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Abstract— Geographic forwarding has been widely studied as  While routing protocols such as [11], [4], [14] overcome
a routing strategy for large wireless networks, mainly due 6 the “hole” problem by switching to a boundary tracing scheme
the low complexity of the routing algorithm, scalability of the until geographic forwarding is possible, these methods typ

routing information with network size and fast convergence b
times of routes. On a planar network with no holes, Gupta cally induce a large number of packet routes to share the same

and Kumar (2000) have shown that a uniform traffic demand SpPatial region around the holes, causing significant cdiages
of ©(1/y/nlogn) is achievable. However, in a network with along the boundaries and a consequent loss in throughput
routing holes (regions on the plane which do not have active capacity. In fact, this phenomenon is common to routing
nodes), geographic routing schemes such as GPSR or GOAFR 5 5rithms that compute the shortest paths (w.r.t someienetr
could cause the throughput capacity to significantly drop de . N
to concentration of traffic on the face of the holes. Similay, of distance) between _the source and destination nodes. Many
geographic schemes could fail to support non-uniform trafic Popular MANET algorithms such as DSDV[21], AODV[22] or
patterns due to spatial congestion (traffic concentration)caused DSR[10] are based on geographically shortest paths or have
by greedy “straight-line” routing. excessive communication and packet overheads.
_In tws paﬂﬁ“twe firstr;\a_roposetr? ran?‘omtized ge_tt)gr(;ag(hlic/:\r/o_u)t- Alternately, routing algorithms designed for maximizing
ing scheme that can achieve a throughput capaci n . ) , )
(V\%thin a poly-logarithmic factor) evenginpnetwgrks \>//vith ro uting _network throughput are typically dynamic al_gorltth w0l
holes. Thus, we show that our scheme is throughput optimal iNg some form of feedback and load-balancing. For example,
(up to a poly-logarithmic factor) while preserving the inherent in [27] a queue-state based packet forwarding algorithm is
advantages of geographic routing. We also show that the roirtg  shown to be provably throughput-optimal. In [8], a disttixal
delay incurred by our scheme is within a poly-logarithmic fector  ge||man-Ford like algorithm with delay based distance foetr
of the optimal throughput-delay trade-off curve. __is proposed to improve the average delay. However, a funda-
Next, we construct a geographic forwarding based routing . . . .
scheme that can support wide variations in the traffic requie- Mentalissue with load balancing based approaches is tie- tra
ments (as much asd(1) rates for some nodes, while supporting Off between stability and convergence times - the algorghm
©(1/+/n) for others). We finally show that the above two schemes may be slow to converge to good solutions, or may become
can be combined to support non-uniform traffic demands in ynstable in the presence of delayed feedback informatihn [2
hetworks with holes. [3]. In the rest of this paper, we restrict ourselves to stati
routing schemes (such as geographic forwarding) that geovi
fixed routes and are non-adaptive.

In the context of static routing, currently known schemes

Geographic forwarding based techniques have been wid&l [17] only allow for small variations (within®(1//n))
suggested as an efficient routing method for wireless and sdhnode data rates. However, wireless networks may demand
sor networks [26], [11], [14]. A key advantage of geographi\‘l"ldely varying data rates, for example, in networks with a
routing is that the nodes are not required to maintain eitensMixture of video flows and short messaging. _
routing tables, and can make simple routing decisions based” this paper, we construct a geographic forwarding based
on the local geographic position of its neighboring nodetouting scheme for networks with routing holes that can
ie., they can choose the neighbor node that is closestSt§PPOrt wide variations in the traffic requirements - as much
the destination and forward the packet to it. As the nod@§©(1) rates for some nodes, while supporti@gt//n) for
only need to store the location of the neighbors, the routig§ners. To the best of our knowledge, this is the first static
information grows as the density of the network rather thirn tCONStructive scheme that can support such wide variations
size of the network [12], and hence is scalable. In non-unifo While simultaneously being throughput optimal (up to a poly
networks, the geographic forwarding strategies may fag dipgarithmic factor).
to circumstances in which a forwarding node may not have
any neighboring nodes that are closer to the destinatiom th& Main Contributions
itself and may get stuck in routing “holes” or local minima.

I. INTRODUCTION

We consider a random planar network in whighnodes,
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destination pairs, and define a throughput-capafity) as

the data-rate that can be simultaneously supported between
all the pairs, and the dela®(n) as the mean time taken for

a packet to travel from the source to its destination. Qumnmai
contributions are:

)

>

1) We study the throughput-capacity and delay perfor- >

mance of some geographic routing schemes in networks

with holes. We show that while an upper bound on the Reachable square tle of size ”5:.2:‘;;{?.5:3:&?\::1“

throughputT'(n) is é(ﬁ) (see notatioh) geographic

routing schemes such as [11] can cause the capacity to

droptoO(1) . Fig. 1. Occurrence of holes in Wireless Networks
2) We devise a geographic forwarding based random rout-

ing algorithm (RANDOMWAY) that achieves a through-

putT'(n) = O(7) (is optimal up to a poly-logarithmic 4 thqrs show that non-uniform radio patterns may induce
factor), with a favorable delay scaling 8#(n) = ©(n) incorrect planar graphs and can cause the routing to fail.
which lies on the optimal throughput-delay trade-off while the throughput capacity of networks with holes has
curve. We also show that the routing information in th@ot been explicitly studied, the results in [9] provide ampep
new algorithm is scalable. bound on the throughput-capacity of arbitrary networks] an
3) We consider networks with wide variations in traffioptimal throughput delay trade-offs are characterizedBy, |
demands between source-destination pairs, where sojng], [5], [19]. In recent work, [17], [20] show that the thrgh-
pairs require a rate oB(1) while other nodes re- put capacity of arbitrary networks can be studied in terms
quire only ©(—). While currently known algorithms of the “min-cuts” of the network [15]. While there has been
[17] support variations in traffic only up t@(Ln), much study on efficient geographic routing methods as well
we formulate a random routing algorithm (RAI\QOM-as on throughput capacity of wireless networks, a systemati
SPREAD) to distribute the traffic flows uniformly overinvestigation of the effect of geographic routing stragsgi
the region and show that the scheme can supaoyt on network throughput and delay has not been explored
achievable traffic demandup to a poly-logarithmic previously. In this paper, we characterize the througlumléy
factor. performance of some routing schemes discussed above and
4) Finally, we provide a scheme to combine the two previlemonstrate a geography based routing algorithm that &“ne
ous algorithms to support non-uniform traffic demandgptimal” in the presence of holes and can be readily extended

(i) An allowable hole "r" (ii) A pathological hole

in networks with holes. to non-uniform traffic requirements.
As our algorithms are based on geographic forwarding and
are static, the convergence times are better than loaddiata Il. SYSTEM DESCRIPTION
based approaches such as [8], [27]. A. Network Model

We consider a two-dimensional model of the network in
which static nodes are uniformly and randomly distributed
over a unit toroidal region (to avoid edge effects). The sode

Geographic routing for wireless and sensor networks hag assumed to have a uniform circular transmission range
been widely studied [4], [13], [1], [11], [14] in the litenate.

B. Related Work

; ) of M(n) = @(\/@), wheren corresponds to the density
In [26], [11], [14], [4], algorithms for routing around netak of nodes in the network. Thusy/ (n) relates the scaling of

holes as combinations of greedy geographic forwarding aﬂge transmission radius to the growth in network size. The

Fneg:]Taﬁtie(jreI:?;[lgg OI;rIZfi;attrii\;e;?jl f:?z E’rr;f:rr;:dv'v;gf;eeconnectivity among the nodes is regulated by the transomssi
. . P . ) . . . radius, i.e., a node is assumed to be connected to all noales th
routing fails due to “holes” or routing local minima. While

: o L lie within its radio rangeM (n). It has been shown [9] that a
in these schemes it is necessary to maintain the underlying geM (n) (9]

.. . 1 . _

planar graph structure, in [6] an efficient method to idgntiftransmission radius od/(n) = O(y/ %) is sufficient for
local minima and construct routes around the holes is peakid the network to be connected in the large-node regime, and the
In [7], a two phase algorithm is proposed, in which region@sun assures that the number of nodes within the radioerang
where greedy forwarding is possible are identified and us@fany node grows tanfinity asymptotically. _
for routing in the next stage. To model the effect of network “holes” due to various

In the context of network holes and its effects, [23] anagyzgacto.rs such as the presence of physical obstacles, duster
the connectivity of the network in the presence of holes aiffi failed nodes etc., we allow for the occurrence of holes
provides a condition on the topology that ensures sufficieft various shapes over the unit region where the nodes are

number of edge-disjoint paths between nodes. In [12] iifleployed. For our analysis, we conside_r the _class of hole
shapes and placements as follows. Consider Figure 1.

We definef(n) = &(g(n)) if f(n) = O(g(n)(logn)*) and g(n) = Assumption 2.1: Hole plt_’;\cementmt o, be the side of the
O(f(n)(logn)*1) for somek, ky < oo. smallest square that contains the hgleande, = 6, + A be



the side of a larger concentric square around the hole. Then,
no other holet can be placed such that its outer square
can intersect with that of hole. Further, thee, outer square
of any holer cannot intersect with the boundaries of the unit
square.

Assumption 2.2: Hole shape€onsider the tiling of the
unit region by square tiles of dimensignx p for some small
p > 0. Then the holes are measurable by these tiles (th&y. 2. Congestion around the boundaries - Effect of pegmstuting.
are the union of contiguous tiles). Further, any notde the
interior of thed-square can reach any point in a square of size

7 x % in the annular region between theand thes-squares |i|. | oss OFTHROUGHPUT WITHPERIMETER ROUTING
ggesggﬁgtl“ne not intersecting the hole. For an illusera In this section, we study the throughput-capacity propsrti

_ . .of some location-based routing schemes. Many geographic lo
Note that the fundamental problem of geographic routin@ wit5jon hased routing schemes such as GPSR [11], GOAFR[14],
network holes (e.g. local minima) exists even in this retd GEDIR[26] utilize perimeter or face routing based strageg

set of hole shapes. We allow féf such holes (finite number of v, 6 te around network holes. The representative ideanbehi
holes, that do not scale with the network size) to be arfiigrar 4o <o routing strategies is described below.

plac_ed ona unit region, and assume that the nodes that f"’?" m Packets containing the position of the destination sode
the interior of the holes are removed from the network. Notic are forwarded areedilv to neiahboring nodes that are
that due to the restrictions on the hole placements and shape closer to the degtinatio}:w g g

there is a non-vanishing fraction of the unit region thatas n HB When greedy geographic forwarding fails due to nodes

obscured by the holes, and hence the number of remaini that do not have any neighbor nodes closer to the destina-
nodes in the network i®)(n) (with high probability). Also, tion than itself (the node is a local minima), the routing

the radio range of\/ (n) as defined earlier is still sufficient : : .
schemes switch to a perimeter-routing mode.

for the connectivity of the surviving nodes (w.h.p). (iii) Inthis mode, a node A on receiving a packet from another
node B, checks to see if it is closer to the destination than
B. If yes, it reverts back to a greedy forwarding sﬂeme.
B. Traffic Model Else, it sweeps counter clock-wise from the directibR

and identifies neighbor-node as the first node found in

Similar to the uniform traffic model proposed in [9], we s search. It then choos€s as its next-hop neighbor.
assumen/2 random source nodes and randomly (uniformly .
. o . Fundamentally, the basic strategy common to many such
and independently) choose destination nodes for eachctraffi S .
uting strategies is to follow the boundary of the hole lunti

source node. If the source or the destination node of a traﬁ% . . . ) .
) reedy forwarding is possible. While these strategies are
flow is removed due to the occurrence of a network hole, . o .
scalable with respect to routing information (nodes onlgdhe

disregard the traffic introduced into the network by such fow L . ; .
. . to store location information of the neighboring nodesgyth
We define the throughput capacity of the network as follows, S .
L . cause significant amounts of network congestion along the
_ Def!mtlon 2.1: The th_roughput CapaC'W(")_Of a network boundaries of the network holes, since the routing scheme
IS d_efmed as the maximum data-rate _thaf[ IS smultaneou%&uires that all flows with the source and destination a&cros
achievable by all surviving source-destination pairs. the network hole be routed around the boundary.We formally
Also, we consider the protocol model [9] to capture the integnow that even with only one simple shaped hole in the net-
ference effects of simultaneously transmitting nodes twligc work, GPSR based (face-routing) strategies cause a sigmific
recalled below. drop in throughput capacity.

Definition 2.2: A transmission between a nodé and its  Theorem 3.1:Consider a single square hole (as in figure 2)
receiving nodeB is assumed to be successfuldfA, B) < at the center of the unit region, with finite area. Then,
M(n) andd(C, B) > (14 ~)M(n), for somey > 0, for all under the protocol model and uniform traffic assumption,
other transmitting node§’ # A. the throughputT'(n) that can be supported for GPSR-like
We define the packet deldy(n) as the average time taken bystrategies isI'(n) = O() (a.s). Further, the average delay
the routing algorithm to travel from the source to its destin D(n) = Q(n?/2W(n)) (a.s), whereW (n) is the size of the
tion averaged over all source-destination pairs. Sincé&giac packet scaling with the network size
can travel only distances lesser than the radio range in any Proof: Due to space constraints, we only provide a sketch
single step, communication between any source-destmatwf the proof. We show that a sizeable fraction of the traffic
pair is through multi-hop packet relaying. Thus, the averadnave sources and destination nodes are on the opposite sides
delay for a packet can be seen as the MAC delay at each lodghe holes and demonstrate that GPSR-like routing stiegeg
summed over all hops in the packet-route. When the traffitcduce all packets to flow through the region in the vicinity
patterns are uniform over the network, the queuing delay eftthe boundary of a network-hole, causing a reduction in the
intermediate hops is uniform for all flows (and hops) and thtaroughput-capacity. Consider the subset of source+ddgin
packet delays are proportional to the number of hops. pairs with source nodes in regiofi and their corresponding



Field Name Functionality R log(n) branches o
WAYPOINT-NUM Number of waypoints to traverse
before reaching destination

NEXT-DEST Location of the next waypoint
FINAL-DEST Location of the original destination (@)
DATA Message to the destination node o o o ¢ P
TABLE | ’

FIELDS IN THE HEADER OF THE PACKET

Random Waypoint =1 Random Waypoint = 4K

Fig. 3. The branching structure of the packet before regctiia destination.

destinations in regioB (see figure 2). Since the regions
and B have a non-vanishing fraction of area, the number of )
such source-destination pairs@n) (with high probability) ~ 2) The fZlog(n) packets are routed from the source in a
as the source and destination nodes are uniformly disaribut greedy geographic manner to the location in NEXT-
over the unit region. DEST. o o

From the construction of the regions and the network hole,3) A node, on receiving a packet, checks if it is the NEXT-

it follows that none of the traffic flows have greedy geographi DEST location. If itis not the NEXT-DEST location, (i)
paths to their destinations. Notice that in all schemes that It searches within its neighboring nodes for the node that
utilize perimeter-routing, all the traffic flows travel thrgh is closest to the NEXT-DEST location, and forwards the

the narrow region (with a thickness af/(n), the radio packet to that node. (i) If none of_ its neighbor nodes
range) around the edge of the boundary in a counter-cloekwis ~ are closer to the NEXT-DEST than itself, the node drops
direction. As©(n) flows have to travel through the boundary, _ the packet. _ . _
assume WLOG that th® (n) routes pass through the narrow 4) If it is the NEXT-DEST location, (i) it checks if
strip of length©(1) on the right (as indicated in figure 2), WAYPOINT-NUM > 1. If yes, it sets WAYPOINT-
and consider any tile of siz&/(n) x M(n) on this strip. As NUM = WAYPOINT-NUM - 1, and makesR log(n)

the protocol model allows only one packet within the tile to ~ COPies of the packet and again generates uniform and
transmit in any given time-slot, the best achievable thipug randomly chosen locations for the NEXT-DEST in each
capacity is©(2). Further, for non-vanishing fraction of the of the packet copies, and forwards them greedily. (ii)

traffic through the strip, the number of hops for any packet f WAYPOINT-NUM = 1, the node_sets NEXT-DEST
through this crowded strip i® (-~ ) and the delay at each = FINAL-DEST, WAYPOINT-NUM = 0 and forwards

M(n) - _
hop is ©(nW(n)), where W(n) is the packet scaling. It the packet greedily. (iii) If WAYPOINT-NUM = O, the
follows that the average delaip(n) = ©(n M}n)W(n)) _ packet is received at the destination.

Q(n3/?W(n)). Thus, the delay due to GPSR like strategies iBhus, the algorithm createé8log(n) copies of the first packet
not on the optimal throughput-delay curve (by settifign) = at the source and sends each of them to a random waypoint
T(n) we can compare with results in [5]). m by greedy geographic routing. If the greedy forwardingsfail

Remark 3.1:Note that the above result can be generalizatiie to a network hole, the packet is dropped. The packet
to any hole that contains a square region of non-zero ar&a (#n reaching the random waypoint node, creafe®g(n)

includes “allowable” holes in Section II). further copies and sends each of them to their randomly
chosen waypoints. Thus, we create a branching tree of ran-
IV. RANDOMWAY (n, K') ALGORITHM dom waypoints, of deptd K + 1 and degreeRlog(n) (see

In this section, we describe our randomized multipafiigure 3). Note that each copy of the packet travels greedily
routing algorithm that can achieve near-optimal throughpdo 4K intermediate destinations before it reaches its original
capacity, even in the presence of network holes. The alguorit destination. Subsequent packets follow the same routeeas th
takes as input the number of nodes in the network, the packgt packet.
to be sent, as well as the number of holes.

The packet, in addition to the data payload and the destina-
tion location, is assumed to have a few extra fields for facil- V. ANALYSIS OF RANDOMWAY A LGORITHM
itating our algorithm. These fields are provided in Table IV.

Notice that the size of the packet does not grow with the size o In this section, we show that our algorithm achieves a

the network. Consider the first packet in all the source nodesroughput capacity that is only a logarithmic factor away

The algorithm is as follows: from the best-case capacity for a network with holes. We

1) The source node for every traffic flow create$og(n) also show that our algorithm provides bounded delay that

copies of its packet to send. It choosBdog(n) in- is comparable to the delay incurred in a network without
dependent and uniformly distributed points from théoles and with straight-line routing, i.e., it is order-eidelay
unit region and sets the NEXT-DEST field to the raneptimal. Further, we show that the routing information that
domly generated location in each of these copies. Theeds to be stored in the nodes does not increase appreciably
WAYPOINT-NUM is set to4K + 1 in all the packet with the network size, i.e, the routing information remains
copies. scalable.



A. Throughput Optimality From our assumption on the hole shapes (Assumption 2.2)
. there is a§ x £ tile such thatD can be reached from

In order to compare the throughput-capacity performance ghy point within this tile. Similarly, there is a tile suchath

our routing algorithm, we first provide a general upper bourghy point within this tile can be reached frof Without

on the the best-case capacity in networks with holes, amd thggs of generality, we assume that the tiles Zreand Ty

show that throughput achieved by our scheme is only Small%rspectively.

by a poly-logarithmic factor. From step 4 of our algorithm where a random waypoint
Theorem 5.1:Consider a uniform random planar networkat depth4K + 1 depth greedily forwards the packet to the

with K allowable holes in it and assume a uniform traffiginal destination, it follows that the probability that notipas

pattern (as described in Section II). Then, under the pmtogreated to the destination, ]P’(No path toD) < P(A4K+1)

model for interference, the best case throughput-capafitywhere A, is the event no surviving waypoints of deptf in

the networkT'(n) satisfiesT’(n) = O(—=). Tr} (i.e, those not killed in Step 3(ii)). Notice that

\/ﬁ

The above theorem is a restatement of the result in Thm
2.1 [9] where it is shown that an upper bound on the transport P(Aigs1) = Pl [Aag)P(Aax) +
capacity of any arbitrary network i®(,/n) bit-meters per P(Asr11|Afx) (1 — P(Ask)) (1)
second. Since by our uniform traffic model, the source and P(Asr) + eax (1 — P(Ask)) 2
destinations are a non-vanishing distance away from each ] N
other, it follows that by distributing this transport cajigc WNere cix is an upper bound on the probability that no
to the ©(n) flows, the data-rate that can be simultaneousfndom waypoint of depth/ +1 was chosen iy« +1 given

achieved by all the flows can be no more tl’@.(’l%). t at there was one iffyx. Since we ch_ooséllog(n) points
" ||1dependently at random, the probability tHat;; was not

IN

We now demonstrate that a throughput-capacity o

1 . . chosen, i.e.,
G(W) for some P < oo is achievableby our
algorithm. )ro avoid technical complications due to edge ef- P(A A50) < (1— (A_Q))Rlog(n) < a 3)
fects, we assume that the network is a unit toroidal region. AR = 16 = pR’

Note that with this assumption, the network nodes/tiles af§r somec; > 0. Thus,

symmetrically distributed with respect to the traffic patte o

Theorem 5.2:Let G be a random network over a unit torus P(Asr11) < P(Ask) + WE’ (4)
with K (a finite number)allowable holes placed arbitrarily, . .
and unif(ormly distributed)atraffic flows. Thgn, the randonni);e.'\lOte that as the bound OP(AL.|ACL*1) (S|m|Iar_ o (3)) is
algorithm RANDOMWAY(n, &) achieves (almost surely) amdependent of, V\i(;:‘ can recursively use Equathn 4 to show
throughput capacity off'(n) = é(ﬁ) simultaneously for that P(Aux41) < 7, for somec; > 0. By a union bound
all source-transmitter pairs, under the protocol model f(?rver all the source destination pairs, and for> 4 we see

interference. hat
Proof: The proof follows in three steps. (i) We show
that for a!l sourcesS’ and their corresponding destinatioPs 544 hence by Borel-Cantelli's lemnté) is almost surely true.
the algorithm ensures that at least one packet-route f0m  proof of (ji): We construct a tiling of the unit region by
reaches the destinatidn via the4 K intermediate destinations. jjjes of sizeM (n) x M (n). Consider the scenario where all the

(i) We construct a tiling of the unit region with tiles of €d n54es removed by the hole placements are reintroduced in the

M (n) and show that the number of packet routes through aRyork, i.e, they are allowed to have their own traffic arsbal

such tile is upper bounded by (y/n). (ili) We demonstrate tonyard packets from other sources. Then, given any tile, th

a scheduling scheme that can achieve a throughp@t(%) RANDOMWAY algorithm would only create more “lines” (or

for each surviving packet route. packet routes) than the scenario when the nodes were removed
Proof of (i): Consider a tiling of the remaining area of theyy the holes. This occurs because (i) the number of tiles

unit region (after the placement of the holes) by tiles oksizovered by a source’s packet is only increased by removiag th

£ x £. From Assumption 2.1 on the placement of holes, Weoles as RANDOMWAY algorithm drops packets on hitting

see that the tiled regions will remain connected in the prese a hole, (i) the reintroduced nodes offer additional traffiat

of holes. That is, there exists a sequence of contiguous tilacrease the number of packets. We show that even in this

to travel from any tile to any other. Since 3 straight-linéhsa scenario, the number of paths that pass through any tile is

are sufficient to go around any allowable hole (see figure heunded above b@(\/ﬁ)_

we have the following claim. Let Xi(S;,D;) be the i random waypoint at depth
Claim 1: Given any sourcé and destinatiorD, there exist L created between the sourcg and destinationD; by

tiles T, ..., Tux+1 such thatS lies in Ty, D lies in Tyx+1 RANDOMWAY(n,K). Let (A, B) be the line segment joining

and tileT; is reachable(i.e., a straight-line path that does nothe pointsA and B. We defineC(S;, D;) as the set of all

intersect a hole exists) froff,_; foralli € {1,--- ;4K +1}. line segments created by our algorithm for routing packets

(Even if there are less thali holes in between, it is possiblebetweenS; and D;. That is, C(S;,D;) = {(Xifl,Xi)

to split a straight-line path into smaller straight-linetlmso Vj € {Rlog(n) * (i — 1),---,i * Rlog(n) — 1}, Vi €

that there are exactlyX + 1 tiles between the two nodes.) {1,---,(Rlog(n))“~'},VL € {1,--- 4K +1}}.

P(U?_, {No path betweers;, D;}) < % ®)




Let G;(i) be a Bernoulli random variable with?;(:) = that no two interfering tiles have the same color. Thus, each
1if tile 5,5 € {1,--- ,W} was touched by any line tile can transmit for a fixed fractior? /(J + 1) of the
element ofC(S;, D;)i € {1,--- ,n} 2. By symmetry of the interval. Since the number of packet routes is no more than

uniform traffic pattern assumption over the unit torus, igist /7(Rlog(n))***2, each route can be provided a fraction
are equally likely to have been touched ByS;, D;). We (JH)\/;(RTIOg(n))smz of the time and hence a throughput of
1

now construct a collection of i.i.d Bernoulli random valied 7'(n) = ©(—=+——5) P < oo is achievable. -
5 (7). i 1 : - Vn(logn)
Gj(l)a J € {L"' ’W}’ 1€ {1,--- ,n} with

5 1 w.pan) B. Delay Properties

G0 = { 0 wpl-—an) In recent research, [5], [16], [19] have characterized the

best-achievable capacity-delay trade-offs for staticeless

networks. It is shown that in networks without mobility,
Total tiles touched by any line id(Sl-,Di){6) the best achievable throughput-delay tradeoffi¢n) =

= Total number of tiles ¢ O(nT(n)), when packet sizes scales proportionally with the

throughput. We note that for network with holes, the above

Since thei3; (i) andG;, (i) are Bemoulli random variables, ande|ation provides an upper bound on the optimal throughput-

i(Gé'(? =1) isfless tharPﬁGj(i)h: 1) (by con§tru‘cti(f)n, a|r|1d delay trade-off, as routing is restricted to the class obalg

t_ ? efinition ofa(n)), we have t an(z)_ <st G (i), for a rithms that do not allow packets to travel through the “hole”

j,1, where<,; denotes stochastic ordering [24]. regions

. Observingut(hﬁt the total num_ber of lines B(S;, D;) Here, we show that a delaip(n) = O (n(log(n)?W (n))

IS (Rl.(ig("))E _and6 that no fl_lng gan ﬁo"ef more thal, somep < oo is achievable with our algorithm for packets

%?éﬁlog&?)s&mquatlon is satisfied by choosing(n) of size W (n), which is only a logarithmic factor greater than

- the optimal delay achievable when packet sizes are scaled as
Using the above construction, we show an upper bound pn[s).

the the number of paths passing through any tile. Given &y i Theorem 5.3:The average packet deldy(n) for a packet

J let H(j) be the number of source-destination pairs that gepf size 11 (n) between any sourcé and destinatiot is upper

erate a line that touches tije Note that for any given constanthounded by (n W (n)(log(n)F), for someP < cc.

A(n), P(H(j) > /\(n)) = P(Z?:l Gj(i) > )\(n)) and Proof: By (i) of Theorem 5.2, there exists a path

<) P( n oA \ )) Notice that for any given. between every source a_nd destination. Since. any path is a
- 2i=1 G(1) > A(n) y given concatenation oftK + 1 lines, the number of tiles traveled

(311 Gj(i)) is a sum of independent random variables, ar}i, a packet is no more thakEtDV2  Also by (i) of
that for eachi, j, G, (i) stochastically dominates, (i). From Min) e

Sy Mg S A . Theorem 5.2 the number of paths through any tile is no greater
Theorem 1.A.3 of [24])_;_, G;(i) stochastically dominates ihan /i (1ogn)”. Since each packet needs to wait only for

wherea(n) is chosen to satisfy

a(n)

i1 G;(i), and inequality (b) follows. _ (J + 1) * y/n(logn)” W(n) in each tile and number of tiles
By the bound on sums of iid Bernoulli random variyg travel is at most‘j\f(—;?, it follows that the packet is delayed
ables [1?], P(Z?:l Gi(i) > (1 + 5)nE(Gj(1))) = by no more thar®(n W (n)(log(n)?) seconds. [
e~ B2 nE(G;(1)/2, This result shows that the delay performance of our RAN-
By our definition of éj(i) in Equation 6,E(éj(1)) — DOMWAY algorithm is away from optimal only by a poly-
2(Rlog\(/7%))4K+17 and by choosing = 2, we get logarithmic factor.
P(znzéj(i) > 2nE(Gj(1))) < o E(G;(1))/2 C. Scalability of routing information
i=1 In routing schemes that operate with greedy forward-
< o~ (Rlog(n)**1y/n @) ing alone (including boundary tracing/perimeter routinte

amount of routing information that is required at a node ilyon
Thus, the probability that H(j) was greater than the location of its neighboring nodes. In our network model,
2(Rlog(n))***1/n is exponentially small. Since thethe number of neighbor nodes for any nodes is atréxhig n)

total number of lines created between any SOUICR the radio range i€ /mﬁ) For the RANDOMWAY
L Lo CPAl AK+1 no

deSt'Satlonf pa'L IS |C(S?’Dl)|h _h (Rlog(fl))_ . the algorithm, the requirement of routing information is ingsed,

number of paths passing though any ftijeis at most as the nodes that are way-points for any packet need to

: 4K+1 _ 8K+2
H(j) * (Rlog(n)) = v/n(Rlog(n))*" . remember the corresponding next random way-poiRteg n
Scheduling scheme (iiiConsider a time interval of length of them) for that packet route. However, we see that this
7. By our protocol model, a transmitting node in a t”qncrease is not significant

preven'_[s_only_ at most a fixed numbdr of nglghbors from Notice that the total number (over all packet routes) of
transmitting simultaneously. From the technique used ]n [grandom waypoints are x (Rlogn)*5+! and are uniformly

each tile can be colored with one of + 1 colors such distributed over the unit region. This implies that there ar

4K+1 e ; ;
2Although the random variablé! is a function of the network size, we do N0 MOre thar®((log n) ) Way.-pomts in any tile .Of S|d?
not explicitly denote this, for notational ease. M(n). In the worst-case scenario, all the way-points might



be chosen to be at the same node, in which case the routing
information it needs to store ®(logn) + O((log(n))* £+ x
Rlogn) where the first term is the routing information to store
the neighbor locations, and the second term the next waggoin /O

2nd waypoint (randomly chosen)

Destination

for all the packets that chose the node as a way-point. Thus,
the routing information for any node 8((logn)*%+2).

1st waypoint (randomly chosen)

Fig. 4. Two way-point routing for non-uniform traffic
V1. ROUTING FORNON-UNIFORM TRAFFIC PATTERNS

While the analysis in the previous sections had assumed a
uniform traffic pattern, in many scenarios the traffic dengand 2) Each source could either be a Type-a source with a
could be non-uniform and the requirements may vary widely traffic requirement 01’@(%) or Type-b source with a
from one node to another. For example, such patterns could be  requirement 09 (1).
seen in a large network where there could be flows demandingg) The distribution of the two kinds of loads over the source
much larger bandwidth than others (e.g., a mixture of video  nodes isarbitrary.
flows and short messaging). In recent research, approaches) The distribution is such that there exists a feasible
have been made to characterize the traffic patterns thateean b routing scheme that supports the traffic patterns.
supported in a random planar network. In [17], authors demoRANDOMSPREAD(n¢): Type-a nodes send their packets
strate that variations in traffic demand of the ordeaifin) directly to the destination by greedy geographic forwagdin
are supportable, by using a Valiant-Brebner [28] scheme e to the absence of holes in this model, greedy forwarding
distribute a source’s load to all other nodes, and then sglviis successful. Type-b nodes cregt@ routes simultaneously
a uniform multicommodity flow (UMF) problem [15]. We alsoto the destination, each using a three meta-hop path, asisshow
note that the solution to this problem is nonconstructivétian in figure 4. That is, for the first packet in each route, the seur
based on the dual graph of the network. We however note tidlboses a 1st and a 2nd waypoint by throwing a line at random
the motivation in [18] is different from ours. The objectiire and the packet is finally routed back to the destination from
[18] is to studya wide class of network modeltyy reducing the 2nd waypoint. Subsequent packets follow the route of the
them to UMF problems. However, this approach only suppoffisst packet. We now show that the algorithm is optimal.
“small variations” in traffic rates. Theorem 6.1:Let A be a traffic matrix satisfying the

On the other hand, we provide a constructive schemeoperties of our traffic model. Then, algorithm RANDOM-
(RANDOMSPREAD) to distribute the traffic flows uniformly SPREAD achieves a rate @(A; ;) (a.s), for all source-
over the region and show that the scheme can supoort destination pairgs, 7).
achievable traffic demand (includit(1) variations in traffic), Proof: The proof technique is as follows. We tile the unit
up to a poly-logarithmic factor. To the best of our knowledgeorus region by tiles of sidé/(n)/4. We show that the number
this is the first constructive scheme that can support sude wiof packet routes through any tile is no more th@an/n). By
variations while simultaneously being throughput optirfugd the scheduling scheme (part (iii) in proof of Theorem 5.2)
to a poly-logarithmic factor). this allows a throughput o(:)(in) per each packet route.

Let A;; be the traffic demand between souticand desti- Since the RANDOMSPREAD algorithm increases the number
nationj and the traffic matrix\ define the traffic demands of of packets simultaneously transmitted by type-b sources(b
the network. Then, we show that if a traffic requiremanis /n factor), the throughput achieved by the type-b sources is
feasible under any routing algorithm, the RANDOMSPREA® (,/n \/Lﬁ) = O(1). It remains to be shown that the number
algorithm can achieve the rate matrix (up to a poly- of packet routes through any tile is indeed upper bounded by
logarithmic factor less). Also, the advantageous propertié(\/ﬁ).
of the original algorithm viz. bounded delay, minimal per- We now partition the packet-routes in the network into 4
node routing information and robustness to location eraoes disjoint classes.

preserved. For simplicity in presentation, we use the¥altg 7: packet routes generated by type-a source nodes to their
simplified two level traffic model to analyze the performance  corresponding destinations.

and do not consider the presence of holes in the network,: Qutward lines radiating from type-b source nodes to their
Later, we show that this can be extended to a general traffic first intermediate way-point.

model. T5: Inward lines radiating into type-b destination nodes from
Assumption 6.1: Traffic ModelVe consider a network on their last intermediate way-points.

the unit torus, withn nodes uniformly and randomly dis- 7): The rest of the packet routes generated between the first
tributed over it. There are no holes in this network. Thefitaf and the last intermediate way-points for type-b source’s
is generated by; randomly chosen source-destination pairs  packets.

with the following properties. The number of routes through any tile is the sum of the routes

1) Each source-destination pair is generated by throwingoheach clas¥;, 1 < i < 4, through it.
line randomly on the unit region, the length of the line Claim 2: 71 and T, are ©(y/n(log(n))?), for someP <
could come from any arbitrary distribution d8e, 1]. oo (almost surely).



around each node with a commonf angle (x-axis) for all
O/\ nodes (i.e., there arg/n sectors for each node). Consider
© e any nodeA, and suppose/n random lines radiate outwards
3M‘w/f @ (i.e., the destination end of each of the lines is uniformly
O — Q/ arbitrary tile random). We observe that the probability that there are more
( than Wlogn lines in any one of the sectors is exceedingly
\YM(")M small (~ —). Since there are only a total of nodes
ith Box (and thus, at most type-b nodes), and each node hga
' sectors, it now follows (using an union bound) that the numbe
Fig. 5. Concentric tiles in the proof of Theorem 6.1 of lines radiating outwards from any of the (type-b) nodes

and through any of its corresponding sectors is uniformly
bounded byW logn, with a probability that decays at least

W-—-1.5 i _
Proof: For T;: Note that as the requirement of type-&S fast asl/n - ChoosingW" = 5, and from Borel-
nodes isﬁ(%), only one packet (line) per node is sent. sinceantelli Lemma, we have the above property holding almost

the number of type-a nodes is less thaf2, and the source surely. Thus, without loss of generality, in the rest of the

and destination nodes are randomly distributed, the load p?éooﬁ we will assume that the maximum number of lines

tile is obtained by dropping/2 lines (according to the traffic _radiating outwards from any type-b node and through any of

model) randomly on a unit torus. The bound on the numbi? corresponding sectors defined above (each of aé@beis

of lines through a tile of\/(n) x M(n), by dropping®(n) " more tharblog(n). o .
lines is at mos©O(y/nlog(n)) (from Lemma 4.13 of [9]). _ Now, consider a type-b node at a distancrom the tile

For T,: By the upper bound on the transport capacity [of, (-€; & node in5; but not in B5;_,) and letp; be the

O(y/m), it follows that there can be at mogi(y/n) type-b number of lines through ti_Ig' dge to this typ_e-b node (i.e, the
nodes. Each of these nodes send gt packets and chooseNUmber of outward radiating lines from this type-b node that
a random second and third waypoint (see figure 4) for cattiersects tilej). Then, from the d|scus_3|on abovg and straight-
packet. These waypoints are chosen by dropping a random I{REvard geometric arguments (essentially, counting thetmr
(with property 1 of Traffic model) and selecting the end p@intqf sectors of the type-b node at distaridbat can “cover” tile
Thus, theT) traffic generated by type-b nodes is equivaledt:

to throwingn lines randomly. Again, by Theorem of [9] it < alogn 9
follows that theT, traffic per tile is no more tha®(y/nlogn). pi < ( 2 — 1 )V, ©)
[ |

. . . - forall 1 <i < %, for some (finite) fixedx > 0.
— " = M(n)>’
Noticing thatT; is analogous td%, it is now sufficient to show Let a; be the number of type-b sources— B;_;. Then,

that the trafficy in any tile is©(y/n). Consider any tilgf and - 22:1 ax. The total number of lines through tilg due

construct concentric squares around it as in figure 5. Weeieftrg ?ype-b source nodes within bax - is lesser than
the following collection of sets as follows. 1&; = tile j. M (n)

. . . M (n) i
B; = {Neighbors of all tiles inB;_1} U B;_1. (8) Z e, s.t.Zak <e(2i-1), (10)
Let I; be the number of type-b sources insiig k=1 k=1
Claim 3: l; < ¢1(2i—1), Vi=1,2,---, 5, for some  \we provide an upper bound on the number of lines through
1> 0. a tile by maximizing the sum in Equation 10 as follows.
Proof: From Assumption 6.1 (property (1)), the des- .
tination node for each type-b source within any bx My a; J
is outside it. Also, from (4) of Assumption 6.1, since th(?lhlngﬁﬂfwE )a\/ﬁlog" > (22-_ 1) St a; <ci(2i—1)Vi,
- — Min i=1 k=1

traffic distribution is achievable, the traffic demand of the

nodes insideB3; cannot exceed the min-cut capacity of edges (11)

leaving theB;. Since each tile can at most support a constagking standard optimization techniques, we can bound the

throughput ofc; > 0 and the number of tiles in the perimetembove ILP (by an LP relaxation) to obtain the following resul

is no more than/n x (2i—1) (the tiles on the boundary &; (we skip the proof due to space constraints).

are the tiles that can transmit across the perimeter). Siack Claim 4: The solutiona* = ¢(1,2,2,2,---,2) provides

type-b node has a traffic demand @, the number of such an upper bound for the cost function in Equation 11.

nodes insideB; cannot exceed; (2i — 1) for somec; > 0. B Substituting this optimal solution in Equation 11 and okiey
Now we consider thel’; load due tol;, 1 < i < 77 that the cost function grows as the sum of a harmonic series

on tile j, i.e., we count the number of lines (packet-routegand henced(logn)), the number of lines through tilg due

through; due to all the type-b nodes WithlﬁMsn . (We shall to sources WithirBMEn can be no more thaé(\/ﬁ) (a.s).

show later that the load due to all type-b nodes outside thewe now consider the effect of all type-b sources outside the

B is also of the same order). B box. Leta be the number of type-b sources outside the
Recall that there arex nodes uniformly distributed in box. By [9], the transport capacity for any arbitrary netkor

the network. We construct sectors of angular separa@gn is no more tha®(,/n), and henc& < C'/n. By Equation 9,




it follows that for any source outside thg_-_, the number
of lines through tilej can be no more tha€’ iog n. Thus, the [y
contribution of type-b sources outside the bo®is,/n logn).
By utilizing a scheduling scheme similar to proof of (iii)
in Theorem 5.2, each line can be provided a throughput &%]
é(%), and hence all the traffic demands of both type-a ang8]
type-b nodes are satisfied. ] 4]
Remark 6.1:The above proof can be generalized to shov&
that anyachievablerate matrixA, with unique source destina-
tion pairs (\;; > 0 — A;p = A,; = 0, Vk # j, r #4) can [
be supported (up to a poly-logarithmic factor) by our algog
rithm. The RANDOMSPREAD algorithm is modified so that
all sources are type-b, and any souicgends[\/n x A; 4]
packets out at any instant. By reformulating the optimarati
problem of (11) witha; equal tothe number of packets/lines [8]
generated by type-b sources wittBp— 3;_1, a similar bound
on the number of packets through any tile can be shown.

(7]

El

. . ) : 10
A. Extending Non uniform traffic to Networks with Holes 1ol

In Section IV, we demonstrated a randomized routin&]
algorithm to support uniform traffic in the presence of rogti
holes, and in Section VI a method to support non uniform
traffic in uniform random planar networks. Here, we provid@rz]
an algorithm to combine the two scenarios to provide routing
support of non-uniform traffic demands in networks witlil3]
holes. Consider the following scheme.

Extended RANDOMWAY (n,K): The modification to the |14
RANDOMWAY(n,K) is only at the source nodes. The be-
havior of the forwarding nodes or the intermediate randorHL-5
waypoints is unchanged. If the source node is a type-a node,
the algorithm is unchanged, i.e, the source cre&dsg(n)
copies of the single packet and sets the variables in tHél
packet header as described in Section IV. If a source is a
type-b node with©(1) traffic requirement, then the sourcdl7]
transmits(mo% packets simultaneously, by executing thﬁg]
RANDOMWAY algorithm for each packet independently, with
4K +2 way points. That is, for each unique packet1 < i < [19]
ﬁT\/gﬁn)P, the source createR log(n) copies and forwards 20]
them to random-waypoints.

The above algorithm can be shown to support aogiev- [21]
able non-uniform rate matrix, even with network holes. A
formal proof is omitted due to space constraints. The algp2]
rithm'’s operation is similar to the RANDOMSPREAD, where
nodes with higher traffic requirement send out more pack%g]
in proportion to their demands. To facilitate the pointpmint
routing (required by RANDOMSPREAD), the intermediate
nodes use the RANDOMWAY algorithm to get around possE?“]
ble holes. [25]

VIl. CONCLUSION AND FUTURE WORK [26]

In this paper, we presented algorithms for throughput op-
timal routing in networks with holes and non-uniform trafficj»7;
Our algorithms preserve the inherent advantages of gebigrap
routing such as scalability and fast convergence while igrov
ing better throughput. In future, we will extend the anadytsi
networks with a larger class of holes and also will charamter
the performance under erroneous geographic information.

(28]
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