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Abstract— This paper presents an algorithm for distributed
power control and scheduling over wireless ad hoc-networks
where the data rate on each link depends on the transmission
power levels at interfering links (non-convex coupling beveen
link data rates). In this paper, we first consider a K-hop
interference model. We describe a message passing algorith
that finds an optimal power allocation (schedule) in the casef
line networks with a time complexity (in number of nodes V)
that grows as N for line networks. Further, we show that this
algorithm, when combined with appropriate congestion-cotrol
and routing algorithms results in throughput-optimality a nd
utility maximization over wireless networks. We further study
a complete physical interference model, where our algoritms
provide e-optimal solutions. Our results can also be extended
to grid networks.

I. INTRODUCTION

In this paper, we study the problem of distributed power

control in the context of utility maximization and throughp

optimality over a wireless ad hoc network. This problem has

received increasing attention over the recent past [1][§2]

[4], [5] where attention has been focused on developing join

congestion control, routing and scheduling algorithmagisi
a (stochastic) network utility maximization framework.

and Network Utility Maximation

Shakkottai, and Lei Ying

and appropriate variable transformations to formulate the
power-control/scheduling problem as a geometric program)
In this paper, we take a different approach where we do
not approximate the physical layer interactions acrosesod
Instead, we use a message-passing approach [11] in order to
to solve the non-convex scheduling/power-control problem
a distributed fashion with polynomial complexity. Message
passing (MP) algorithms have been shown to be very suc-
cessful in many communication contexts including itemativ
decoding of codes [12], and more recently in scheduling over
graphs [13].
In this paper, our main contributions are as follows:

(i) For a K-hop interference model over a line network
(nodes interact with up td<{-hop neighbors), we de-
scribe a message-passing algorithm that exactly solves
the distributed scheduling problem. Further, we show
that that this algorithm when combined with an appro-
priate back-pressure scheme/congestion control mech-
anism leads to network throughput-optimality/utility-
maximization.

(i) For a complete physical interference model (the path-

Typically, the approach consists of formulating the net-
work resource allocation problem as a convex optimization
problem (by approximating the wireless physical layer ,[6])
and cross-layer solutions either are based on primal-dual

loss exponent has a polynomial decay with appropriate
degree with respect to distance between transmitter and
receiver), we show that the message passing algorithm
can be adapted to determine @nptimal power alloca-

algorithms for convex optimization [5], [7] and/or by means  tion schedule.

of a per-time-slot scheduling combined with a queue length
based back-pressure algorithm [8], [9], [2], [10].

In either case, it is now understood that a key difficulty
is in the distributed scheduling aspect (either for utility

maximization or for queue stability). In wireless netwqusContext of a line network withi-hop interference and use

the transmission rate of each link is dependent on the trar}%-. . : .
o . nNis model to develop a message-passing algorithm. Later, i
mission decision (schedule) at other nodes as well as their

. e .Section VII, we will show that this algorithm can be used to
actual transmit power levels (for transmitting nodes).sThi . : ' . .
: . .__.derive ane-optimal (defined in section VII) power control
dependency between the capacity of links and transmissign

schedule is typically non-convex. Thus solving the scheduwcet:ledUIe with a complete physical interference model as

ing problem at each time slot is difficult and acts as a bottle i . :

L Network Model: Consider a wireless network represented
neck for the cross-layer optimization. A popular approdh [ by a directed grap = (V, £), whereV = {1,2,3 N}
is to suitably approximate the physical layer model in ordep’ grapty = (v, ¢), A

to render it convex (e.g., [5] uses a high-SINR approxinratio'.S the set of wireless no_des arfd_|s the set of dlrec_ted
links. Denote by(¢,r) a directed link such that nodeis
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II. SYSTEM MODEL: LINE NETWORK WITH K-HOP
INTERFERENCE

In this section, we describe the basic system model in the
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Link Rate Region: We define the link rate region to be
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Fig. 1. Line Network Traffic Flow: We consider a system wit#k flows, where
each flow[s, d] is associated with a soureeand destination
) ) ) ) ) d. Further, assume that time is discrete and\igt (s, d €
receiver. Two links are said to be adjacent if they share B) denote the packet generation rate of fldwd]. We
common node, i.el; andl, are adjacent links if assume that the flow arrival process is i.i.d., and define
A = {A,q}- (We can easily extend the results to more
{t(),r(t)} O {t2), rt2)} # 0. genergl [arr]i\];al processes.)
Let A(l) denote the set of adjacent links of link for Throughput Region: A traffic vector A is said to be
example,A((1,2)) = {(2,1),(2,3),(3,2)}. supportable in networ if there exists & u },ce such that
Discrete Power Level:We assume that each transmitter (i) For a destination! and noden # d,
can transmit at one of. different power levels. Defing

to be the set of powers, sB = {0, P, Ps,....., Pr_1}, Z Als,d) Hn=s} + Z i = Z uils (4)

whereP; < P, . For ease of exposition, we assume that all sifs,d]€F {r()=n} {t:t()=n}

transmitters have the identical power set (we note that it is(ii)

straightforward to extend to the case where each transmitte 4

has distinct power sets). {Z H } el ®)
Channel Model: Let X be a2N —2 vector such thak; € devy leg

P denotes the power at which transmittgi) transmits. We denote byAg the set of supportable.. (These are
We assume a Gaussian channel model such that the ratandard definitions - for more details and intuition we refe

attainable on link, R;(X), is given by to [14]).
[1I. M OTIVATION AND MAIN RESULTS
R(X) = log(1 + SINR(X)), @ )
Note that under the Gaussian channel model (1), the
where G X dependency between transmit power and link rates is non-
SINR/(X) = Ukl , (2) convex. A popular approach [5], [7] is to use the approxi-
Ni+ 2 hee np GruXn mation
Gy is the channel gain of link, Gy, the gain from the Ri(X) =~ log(SINR(X)) (6)
transmitter of linki to the receiver of linkh, and V; is the  pased on a high-SINR assumption, and then appropriately
noise at the receiver of link transform the variable to formulate a convex optimization

K-hop Interference: We assume a-hop interference proplem. However, when the interference between links is
model where when nodgis transmitting, only links whose strong, the receivers cannot be in the high-SINR regime at

receivers are at most-hop away from node will be inter-  the same time. Then, the approximation under high-SINR
fered with. Denote byl; the set of links whose transmitters coyld be quite inaccurate.

are fewer thank’ hops fromr(l), i.e.,

Link 1
7 ={h:|t(h) —r()| < K, h €&}
o ;.
The K-hop interference model is equivalent to the following ,,"Glz —07
statement: S '
R(X)=R({X;:leT}) VI 3) tink2 “
For Gaussian channelg(-hop interference model implies
that G, = 0 if |r(l) — t(h)| > K. Fig. 2. A Two-Link Network
Half Duplex: We assume half duplex model in this paper
such that at each time: Consider a simple example with two links as in Figure
(i) Each sender can only transmit to one receiver, 2, where we assume th@® = [0,10], Gy = 1, Giz =
(i) each receiver can only receive from one sender, ~ Ga1 = 0.7, and N; = 1. Using a numerical calculation,
(i) and, each node cannot transmit and receive simultan#?e supportable rate-regiof¥?;, ;) is as depicted using
ously. the “+"-line in Figure 3. However, under the high-SINR

Note that the half-duplex constraint implies that no adjagssumption, the rate-region is as depicted using e

cent links can transmit simultaneously. Defiaeto be the IN€ in Figure 3. We can see that the two rate-regions are
set of X satisfying the half duplex constraint, i.e., quite different. More importantly, the power-control ppidis
obtained with or without the high-SINR assumption will be

X ={X: XX, =0if [, h are adjacernt. different. For example, to maximiz&, + R,, without the



high-SINR assumption, the solution {X;, X3) = (10,0)
or (X1,X2) = (0,10). However, under the high-SINR
assumption,(X1, Xo) = (5,5) becomes optimal, which
however is the point minimizing?; + Rs in the original
rate-region.

25

R=log(1+SINR) ——
R=Iog(SINR)

Fig. 3. Rate Region

scheduling/power allocation decision within each commpbne
can be obtained using the junction-tree algorithm desdribe
for the line-network. Obviously, we cannot always turning
off the same rectangles, as this will block the traffic in
these rectangles. Thus, the key challenge is to dynamically
select rectangles to turn-off in order to achieve throughpu
optimality and utility maximization. With time complexity

0 V\/N) , 1/V-optimal (the solutions aré/V near to the
optimal ones) algorithms can be developed for grid networks
Additional details are available in [15].

IV. POWER CONTROL VIA DISTRIBUTED MESSAGE
PASSING

In this section, we first consider the following optimizatio
problem:

Z wlRl (X)

leg

X* € arg max ( @)

Motivated by the observation above, we propose disvhere{w;,l € £} are non-negative weights associated with
tributed power control algorithms without the high-SINRthe links. Note that any solution to the above optimization
approximation in this paper. Our main results include theroblem results in an optimal power allocation and schedule

following:

To solve the optimization problem above, we first rewrite the

(@) We develop a distributed power-control algorithnPProblem as a max-product problem. Givine X', we define
based on message passing, under which the powlBe rate at a receivere V as

allocationX* satisfies

(

for non-negative weightsa);.

Z wlRl (X)

leg

X* = max
XeXx

(b)
traffic A such that(1 + )\ € Ag.

(©)

Uls,a) (As,a)) (see Section VI for more details). We

describe a joint congestion-control and power-control

algorithm, under which each flow has raxg d) such
that

Af = arg max Z Uts,a)(Mjs,a)-
9 [s,d|€F

We describe a back-pressure-based routing/power-
control algorithm, which stabilizes the network for any

Assume that each flow has an utility function

Ri(X)= Y  wR(X).
{l:r(1)=1}

Therefore, the optimization problem (7) can be written as
Y R (X)) :

ey
Further definef;(X) = (X then the optimization prob-
lem (7) is equivalent to

X™* € arg max (
XeX

X*

m

15

arg maxlo
gXGX g(
iey

Remark 1:Note that the network traffic is not consideredwhere

in problem (a), s&X* is generally not the best power alloca-

tion from the network layer perspective. However, problem

(a) is interesting because, to achieve throughput-opitynal

= arguax (g fi(X)) , )
Fi(X) = eXrm=ip wifaX), o

For the K'-hop interference model, we observe tiatX)

and utility maximization, we need to solve problem (a) withsgntains or depends only on a small number of decision

different weights{w;,/ € £} at different time instances. \4riaples X;. Denote the set of links that determine the
Thus, the algorithm developed for problem (a) will be a key,,nction £i(.) by S:. Then we have

component in the algorithms for problems (b) and (c).
Remark 2:Due to page limitations, we only study line-

S; = {alllinksi : 1 € Uppy—iTi}- (10)

networks in this paper. However, our results can be extended

to grid networks. Let us consider a grid network with

nodes. The idea is to partition the grid into rectangles of

(node) sizev/N x (K + 1). By properly choosing some
rectangles and turning off all nodes in them, the networ

Further, define the associated transmit power-levels by

XSi = {Xl e SZ} (11)

KNote that X; 0 corresponds to the link not being

can be divided into non-interference components. Then ttseheduled.)



The optimization problem (7) thus reduces to X5, is a vector containing the values of the funct'LMf,j :

15:05;1 — R, defined b
X* € arg%gggn fi(Xs,). P ’ Y
iev M} (Xsins,) = gax {fi(Xs) M7 (Xs,0s.)} (13)
The power-control/scheduling problem has thus been re- S
cast as an optimization problem where the objective is téhereXs,ns, = {X;:1 € S; N S;}.
maximize a product function, which has been well studiedhe Junction Tree Algorithm [11]:
in literature. This enables us to use techniques discussed i (i) At time-step O, each verteXs, sends the message

[11] to solve the power control problem. vector 1 to its adjacent nodes. In other words, if
Let S denote the se{S;, Ss, ..., S, } whereS; is defined Xs, and X5, are adjacent, then verteXg, send the
in (10). Further, letd; : P!5:! — R, be defined by messageM?;(Xs,ns,) = 1 10 Xs;,.
(i) At each successive time-step the vertexXs, sends
Hi(Xs) = %’ijfi(XSi)- (12) the messagé/ ; to its adjacent vertex{'s;, where
i ey M} ; is defined in (13). Each verteXs, stops sending
whereS$ denotes the complement of the $gtwith respect messages to its adjacent vert&, when the node
to £. X, receives exactly the same messagg , over two

Next, we describe the algorithm to find an optimal power consecutive time-steps from its other adjacent vertex
allocating scheme using belief propagation techniques. Th X, . Once all nodes stop sending messages, we denote

algorithm consists of two parts: the terminal message sent from a verix, to its
First, for each node € V, we compute the function adjacent verteXXs, by M; ;(Xs,ns;)-
H;(Xg,) for each possibleXs, using belief propagation (iii) Each vertexXs, computesH;(Xgs,) defined as
(message passing) over a suitably constructed graph (a ~
. . HZ(Xsy) =
junction tree).
Second, for each nodé € V, we use (12) to obtain
the corresponding se{ X} }. These vectors correspond to fiXs,) 11 Mp,i(Xs,ns,)-(14)
possible choices of optimal transmit powers for interfgrin {k:1<k< N k=it1}
links with the receiver of node (i.e., the set of links that O

can be “heard” at receiver nodg We then demonstrate an |t is well known that the above algorithm converges to the
algorithm that chooses a single power vecKy, at each correct marginals (or maximization in our case) in the case
nodei such that these vectors are consistent (i.e., each linkis tree networks [11], [12]. In other words, (14) = (12).
transmit power is the same value at all nodes). Theorem 1:The junction tree algorithm for the line net-
work with K-hop interference determines (12) ¥ time-
steps, wheréV is the humber of nodes in the network.

The junction tree algorithm provides a means of comput- The above algorithm also naturally lends itself to an
ing (12) at each nodé The result of this computation will asynchronous implementation (see [12], [16] for additiona
be used in the following section to determine the optimadietails). As long as all messages and iterates are updated
transmit power levels and schedule. sufficiently large number of timéswe have the fixed points

Definition [11]: A junction tree is a tree with vertices of the asynchronous algorithm coincide with the fixed points
indexed by{Xs,} where the subscript of verteXs, cor- of the above described synchronous algorithm.
responds to a sef; C S satisfying the following property:  We next demonstrate a correspondence (map) between the
For any two verticesXs, and X5, and any vertexXs, on  message transmissions on the junction tree and actuab)radi
the path fromXg, to X5, we haveS;(S; C Sk. transmissions over the line network.

Observe that the junction tree for line network witikhop The vertexXg, is mapped to the nodé The function
interference is a tre® in which each verteX's, is connected f;(Xg,) computation is done at node From (9), we have
to Xs, , and Xg,,, except for the verticeXs, and Xg,, w
which are only co?mected s, andXs, _, respectively. In filXs;) = H (1+SINR(Xs,)) "
other words, the junction tree is a series (line) graph. Thus {Lr(D=i}
we can apply the standard max-product algorithm (junctiomo ensure that the half-duplex constraints are satisfigd)
tree algorithm) [11], [12] on this new series (line) graph. s set tol (or equivalently, data rate: 0) for all the vectors

The (synchronous) max-product algorithm exchanges mesf X 5 which violate the half-duplex constraints.
sages (real-valued vectors) iteratively in order to deteem  The messages passed from the nottenode; correspond
{X%,} at each node. to the messages passed from verlx, to Xg, in the

If the verticesXs, and X5, are connected (adjacent), thenjunction treeT. The scheduling of these messages can be
at each time-step the message passed from vert€x, to  done in an asynchronous fashion as described before.

A. Part I: Junction Tree Algorithm

1The outcome is a set because the optimization problem mayaet 2The messages need to be exchanged a large enough numbezétioh
an unique solution. the effect of each nodes’ messages propagates across iteer@tvork.



The termination of this message passing algorithm resulhile X* maximizes the aggregated link rate, it might not
in each node having the entire description of the functionbe best power allocation from the network perspective. For
H;(Xs,) overall possible values of the power-level vectorexample, if there is no flow over a certain link, there is no

X, (defined in (11)).
B. Part Il: Algorithm to determine an optimal transmit
power schedule (i.eX*)
Each node searches over th&*2 length yectorﬁi (Xs,)
to find the optimal schedule that maximiz&s(-). Formally,
rg, € AX§ = argmax H;(Xg,)

If the above search gives a unique value then noslets its
power level defined by .
Otherwise, if there are multiple vectors &3 that

need to allocate any power to that link. Thus, the power
levels should be adaptively chosen according to the network
traffic.

In this section, we consider inelastic traffic, i.e., we assu
A is fixed. Assuming there exists> 0 such that(1 +¢e)\ €
I, we will develop a back-pressure-based power-control
algorithm to stabilize the network without any knowledge
of A.

Now, assume that each node maintains a separate queue
for every other node, and lel; ,[t] denote the length of
gueue maintained for nodgat noden. The adaptive power

maximize [;(-), then there exists multiple optimal powercontrol algorithm, which is named as back-pressure-based

allocation schemes. We next describe a method to find
consistent optimal power allocation.
Find the Optimal Power Allocation:
() Nodel picks anz, from the optimal solution set .
(i) Nodei—1 sendsry, , to nodei. After nodei obtains
xg, , from nodei — 1, it selects anzg, from X3

power-control, is a combination of the messaging passing
algorithm in Section IV and the back-pressure algorithm
proposed in [8].

Back-Pressure-Based Power-Control:
(i) Attime slot ¢, the transmitter of linkl, ¢({), obtains

such thates,  [I] = 2% [l] foralll € S;—1NS;, where

a% [1] is the decision for linkl in vector zs,. (Note ol = arg max aqolt] — ag-@ltl (15)
that nodei will only execute this step after it receives n
the message from node- 1.) wift] = max (q;t(l) [t] — qu(l)) ., (16)

O

After N steps, it is easy to see that the nodes will find
an optimal and consistenty . Then, based on its (local)
informationz; (I : ¢(I) = ¢), nodes can transmit over each
link [ at the appropriate power level.

The above implementation is not fully distributed in the
sense that nodes sequentially pass messages (starting from
node 1). The scheme can be easily made to asynchronously
operate in a distributed manner by assigning a prioritylleve

of ¢ to node: and partitioning the nodes into bins (groups _ ] .
of nodes), where each node is assigned to a single bin, andh€orem 2:The back-pressure weighted power control

nodes within a bin are within radio range of each other (th@!g0rithm is throughput optimal, i.e., all queues are badhd
bins are chosen a-priori and arbitrarily subject to the aboynder the back-pressure weighted power control algorithm
property). Then, each nodepicks an optimal power level 9VENA € Ag. o

from X7 that is consistent with the power level selection of ~ Proof: The proof is similar to [8]. A complete proof
the highest priority node within its bin (the “locally” higist €an also be found in [15]. u
priority node initially picks any arbitrary optimal power VI
level). After this initial power assignment, over successi '
iterations, each nodepicks an optimal power level from’s, In Section V, we considered inelastic traffic, and described
that is consistent with the (previously chosen) power level back-pressure based power control algorithm to support
selection of the highest priority node within its radio rang any traffic within the network throughput region. In this
It is clear that after a sufficient number of iterations (fne section, we study elastic traffic, where the traffic rates can
in N), the above scheme converges to a globally optimdle adaptively changed according to the network condition.
power allocation. Corresponding to each flow is a strictly concave,
twice differentiable utility functionUp, 4 (As,q) , Where
—1/U! ; (Ms,q)) is positive and bounded fox;, 4 € (0, M]

In Section 1V, we developed a power control algorithmsee 61’71 for detailed conditions).

based on distributed message passing, which yields a powerrhe objective in this section is to develop a distributed
allocationX* such that algorithm that maximizes the sum of utilities:

wherec is a positive integer, an@)™ = max{0, -}.
(i) Solve
X*[t] € arg maxz wi [t Ry(X),
leg

(17)

using message passing algorithms. Then transmitter
t(l) transmits packets in queug; [t] with power
X/ [t] to noder(l).

UTILITY MAXIMIZATION

V. THROUGHPUTOPTIMALITY

max Uls,a)(Afs,a)- (18)

[s,d]eF

Z wlRl (X)

X* € arg max (
XeX
leg



The algorithm to achieve this combines the congestion comhered = 1 —e~, andc = log (1 +— (ff’;g;maﬂz))
d

. . . L
troller described in [2], [17] along with the message pag;sm_rh h I | "““”f i
power control scheme with a suitable choice of weights: en, the power allocation resulting from tfie” message

Congestion Controller: Flow [s,d] transmits packets with passmg algorithm 'in Secpon .IV applied to & (c)-hop .
rate A, qt] into the queue maintained for destinatidrat interference model approximation of the complete physical

o interference model is-optimal.
nodes, where\ t] satisfies In .
e (1] Proof: A complete proof can also be found in [158
N ] = min U1 qd,s[t] M The throughput optimality and utility maximization result
fs,a[t] = min [s,d] ’ in Sections V and VI can be easily extended for the complete
hysical interference model.
Back-pressure Power Control: The network solves phy
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