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Abstract— Geographic forwarding has been widely studied as
a routing strategy for large wireless networks, mainly due to
the low complexity of the routing algorithm, scalability of the
routing information with network size and fast convergence
times of routes. On a planar network with no holes, Gupta
and Kumar (2000) have shown that a uniform traffic demand
of Θ(1/

√

n log n) is achievable. However, in a network with
routing holes (regions on the plane which do not have active
nodes), geographic routing schemes such as GPSR or GOAFR
could cause the throughput capacity to significantly drop due
to concentration of traffic on the face of the holes. Similarly,
geographic schemes could fail to support non-uniform traffic
patterns due to spatial congestion (traffic concentration)caused
by greedy “straight-line” routing.

In this paper, we first propose a randomized geographic rout-
ing scheme that can achieve a throughput capacity ofΘ(1/

√

n)
(within a poly-logarithmic factor) even in networks with ro uting
holes. Thus, we show that our scheme is throughput optimal
(up to a poly-logarithmic factor) while preserving the inherent
advantages of geographic routing. We also show that the routing
delay incurred by our scheme is within a poly-logarithmic factor
of the optimal throughput-delay trade-off curve.

Next, we construct a geographic forwarding based routing
scheme that can support wide variations in the traffic require-
ments (as much asΘ(1) rates for some nodes, while supporting
Θ(1/

√

n) for others). We finally show that the above two schemes
can be combined to support non-uniform traffic demands in
networks with holes.

I. I NTRODUCTION

Geographic forwarding based techniques have been widely
suggested as an efficient routing method for wireless and sen-
sor networks [26], [11], [14]. A key advantage of geographic
routing is that the nodes are not required to maintain extensive
routing tables, and can make simple routing decisions based
on the local geographic position of its neighboring nodes,
i.e., they can choose the neighbor node that is closest to
the destination and forward the packet to it. As the nodes
only need to store the location of the neighbors, the routing
information grows as the density of the network rather than the
size of the network [12], and hence is scalable. In non-uniform
networks, the geographic forwarding strategies may fail due
to circumstances in which a forwarding node may not have
any neighboring nodes that are closer to the destination than
itself and may get stuck in routing “holes” or local minima.
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While routing protocols such as [11], [4], [14] overcome
the “hole” problem by switching to a boundary tracing scheme
until geographic forwarding is possible, these methods typi-
cally induce a large number of packet routes to share the same
spatial region around the holes, causing significant congestion
along the boundaries and a consequent loss in throughput
capacity. In fact, this phenomenon is common to routing
algorithms that compute the shortest paths (w.r.t some metric
of distance) between the source and destination nodes. Many
popular MANET algorithms such as DSDV[21], AODV[22] or
DSR[10] are based on geographically shortest paths or have
excessive communication and packet overheads.

Alternately, routing algorithms designed for maximizing
network throughput are typically dynamic algorithms involv-
ing some form of feedback and load-balancing. For example,
in [27] a queue-state based packet forwarding algorithm is
shown to be provably throughput-optimal. In [8], a distributed
Bellman-Ford like algorithm with delay based distance metric
is proposed to improve the average delay. However, a funda-
mental issue with load balancing based approaches is the trade-
off between stability and convergence times - the algorithms
may be slow to converge to good solutions, or may become
unstable in the presence of delayed feedback information [2],
[3]. In the rest of this paper, we restrict ourselves to static
routing schemes (such as geographic forwarding) that provide
fixed routes and are non-adaptive.

In the context of static routing, currently known schemes
[9], [17] only allow for small variations (withinΘ(1/

√
n))

in node data rates. However, wireless networks may demand
widely varying data rates, for example, in networks with a
mixture of video flows and short messaging.

In this paper, we construct a geographic forwarding based
routing scheme for networks with routing holes that can
support wide variations in the traffic requirements - as much
asΘ(1) rates for some nodes, while supportingΘ(1/

√
n) for

others. To the best of our knowledge, this is the first static
constructive scheme that can support such wide variations
while simultaneously being throughput optimal (up to a poly-
logarithmic factor).

A. Main Contributions

We consider a random planar network in whichn nodes,

each with circular radio range ofM(n) = Θ(
√

log n
n ), are

uniformly and randomly distributed over a unit region. We
allow for a finite number of constant area “holes” to occur
on this network, removing any nodes that might fall within
the “hole” region. We assumeΘ(n) randomly chosen source-



destination pairs, and define a throughput-capacityT (n) as
the data-rate that can be simultaneously supported between
all the pairs, and the delayD(n) as the mean time taken for
a packet to travel from the source to its destination. Our main
contributions are:

1) We study the throughput-capacity and delay perfor-
mance of some geographic routing schemes in networks
with holes. We show that while an upper bound on the
throughputT (n) is Θ̃( 1√

n
) (see notation1) geographic

routing schemes such as [11] can cause the capacity to
drop toO( 1

n ) .
2) We devise a geographic forwarding based random rout-

ing algorithm (RANDOMWAY) that achieves a through-
putT (n) = Θ̃( 1√

n
) ( is optimal up to a poly-logarithmic

factor), with a favorable delay scaling ofD(n) = Θ̃(n)
which lies on the optimal throughput-delay trade-off
curve. We also show that the routing information in the
new algorithm is scalable.

3) We consider networks with wide variations in traffic
demands between source-destination pairs, where some
pairs require a rate ofΘ(1) while other nodes re-
quire only Θ( 1√

n
). While currently known algorithms

[17] support variations in traffic only up tõΘ( 1√
n
),

we formulate a random routing algorithm (RANDOM-
SPREAD) to distribute the traffic flows uniformly over
the region and show that the scheme can supportany
achievable traffic demand, up to a poly-logarithmic
factor.

4) Finally, we provide a scheme to combine the two previ-
ous algorithms to support non-uniform traffic demands
in networks with holes.

As our algorithms are based on geographic forwarding and
are static, the convergence times are better than load-balancing
based approaches such as [8], [27].

B. Related Work

Geographic routing for wireless and sensor networks has
been widely studied [4], [13], [1], [11], [14] in the literature.
In [26], [11], [14], [4], algorithms for routing around network
holes as combinations of greedy geographic forwarding and
perimeter routing or “face traversal” are presented. The funda-
mental idea is of planarization and face traversal when greedy
routing fails due to “holes” or routing local minima. While
in these schemes it is necessary to maintain the underlying
planar graph structure, in [6] an efficient method to identify
local minima and construct routes around the holes is provided.
In [7], a two phase algorithm is proposed, in which regions
where greedy forwarding is possible are identified and used
for routing in the next stage.

In the context of network holes and its effects, [23] analyzes
the connectivity of the network in the presence of holes and
provides a condition on the topology that ensures sufficient
number of edge-disjoint paths between nodes. In [12] the

1We definef(n) = Θ̃(g(n)) if f(n) = O(g(n)(log n)k) and g(n) =
O(f(n)(log n)k1 ) for somek, k1 < ∞.
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Fig. 1. Occurrence of holes in Wireless Networks

authors show that non-uniform radio patterns may induce
incorrect planar graphs and can cause the routing to fail.

While the throughput capacity of networks with holes has
not been explicitly studied, the results in [9] provide an upper
bound on the throughput-capacity of arbitrary networks, and
optimal throughput delay trade-offs are characterized in [25],
[16], [5], [19]. In recent work, [17], [20] show that the through-
put capacity of arbitrary networks can be studied in terms
of the “min-cuts” of the network [15]. While there has been
much study on efficient geographic routing methods as well
as on throughput capacity of wireless networks, a systematic
investigation of the effect of geographic routing strategies
on network throughput and delay has not been explored
previously. In this paper, we characterize the throughput-delay
performance of some routing schemes discussed above and
demonstrate a geography based routing algorithm that is “near-
optimal” in the presence of holes and can be readily extended
to non-uniform traffic requirements.

II. SYSTEM DESCRIPTION

A. Network Model

We consider a two-dimensional model of the network in
which static nodes are uniformly and randomly distributed
over a unit toroidal region (to avoid edge effects). The nodes
are assumed to have a uniform circular transmission range

of M(n) = Θ(
√

log(n)
n ), wheren corresponds to the density

of nodes in the network. Thus,M(n) relates the scaling of
the transmission radius to the growth in network size. The
connectivity among the nodes is regulated by the transmission
radius, i.e., a node is assumed to be connected to all nodes that
lie within its radio rangeM(n). It has been shown [9] that a

transmission radius ofM(n) = Θ(
√

log(n)
n ) is sufficient for

the network to be connected in the large-node regime, and the
result assures that the number of nodes within the radio range
of any node grows toinfinity asymptotically.

To model the effect of network “holes” due to various
factors such as the presence of physical obstacles, clusters
of failed nodes etc., we allow for the occurrence of holes
of various shapes over the unit region where the nodes are
deployed. For our analysis, we consider the class of hole
shapes and placements as follows. Consider Figure 1.

Assumption 2.1: Hole placements: Let δr be the side of the
smallest square that contains the holer, andεr = δr + ∆ be



the side of a larger concentric square around the hole. Then,
no other holet can be placed such that itsεt outer square
can intersect with that of holer. Further, theεr outer square
of any holer cannot intersect with the boundaries of the unit
square.

Assumption 2.2: Hole shapes: Consider the tiling of the
unit region by square tiles of dimensionp× p for some small
p > 0. Then the holes are measurable by these tiles (they
are the union of contiguous tiles). Further, any nodeA in the
interior of theδ-square can reach any point in a square of size
∆
4 × ∆

4 in the annular region between theε and theδ-squares
by straight line not intersecting the hole. For an illustration,
see figure 1.
Note that the fundamental problem of geographic routing with
network holes (e.g. local minima) exists even in this restricted
set of hole shapes. We allow forK such holes (finite number of
holes, that do not scale with the network size) to be arbitrarily
placed on a unit region, and assume that the nodes that fall in
the interior of the holes are removed from the network. Notice
that due to the restrictions on the hole placements and shapes,
there is a non-vanishing fraction of the unit region that is not
obscured by the holes, and hence the number of remaining
nodes in the network isΘ(n) (with high probability). Also,
the radio range ofM(n) as defined earlier is still sufficient
for the connectivity of the surviving nodes (w.h.p).

B. Traffic Model

Similar to the uniform traffic model proposed in [9], we
assumen/2 random source nodes and randomly (uniformly
and independently) choose destination nodes for each traffic
source node. If the source or the destination node of a traffic
flow is removed due to the occurrence of a network hole, we
disregard the traffic introduced into the network by such flows.
We define the throughput capacity of the network as follows.

Definition 2.1: The throughput capacityT (n) of a network
is defined as the maximum data-rate that is simultaneously
achievable by all surviving source-destination pairs.
Also, we consider the protocol model [9] to capture the inter-
ference effects of simultaneously transmitting nodes which is
recalled below.

Definition 2.2: A transmission between a nodeA and its
receiving nodeB is assumed to be successful ifd(A, B) ≤
M(n) andd(C, B) > (1 + γ)M(n), for someγ > 0, for all
other transmitting nodesC 6= A.
We define the packet delayD(n) as the average time taken by
the routing algorithm to travel from the source to its destina-
tion averaged over all source-destination pairs. Since packets
can travel only distances lesser than the radio range in any
single step, communication between any source-destination
pair is through multi-hop packet relaying. Thus, the average
delay for a packet can be seen as the MAC delay at each hop
summed over all hops in the packet-route. When the traffic
patterns are uniform over the network, the queuing delay at
intermediate hops is uniform for all flows (and hops) and the
packet delays are proportional to the number of hops.
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Fig. 2. Congestion around the boundaries - Effect of perimeter routing.

III. L OSS OFTHROUGHPUT WITHPERIMETER ROUTING

In this section, we study the throughput-capacity properties
of some location-based routing schemes. Many geographic lo-
cation based routing schemes such as GPSR [11], GOAFR[14],
GEDIR[26] utilize perimeter or face routing based strategies
to route around network holes. The representative idea behind
these routing strategies is described below.
(i) Packets containing the position of the destination nodes

are forwarded greedily to neighboring nodes that are
closer to the destination.

(ii) When greedy geographic forwarding fails due to nodes
that do not have any neighbor nodes closer to the destina-
tion than itself (the node is a local minima), the routing
schemes switch to a perimeter-routing mode.

(iii) In this mode, a node A on receiving a packet from another
node B, checks to see if it is closer to the destination than
B. If yes, it reverts back to a greedy forwarding scheme.
Else, it sweeps counter clock-wise from the direction

−−→
AB

and identifies neighbor-nodeC as the first node found in
this search. It then choosesC as its next-hop neighbor.

Fundamentally, the basic strategy common to many such
routing strategies is to follow the boundary of the hole until
greedy forwarding is possible. While these strategies are
scalable with respect to routing information (nodes only need
to store location information of the neighboring nodes), they
cause significant amounts of network congestion along the
boundaries of the network holes, since the routing scheme
requires that all flows with the source and destination across
the network hole be routed around the boundary.We formally
show that even with only one simple shaped hole in the net-
work, GPSR based (face-routing) strategies cause a significant
drop in throughput capacity.

Theorem 3.1:Consider a single square hole (as in figure 2)
at the center of the unit region, with finite area. Then,
under the protocol model and uniform traffic assumption,
the throughputT (n) that can be supported for GPSR-like
strategies isT (n) = O( 1

n ) (a.s). Further, the average delay
D(n) = Ω(n3/2W (n)) (a.s), whereW (n) is the size of the
packet scaling with the network sizen.

Proof: Due to space constraints, we only provide a sketch
of the proof. We show that a sizeable fraction of the traffic
have sources and destination nodes are on the opposite sides
of the holes and demonstrate that GPSR-like routing strategies
induce all packets to flow through the region in the vicinity
of the boundary of a network-hole, causing a reduction in the
throughput-capacity. Consider the subset of source-destination
pairs with source nodes in regionA and their corresponding



Field Name Functionality
WAYPOINT-NUM Number of waypoints to traverse

before reaching destination
NEXT-DEST Location of the next waypoint
FINAL-DEST Location of the original destination

DATA Message to the destination node

TABLE I

FIELDS IN THE HEADER OF THE PACKET.

destinations in regionB (see figure 2). Since the regionsA
and B have a non-vanishing fraction of area, the number of
such source-destination pairs isΘ(n) (with high probability)
as the source and destination nodes are uniformly distributed
over the unit region.

From the construction of the regions and the network hole,
it follows that none of the traffic flows have greedy geographic
paths to their destinations. Notice that in all schemes that
utilize perimeter-routing, all the traffic flows travel through
the narrow region (with a thickness ofM(n), the radio
range) around the edge of the boundary in a counter-clockwise
direction. AsΘ(n) flows have to travel through the boundary,
assume WLOG that theΘ(n) routes pass through the narrow
strip of lengthΘ(1) on the right (as indicated in figure 2),
and consider any tile of sizeM(n) × M(n) on this strip. As
the protocol model allows only one packet within the tile to
transmit in any given time-slot, the best achievable throughput
capacity isΘ( 1

n ). Further, for non-vanishing fraction of the
traffic through the strip, the number of hops for any packet
through this crowded strip isΘ( 1

M(n) ) and the delay at each
hop is Θ(nW (n)), where W (n) is the packet scaling. It
follows that the average delayD(n) = Θ(n 1

M(n)W (n)) =

Ω(n3/2W (n)). Thus, the delay due to GPSR like strategies is
not on the optimal throughput-delay curve (by settingW (n) =
T (n) we can compare with results in [5]).

Remark 3.1:Note that the above result can be generalized
to any hole that contains a square region of non-zero area (this
includes “allowable” holes in Section II).

IV. RANDOMWAY (n, K) ALGORITHM

In this section, we describe our randomized multipath
routing algorithm that can achieve near-optimal throughput-
capacity, even in the presence of network holes. The algorithm
takes as input the number of nodes in the network, the packet
to be sent, as well as the number of holes.

The packet, in addition to the data payload and the destina-
tion location, is assumed to have a few extra fields for facil-
itating our algorithm. These fields are provided in Table IV.
Notice that the size of the packet does not grow with the size of
the network. Consider the first packet in all the source nodes.
The algorithm is as follows:

1) The source node for every traffic flow createsR log(n)
copies of its packet to send. It choosesR log(n) in-
dependent and uniformly distributed points from the
unit region and sets the NEXT-DEST field to the ran-
domly generated location in each of these copies. The
WAYPOINT-NUM is set to 4K + 1 in all the packet
copies.

Random Waypoint  = 1

R log(n) branches

S

D

Random Waypoint  = 4K

Fig. 3. The branching structure of the packet before reaching the destination.

2) The R log(n) packets are routed from the source in a
greedy geographic manner to the location in NEXT-
DEST.

3) A node, on receiving a packet, checks if it is the NEXT-
DEST location. If it is not the NEXT-DEST location, (i)
it searches within its neighboring nodes for the node that
is closest to the NEXT-DEST location, and forwards the
packet to that node. (ii) If none of its neighbor nodes
are closer to the NEXT-DEST than itself, the node drops
the packet.

4) If it is the NEXT-DEST location, (i) it checks if
WAYPOINT-NUM > 1. If yes, it sets WAYPOINT-
NUM = WAYPOINT-NUM - 1, and makesR log(n)
copies of the packet and again generates uniform and
randomly chosen locations for the NEXT-DEST in each
of the packet copies, and forwards them greedily. (ii)
If WAYPOINT-NUM = 1, the node sets NEXT-DEST
= FINAL-DEST, WAYPOINT-NUM = 0 and forwards
the packet greedily. (iii) If WAYPOINT-NUM = 0, the
packet is received at the destination.

Thus, the algorithm createsR log(n) copies of the first packet
at the source and sends each of them to a random waypoint
by greedy geographic routing. If the greedy forwarding fails
due to a network hole, the packet is dropped. The packet
on reaching the random waypoint node, createsR log(n)
further copies and sends each of them to their randomly
chosen waypoints. Thus, we create a branching tree of ran-
dom waypoints, of depth4K + 1 and degreeR log(n) (see
figure 3). Note that each copy of the packet travels greedily
to 4K intermediate destinations before it reaches its original
destination. Subsequent packets follow the same route as the
first packet.

V. A NALYSIS OF RANDOMWAY A LGORITHM

In this section, we show that our algorithm achieves a
throughput capacity that is only a logarithmic factor away
from the best-case capacity for a network with holes. We
also show that our algorithm provides bounded delay that
is comparable to the delay incurred in a network without
holes and with straight-line routing, i.e., it is order-wise delay
optimal. Further, we show that the routing information that
needs to be stored in the nodes does not increase appreciably
with the network size, i.e, the routing information remains
scalable.



A. Throughput Optimality

In order to compare the throughput-capacity performance of
our routing algorithm, we first provide a general upper bound
on the the best-case capacity in networks with holes, and then
show that throughput achieved by our scheme is only smaller
by a poly-logarithmic factor.

Theorem 5.1:Consider a uniform random planar network,
with K allowable holes in it and assume a uniform traffic
pattern (as described in Section II). Then, under the protocol
model for interference, the best case throughput-capacityof
the networkT (n) satisfiesT (n) = O( 1√

n
).

The above theorem is a restatement of the result in Thm
2.1 [9] where it is shown that an upper bound on the transport
capacity of any arbitrary network isΘ(

√
n) bit-meters per

second. Since by our uniform traffic model, the source and
destinations are a non-vanishing distance away from each
other, it follows that by distributing this transport capacity
to the Θ(n) flows, the data-rate that can be simultaneously
achieved by all the flows can be no more thanΘ( 1√

n
).

We now demonstrate that a throughput-capacity of
Θ( 1√

n(log(n))P ) for some P < ∞ is achievableby our
algorithm. To avoid technical complications due to edge ef-
fects, we assume that the network is a unit toroidal region.
Note that with this assumption, the network nodes/tiles are
symmetrically distributed with respect to the traffic patterns.

Theorem 5.2:Let G be a random network over a unit torus
with K (a finite number)allowable holes placed arbitrarily,
and uniformly distributed traffic flows. Then, the randomized
algorithm RANDOMWAY(n, K) achieves (almost surely) a
throughput capacity ofT (n) = Θ̃( 1√

n
) simultaneously for

all source-transmitter pairs, under the protocol model for
interference.

Proof: The proof follows in three steps. (i) We show
that for all sourcesS and their corresponding destinationsD,
the algorithm ensures that at least one packet-route fromS
reaches the destinationD via the4K intermediate destinations.
(ii) We construct a tiling of the unit region with tiles of side
M(n) and show that the number of packet routes through any
such tile is upper bounded bỹΘ(

√
n). (iii) We demonstrate

a scheduling scheme that can achieve a throughput ofΘ̃( 1√
n
)

for each surviving packet route.
Proof of (i): Consider a tiling of the remaining area of the

unit region (after the placement of the holes) by tiles of size
∆
4 × ∆

4 . From Assumption 2.1 on the placement of holes, we
see that the tiled regions will remain connected in the presence
of holes. That is, there exists a sequence of contiguous tiles
to travel from any tile to any other. Since 3 straight-line paths
are sufficient to go around any allowable hole (see figure 1),
we have the following claim.

Claim 1: Given any sourceS and destinationD, there exist
tiles T0, ..., T4K+1 such thatS lies in T0, D lies in T4K+1

and tileTi is reachable(i.e., a straight-line path that does not
intersect a hole exists) fromTi−1 for all i ∈ {1, · · · , 4K +1}.
(Even if there are less thanK holes in between, it is possible
to split a straight-line path into smaller straight-line paths so
that there are exactly4K + 1 tiles between the two nodes.)

From our assumption on the hole shapes (Assumption 2.2)
there is a ∆

4 × ∆
4 tile such thatD can be reached from

any point within this tile. Similarly, there is a tile such that
any point within this tile can be reached fromS. Without
loss of generality, we assume that the tiles areT1 and T4K

respectively.
From step 4 of our algorithm where a random waypoint

at depth4K + 1 depth greedily forwards the packet to the
final destination, it follows that the probability that no path is
created to the destinationD, P

(

No path toD
)

≤ P
(

A4K+1

)

whereAL is the event{no surviving waypoints of depthL in
TL} (i.e, those not killed in Step 3(ii)). Notice that

P(A4K+1) = P(A4K+1|A4K)P(A4K) +

P(A4K+1|Ac
4K)(1 − P(A4K)) (1)

≤ P(A4K) + ε4K(1 − P(A4K)) (2)

where ε4K is an upper bound on the probability that no
random waypoint of depth4K+1 was chosen inT4K+1 given
that there was one inT4K . Since we chooseR log(n) points
independently at random, the probability thatT4K+1 was not
chosen, i.e.,

P(A4K+1|Ac
4K) ≤

(

1 − (
∆2

16
)
)R log(n) ≤ c1

nR
, (3)

for somec1 > 0. Thus,

P(A4K+1) ≤ P(A4K) +
c1

nR
. (4)

Note that as the bound onP(AL|Ac
L−1) (similar to (3)) is

independent ofL, we can recursively use Equation 4 to show
that P(A4K+1) ≤ c2

nR , for somec2 > 0. By a union bound
over all the source destination pairs, and forR > 4 we see
that

P(∪n
i=1{No path betweenSi, Di}) ≤

c2

n2
(5)

and hence by Borel-Cantelli’s lemma(i) is almost surely true.
Proof of (ii): We construct a tiling of the unit region by

tiles of sizeM(n)×M(n). Consider the scenario where all the
nodes removed by the hole placements are reintroduced in the
network, i.e, they are allowed to have their own traffic and also
forward packets from other sources. Then, given any tile, the
RANDOMWAY algorithm would only create more “lines” (or
packet routes) than the scenario when the nodes were removed
by the holes. This occurs because (i) the number of tiles
covered by a source’s packet is only increased by removing the
holes as RANDOMWAY algorithm drops packets on hitting
a hole, (ii) the reintroduced nodes offer additional trafficthat
increase the number of packets. We show that even in this
scenario, the number of paths that pass through any tile is
bounded above bỹΘ(

√
n).

Let X i
L(Si, Di) be the ith random waypoint at depth

L created between the sourceSi and destinationDi by
RANDOMWAY(n,K). Let (A, B) be the line segment joining
the pointsA and B. We defineC(Si, Di) as the set of all
line segments created by our algorithm for routing packets
betweenSi and Di. That is, C(Si, Di) =

{

(X i
L−1, X

j
L)

∀j ∈ {R log(n) ∗ (i − 1), · · · , i ∗ R log(n) − 1}, ∀i ∈
{1, · · · , (R log(n))L−1}, ∀L ∈ {1, · · · , 4K + 1}

}

.



Let Gj(i) be a Bernoulli random variable withGj(i) =
1 if tile j, j ∈ {1, · · · , 1

M(n)2 } was touched by any line
element ofC(Si, Di) i ∈ {1, · · · , n} 2. By symmetry of the
uniform traffic pattern assumption over the unit torus, all tiles
are equally likely to have been touched byC(Si, Di). We
now construct a collection of i.i.d Bernoulli random variables
G̃j(i), j ∈ {1, · · · , 1

M(n)2 }, i ∈ {1, · · · , n} with

G̃j(i) =

{

1 w.p α(n)
0 w.p 1 − α(n)

whereα(n) is chosen to satisfy

α(n) ≥ Total tiles touched by any line inC(Si, Di)

Total number of tiles
.(6)

Since theGj(i) andG̃j(i) are Bernoulli random variables, and
P (Gj(i) = 1) is less thanP (G̃j(i) = 1) (by construction, and
the definition ofα(n)), we have thatGj(i) ≤st G̃j(i), for all
j, i, where≤st denotes stochastic ordering [24].

Observing that the total number of lines inC(Si, Di)
is (R log(n))4K+1 and that no line can cover more than
2
√

n tiles, Equation 6 is satisfied by choosingα(n) =
2(R log(n))4K+1

√
n

.
Using the above construction, we show an upper bound on

the the number of paths passing through any tile. Given any tile
j, let H(j) be the number of source-destination pairs that gen-
erate a line that touches tilej. Note that for any given constant
λ(n), P

(

H(j) > λ(n)
)

= P
(

∑n
i=1 Gj(i) > λ(n)

)

and

≤(b) P
(

∑n
i=1 G̃j(i) > λ(n)

))

. Notice that for any givenj,

(
∑n

i=1 G̃j(i)) is a sum of independent random variables, and
that for eachi, j, G̃j(i) stochastically dominatesGj(i). From
Theorem 1.A.3 of [24],

∑n
i=1 G̃j(i) stochastically dominates

∑n
i=1 Gj(i), and inequality (b) follows.
By the bound on sums of i.i.d Bernoulli random vari-

ables [18], P
(

∑n
i=1 G̃j(i) > (1 + β)nE(G̃j(1))

)

≤
e−β2 n E(G̃j(1))/2.

By our definition of G̃j(i) in Equation 6,E(G̃j(1)) =
2(R log(n))4K+1

√
n

, and by choosingβ = 2, we get

P
(

n
∑

i=1

G̃j(i) > 2 n E(G̃j(1))
)

≤ e−n E(G̃j(1))/2

≤ e−(R log(n))4K+1√n. (7)

Thus, the probability that H(j) was greater than
2(R log(n))4K+1√n is exponentially small. Since the
total number of lines created between any source
destination pair is |C(Si, Di)| = (R log(n))4K+1, the
number of paths passing though any tilej is at most
H(j) ∗ (R log(n))4K+1 =

√
n(R log(n))8K+2.

Scheduling scheme (iii):Consider a time interval of length
T . By our protocol model, a transmitting node in a tile
prevents only at most a fixed numberJ of neighbors from
transmitting simultaneously. From the technique used in [9],
each tile can be colored with one ofJ + 1 colors such

2Although the random variableG is a function of the network size, we do
not explicitly denote this, for notational ease.

that no two interfering tiles have the same color. Thus, each
tile can transmit for a fixed fractionT /(J + 1) of the
interval. Since the number of packet routes is no more than√

n(R log(n))8K+2, each route can be provided a fraction
T

(J+1)
√

n(R log(n))8K+2 of the time and hence a throughput of

T (n) = Θ( 1√
n(log n)P ) P < ∞ is achievable.

B. Delay Properties

In recent research, [5], [16], [19] have characterized the
best-achievable capacity-delay trade-offs for static wireless
networks. It is shown that in networks without mobility,
the best achievable throughput-delay tradeoff isD(n) =
Θ(nT (n)), when packet sizes scales proportionally with the
throughput. We note that for network with holes, the above
relation provides an upper bound on the optimal throughput-
delay trade-off, as routing is restricted to the class of algo-
rithms that do not allow packets to travel through the “hole”
regions.

Here, we show that a delayD(n) = Θ(n(log(n)P W (n))
for someP < ∞ is achievable with our algorithm for packets
of sizeW (n), which is only a logarithmic factor greater than
the optimal delay achievable when packet sizes are scaled as
in [5].

Theorem 5.3:The average packet delayD(n) for a packet
of sizeW (n) between any sourceS and destinationD is upper
bounded byΘ(n W (n)(log(n)P ), for someP < ∞.

Proof: By (i) of Theorem 5.2, there exists a path
between every source and destination. Since any path is a
concatenation of4K + 1 lines, the number of tiles traveled
by a packet is no more than(4K+1)

√
2

M(n) . Also, by (ii) of
Theorem 5.2 the number of paths through any tile is no greater
than

√
n(log n)P . Since each packet needs to wait only for

(J + 1) ∗ √n(log n)P W (n) in each tile and number of tiles
to travel is at most8K+2

M(n) , it follows that the packet is delayed
by no more thanΘ(n W (n)(log(n)P ) seconds.

This result shows that the delay performance of our RAN-
DOMWAY algorithm is away from optimal only by a poly-
logarithmic factor.

C. Scalability of routing information

In routing schemes that operate with greedy forward-
ing alone (including boundary tracing/perimeter routing), the
amount of routing information that is required at a node is only
the location of its neighboring nodes. In our network model,
the number of neighbor nodes for any nodes is atmostΘ(log n)

as the radio range isΘ(
√

log n
n ). For the RANDOMWAY

algorithm, the requirement of routing information is increased,
as the nodes that are way-points for any packet need to
remember the corresponding next random way-points (R log n
of them) for that packet route. However, we see that this
increase is not significant.

Notice that the total number (over all packet routes) of
random waypoints aren × (R log n)4K+1 and are uniformly
distributed over the unit region. This implies that there are
no more thanΘ((log n)4K+1) way-points in any tile of side
M(n). In the worst-case scenario, all the way-points might



be chosen to be at the same node, in which case the routing
information it needs to store isΘ(log n)+Θ((log(n))4K+1 ×
R log n) where the first term is the routing information to store
the neighbor locations, and the second term the next waypoints
for all the packets that chose the node as a way-point. Thus,
the routing information for any node isΘ((log n)4K+2).

VI. ROUTING FOR NON-UNIFORM TRAFFIC PATTERNS

While the analysis in the previous sections had assumed a
uniform traffic pattern, in many scenarios the traffic demands
could be non-uniform and the requirements may vary widely
from one node to another. For example, such patterns could be
seen in a large network where there could be flows demanding
much larger bandwidth than others (e.g., a mixture of video
flows and short messaging). In recent research, approaches
have been made to characterize the traffic patterns that can be
supported in a random planar network. In [17], authors demon-
strate that variations in traffic demand of the order ofO( 1√

n
)

are supportable, by using a Valiant-Brebner [28] scheme to
distribute a source’s load to all other nodes, and then solving
a uniform multicommodity flow (UMF) problem [15]. We also
note that the solution to this problem is nonconstructive and is
based on the dual graph of the network. We however note that
the motivation in [18] is different from ours. The objectivein
[18] is to studya wide class of network modelsby reducing
them to UMF problems. However, this approach only supports
“small variations” in traffic rates.

On the other hand, we provide a constructive scheme
(RANDOMSPREAD) to distribute the traffic flows uniformly
over the region and show that the scheme can supportany
achievable traffic demand (includingΘ(1) variations in traffic),
up to a poly-logarithmic factor. To the best of our knowledge,
this is the first constructive scheme that can support such wide
variations while simultaneously being throughput optimal(up
to a poly-logarithmic factor).

Let Λij be the traffic demand between sourcei and desti-
nationj and the traffic matrixΛ define the traffic demands of
the network. Then, we show that if a traffic requirementΛ is
feasible under any routing algorithm, the RANDOMSPREAD
algorithm can achieve the rate matrixΛ (up to a poly-
logarithmic factor less). Also, the advantageous properties
of the original algorithm viz. bounded delay, minimal per-
node routing information and robustness to location errorsare
preserved. For simplicity in presentation, we use the following
simplified two level traffic model to analyze the performance
and do not consider the presence of holes in the network.
Later, we show that this can be extended to a general traffic
model.

Assumption 6.1: Traffic Model:We consider a network on
the unit torus, withn nodes uniformly and randomly dis-
tributed over it. There are no holes in this network. The traffic
is generated byn2 randomly chosen source-destination pairs
with the following properties.

1) Each source-destination pair is generated by throwing a
line randomly on the unit region, the length of the line
could come from any arbitrary distribution on[3ε, 1].

Source Destination

2nd waypoint (randomly chosen)

1st waypoint (randomly chosen)

Fig. 4. Two way-point routing for non-uniform traffic

2) Each source could either be a Type-a source with a
traffic requirement ofΘ( 1√

n
) or Type-b source with a

requirement ofΘ(1).
3) The distribution of the two kinds of loads over the source

nodes isarbitrary.
4) The distribution is such that there exists a feasible

routing scheme that supports the traffic patterns.
RANDOMSPREAD(n,ε): Type-a nodes send their packets
directly to the destination by greedy geographic forwarding.
Due to the absence of holes in this model, greedy forwarding
is successful. Type-b nodes create

√
n routes simultaneously

to the destination, each using a three meta-hop path, as shown
in figure 4. That is, for the first packet in each route, the source
chooses a 1st and a 2nd waypoint by throwing a line at random
and the packet is finally routed back to the destination from
the 2nd waypoint. Subsequent packets follow the route of the
first packet. We now show that the algorithm is optimal.

Theorem 6.1:Let Λ be a traffic matrix satisfying the
properties of our traffic model. Then, algorithm RANDOM-
SPREAD achieves a rate of̃Θ(Λi,j) (a.s), for all source-
destination pairs(i, j).

Proof: The proof technique is as follows. We tile the unit
torus region by tiles of sideM(n)/4. We show that the number
of packet routes through any tile is no more thanΘ̃(

√
n). By

the scheduling scheme (part (iii) in proof of Theorem 5.2)
this allows a throughput of̃Θ( 1√

n
) per each packet route.

Since the RANDOMSPREAD algorithm increases the number
of packets simultaneously transmitted by type-b sources (by a√

n factor), the throughput achieved by the type-b sources is
Θ̃(

√
n 1√

n
) = Θ̃(1). It remains to be shown that the number

of packet routes through any tile is indeed upper bounded by
Θ̃(

√
n).

We now partition the packet-routes in the network into 4
disjoint classes.

T1: Packet routes generated by type-a source nodes to their
corresponding destinations.

T2: Outward lines radiating from type-b source nodes to their
first intermediate way-point.

T3: Inward lines radiating into type-b destination nodes from
their last intermediate way-points.

T4: The rest of the packet routes generated between the first
and the last intermediate way-points for type-b source’s
packets.

The number of routes through any tile is the sum of the routes
of each classTi, 1 ≤ i ≤ 4, through it.

Claim 2: T1 and T4 are Θ(
√

n(log(n))P ), for someP <
∞ (almost surely).



M(n)/4

3M(n)/4

arbitrary tile

tile j

ith Box
B
i

type−b
sources

Fig. 5. Concentric tiles in the proof of Theorem 6.1

Proof: For T1: Note that as the requirement of type-a
nodes isΘ( 1√

n
), only one packet (line) per node is sent. Since

the number of type-a nodes is less thann/2, and the source
and destination nodes are randomly distributed, the load per
tile is obtained by droppingn/2 lines (according to the traffic
model) randomly on a unit torus. The bound on the number
of lines through a tile ofM(n) × M(n), by droppingΘ(n)
lines is at mostΘ(

√

n log(n)) (from Lemma 4.13 of [9]).
For T4: By the upper bound on the transport capacity [9],

Θ(
√

n), it follows that there can be at mostΘ(
√

n) type-b
nodes. Each of these nodes send out

√
n packets and choose

a random second and third waypoint (see figure 4) for each
packet. These waypoints are chosen by dropping a random line
(with property 1 of Traffic model) and selecting the end points.
Thus, theT4 traffic generated by type-b nodes is equivalent
to throwing n lines randomly. Again, by Theorem of [9] it
follows that theT4 traffic per tile is no more thanΘ(

√
n logn).

Noticing thatT3 is analogous toT2, it is now sufficient to show
that the trafficT2 in any tile isΘ̃(

√
n). Consider any tilej and

construct concentric squares around it as in figure 5. We define
the following collection of sets as follows. letB1 = tile j.

Bi = {Neighbors of all tiles inBi−1} ∪ Bi−1. (8)

Let li be the number of type-b sources insideBi.
Claim 3: li ≤ c1(2i− 1), ∀i = 1, 2, · · · , ε

M(n) , for some
c1 > 0.

Proof: From Assumption 6.1 (property (1)), the des-
tination node for each type-b source within any boxBi

is outside it. Also, from (4) of Assumption 6.1, since the
traffic distribution is achievable, the traffic demand of the
nodes insideBi cannot exceed the min-cut capacity of edges
leaving theBi. Since each tile can at most support a constant
throughput ofc2 > 0 and the number of tiles in the perimeter
is no more than4

√
n×(2i−1) (the tiles on the boundary ofBi

are the tiles that can transmit across the perimeter). Sinceeach
type-b node has a traffic demand of

√
n, the number of such

nodes insideBi cannot exceedc1(2i− 1) for somec1 > 0.
Now we consider theT2 load due toli, 1 ≤ i ≤ ε

M(n)
on tile j, i.e., we count the number of lines (packet-routes)
throughj due to all the type-b nodes withinB ε

M(n)
. (We shall

show later that the load due to all type-b nodes outside the
B ε

M(n)
is also of the same order).

Recall that there aren nodes uniformly distributed in
the network. We construct sectors of angular separation2π√

n

around each node with a common0◦ angle (x-axis) for all
nodes (i.e., there are

√
n sectors for each node). Consider

any nodeA, and suppose
√

n random lines radiate outwards
(i.e., the destination end of each of the lines is uniformly
random). We observe that the probability that there are more
than W log n lines in any one of the sectors is exceedingly
small (∼ 1

nW ). Since there are only a total ofn nodes
(and thus, at mostn type-b nodes), and each node has

√
n

sectors, it now follows (using an union bound) that the number
of lines radiating outwards from any of the (type-b) nodes
and through any of its corresponding sectors is uniformly
bounded byW log n, with a probability that decays at least
as fast as1/nW−1.5. ChoosingW = 5, and from Borel-
Cantelli Lemma, we have the above property holding almost
surely. Thus, without loss of generality, in the rest of the
proof, we will assume that the maximum number of lines
radiating outwards from any type-b node and through any of
its corresponding sectors defined above (each of angle2π√

n
) is

no more than5 log(n).
Now, consider a type-b node at a distancei from the tile

j (i.e, a node inBi but not in Bi−1) and let ρi be the
number of lines through tilej due to this type-b node (i.e, the
number of outward radiating lines from this type-b node that
intersects tilej). Then, from the discussion above and straight-
forward geometric arguments (essentially, counting the number
of sectors of the type-b node at distancei that can “cover” tile
j),

ρi ≤
(α log n

2i − 1

)√
n, (9)

for all 1 ≤ i ≤ ε
M(n) , for some (finite) fixedα > 0.

Let ai be the number of type-b sources inBi−Bi−1. Then,
li =

∑i
k=1 ak. The total number of lines through tilej due

to type-b source nodes within boxB ε
M(n)

is lesser than

ε
M(n)
∑

k=1

ρkak, s.t.
i

∑

k=1

ak ≤ c1(2i − 1). (10)

We provide an upper bound on the number of lines through
a tile by maximizing the sum in Equation 10 as follows.

max
ai,1≤i≤ ε

M(n)

α
√

n log n

ε
M(n)
∑

i=1

( ai

2i − 1

)

s.t
i

∑

k=1

ai ≤ c1(2i − 1)∀i.

(11)

Using standard optimization techniques, we can bound the
above ILP (by an LP relaxation) to obtain the following result
(we skip the proof due to space constraints).

Claim 4: The solutiona∗ = c1(1, 2, 2, 2, · · · , 2) provides
an upper bound for the cost function in Equation 11.
Substituting this optimal solution in Equation 11 and observing
that the cost function grows as the sum of a harmonic series
(and henceΘ(log n)), the number of lines through tilej due
to sources withinB ε

M(n)
can be no more thañΘ(

√
n) (a.s).

We now consider the effect of all type-b sources outside the
B ε

M(n)
box. Let ã be the number of type-b sources outside the

box. By [9], the transport capacity for any arbitrary network
is no more thanΘ(

√
n), and hencẽa ≤ C

√
n. By Equation 9,



it follows that for any source outside theB ε
M(n)

, the number
of lines through tilej can be no more thanC log n. Thus, the
contribution of type-b sources outside the box isΘ(

√
n log n).

By utilizing a scheduling scheme similar to proof of (iii)
in Theorem 5.2, each line can be provided a throughput of
Θ̃( 1√

n
), and hence all the traffic demands of both type-a and

type-b nodes are satisfied.
Remark 6.1:The above proof can be generalized to show

that anyachievablerate matrixΛ, with unique source destina-
tion pairs (Λi,j > 0 → Λi,k = Λr,j = 0, ∀k 6= j, r 6= i) can
be supported (up to a poly-logarithmic factor) by our algo-
rithm. The RANDOMSPREAD algorithm is modified so that
all sources are type-b, and any sourcei sendsd√n×Λi,d(i)e
packets out at any instant. By reformulating the optimization
problem of (11) withai equal tothe number of packets/lines
generated by type-b sources withinBi−Bi−1, a similar bound
on the number of packets through any tile can be shown.

A. Extending Non uniform traffic to Networks with Holes

In Section IV, we demonstrated a randomized routing
algorithm to support uniform traffic in the presence of routing
holes, and in Section VI a method to support non uniform
traffic in uniform random planar networks. Here, we provide
an algorithm to combine the two scenarios to provide routing
support of non-uniform traffic demands in networks with
holes. Consider the following scheme.

Extended RANDOMWAY(n,K): The modification to the
RANDOMWAY(n,K) is only at the source nodes. The be-
havior of the forwarding nodes or the intermediate random-
waypoints is unchanged. If the source node is a type-a node,
the algorithm is unchanged, i.e, the source createsR log(n)
copies of the single packet and sets the variables in the
packet header as described in Section IV. If a source is a
type-b node withΘ(1) traffic requirement, then the source
transmits

√
n

(R log n)P packets simultaneously, by executing the
RANDOMWAY algorithm for each packet independently, with
4K+2 way points. That is, for each unique packetpi, 1 ≤ i ≤√

n
(R log n)P , the source createsR log(n) copies and forwards
them to random-waypoints.

The above algorithm can be shown to support anyachiev-
able non-uniform rate matrix, even with network holes. A
formal proof is omitted due to space constraints. The algo-
rithm’s operation is similar to the RANDOMSPREAD, where
nodes with higher traffic requirement send out more packets
in proportion to their demands. To facilitate the point-to-point
routing (required by RANDOMSPREAD), the intermediate
nodes use the RANDOMWAY algorithm to get around possi-
ble holes.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we presented algorithms for throughput op-
timal routing in networks with holes and non-uniform traffic.
Our algorithms preserve the inherent advantages of geographic
routing such as scalability and fast convergence while provid-
ing better throughput. In future, we will extend the analysis to
networks with a larger class of holes and also will characterize
the performance under erroneous geographic information.
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