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Abstract— This paper presents an algorithm for distributed
power control and scheduling over wireless ad hoc-networks,
where the data rate on each link depends on the transmission
power levels at interfering links (non-convex coupling between
link data rates). In this paper, we first consider a K-hop
interference model. We describe a message passing algorithm
that finds an optimal power allocation (schedule) in the caseof
line networks with a time complexity (in number of nodesN )
that grows asN for line networks. Further, we show that this
algorithm, when combined with appropriate congestion-control
and routing algorithms results in throughput-optimality a nd
utility maximization over wireless networks. We further study
a complete physical interference model, where our algorithms
provide ε-optimal solutions. Our results can also be extended
to grid networks.

I. I NTRODUCTION

In this paper, we study the problem of distributed power
control in the context of utility maximization and throughput
optimality over a wireless ad hoc network. This problem has
received increasing attention over the recent past [1], [2], [3],
[4], [5] where attention has been focused on developing joint
congestion control, routing and scheduling algorithms using
a (stochastic) network utility maximization framework.

Typically, the approach consists of formulating the net-
work resource allocation problem as a convex optimization
problem (by approximating the wireless physical layer [6]),
and cross-layer solutions either are based on primal-dual
algorithms for convex optimization [5], [7] and/or by means
of a per-time-slot scheduling combined with a queue length
based back-pressure algorithm [8], [9], [2], [10].

In either case, it is now understood that a key difficulty
is in the distributed scheduling aspect (either for utility
maximization or for queue stability). In wireless networks,
the transmission rate of each link is dependent on the trans-
mission decision (schedule) at other nodes as well as their
actual transmit power levels (for transmitting nodes). This
dependency between the capacity of links and transmission
schedule is typically non-convex. Thus solving the schedul-
ing problem at each time slot is difficult and acts as a bottle
neck for the cross-layer optimization. A popular approach [5]
is to suitably approximate the physical layer model in order
to render it convex (e.g., [5] uses a high-SINR approximation
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and appropriate variable transformations to formulate the
power-control/scheduling problem as a geometric program).

In this paper, we take a different approach where we do
not approximate the physical layer interactions across nodes.
Instead, we use a message-passing approach [11] in order to
to solve the non-convex scheduling/power-control problemin
a distributed fashion with polynomial complexity. Message-
passing (MP) algorithms have been shown to be very suc-
cessful in many communication contexts including iterative
decoding of codes [12], and more recently in scheduling over
graphs [13].

In this paper, our main contributions are as follows:

(i) For a K-hop interference model over a line network
(nodes interact with up toK-hop neighbors), we de-
scribe a message-passing algorithm that exactly solves
the distributed scheduling problem. Further, we show
that that this algorithm when combined with an appro-
priate back-pressure scheme/congestion control mech-
anism leads to network throughput-optimality/utility-
maximization.

(ii) For a complete physical interference model (the path-
loss exponent has a polynomial decay with appropriate
degree with respect to distance between transmitter and
receiver), we show that the message passing algorithm
can be adapted to determine anε-optimal power alloca-
tion schedule.

II. SYSTEM MODEL: L INE NETWORK WITH K -HOP

INTERFERENCE

In this section, we describe the basic system model in the
context of a line network withK-hop interference and use
this model to develop a message-passing algorithm. Later, in
section VII, we will show that this algorithm can be used to
derive anε-optimal (defined in section VII) power control
schedule with a complete physical interference model as
well.

Network Model: Consider a wireless network represented
by a directed graphG = (V , E), whereV = {1, 2, 3, ...., N}
is the set of wireless nodes andE is the set of directed
links. Denote by(t, r) a directed link such that nodet is
the transmitter and noder is the receiver. In this paper, we
focus on line networks as in Figure 1. The results, however
can be extended to grid network and will be discussed in
section III.

Note that(t, r) is a link in a line network if nodet and
r are adjacent nodes, i.e.,|t − r| = 1. Given a link l, we
let t(l) denote the sender of the link, andr(l) denote the
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Fig. 1. Line Network

receiver. Two links are said to be adjacent if they share a
common node, i.e.,l1 and l2 are adjacent links if

{t(l1), r(l1)} ∩ {t(l2), r(l2)} 6= ∅.

Let A(l) denote the set of adjacent links of linkl, for
example,A((1, 2)) = {(2, 1), (2, 3), (3, 2)}.

Discrete Power Level:We assume that each transmitter
can transmit at one ofL different power levels. DefineP
to be the set of powers, soP = {0, P1, P2, ....., PL−1},
wherePi < Pi+1. For ease of exposition, we assume that all
transmitters have the identical power set (we note that it is
straightforward to extend to the case where each transmitter
has distinct power sets).

Channel Model: Let X be a2N−2 vector such thatXl ∈
P denotes the power at which transmittert(l) transmits.
We assume a Gaussian channel model such that the rate
attainable on linkl, Rl(X), is given by

Rl(X) = log(1 + SINRl(X)), (1)

where

SINRl(X) =
GllXl

Nl +
∑

h∈E,h 6=l GhlXh

, (2)

Gll is the channel gain of linkl, Glh the gain from the
transmitter of linkl to the receiver of linkh, andNl is the
noise at the receiver of linkl.

K-hop Interference: We assume aK-hop interference
model where when nodei is transmitting, only links whose
receivers are at mostK-hop away from nodei will be inter-
fered with. Denote byIl the set of links whose transmitters
are fewer thanK hops fromr(l), i.e.,

Il = {h : |t(h) − r(l)| ≤ K, h ∈ E}.

TheK-hop interference model is equivalent to the following
statement:

Rl(X) = Rl({Xl : l ∈ Il}) ∀ l. (3)

For Gaussian channels,K-hop interference model implies
that Ghl = 0 if |r(l) − t(h)| > K.

Half Duplex: We assume half duplex model in this paper
such that at each time:

(i) Each sender can only transmit to one receiver,
(ii) each receiver can only receive from one sender,
(iii) and, each node cannot transmit and receive simultane-

ously.

Note that the half-duplex constraint implies that no adja-
cent links can transmit simultaneously. DefineX to be the
set ofX satisfying the half duplex constraint, i.e.,

X = {X : XlXh = 0 if l, h are adjacent} .

Link Rate Region: We define the link rate region to be

Γ := conv(R(X)).

Traffic Flow: We consider a system withF flows, where
each flow[s, d] is associated with a sources and destination
d. Further, assume that time is discrete and letλ[s,d] (s, d ∈
V) denote the packet generation rate of flow[s, d]. We
assume that the flow arrival process is i.i.d., and define
λ = {λ[s,d]}. (We can easily extend the results to more
general arrival processes.)

Throughput Region: A traffic vector λ is said to be
supportable in networkG if there exists a{µd

l }l∈E such that

(i) For a destinationd and noden 6= d,
∑

s:[s,d]∈F

λ[s,d]1{n=s} +
∑

{l:r(l)=n}

µd
l =

∑

{l:t(l)=n}

µd
l ; (4)

(ii)
{

∑

d∈V

µd
l

}

l∈E

∈ Γ. (5)

We denote byΛG the set of supportableλ. (These are
standard definitions - for more details and intuition we refer
to [14]).

III. M OTIVATION AND MAIN RESULTS

Note that under the Gaussian channel model (1), the
dependency between transmit power and link rates is non-
convex. A popular approach [5], [7] is to use the approxi-
mation

Rl(X) ≈ log(SINRl(X)) (6)

based on a high-SINR assumption, and then appropriately
transform the variable to formulate a convex optimization
problem. However, when the interference between links is
strong, the receivers cannot be in the high-SINR regime at
the same time. Then, the approximation under high-SINR
could be quite inaccurate.

Link 2

Link 1

G12 = 0.7

Fig. 2. A Two-Link Network

Consider a simple example with two links as in Figure
2, where we assume thatP = [0, 10], Gll = 1, G12 =
G21 = 0.7, and Nl = 1. Using a numerical calculation,
the supportable rate-region(R1, R2) is as depicted using
the “+”-line in Figure 3. However, under the high-SINR
assumption, the rate-region is as depicted using the “∗”-
line in Figure 3. We can see that the two rate-regions are
quite different. More importantly, the power-control policies
obtained with or without the high-SINR assumption will be
different. For example, to maximizeR1 + R2, without the



high-SINR assumption, the solution is(X1, X2) = (10, 0)
or (X1, X2) = (0, 10). However, under the high-SINR
assumption,(X1, X2) = (5, 5) becomes optimal, which
however is the point minimizingR1 + R2 in the original
rate-region.
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Fig. 3. Rate Region

Motivated by the observation above, we propose dis-
tributed power control algorithms without the high-SINR
approximation in this paper. Our main results include the
following:

(a) We develop a distributed power-control algorithm
based on message passing, under which the power
allocationX

∗ satisfies

X
∗ = max

X∈X

(

∑

l∈E

wlRl(X)

)

.

for non-negative weightswl.
(b) We describe a back-pressure-based routing/power-

control algorithm, which stabilizes the network for any
traffic λ such that(1 + ε)λ ∈ ΛG .

(c) Assume that each flow has an utility function
U[s,d]

(

λ[s,d]

)

(see Section VI for more details). We
describe a joint congestion-control and power-control
algorithm, under which each flow has rateλ∗

[s,d] such
that

λ
∗ = arg max

λ∈ΛG

∑

[s,d]∈F

U[s,d](λ[s,d]).

Remark 1:Note that the network traffic is not considered
in problem (a), soX∗ is generally not the best power alloca-
tion from the network layer perspective. However, problem
(a) is interesting because, to achieve throughput-optimality
and utility maximization, we need to solve problem (a) with
different weights{wl, l ∈ E} at different time instances.
Thus, the algorithm developed for problem (a) will be a key
component in the algorithms for problems (b) and (c).

Remark 2:Due to page limitations, we only study line-
networks in this paper. However, our results can be extended
to grid networks. Let us consider a grid network withN
nodes. The idea is to partition the grid into rectangles of
(node) size

√
N × (K + 1). By properly choosing some

rectangles and turning off all nodes in them, the network
can be divided into non-interference components. Then the

scheduling/power allocation decision within each component
can be obtained using the junction-tree algorithm described
for the line-network. Obviously, we cannot always turning
off the same rectangles, as this will block the traffic in
these rectangles. Thus, the key challenge is to dynamically
select rectangles to turn-off in order to achieve throughput
optimality and utility maximization. With time complexity
O
(

V
√

N
)

, 1/V -optimal (the solutions are1/V near to the
optimal ones) algorithms can be developed for grid networks.
Additional details are available in [15].

IV. POWER CONTROL VIA DISTRIBUTED MESSAGE

PASSING

In this section, we first consider the following optimization
problem:

X∗ ∈ arg max
X∈X

(

∑

l∈E

wlRl(X)

)

, (7)

where{wl, l ∈ E} are non-negative weights associated with
the links. Note that any solution to the above optimization
problem results in an optimal power allocation and schedule.
To solve the optimization problem above, we first rewrite the
problem as a max-product problem. GivenX ∈ X , we define
the rate at a receiveri ∈ V as

R̃i(X) =
∑

{l:r(l)=i}

wlRl(X).

Therefore, the optimization problem (7) can be written as

X∗ ∈ arg max
X∈X

(

∑

i∈V

R̃i(X)

)

.

Further definefi(X) = eR̃i(X), then the optimization prob-
lem (7) is equivalent to

X∗ ∈ arg max
X∈X

log

(

∏

i∈V

fi(X)

)

,

= arg max
X∈X

(

∏

i∈V

fi(X)

)

, (8)

where

fi(X) = e
P

{l:r(l)=i} wlRl(X). (9)

For theK-hop interference model, we observe thatfi(X)
contains or depends only on a small number of decision
variablesXl. Denote the set of links that determine the
function fi(.) by Si. Then we have

Si = {all links l̃ : l̃ ∈ ∪l:r(l)=iIl}. (10)

Further, define the associated transmit power-levels by

XSi
= {Xl : l ∈ Si}. (11)

(Note that Xl = 0 corresponds to the linkl not being
scheduled.)



The optimization problem (7) thus reduces to

X∗ ∈ arg max
X∈X

∏

i∈V

fi(XSi
).

The power-control/scheduling problem has thus been re-
cast as an optimization problem where the objective is to
maximize a product function, which has been well studied
in literature. This enables us to use techniques discussed in
[11] to solve the power control problem.

Let S denote the set{S1, S2, ..., Sn} whereSi is defined
in (10). Further, letHi : P |Si| → R, be defined by

Hi(XSi
) = max

XSc
i

∏

i∈V

fi(XSi
). (12)

whereSc
i denotes the complement of the setSi with respect

to E .
Next, we describe the algorithm to find an optimal power

allocating scheme using belief propagation techniques. The
algorithm consists of two parts:

First, for each nodei ∈ V , we compute the function
Hi(XSi

) for each possibleXSi
using belief propagation

(message passing) over a suitably constructed graph (a
junction tree).

Second, for each nodei ∈ V , we use (12) to obtain
the corresponding set1 {X∗

Si
}. These vectors correspond to

possible choices of optimal transmit powers for interfering
links with the receiver of nodei (i.e., the set of links that
can be “heard” at receiver nodei). We then demonstrate an
algorithm that chooses a single power vectorX

∗
Si

at each
nodei such that these vectors are consistent (i.e., each link’s
transmit power is the same value at all nodes).

A. Part I: Junction Tree Algorithm

The junction tree algorithm provides a means of comput-
ing (12) at each nodei. The result of this computation will
be used in the following section to determine the optimal
transmit power levels and schedule.

Definition [11]: A junction tree is a tree with vertices
indexed by{XSi

} where the subscript of vertexXSi
cor-

responds to a setSi ⊂ S satisfying the following property:
For any two verticesXSi

and XSj
, and any vertexXSk

on
the path fromXSi

to XSj
, we haveSi

⋂

Sj ⊂ Sk.
Observe that the junction tree for line network withK-hop

interference is a treeT in which each vertexXSi
is connected

to XSi−1 and XSi+1 except for the verticesXS1 and XSN

which are only connected toXS2 andXSN−1 respectively. In
other words, the junction tree is a series (line) graph. Thus
we can apply the standard max-product algorithm (junction
tree algorithm) [11], [12] on this new series (line) graph.

The (synchronous) max-product algorithm exchanges mes-
sages (real-valued vectors) iteratively in order to determine
{X∗

Si
} at each nodei.

If the verticesXSi
andXSj

are connected (adjacent), then
at each time-stept the message passed from vertexXSi

to

1The outcome is a set because the optimization problem may nothave
an unique solution.

XSj
is a vector containing the values of the functionM t

i,j :

P |Si∩Sj | → R, defined by

M t
i,j(XSi∩Sj

) = max
XSi\Sj

{

fi(XSi
)M t−1

k,i (XSk∩Si
)
}

(13)

whereXSi∩Sj
= {Xl : l ∈ Si ∩ Sj}.

The Junction Tree Algorithm [11]:
(i) At time-step 0, each vertexXSi

sends the message
vector 1 to its adjacent nodes. In other words, if
XSi

and XSj
are adjacent, then vertexXSi

send the
messageM0

i,j(XSi∩Sj
) = 1 to XSj

.
(ii) At each successive time-stept, the vertexXSi

sends
the messageM t

i,j to its adjacent vertexXSj
, where

M t
i,j is defined in (13). Each vertexXSi

stops sending
messages to its adjacent vertexXSj

when the node
XSi

receives exactly the same messageM t
k,i over two

consecutive time-steps from its other adjacent vertex
XSk

. Once all nodes stop sending messages, we denote
the terminal message sent from a vertexXSi

to its
adjacent vertexXSj

by Mi,j(XSi∩Sj
).

(iii) Each vertexXSi
computesH̃i(XSi

) defined as

H̃i(XSi
) =

fi(XSi
)

∏

{k:1≤k≤N,k=i±1}

Mk,i(XSk∩Si
).(14)

�

It is well known that the above algorithm converges to the
correct marginals (or maximization in our case) in the case
of tree networks [11], [12]. In other words, (14) = (12).

Theorem 1:The junction tree algorithm for the line net-
work with K-hop interference determines (12) inN time-
steps, whereN is the number of nodes in the network.

The above algorithm also naturally lends itself to an
asynchronous implementation (see [12], [16] for additional
details). As long as all messages and iterates are updated
sufficiently large number of times2, we have the fixed points
of the asynchronous algorithm coincide with the fixed points
of the above described synchronous algorithm.

We next demonstrate a correspondence (map) between the
message transmissions on the junction tree and actual (radio)
transmissions over the line network.

The vertexXSi
is mapped to the nodei. The function

fi(XSi
) computation is done at nodei. From (9), we have

fi(XSi
) =

∏

{l:r(l)=i}

(

1 + SINRl(XSi
)
)wl .

To ensure that the half-duplex constraints are satisfied,fi(·)
is set to1 (or equivalently, data rate= 0) for all the vectors
of XSi

which violate the half-duplex constraints.
The messages passed from the nodei to nodej correspond

to the messages passed from vertexXSi
to XSj

in the
junction treeT . The scheduling of these messages can be
done in an asynchronous fashion as described before.

2The messages need to be exchanged a large enough number of times such
the effect of each nodes’ messages propagates across the entire network.



The termination of this message passing algorithm results
in each nodei having the entire description of the function
Hi(XSi

) over all possible values of the power-level vector
XSi

(defined in (11)).

B. Part II: Algorithm to determine an optimal transmit
power schedule (i.e.,X∗)

Each node searches over theL4k+2 length vectorH̃i(XSi
)

to find the optimal schedule that maximizesH̃i(·). Formally,

x∗
Si

∈ X ∗
Si

= argmax H̃i(XSi
)

If the above search gives a unique value then nodei sets its
power level defined byX∗

Si
.

Otherwise, if there are multiple vectors ofX∗
Si

that
maximize H̃i(·), then there exists multiple optimal power
allocation schemes. We next describe a method to find a
consistent optimal power allocation.
Find the Optimal Power Allocation:

(i) Node1 picks anx∗
S1

from the optimal solution setX ∗
S1

.
(ii) Node i−1 sendsx∗

Si−1
to nodei. After nodei obtains

x∗
Si−1

from node i − 1, it selects anx∗
Si

from X ∗
Si

such thatx∗
Si−1

[l] = x∗
Si

[l] for all l ∈ Si−1∩Si, where
x∗

Si
[l] is the decision for linkl in vector xSi

. (Note
that nodei will only execute this step after it receives
the message from nodei − 1.)

�

After N steps, it is easy to see that the nodes will find
an optimal and consistentx∗

Si
. Then, based on its (local)

informationx∗
l (l : t(l) = i), nodei can transmit over each

link l at the appropriate power level.
The above implementation is not fully distributed in the

sense that nodes sequentially pass messages (starting from
node 1). The scheme can be easily made to asynchronously
operate in a distributed manner by assigning a priority level
of i to nodei and partitioning the nodes into bins (groups
of nodes), where each node is assigned to a single bin, and
nodes within a bin are within radio range of each other (the
bins are chosen a-priori and arbitrarily subject to the above
property). Then, each nodei picks an optimal power level
from X ∗

Si
that is consistent with the power level selection of

the highest priority node within its bin (the “locally” highest
priority node initially picks any arbitrary optimal power
level). After this initial power assignment, over successive
iterations, each nodei picks an optimal power level fromX ∗

Si

that is consistent with the (previously chosen) power level
selection of the highest priority node within its radio range.
It is clear that after a sufficient number of iterations (linear
in N ), the above scheme converges to a globally optimal
power allocation.

V. THROUGHPUTOPTIMALITY

In Section IV, we developed a power control algorithm
based on distributed message passing, which yields a power
allocationX

∗ such that

X
∗ ∈ arg max

X∈X

(

∑

l∈E

wlRl(X)

)

.

While X
∗ maximizes the aggregated link rate, it might not

be best power allocation from the network perspective. For
example, if there is no flow over a certain link, there is no
need to allocate any power to that link. Thus, the power
levels should be adaptively chosen according to the network
traffic.

In this section, we consider inelastic traffic, i.e., we assume
λ is fixed. Assuming there existsε > 0 such that(1+ ε)λ ∈
Γ, we will develop a back-pressure-based power-control
algorithm to stabilize the network without any knowledge
of λ.

Now, assume that each node maintains a separate queue
for every other node, and letqd,n[t] denote the length of
queue maintained for noded at noden. The adaptive power
control algorithm, which is named as back-pressure-based
power-control, is a combination of the messaging passing
algorithm in Section IV and the back-pressure algorithm
proposed in [8].

Back-Pressure-Based Power-Control:

(i) At time slot t, the transmitter of linkl, t(l), obtains

d∗t(l)[t] = arg max
d>t(l)

qα
d,t(l)[t] − qα

d,r(l)[t] (15)

wl[t] = max
d>t(l)

(

qα
d,t(l)[t] − qα

d,r(l)

)+

, (16)

whereα is a positive integer, and(·)+ = max{0, ·}.
(ii) Solve

X
∗[t] ∈ arg max

∑

l∈E

wl[t]Rl(X), (17)

using message passing algorithms. Then transmitter
t(l) transmits packets in queued∗t(l)[t] with power
X∗

l [t] to noder(l).

�

Theorem 2:The back-pressure weighted power control
algorithm is throughput optimal, i.e., all queues are bounded
under the back-pressure weighted power control algorithm
given λ ∈ ΛG .

Proof: The proof is similar to [8]. A complete proof
can also be found in [15].

VI. U TILITY MAXIMIZATION

In Section V, we considered inelastic traffic, and described
a back-pressure based power control algorithm to support
any traffic within the network throughput region. In this
section, we study elastic traffic, where the traffic rates can
be adaptively changed according to the network condition.

Corresponding to each flow is a strictly concave,
twice differentiable utility functionU[s,d]

(

λ[s,d]

)

, where
−1/U ′′

[s,d]

(

λ[s,d]

)

is positive and bounded forλ[s,d] ∈ (0, M ]
(see [17] for detailed conditions).

The objective in this section is to develop a distributed
algorithm that maximizes the sum of utilities:

max
λ∈Λ

∑

[s,d]∈F

U[s,d](λ[s,d]). (18)



The algorithm to achieve this combines the congestion con-
troller described in [2], [17] along with the message passing
power control scheme with a suitable choice of weights:
Congestion Controller: Flow [s, d] transmits packets with
rate λ[s,d][t] into the queue maintained for destinationd at
nodes, whereλ[s,d][t] satisfies

λ[s,d][t] = min

{

U ′−1
[s,d]

(

qd,s[t]

κ

)

, M

}

Back-pressure Power Control:The network solves

X
∗[t] ∈ arg max

∑

l∈E

wl[t]Rl(X), (19)

using the distributed message passing algorithm, wherewl[t]
is defined as in equation (16). Then transmittert(l) transmits
packets in queued∗t(l)[t] with powerX∗

l [t] to noder(l).
�

SinceU[s,d] is a strictly concave function, andΛ is convex,
the optimization problem (18) has an unique solution. We
denote the unique solution byλ∗.

Theorem 3:Let λ[s,d],κ[t] denote the rate of flow[s, d]
transmitting at timet under the joint congestion-control and
power control algorithm with parameterκ, we have

lim
κ→∞

lim
t→∞

E[λ[s,d],κ[t]] = λ∗
[s,d].

Proof: The idea of the proof is similar to [2].

VII. C OMPLETE PHYSICAL INTERFERENCEMODEL

In this section, we study the optimality of our algorithms
on a complete physical interference model, i.e., without the
K-hop interference assumption. Now consider the system
model for the line network as described in section II without
theK-hop interference assumption. Furthermore, we assume
that the adjacent nodes (single hop)i andj are separated by
a distance|i−j| ∈ [dmin, dmax], where0 < dmin < dmax <
∞. We also assume that the path loss coefficient between the
transmitter of linkl and receiver of linkh is

Ghl =
C

|t(l) − r(h)|α ,

whereC > 0 andα is the path loss exponent withα ≥ 2.
We first consider the optimization problem (7). LetX

∗

be the optimal power allocation for the complete physical
interference model.

We define a power allocation schemeX
∗
ε to beε-optimal

if
∑

l∈E

wlRl(X
∗) −

∑

l∈E

wlRl(X
∗
ε ) ≤ ε

∑

l∈E

wlRl(X
∗)

.
In the following theorem, we show that for anyε > 0,

there exists aK(ε) such that the algorithm proposed in
Section IV yields anε-optimal power allocation scheme for
the complete physical interference model.

Theorem 4:Given anyε > 0, choose

K(ε) =
2C2P 2

max

δd2
min(d2

min + CPmax)
,

whereδ = 1−e−cε, andc = log
(

1+ CPmax

Ld2
max(1+ 2CPmaxπ2

6d2
min

)

)

.

Then, the power allocation resulting from the message
passing algorithm in Section IV applied to aK(ε)-hop
interference model approximation of the complete physical
interference model isε-optimal.

Proof: A complete proof can also be found in [15].
The throughput optimality and utility maximization results

in Sections V and VI can be easily extended for the complete
physical interference model.
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