, 28, 6] study networks that are closer to ours. In [28],
distant groups of nodes are connected via mobiles, much like
our network but with general random mobility. At intra-
group level, a MANET routing protocol is used for route
discovery, and at inter-group level, the Spray-and-Wait is
used among mobiles to decrease forwarding time and in-
crease delivery probability. [16] augments AODV with DTN
routing to discover routes and whether those routes support
DTN routing and to what extent they support end-to-end
IP routing and hop-by-hop DTN routing. [6] studies how
two properties of the mobile nodes, namely whether a mo-
bile is dedicated to serve a specific region (ownership) and
whether the mobile movement can be scheduled and con-
trolled by regions (scheduling time), affect the performance
metrics such as delay and efficiency.

All the aforementioned replication-based algorithms are
valuable as they provide insight into engineering an efficient
and robust ICN protocol, and as discussed in the introduc-
tion, the only viable choice may be to use the replication-
based algorithm over networks with unpredictable and ran-
dom mobility. There is (to the best of our knowledge) not
much literature on rate control over ICNs. We demonstrated

�����

����� �����

�����
��

�����

���������� �����

�����

��

�����

�����

�����

�����	
 �����	
 �����	

�����

��

��

��

�
����

�����

�
�����

�����

�����

Figure 12: Our experimental network with 16 nodes

0 20 40 60 80
0

30

60

90

120

150

Time (mins)

R
at

e
(K

B
ps

)
Rate trace

1.101 to 1.103
1.100 to 2.101

x
2

x
1

(a) Rates x1 and x2 in the 5.22GHz clus-
ter

0 20 40 60 80
0

20

40

60

80

100

120

140

160

Time (min)

R
at

e
(K

B
ps

)

Rate trace

2.100 to 2.102

(b) Rate x3 in the 5.26GHz cluster

0 20 40 60 80
0

20

40

60

80

100

120

140

160

Time (min)

R
at

e
(K

B
ps

)

Rate trace

3.103 to 3.101
3.100 to 1.102

x
4

x
5

(c) Rates for x4 and x5 in the 5.30GHz
cluster

Figure 9: Rate allocation in the 16-node network. See Figure 12 for the labels x1, x2, x3, x4 and x5. x2 and
x5 are inter-cluster flows.

0 20 40 60 80
0

2

4
x 10

4

Time (mins)

Q
ue

ue
 le

ng
th

 (
pk

ts
) Gateway queue trace for 1.102

0 20 40 60 80
0

2

4
x 10

4

Time (mins)

Q
ue

ue
 le

ng
th

 (
pk

ts
) Gateway queue trace for 2.101

(a) Queue trace at gateway 1.104

0 20 40 60 80
0

10

20

30

40

Time (mins)
Q

ue
ue

 le
ng

th
 (

pk
ts

) Trace of queue for 1.103

0 20 40 60 80
0

10

20

30

40

Time (mins)

Q
ue

ue
 le

ng
th

 (
pk

ts
) Trace of queue for 2.101

(b) Queue trace at 1.102

Figure 11: Queue trace in the network shown in Figure 12. Large queues are confined to the“mobile-gateway”
portion of the network, and we have large reduction in delay through shadow packets (Figure 10).

that it is possible to obtain utility maximizing rate alloca-
tion, even though there is the “mobile-gateway” time scale
that operates much slower than the wireless communication
time scale, and all inter-cluster packets have to pass through
the two different time scales.

8. CONCLUSION
In this paper, we have presented a back-pressure rate-

control/routing algorithm adapted for intermittently con-
nected networks, where we can exploit ergodic mobility pat-
terns to obtain throughput optimal performance. Our pro-
posed algorithm solved the time-scale coupling of the tra-
ditional back-pressure algorithm; namely, intermittent con-
nectivity feeds-back the wrong congestion signal to the inter-
cluster source, making it believe that the connection is a
low-rate link, or in order to have high inter-cluster rate, one
has to maintain large queues at internal nodes that are no
where near the intermittent links. We have verified that our
algorithm works on a simple line network, and on a larger
16-node network.

9. ACKNOWLEDGMENTS
The authors would like to express their gratitude to Prof.

Christine Julien and Prof. Sriram Vishwanath for permit-
ting the use of the Pharos testbed [23] to generate the exper-
imental results presented in this paper. The authors would
also like to thank Prof. R. Srikant (UIUC), Prof. Lei Ying
(ISU) and the anonymous reviewers for their valuable feed-
back. We acknowledge the support of NSF Grants CNS-
0347400 and CNS-0721380 and the DARPA ITMANET pro-
gram.

10. REFERENCES
[1] U. Akyol, M. Andrews, P. Gupta, J. Hobby, I. Saniee,

and A. Stolyar. Joint scheduling and congestion
control in mobile ad-hoc networks. In IEEE Infocom,
2008.

[2] A. Balasubramanian, B. N. Levine, and
A. Venkataramani. DTN routing as a resource
allocation problem. In Proc. of ACM SIGCOMM,
2007.

[3] L. Bui, R. Srikant, and A. Stolyar. Novel architectures
and algorithms for delay reduction in back-pressure
scheduling and routing. In Proc. of IEEE INFOCOM
Mini-Conference, 2009.

[4] J. Burgess, B. Gallagher, D. Jense, and B. N. Levine.
MaxProp: Routing for vehicle-based

disruption-tolerant networks. In Proc. IEEE
INFOCOM, 2006.

[5] A. Eryilmaz and R. Srikant. Joint congestion control,
routing, and MAC for stability and fairness in wireless
networks. IEEE JSAC, 24:1514–1524, 2006.

[6] K. A. Harras and K. C. Almeroth. Inter-regional
messenger scheduling in delay tolerant mobile
networks. In Proceedings of the 2006 International
Symposium on on World of Wireless, Mobile and
Multimedia Networks.

[7] S. Jain, K. Fall, and R. Patra. Routing in a delay
tolerant network. In Proc. of SIGCOMM, 2004.

[8] E. Jones, L. Li, and P. Ward. Practical routing in
delay-tolerant networks. In Proc. of SIGCOMM, 2005.

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. In ACM
Transactions on Computer Systems, 2000.

[10] J. Lee, J. Lee, Y. Yi, S. Chong, A. Proutiere, and
M. Chiang. Implementing utility-optimal CSMA. In
Allerton, 2009.

[11] K. Lee, Y. Yi, J. Jeong, H. Won, I. Rhee, and
S. Chong. Max-contribution: On optimal resource
allocation in delay tolerant networks. In IEEE
INFOCOM, 2010.

[12] A. Lindgren, A. Doria, and O. Scheln. Probabilistic
routing in intermittently connected networks. In ACM
MobiHoc, 2003.

[13] S. Moeller, A. Sridharan, B. Krishnamachari, and
O. Gnawali. Routing without routes: The
backpressure collection protocol. In IPSN, 2010.

[14] M. J. Neely. Dynamic power allocation and routing for
satellite and wireless networks with time varying
channels. PhD thesis, Massachusetts Institute of
Technology, 2003.

[15] M. J. Neely, E. Modiano, and C. Li. Fairness and
optimal stochastic control for heterogeneous networks.
In Proc. of IEEE INFOCOM, 2005.

[16] J. Ott, D. Kutscher, and C. Dwertmann. Integrating
DTN and MANET routing. In Proceedings of the 2006
SIGCOMM workshop on Challenged networks.

[17] B. Radunovic, C. Gkantsidis, D. Gunawardena, and
P. Key. Horizon: Balancing TCP over multiple paths
in wireless mesh network. In Proc. of Mobicom, 2008.

[18] J. Ryu, L. Ying, and S. Shakkottai. Back-pressure
routing in intermittently connected networks. In IEEE
Infocom Mini-conference, 2010.

[19] L. Song, D. Kotz, R. Jain, and X. He. Evaluating
location predictors with extensive Wi-Fi mobility
data. In Proc. of IEEE INFOCOM, 2004.

[20] T. Spyropoulos, K. Psounis, and C. S. Raghavendra.
Spray and wait: An efficient routing scheme for
intermittently connected mobile networks. In Proc. of
the 2005 ACM SIGCOMM workshop on Delay-tolerant
networking, 2005.

[21] A. Sridharan, S. Moeller, and B. Krishnamachari.
Implementing backpressure-based rate control in
wireless networks. In ITA workshop, 2009.

[22] A. L. Stolyar. Maximizing queueing network utility
subject to stability: greedy primal-dual algorithm.
Queueing Systems, 50:401–457, 2005.

[23] D. Stovall, N. Paine, A. Petz, J. Enderle, C. Julien,

and S. Vishwanath. Pharos: An application-oriented
testbed for heterogeneous wireless networking
environments. Technical Report
TR-UTEDGE-2009-006, The Center for Excellence in
Distributed Global Environments, The University of
Texas at Austin, 2009.

[24] L. Tassiulas and A. Ephremides. Stability properties
of constrained queueing systems and scheduling for
maximum throughput in multihop radio networks.
IEEE Transactions on Automatic Control,
37(12):1936–1949, December 1992.

[25] N. Thompson, S. C. Nelson, M. Bakht, T. Abdelzaher,
and R. Kravets. Retiring replicants: Congestion
control for intermittently-connected networks. In Proc.
of IEEE INFOCOM, 2010.

[26] A. Vahdat and D. Becker. Epidemic routing for
partially connected ad hoc networks. Technical Report
CS-2000-06, Department of Computer Science, Duke
University, April 2000.

[27] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee.
DiffQ: Practical differential backlog congestion control
for wireless networks. In IEEE Infocom, 2009.

[28] J. Whitbeck and V. Conan. HYMAD: Hybrid
DTN-MANET routing for dense and highly dynamic
wireless networks. In In Proceedings: IEEE
WoWMoM Workshop on Autonomic and
Opportunistic Communications (AOC 2009).

[29] L. Ying, S. Shakkottai, and A. Reddy. On combining
shortest-path and back-pressure routing over multihop
wireless networks. In Proceedings of IEEE INFOCOM,
2009.

[30] L. Ying, R. Srikant, and D. Towsley. Cluster-based
back-pressure routing algorithm. In Proceedings of
IEEE INFOCOM, 2008.

