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Abstract—In many networks the operator is faced with nodes
that report a potentially important phenomenon such as failures,
illnesses, and viruses. The operator is faced with the question: Is it
spreading over the network, or simply occurring at random? We
seek to answer this question from highly noisy and incomplete
data, where at a single point in time we are given a possibly
very noisy subset of the infected population (including false
positives and negatives). While previous work has focused on
uniform spreading rates for the infection, heterogeneous graphs
with unequal edge weights are more faithful models of real-
ity. Critically, the network structure may not be fully known
and modeling epidemic spread on unknown graphs relies on
non-homogeneous edge (spreading) weights. Such heterogeneous
graphs pose considerable challenges, requiring both algorithmic
and analytical development. We develop an algorithm that can
distinguish between a spreading phenomenon and a randomly
occurring phenomenon while using only local information and
not knowing the complete network topology and the weights.
Further, we show that this algorithm can succeed even in the
presence of noise, false positives and unknown graph edges.

I. INTRODUCTION

Detecting failures and infections spreading over a net-
work requires being able to distinguish a phenomenon that
is spreading from node to node through a contact process,
from a collection of random failures occurring by chance, or
perhaps driven by an external source or event. The importance
and the key challenges of correctly diagnosing a spreading
epidemic has been observed and studied in several recent
papers, including [24], [25], [16], [19], [20], [21], [10]. The
epidemic can represent the spread of malware or a virus
through a network, but can equally capture the spread of a
human virus, or an idea, behavior or preference in a human
network. The importance of correct diagnosis of a spreading
phenomenon – i.e., understanding that that there is indeed
a spreading epidemic, and properly detecting ¡the contact
network over which it spreads – has been well documented
in the history of human virus epidemiology and computer
networks alike [4], [18], [26].

Key challenges addressed in the papers referenced above
include working only with local information, as well as
in the face of large proportions of false negatives/positives
among the data. One of the requirements in all the above
referenced work (see also Section I-A below), however, is
knowledge of the contact network (at-least locally). Moreover,
a related key assumption is homogeneity of the spreading

network; that is, the epidemic is assumed to spread at a
constant (probabilistic) rate. In real world networks, both
these key assumptions typically do not hold. For starters,
close relations transmit infection more readily than distant
connections. More troubling is the assumption that the contact
network is known. While some network connections may be
known (e.g., nuclear family), others can only be estimated
and should be best modeled by probabilistic connections of
different strength, especially from publicly available data. For
example, publicly (or relatively easily) available data may
include a list of coworkers, but typically would not include
statistics on pairwise daily interaction times among employees.
While a model assuming a known uniform weight among
all coworkers equaling the edges among family members
may well be inaccurate, one that assigns weighted edges that
capture whatever partial knowledge may be available, can be
significantly more accurate and representative.

Any realistic modeling of real-world epidemics must, there-
fore, be able to accommodate heterogeneous edges. This is
precisely the topic of the present paper. Given a snapshot of a
possibly spreading epidemic on a non-homogeneous graph, our
objective is to correctly diagnose the existence of the epidemic,
especially when parts of the network are not known, and when
the data themselves are highly noisy, corrupted via high levels
of false positives/negatives.

A. Related Work

There are several recent lines of work in the space of
identifying statistical phenomena on large graphs. A well-
studied problem is that of rumor source detection. Starting
with the study in [24], there have been extensive studies on
determining the source of a rumor (the epidemic process) in
various epidemic contexts [25], [16], [17], [7], [13], [15],
[27]. Another important line of work is that of network
graph inference [23], [11], where the graph itself is learned
by observing the spread of the epidemic. Related work also
includes estimating the parameters of the spread [5], [6], and
in estimating the fraction of nodes that are infected by the
epidemic [22].

In [2], [3], the authors consider the setting in which all
nodes in a network report an i.i.d Gaussian. However, in the
alternative hypothesis, for a collection of sets K, all nodes in
some set K ∈ K report a Gaussian with a different mean. They



develop conditions on when the hypotheses are asymptotically
separable, using a variation of the scan statistic. Their focus is
on exceptionally large |K|, necessitating the use of geometric
arguments to reduce the complexity. Our problem is similar,
in that we seek to characterize the structure of the infection
set from an epidemic and use that structure to distinguish an
epidemic from a random sickness (however, we have only
sparse samples and potentially a noisy graph). We scan over
a small number sets that may represent the interior of the
epidemic and use the maximum infection density to determine
the cause. The problem we consider here is most related to
that in [19], [20], [21], where a hypothesis testing approach
is used to distinguish between two unweighted graphs; where
possible and appropriate, we borrow notation defined in these
papers. The results in this line of work hinge upon probability
concentration results for infection spread [14], [1]. A local
algorithm (that looks for many hotspots of infection) for the
same problem is explored in [10]. This paper extends these
works to the case where the graph is weighted, so that the
infection does not simply travel at the same speed between all
connected nodes. We develop a new algorithm to solve this
problem, which provides superior performance compared to
the previous work (see also discussion in Section I-B).

B. Main Contributions and Discussion

The main setting is as follows: we consider an infection
phenomenon that appears at nodes across a network. This
infection either represents the collection of unrelated (inde-
pendent) events that occur in the network (termed random
sickness), or an epidemic, where the infection uses the edges
of the network to spread, node-to-node. The goal of our
work is to distinguish these two cases. We assume that we
are given data at a single snapshot in time: some collection
of nodes reports “infected.” These nodes may contain non-
infected nodes (false positives) and need not contain the
complete set of infected nodes (false negatives). The spread
of the epidemic is determined by the edges in the network,
and their weights. A critical factor of our model that makes it
at once significantly more broadly applicable, but also more
challenging to understand and analyze, is that edge weights,
and hence associated spreading time across an edge, need not
be uniform across the network.

The heterogeneity in edges fundamentally changes the way
we need to think about inference in this setting. From an
algorithmic viewpoint, earlier work that addressed this kind
of inference problem [19], [20], [21] did so by essentially
detecting the boundary of the infected region – in essence,
they compare the radius of a ball that ‘covers’ the reporting
infected nodes to a fixed threshold. If the radius is small,
then they report that there is an epidemic. However such a
test is sub-optimal, both analytically as well as in simulations
when the network edges have heterogeneity. Analytically, this
occurs because estimates of the radius of a ball covering the
infected nodes does not have sufficient probabilistic concen-
tration guarantees for our inference purposes. Intuitively, this
happens because with edge non-homogeneities, the ‘boundary’

Fig. 1. A weighted grid with infected nodes colored red, where the
infection travels faster in the horizontal direction. Due to the weights,
the ball surrounding the infected nodes (blue) is excessively large
compared to the more robust internal ball (green).

of infection can have large protuberances (think of ray-like
objects flaring out of the ball-like footprint of infected nodes).
These can cause outer radius estimates to be poor. However,
taking a volume inside the infected region and estimating
infection densities turns out to be much more robust. See
Figure 1 for an example.

We leverage this insight in our algorithm design – we
propose a Ball Density Algorithm and demonstrate its per-
formance both via probabilistic guarantees and simulations.
In fact, the maximum infection size (and time) at which our
algorithm succeeds is order-wise optimal. In addition, we
show that the Ball Density Algorithm is robust to outliers and
errors in noisy data. Namely, when there are false positives
in the provided set of infected nodes, or when some edges
are missing from the network, the Ball Density Algorithm can
succeed in similar regimes as before.

II. MODEL AND ALGORITHM

This paper analyzes the epidemic regime where the epi-
demic travels between different pairs of nodes at different
rates. Our model and notation is similar to the infection models
considered in [19], [20], [21], except that due to the varying
weights, the resulting infection can be highly asymmetric. This
infection regime is contrasted with a random spread, where
nodes exhibit sickness independently (sickness probability
is the same across nodes), so that the graph structure is
irrelevant. Keeping with what is now standard terminology
[19], [20], [21], we term the former type of infection (where
the infection travels between nodes) an epidemic, and the latter
a random sickness. In addition, we consider the case when our
knowledge is incomplete or inaccurate, as described above:
the set of infected nodes may include both false positives and
false negatives. Moreover, some edges of the graph may be
unknown. We present an algorithm that distinguishes between
an epidemic and a random sickness under these conditions.

Our results are concerned with the asymptotic performance
of our algorithm, as the graph size n increases. Many of our
parameters, such as the infection time, also may vary with the
graph size. This is denoted by a superscript (n) (suppressed
for notation clarity when the parameter is clear from context).

The following subsections (II-A, II-B and II-C) are based
on [19], [20], [21], and are provided here for completeness.



Our model differs in the graph edge asymmetries and partial
knowledge (II-D), and the algorithm that follows our new
insights on density (II-F).

A. The Infection Process

We describe here precisely the dynamics of the spreading
process. We assume the epidemic spreads over a weighted
graph G = (V,E) with edge weights W = {wij : (i, j) ∈
E}. When a node becomes infected, all incident edges start
exponential clocks with mean equal to their weight; when a
clock expires, the node at the other end of the edge becomes
infected if not already so. Thus a lower weight between edges
means it spreads faster across that edge, and a heavier weight
corresponds to slower spread. We assume throughout that
edge weights have universal upper and lower bounds, to avoid
infinitely fast spreading. Thus, in the event of an epidemic, the
infection starts spreading from a randomly selected initial node
according to the above process: this is the standard susceptible-
infected (SI) model [9], [8], [12]. The infection proceeds in
this manner up to time t(n). At this time, we are able to observe
the infection (with errors to be described below).

The alternative infection process is a random sickness.
In this case, each nodes independently becomes sick with
identical probability p(n). Note that in a random sickness,
the structure of the graph is irrelevant, since the spread does
not occur over a contact network. The most interesting and
challenging case is when the random sickness and epidemic
are of similar size, and hence simple counting cannot help
in distinguishing one process from the other. Therefore in
the sequel, we assume that p is set so that the expected
sizes of both processes are equal. We use S to denote the
set of all infected nodes, regardless of which process caused
the infection. Note that the larger S is, the more network
information gets washed out; so for instance, if S contains
every node in G, then the two processes would be identical,
and it would then be impossible to distinguish them. Likewise,
if S is too small, for example if it contains only a single node,
then the processes cannot be distinguished. We are interested
in the intermediate range, when t(n) is large enough that a
reasonable portion of the graph is infected.

B. The Reporting Process

The infection proceeds for time t(n) as in the previous
section, either as a random sickness or an epidemic. Then
the infected nodes are partially revealed. The reporting by
any infected node is assumed to be independent (reporting
probability is the same across infected nodes). We define this
probability as q(n), where n is the number of nodes in G. The
smaller this value q(n), the more difficult the problem. We
typically take this probability q(n) to be constant or decreasing
asymptotically in n.

C. False Positives

In all cases, we use the aforementioned reporting process.
However, we also consider several other limitations to the
knowledge about the infection process. First, along with the

false negatives, we also consider the case when there are
false positives. Not only do some infected nodes not report
their infection, some uninfected nodes falsely report that they
are infected. These false positives may be scattered randomly
over the population, in the same way as a random sickness,
obscuring a possible epidemic.

We model these false positives by fixing the ratio between
the number of reporting infected nodes and the number of
false positives. For a constant f ≥ 0 and |Srep| truly reporting
nodes, we set the number of false positives to be (approxi-
mately) f |Srep|. For each of the bf |Srep|c false positives, we
independently choose a random node from the entire graph
and that node reports an infection, where repeats are allowed.
We allow the chosen nodes to be in the set of infected nodes
S to reduce dependency on S. Then the number of nodes
that falsely report an infection may be slightly less than the
specified amount, though for smaller infections, this effect is
negligible. For larger infections, this model is nearly equivalent
to slightly increasing the true reporting probability (since some
of the “false positives” include nodes in S) and limiting
the false positives to the uninfected nodes V \ S. However,
the model we use allows for a simpler analysis due to the
independence between the locations of the false positives and
S. In addition, it ensures the reporting nodes in S have a higher
density than that of the reporting nodes outside the infected
set, regardless of the parameters. The set of all reporting nodes
(including false positives) is denoted S̄rep ⊇ Srep. Note that
for f ≈ 1, the number of truly reporting nodes and the number
of false positives are almost equal, and as f →∞, nearly all
the reporting nodes are false positives.

D. Unknown Edges

Knowledge of the underlying graph of an epidemic can
be difficult to obtain. However, a substantial amount of the
graph must be known to distinguish a random sickness from
an epidemic, since it is necessary to be able to determine
whether nodes are nearby or distant in order to evaluate how
“clustered” the set of reporting nodes are.

In order to model the situation when the graph is not
completely known, we suppose some number of edges from
the true graph are missing from the graph known by the
algorithm. Define the graph with the known edges (which is
provided to the algorithm) as Ḡ, so EḠ ⊆ EG. There are
two distinct types of edges that may be unknown. First, the
edge may be “short” (in a sense to be formalized shortly),
connecting two nodes that are already close to each other.
For these edges, the structure of the graph is not significantly
impacted by its removal. As one might expect, it is possible
to tolerate a large number of unknown short edges.

On the other hand, when edges are “long”, the neigh-
borhoods of nearby nodes can change significantly. If one
were to examine an epidemic spreading across Ḡ with long
edges missing, the epidemic would appear to suddenly jump
across the graph whenever the infection spread across these
edges. The set of infected nodes would appear as multiple
clusters, possibly of varying size. It is difficult to tolerate a



large number of these missing edges, since a large number
of these clusters, each with possibly only a few reporting
nodes, can easily appear like a random sickness. We define
the length of a missing edge as the following. For a removed
edge e connecting nodes i and j, we say the length of e is
distḠ(i, j), the distance between i and j on the graph with
missing (unknown) edges. For a constant J , removed edges
are considered short if their length is at most J . Otherwise,
they are called long edges.

E. Graphs

The graphs we consider can be thought of as drawn from
families of graphs, where the family reflects the graph topol-
ogy, such as grids or trees. We consider a series of graphs
from the same family and increasing in size, and prove that
as the graphs size increases, the probability of error of our
algorithm tends to 0 under some conditions. We denote a
graph family by G = {G(n)}. The set G(n) is a collection of
weighted graphs, each with n nodes, that are included in our
topology. In addition, there is a (possibly trivial) probability
space

(
G(n), σ(G(n)), P (n)

)
from which the graph of size n is

chosen. For each n, we choose a graph from this distribution,
and then randomly choose whether the infection is from an
epidemic or a random sickness, each with the same probability.
We allow the infection time t(n) and reporting probability
q(n) to depend on n, but the edge weights must be uniformly
bounded (and away from 0) for all graph sizes.

For graph G and arbitrary nodes i and j, define len(i, j)
as the length, in hop count, between i and j. Similarly,
define dist(i, j) as the minimum weighted distance between
i and j. Our algorithm considers “balls” on these graphs
to be all nodes within a certain distance (this distance is
weighted) from a central node. For graph G, node i and
radius r, define Ball(G, a, r) = {j ∈ V : dist(i, j) < r}.
We cannot distinguish random sicknesses from epidemics in
arbitrary graphs, e.g., on a complete graph, as there is no
topological information. As first discussed in [19], [20], [21],
two conditions – a speed condition and a spread condition
– are important in characterizing graphs. These essentially
say that an epidemic travels at a bounded maximum and
minimum speed with high probability, and the neighborhood
sizes are well behaved. The key property we use that implies
these properties is fairly mild: all our graphs have a constant
maximum degree D. We refer to [21] for further discussion,
and here give the basic definitions. We call graphs that satisfy
these conditions acceptable graphs.

Definition 1: Consider graph family G. This family satisfies
the speed condition for minimum speed s(−) and maximum
speed s(+) if, for infection time t increases with n without
bound, for graph G, infection S and infection source i,

P
(
Ball(G, i, s(−)t) ⊆ S ⊆ Ball(G, i, s(+)t)

)
→ 1.

That is, the infection spreads at least a distance s(−)t and at
most a distance s(+)t.

The spread condition requires that the neighborhood sizes
are well behaved. Most importantly, the neighborhoods cannot

increase in size without bound as the graph size increases.
Definition 2: A graph family G satisfies the

spread condition with invertible spreading functions b(−)(r)

and b(+)(r), 0 < r if, for graph G(n) drawn from this family,
with probability tending to 1 the following holds for each
node i and radius r ≤ diam(G(n)):

b(−)(r) < |Ball(G, i, r)| < b(+)(r)

The constants in the previous conditions can be estimated
using simulations. Alternatively, if the graph has maximum
degree D, bounds (possibly loose) on the speed and neigh-
borhood sizes can be obtained. For example, with maximum
degree D, the speed is at most 1.1(D + 1) (see [1]).

F. Algorithm

Our approach to solving this problem involves characteriz-
ing the shape of an infection. The distance between two nodes
appears to be a good approximation of how easily an epidemic
can spread from one node to the other. The shorter the
(weighted) distance, the faster the infection spreads. However,
this ignores the topological considerations: the number of short
paths also matters. Nevertheless, we show that the distance
measure is sufficient to approximate the shape of an epidemic
in this situation, and thereby distinguish an epidemic from a
random sickness.

Our algorithm is called the Ball Density Algorithm. The
algorithm takes parameters m and d. The algorithm searches
through the graph, and determines whether any ball of radius
m has a density of reporting nodes at least d. As before, a ball
of radius m is defined as all nodes within some distance m of
some central node. If there is a ball with sufficient density, the
reporting nodes appear sufficiently clustered and the infection
is labeled an ‘epidemic.’ Otherwise, it is labeled a ‘random
sickness.’ Ideally, we want d to be close to the expected density
in the infected set, q. However, q may not be known. In that
case, we may use a modified form of the algorithm, called
the Relative Ball Density Algorithm. In this case, rather than
comparing the density within the ball to a constant d, we
check whether the density within the ball exceeds the density
outside the ball by a factor of at least β > 1. The Ball Density
Algorithm requires as input the weighted graph G (including
the weights), and the set of reporting sick nodes Srep. We
allows some edges to be missing from G, as described in
greater detail later in the paper. This algorithm is efficient, as
even a naive implementation requires checking only n balls.

As mentioned earlier, this algorithm has a different approach
from [19], [20], [21] – instead of looking at covering balls,
we now look at densities. We remark that the Ball Density
algorithm is similar to the scan statistic in [2], [3], but with a
different scaling (note that the Relative Ball Density algorithm
does not compare with a fixed threshold; rather an ’inside vs
outside’ density ratio is used).

III. FUNDAMENTAL PROBLEM AND MAIN RESULTS

The fundamental case is when we have access to the entire
graph G and the reporting nodes Srep with no false positives.



Algorithm 1 Ball Density Algorithm
Input: Graph G; Set of reporting infected nodes Srep;
Parameters: Density d, Radius m
Output: Epidemic or Random Sickness

for all i ∈ V do
if |Ball(G, i,m) ∩ Srep| / |Ball(G, i,m)| ≥ d then

return Epidemic
end if

end for
return Random Sickness

Later sections include the case when there are false positives,
and when some graph edges are unknown. We demonstrate
that the Ball Density Algorithm and Relative Ball Density
Algorithm can succeed in determining the type of infection
with asymptotic probability 1, and characterize the range of
infection sizes for which this is possible.

Our results require the fact that the number of reporting
nodes in a set is highly clustered around its expectation. This
follows from the following well-known Chernoff bound:

Lemma 1: Suppose in a set U of nodes, each node reports
an infection independently with probability q. Let Ur be the
set of reporting nodes inside U . Then for any δ > 0,

P (|Ur| ≥ (1 + δ)q |U |) < exp(−δ2q |U | /3)

and

P (|Ur| ≤ (1− δ)q |U |) < exp(−δ2q |U | /2).

We begin by limiting the density of a random sickness and
of an epidemic. We use the fact that, when all balls of a
specified radius contain at least log2 n nodes, every such ball
has density close to its expectation. Roughly speaking, the
following two theorems provide the conditions for the Type I
and Type II error probabilities to tend to 0.

Theorem 1: Consider an acceptable graph G of size n
with random sickness Sr. Let ε > 0 be a small constant.
Consider ball radius m satisfying b−1

(−)(log2 n) < m and
density threshold d = (1 − ε)q. If the expected number of
infected nodes is less than (1−2ε)n, the density of every ball
of radius m is less than d with prob. tending to 1.

Proof: Note that a ball of radius m contains at least log2 n
nodes. By hypothesis, the expected reporting node density over
the entire network is less than (1 − 2ε)q. Therefore, for any
collection of nodes, the expected density of infected nodes in
that region is less than (1−2ε)q. Let δ = (1−ε)/(1−2ε)−1.
From the Chernoff bound Lemma 1, for a set of nodes of size
k, the probability the density of reporting nodes in the set is
over (1 + δ)(1 − 2ε)q = (1 − ε)q is less than exp(−δ2(1 −
2ε)qk/3). Hence, for k ≥ log2 n (that is, for balls of radius
m), this probability decays to 0 faster than 1/n. Using a union
bounds over the n balls of radius m (one for each central
node), each with at least log2 n nodes by the condition on m,
we find that all of them contain density less than (1−ε)q with
probability tending to 1.

Theorem 2: Consider an acceptable graph G of size n with
reporting infected set Sr from an epidemic. Let ε > 0 be a
small constant. For time t > b(−)(log2 n)/s(−), ball radius
b(−)(log2 n) < m < s(−)t and density threshold d = (1−ε)q,
the density of nodes within a ball of radius m around the
infection origin is at least d.

Proof: From the speed condition, with probability tending
to 1, the infection contains all nodes within distance s(−)t of
the origin. In particular, it contains the ball of radius m. The
expected density in that ball is q (the reporting probability).
As in Theorem 1, since the ball size is at least log2 n, the
probability the density is less than (1− ε)q decays to 0 using
Lemma 1.

Combining these two results gives the conditions for when
the Ball Density Algorithm succeeds. That is, the infection
time must be large enough that the ‘inner ball’ of the epidemic
(that is, the largest ball completely contained in the epidemic)
includes at least log2 n nodes. Second, the expected infection
size must be no more than a constant factor less than n.
By setting the density threshold closer to q, the factor can
be improved, so that the algorithm succeeds when nearly the
entire network is infected.

Theorem 3: Suppose G is an acceptable graph with size
n, and let ε > 0 be a small constant. Suppose that the
expected number of infected nodes is at most (1 − ε)n and
t > b−1

(−)(log2 n)/s(−). Using the Ball Density Algorithm
with parameters m satisfying b−1

(−)(log2 n) < m < s(−)t

and density d = (1 − ε/2)q, the algorithm successfully
distinguishes a random sickness and an epidemic with prob.
tending to 1.

Proof: First, consider a random sickness. From Theorem
1, all balls of radius m have density less than d with proba-
bility approaching 1. In this case, the algorithm corrects label
the infection a random sickness. Now consider an epidemic.
From Theorem 2, there is a ball of radius m contained in the
epidemic with density at least d with high probability. Again,
the algorithm successfully labels it an epidemic. Therefore,
both the Type I and Type II error probability tend to 0.

We require that the expected infection size is at most a
small factor less than the size of the network and spreads at
least enough to contain log2 n nodes. Since it is impossible
to distinguish a random sickness from an epidemic when the
entire network is infected, this is at least order-wise optimal in
the maximum infection size. We require at least log2 n nodes
to report to ensure that the density within the epidemic is close
to its expectation. To set the density parameter, we assume
that q is known. When it is unknown, we must instead use the
Relative Ball Density Algorithm, where the minimum density
is set to be a factor of β higher than the density in the rest of
the network. The Relative Ball Density Algorithm succeeds in
a similar range of times as the previous algorithm.

Theorem 4: Let G be an acceptable graph of size n and
ε > 0 be a small constant. Let β > 1. Suppose that the
expected number of infected nodes is at least log2 n, and that
t < s−1

(+)b
−1
(+)(n/(β + ε)). Apply the Relative Ball Density



Algorithm with radius m satisfying b−1
(−)(log2 n) < m < s(−)t

and relative factor β. Then the algorithm correctly identifies
the type of infection with probability approaching 1.

Proof: Suppose the infection is a random sickness. Let
k = E[|Sr|]. Then the expected density in any set of nodes is
k/n. Let δ = β−1

β+1 , so β = 1+δ
1−δ . Applying the same method

as in Theorem 1, with probability tending to 1, for each ball,
the density within the ball is less than (1 + δ)k/n and the
density outside the ball is at least (1− δ)k/n. Therefore, the
ratio between the two is less than β so the algorithm correctly
identifies it is a random sickness.

Next, suppose the infection is an epidemic. Let δ =
ε/(β + ε). Using Theorem 2, the infection contains an m
radius ball with density at least (1 − δ)q. From Lemma 1,
the density of the entire infected set is at most (1 + δ)q.
From the speed condition, we know with high probability, the
epidemic is within a ball of radius s(+)t, containing at most
n/(β + ε) nodes by assumption. No nodes outside that ball
report an infection. Therefore, the external density is at most
(1 + δ)q/(β + ε). After some calculation, we find the ratio of
the internal and external density (1− δ)(β + ε)/(1 + δ) is at
least β. Hence, the algorithm identifies it as an epidemic with
probability tending to 1.

We only prove the Relative Ball Density Algorithm succeeds
for time such that the maximum epidemic spread covers nearly
up to the network size, in contrast to the time when the
expected epidemic size is nearly n for the original algorithm.
There may be a constant factor between these times, depending
on the network topology. That is, the algorithm may only be
order-wise optimal in infection time, not infection size. For
some graphs, such as grids, these are the same. However, for
tree graphs, it means success is only guaranteed for infection
sizes up to nγ for some γ < 1. Nevertheless, we do not need
knowledge of the reporting rate for this algorithm.

IV. FALSE POSITIVES

For most data sources, the knowledge of the infected nodes
is likely to be unreliable. We already include the possibility
that there are false negatives, but there are also likely to be
false positives, i.e., nodes that report being infected when they
are not.

Recall that the number of false positives is parameterized
as a factor f of the number of actual infected nodes. Thus,
there are at most f |Srep| false positives, and these are spread
randomly over the network. We show that our algorithms
can tolerate an arbitrary number of randomly located false
positives, though the maximum solvable infection size is
reduced.

Theorem 5: Consider an acceptable graph G of size n, and
an infection on the graph, with false positive ratio f . Let ε
be some small constant. Suppose the infection time is such
that t > b−1

(−)(log2 n)/s(−) and the expected infection size is
less than (1− ε)n/(1 + f). Then the Ball Density Algorithm,
with parameters m in the range b−1

(−)(log2 n) < m < s(−)t

and density d = (1 − ε/2)q, determines the type of infection
with probability that tends asymptotically to 1.

Proof: First, note that adding false positives only in-
creases the density of nodes. Then clearly the Type II error
probability decays to 0 as shown in Theorem 3. The remaining
case is when the infection is a random sickness. As compared
to the case without false positives, the density is increased
by a factor of up to (1 + f), for an expected density of
q(1 + f)E[|S|]/n. As before, as long as d is greater than
this quantity, the Type I error probability decays to 0. By
assumption, q(1 + f)E[|S|] < q(1− ε) < d, so we are done.

The Relative Ball Density Algorithm can also succeed in
this setting. Again, it can tolerate an arbitrary number of false
positives, as long as the infection size is sufficiently low. The
maximum infection time is order-wise the same as that in the
case without false positives.

Theorem 6: Suppose G is a size n acceptable graph. Let
ε > 0 be a small constant, and let β > 1. Assume that the
infection time t satisfies

b−1
(−)(log2 n)/s(−) < t < s−1

(+)b
−1
(+)

n

(1 + f)(β + ε)
.

By using the Relative Ball Density Algorithm with radius m
satisfying b(−)(log2 n) < m < s(−)t and with relative factor
β, the type of infection can be determined with probability
approaching 1.

Proof: For this theorem, the random sickness case is the
easiest. The composition of false positives and the random
sickness is similar to a random sickness with higher reporting
rate. Just as in Theorem 4, the density inside and outside any
ball is close to its expectation (and equal for both regions) and
hence the Type I error probability tends to 0.

Now consider an epidemic on G. From the lower bound
on t, the expected infection size is at least log2 n. Using the
upper bound on t as in Theorem 4, the density of true reporting
nodes over the network is at most q(1+f)−1(β+ ε)−1. Since
the false positives increase this expected density by at most
a factor of (1 + f), the outer density is at most q/(β + ε).
As before, the expected density of the ball contained in the
infection is q, plus additional density from the false positives.
Hence, as desired, the ratio between the densities is at least β
with probability tending to 1.

V. MISSING EDGES

Another source of error is incomplete knowledge of graph
structure. Complete knowledge of contact networks may be
difficult to determine, and there may be unknown edges.
Nevertheless, if these unknown edges are not too numerous,
then it is still possible to distinguish epidemics and random
sicknesses. We consider two types of missing edges. There
may be a large number of missing edges, but they are ‘short.’
On the other hand, there may be a few missing ‘long’ edges.

First we consider the case where there are many short
edges. That is, suppose that for some constant J , each missing
edge eij satisfies distḠ(i, j) ≤ J as in Section II-D. Using
this property, we find that the distance between any two
nodes i and j on Ḡ increases by a factor of at most J



over the distance on G, since the length of each edge on the
shortest path connecting the two nodes increases by at most
that factor. Additionally, removing edges only lengthens the
distance between nodes, never decreases it. By accounting for
the possible increase in distance, we again show that the Ball
Density Algorithm can distinguish the infection types.

Theorem 7: Let G be an acceptable graph with size n. Sup-
pose the only unknown edges on G are short edges with length
at most J . Let ε > 0. Assume that the expected number of in-
fected nodes is at most (1−ε)n and t > b−1

(−)(log2 n)/(Js(−)).
For the Ball Density Algorithm, use parameters radius m
and density d with Jb−1

(−)(log2 n) < m < s(−)t and density
d = (1 − ε/2)q. Then this algorithm correctly determines
whether the infection is a random sickness or an epidemic
with probability approaching 1.

Proof: As compared to Theorem 3, the lower bound on
m is scaled up by a factor of J . The ball on Ḡ of radius m
must contain at least log2 n nodes, because it contains the ball
on G of radius m/J , which by assumption contains at least
log2 n nodes. Hence, from Theorem 1, the density of a random
sickness on all of these balls is no more than (1 − ε/2)q, an
upper bound on the overall density. Therefore, the Type I error
probability goes to 0.

In addition, the ball of radius m on Ḡ is contained in the ball
of radius m on G, since distances only increase. Therefore, in
an epidemic, this ball is contained within the infected set and
has density greater then (1− ε/2)q by Theorem 2. From this,
the Type II error probability also vanishes.

From Theorem 7, we see that by simply increasing the
minimum ball size to ensure we cover a sufficient portion
of the network even with edges missing, the Ball Density
Algorithm succeeds as before. Therefore, we conclude it is
very tolerant of missing short edges. A similar result holds
for the Relative Ball Density Algorithm.

Theorem 8: Consider an acceptable graph G of size n, and
let ε > 0 be a small constant. Set β > 1. In an infection,
suppose that the number of infected nodes is at least log2 n,
and that t < s−1

(+)b
−1
(+)(n/(β + ε)). Using the Relative Ball

Density Algorithm with radius m in the range Jb−1
(−)(log2 n) <

m < s(−)t and relative factor β, the infection type is correctly
determined with probability tending to 1.

Proof: Just as in Theorem 7, a ball of radius m on Ḡ
contains at least log2 n nodes. In addition, such a ball around
the source of an epidemic is contained within the epidemic
with high probability as m < s(−)t. These are the conditions
necessary for the error probability to decay to 0 as shown in
Theorem 4.

Now consider the case when there are few, but arbitrary
length unknown edges. Since these edges are not known, the
infection appears to jump across the graph when it traverses
on one of these edges. Then suppose there is a bound on
the number of these edges, C. Therefore, there are at most
C jumps (with at most one per edge), and at most C + 1
clustered epidemics on Ḡ. However, each of these clusters has
a high density, and the algorithm still succeeds with a slight
modification. Namely, we only consider balls containing at

least log2 n nodes in the algorithm. If there are no such balls at
that radius, the infection is labeled a random sickness, though
this case will not occur with the radius specified.

Theorem 9: Let G be an acceptable graph with size n,
and suppose all but C edges are known. Let ε > 0 be a
small constant. Consider an infection with expected size at
most (1 − ε)n and duration t > 2b−1

(−)((C + 1) log2 n)/s(−).
Apply the Ball Density Algorithm, setting the parameters m
so that b−1

(−)((C + 1) log2 n) < m < s(−)t/2 and density
d = (1 − ε/2)q, with the additional requirement that the
number of nodes within any considered ball must be at least
log2 n. Then a random sickness and an epidemic can be
distinguished with probability approaching 1.

Proof: From our additional condition, we know the balls
contain log2 n nodes. As in previous theorems, we know from
Theorem 1 that the random sickness density is less than d
and the Type I error probability goes to 0. Next consider an
epidemic. We know the ball on Ḡ is contained within the ball
on G of the same radius. Split the infection into two phases,
each of length t/2. From the speed condition, for each node
within distance s(−)t/2 from the infection origin, the ball of
radius less than s(−)t/2 around that node is contained in the
infection. Applying Theorem 2, we see that, if any such ball
has at least log2 n nodes, it has the required density.

The main fact to be proved is that there is such a ball of
radius m on Ḡ containing at least log2 n nodes. The ball
of this radius on G contains at least (C + 1) log2 n nodes
by hypothesis. This ball can be split into ‘clusters’, where a
cluster is a ball around the node on the far side of one of the
unknown edges. There are at most (C + 1) of these clusters,
and therefore, at least one of them has log2 n nodes. Then,
the ball of radius m around the center of that cluster both
is contained in the infection, and contains log2 n nodes as
desired.

The range of infection sizes for which we succeed is very
similar to case without missing edges. The radius used in the
algorithm has a tighter range, and the minimum infection time
is larger. Note that the number of missing edges C we can
tolerate must satisfy (at least) C < n/ log2 n. The Relative
Ball Density Algorithm behaves in a similar way.

Theorem 10: Suppose G is an acceptable graph of size n,
with at most C unknown edges. Let ε > 0 and β > 1. Assume
that the expected number of infected nodes is at least log2 n
and t < s−1

(+)b
−1
(+)(n/(β + ε)). Use the Relative Ball Density

Algorithm with radius m in range b−1
(−)((C+1) log2 n) < m <

s(−)t/2 and relative factor β, with the additional requirement
that we consider only balls containing at least log2 n nodes.
This algorithm accurately distinguishes whether the infection
is a random sickness or an epidemic with probability going to
1.

Proof: From the additional algorithm condition, the ball
contains at least log2 n nodes, so in the same way as Theorem
4, we see that the Type I error probability goes to 0. For the
epidemic, using the result from Theorem 9, we know there is
a ball contained within the infection of radius m on Ḡ with at



least log2 n nodes. This ball satisfies the necessary conditions
for the same approach as in Theorem 4 to work. Then the
Type II error probability tends to 0.

VI. SIMULATIONS

We now provide simulation results that confirm our analytic
results. In addition, these simulations provide additional in-
sight into how the probability of error changes with variations
in the parameters. First, we compare the performance of the
Ball Density Algorithm and the relative version with other
algorithms. In the next section, we illustrate the effect that
changing the weights of the graph has on the probability of
error. Finally, we show the probability of error for various
numbers of missing edges. For these simulations, we consider
a grid graph where all the horizontal edges have one weight,
and the vertical edges have another. Note that structure is
desired in these weights. If the weights were simply random,
then the infection behavior would be nearly the same as
an unweighted infection with a modified edge traversal time
distribution. We use graph size n = 4900. The reporting
probability is q = 0.25, and no false positives or missing
edges are used unless specified. The ball radius parameter is
set to be the optimum value as determined empirically. For
the Ball Density Algorithm, we set the density threshold to
d = 0.245, close to q. For the Relative Ball Density Algorithm,
we use a relative ratio of β = 2. After 1000 trials, the overall
probability of error is determined by the average of the error
probabilities of both the random sickness and epidemic cases.
Other problem parameters are stated in each section below.

A. Algorithm Comparison

In this paper, we present two algorithms to distinguish ran-
dom sicknesses from epidemics: the Ball Density Algorithm
with fixed density and the relative density of that algorithm.
For this section, we denote these the ‘Density’ and ‘Rel.
Density’ algorithms respectively. Though we show both of
these algorithms succeed over similar ranges of infection sizes,
we have not directly compared these algorithms analytically.
To compare them, we have simulated both on a grid graph,
with weights in {1, 10}. In addition, there are other algorithms
to consider. Our algorithms use weighted balls, but it is also
possible to use balls where the distance is measured in hop
counts. We denote this variation of the Relative Ball Density
Algorithm as ‘Rel. Density with Hops.’ Another possible
algorithm is the weighted variant of the Ball Algorithm as
presented in [19]. In this algorithm, the infection is labeled
an epidemic if all the infected nodes can be contained within
a (edge weighted) ball of a specified radius. Note that this
algorithm is (nearly) equivalent to the Relative Ball Density
Algorithm with infinite relative factor β. This algorithm is
denoted ‘Ball’, and the version where hop counts are used for
the distance is denoted ‘Ball with Hops.’

The simulation results are presented in Figure 2 (the ‘Ball
with Hops’ algorithm is omitted for clarity). There is a clear
ordering of the algorithm performance. From best to worst, the
algorithms are ‘Rel. Density’, ‘Ball’, ‘Rel. Density with Hops’,

Fig. 2. This figure shows the overall error probability for a grid
graph (n = 4900) with the weights on horizontal edges of 1, and
on vertical edges of 10 over a range of infections sizes for different
algorithms.

‘Ball with Hops’ and finally ‘Density.’ For example, when
around 89% of network is infected, the error probabilities are
approximately 1%, 2%, 3%, 4%, and 5% respectively. Then
we see that on this graph, the Relative Ball Density Algorithm
performs better than the other algorithms, including the Ball
Algorithm from prior work. We also see that including the
effects of the weights in the graph is necessary for optimal
performance. The regular Ball Density Algorithm lags behind,
partially due to the inability to adapt as well to larger infection
sizes, enabling a random sickness to more easily exceed the
specified density threshold.

B. Weights

As the difference in edge weights increases, the more
skewed the infection becomes towards the smaller edge
weights. To examine how tolerant our algorithm is towards
different edge weights, we simulated the Relative Ball Density
Algorithm on a grid, fixing the weight of the horizontal edges
at 1 and varying the weights of the other edges. The probability
of error is shown in Figure 3. As the figure shows, though
the error probability increases slightly as the weights increase,
the performance of the algorithm is very similar regardless of
edge weight distribution on this graph. Then we conclude the
Relative Ball Density Algorithm appropriately adapts to the
weight distribution in this case.

C. Unknown Edges

One key feature of our algorithm is that it is robust against
unknown edges. We simulated the Relative Ball Density
Algorithm for various numbers of missing edges to confirm
this analytic result. The simulations use a grid graph with
edge weights 1 and 10, but add a variable number of long
distance edges between nodes chosen uniformly at random
from the grid, each with weight 1. These edges are unknown
to the algorithm, causing an epidemic to appear as multiple
clusters. The probability of error for different numbers of these
missing edges is shown in Figure 4. Note that due to this
construction, the epidemic also spreads somewhat faster the
more missing edges there are. As the figure shows, though



Fig. 3. This figure illustrates the overall error probability for the
Relative Ball Density Algorithm on a grid of size n = 4900. The
edge weights on the horizontal edges are 1, and the weights on the
vertical edges are given in the legend.

Fig. 4. This figure presents the overall error prob. when using the
Relative Ball Density Algorithm (grid graph) with n = 4900 with
horizontal and vertical edge weights of 1 and 10; additional unknown
random edges of weight 1, for various numbers of missing edges.

the error probability increases significantly at smaller infection
sizes compared to the case without missing edges, it is still
low until a majority of the network is infected. In addition,
the error probability increases very slowly as the number of
missing edges increases.

VII. CONCLUSION

We develop the Ball Density Algorithm to distinguish
between random sickness and graph-based spread in a variety
of noisy network settings. We demonstrate that it succeeds
with high probability for a large range of infection sizes, nearly
up to when the entire network is infected. In addition, we show
it is robust, able to handle large numbers of false positives and
unknown edges. When the reporting probability is unknown,
the Relative Ball Density Algorithm can be used, and identifies
the infection mechanism under similar conditions.
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