
1

Scheduling in Multi-Channel Wireless Networks:

Rate Function Optimality in the Small-Buffer

Regime
Shreeshankar Bodas, Sanjay Shakkottai, Lei Ying, R. Srikant

Abstract—The problem of designing scheduling algorithms
for a multi-channel (e.g., OFDM-based) wireless downlink net-
work is considered. The classic MaxWeight algorithm, although
throughput-optimal, results in a very poor per-user delay perfor-
mance in such systems. Hence, an alternate class of algorithms
called iLQF (iterated Longest Queues First) is proposed for
overcoming this issue. The iLQF-class algorithms are analyzed
in a number of different system configurations. A particular
algorithm in this class, called iLQF with PullUp, is shown to
be rate function optimal for the problem in an appropriate large
deviations setting, and is shown to result in a strictly positive
value of the rate function for a number of modifications to the
basic system model. Thus, the proposed algorithm yields provable
performance guarantees. The analytic results are confirmed
through simulations.

Index Terms—Delay optimality, large deviations, perfect
matchings, random bipartite graphs, scheduling algorithms,
small buffer

I. INTRODUCTION

W ITH the ever-growing numbers and capabilities of

mobile communication devices, the service providers

are required to support a variety of delay-sensitive and

possibly high data-rate applications such as VoIP, GPS

and streaming video. The fundamental network resources

(time/frequency/codes) that these applications demand are,

however, limited and must be shared. Therefore, designing

efficient scheduling algorithms is an important problem in the

study of wireless networks. Good scheduling algorithms are

often critical in determining the performance of a communica-

tion system. In this paper, we look at the problem of designing

scheduling algorithms for the downlink of a wireless network.

The 4G-systems such as WiMax [2] and LTE [3] employ an

Orthogonal Frequency Division Multiplexing(OFDM)-based

This research was partially supported by NSF grants CNS-0721380, CNS-
0964391, CNS-1017549, CNS-1161868, CNS-1264012 and CNS-1262329.

S. Bodas is with Qualcomm, Inc. This research was carried out when
he was a graduate student at The University of Texas at Austin, and
a postdoctoral associate at Massachusetts Institute of Technology. E-mail:
shreeshankar.bodas@utexas.edu

S. Shakkottai is with the Department of Electrical and Computer Engi-
neering, The University of Texas at Austin, Austin, TX 78712, USA. E-mail:
shakkott@austin.utexas.edu

L. Ying is an Associate Professor at the School of Electrical, Computer and
Energy Engineering at Arizona State University, Tempe, AZ 85287, USA. E-
mail: lei.ying.2@asu.edu

R. Srikant is with the Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA. E-mail: rsrikant@illinois.edu

A shorter version of this paper appeared in the proceedings of the ACM
SIGMETRICS/Performance Conference, June 2009 [1].

wireless downlink. In these systems, the bandwidth available at

the base-station is partitioned into several tens to hundreds of

orthogonal channels (frequency bands). Each channel can be

potentially allocated to different users over time, but only one

user per timeslot, which is typically of the duration of a few

milliseconds. The channels support user- and time-dependent

data rates. The scheduling decision required at the base-station

is an allocation of the channels to the users in each timeslot. In

this paper, we study this service allocation problem in detail.

The scenario described in the previous paragraph can be

modeled as a multi-queue queuing system with as many

servers as the number of channels (frequency bands). The

queues correspond to the per-user queues at the base station.

The queues temporarily store the incoming data packets des-

tined for the respective users. A given queue can be served by

any number of servers (i.e., a particular user can be allocated

any number of frequency bands), but a given server can

serve only one queue in a given timeslot. When allocated,

a server can serve a time-dependent number of packets from

the corresponding queue. A server allocation policy is a rule

for allocating the servers to the queues over time, obeying the

scheduling constraints.

A possible server allocation policy for this system is the

classic MaxWeight rule [4]. In out setting, the MaxWeight rule

allocates a server to that queue that results in the maximum

value of the product of the queue-length and the corresponding

channel rate. It is well-known that this server allocation rule is

throughput-optimal for the system, i.e., it makes all the queues

stable (positive recurrent) under a given vector of arrival rates,

if there is any other scheduling rule that can do so, under

very mild assumptions on the arrival and channel processes.

This scheduling rule has received considerable attention [5],

and has been analyzed in a number of regimes. Researchers

have established several of its performance properties in the

large-queue [6], [7], [8], [9] or heavily loaded [10], [11],

[12] regimes. However, in a multi-carrier regime with large

bandwidth (a scenario that is typically anticipated in 4G-

systems), one is interested in developing algorithms that ensure

small queues at the base-station. The small-queue performance

of the MaxWeight algorithm is not clear. For example, consider

a system with 100 channels, each of which can serve one

packet per timeslot. Suppose that there are 3 users in the

system, with user 1 having 100 packets in its queue and the

other two users having 99 packets each. It is easy to show that

the MaxWeight algorithm allocates all the available channel

resources to user 1. This would result in user 1’s queue length

2

decreasing to zero, but the other two queue lengths are still

large. Thus, it intuitively seems better to share the channel

resources among all users in order to reduce the peak queue

length at the end of the slot.

A key insight emerging from this paper is that, for small-

buffer multi-channel systems, scheduling needs to be iterative

in each timeslot – as resources (channels) get allocated to the

users, the effect of this allocation (i.e., that the queue-lengths

for these users would decrease) needs to be factored in while

making allocation decisions for the remaining channels. We

develop a class of iterative algorithms (namely, iLQF – iterated

Longest Queues First) for scheduling in large multi-carrier

systems, that manifests this point. While we have recently

shown that iLQF is throughput-optimal [13], the focus of

this paper is on rate-function optimality. In particular, while

many algorithms (including the classical MaxWeight rule) are

throughput-optimal, rate-function optimality (corresponds to

fastest decay rate of queue-length tail probability) is much

harder to achieve. In this paper, we show that for a queu-

ing system with a symmetric Bernoulli arrival process, the

iLQF-class algorithms (with certain additional properties) are

rate-function optimal in the many-channels regime (the rate-

function is defined in Section IV). Roughly speaking, this

means that for a system with a large number of channels

(such as a multi-channel OFDM system), the proposed al-

gorithms “minimize” the probability of the maximum queue

length (across users) exceeding any nonnegative queue-length

threshold b, and where this threshold b does not scale with

system size. We also consider the case of asymmetric arrival

rates (where the arrival rates to the users are not identical to

each other), as discussed in Section IX.

The following is a summary of our main contributions in

this paper:

• We consider the small-buffer overflow problem in a multi-

user, multi-carrier system, in a large deviations setting

(see Section IV for details). We establish an upper bound

on the rate function for the small buffer overflow event

(defined in Section IV) under any scheduling algorithm

(Section V).

• We present a class of algorithms called iLQF (iterated

Longest Queues First) for scheduling in these systems

(Section VII). We show that under certain technical

conditions, the algorithms in this class meet the upper

bound on the rate function, and are therefore rate function

optimal for the problem under consideration.

• We present a particular rate-function-optimal algorithm

in this class, called iLQF with PullUp (Section VIII).

• We show that the proposed iLQF with PullUp algorithm

is robust to changes in the system model by showing that

the algorithm results in a strictly positive value of the

rate function under a number of variations of the basic

system model (Section IX).

Section X presents simulation results comparing the

proposed iLQF with PullUp algorithm with the classic

MaxWeight algorithm. We conclude with a summary of the

paper and future work in Section XI.

II. RELATED WORK

Multi-user scheduling in wireless networks has received a

lot of interest over the past few years [14], [4], [5], [15],

[16], [17], [18]. Recent progress in studying the performance

of scheduling algorithms includes the characterizations of the

queue-performance in heavy-traffic limits [10], [11], [12], and

computations of the tail probability of queue-lengths using

the large-deviations analysis [6], [7], [8], [9]. Order-optimality

in the number of flows under the MaxWeight algorithm has

been explored in [19]. While these results provide very useful

insights into the QoS of scheduling algorithms, theoretically,

a majority of the prior results are valid only when the queue-

lengths increase to infinity, i.e., in a large-queue regime.

Recently, a model similar to the one in this paper has been

analyzed in [20], where the authors use scheduling algorithms

based on graph matchings (similar in spirit to the iLQF class

of algorithms in this paper) and show delay-optimality in

the case of two users, and provide heuristics when more

users are present. To the best of our knowledge, the first

paper to consider the small-buffer overflow problem in a

large deviations setting was [1], where we presented a subset

of the results in this paper. That paper focused mainly on

the symmetric arrivals case, whereas this paper, in addition,

analyzes a number of generalizations of the basic system

model that were not considered in [1].

III. MOTIVATION

A1(t) X11(t)

Q1

A2(t) X22(t)

Q2

An(t)

Qn

Xnn(t)

S1

S2

Sn

Xn1(t)

Fig. 1. System Model

We consider a discrete time queuing system with n queues

and n servers as in Figure 1. Table I summarizes the notation

used throughout this paper.

This system model can be used to study an OFDM downlink

(such as WiMax) where each channel (sub-band), consisting of

a fixed number of sub-carriers, is a server in Figure 1. There

are a fixed number of mobile users, each represented by a

queue that corresponds to the backlogged data at the base-

station that is destined to the corresponding mobile user. The

scheduler operates once every timeslot. During each timeslot,

a channel can be assigned to one and at most one user (queue).

The state of the channel (Xij(t)) to a specific user depends

on the location of the user.

Some typical rates (for a 20 MHz WiMax-like system) are as

follows: the air-interface is based on OFDM with 50 channels

(sub-bands), each of which consists of 25 sub-carriers. Each

3

Qi = The entity, queue number i
Si = The entity, server number i
Q = {Q1, Q2, . . . , Qn}
S = {S1, S2, . . . , Sn}

Ai(t) = The number of packet arrivals to Qi at the beginning
of timeslot t

Xij(t) = The number of packets in Qi that can potentially be
served by Sj , in timeslot t

Qi(t) = The length of Qi at the end of timeslot t

Q
(k)
i (t) = The length of Qi after k ≥ 1 rounds of service in

timeslot t

Q
(0)
i (t) = Qi(t − 1) + Ai(t), i.e. the length of Qi after

immediately after arrivals, in timeslot t

a+ = max(a, 0)
ℜm = The m-dimensional euclidean space

H(x|y) = x log x
y
+ (1− x) log 1−x

1−y

TABLE I
NOTATION

channel can support 400 kbps and the scheduler operates once

every 5 milliseconds. Thus, each good (ON) channel offers 2
kb per timeslot.

Now the challenge is to develop a high-performance

scheduling algorithm for this system. At first glance, by

treating each server as a separate downlink server, the problem

is not very different from the scheduling for a traditional

downlink network. We can then use the following max-weight

scheduling algorithm, which is throughput-optimal.

Definition 1 (MaxWeight scheduling, [4]). In timeslot t, for

1 ≤ j ≤ n, allocate server Sj to serve queue Q∗
i such that

Q∗
i ∈ argmaxQi

Xij(t)Qi(t),

breaking ties arbitrarily. ⋄
While the max-weight scheduling is throughput-optimal, it

results in large per-user delays (due to large queues at the

base-station). For example, consider Q1(t) = 100, Q2(t) =
Q3(t) = 95, Q4(t) = Q5(t) . . . = Q100(t) = 10. Then, under

the MaxWeight rule, all the servers Sj such that X1j(t) =
1 are allocated to serve Q1. Assume that Xij(t) = 1 with

probability 0.9, and Xij(t) are mutually independent. Then,

roughly 90% of the servers (channels) are allocated to user

‘1’, and the remaining 10% to users 2 and 3, which results in

long queues for these two users at the end of the timeslot.

In fact, it can be argued that the MaxWeight algorithm

“drives up” all the queue lengths to large enough values to

ensure the maximum scheduling flexibility. The reason the

MaxWeight algorithm is not the right choice for a scheduling

algorithm for this system is that it potentially allocates all the

available servers to serve the longest queue, essentially treating

a slightly smaller queue as if it were empty. For a system

with a large number of servers, this allocation policy leads to

draining the longest queue(s) much more than is warranted by

good load-balancing. It also leads the system getting “trapped”

in a state where a significant fraction of queues is long, i.e.

once such a state is reached (which happens infinitely often,

almost surely, since the system is positive recurrent under

the MaxWeight rule), then it is difficult to leave this state

“quickly.” Thus, we need to develop a scheduling algorithm

that results in small per-user queues at the base station. We

propose (in this paper) a class of algorithms called iLQF that

serves this purpose.

IV. SYSTEM MODEL

We consider a multi-channel wireless network as shown

in Figure 1. The systems are indexed by the number of

servers (and queues), n, are are denoted by Υn. (Note that

for our proof techniques to work and results to hold, it is

not necessary that the number of queues and servers be the

same, and a constant factor relationship between the two

works just as fine.) For concreteness, we assume that in a

given timeslot, there are first arrivals to the queues (if any),

then possible service, and the queue-lengths are measured

at the end of the timeslot. The arrivals to the queues, and

the channels connecting the queues to the servers are i.i.d.

Bernoulli, independent across queues and time.1 In particular,

Ai(t) =

{

1 with probability p,

0 with probability 1− p,
(1)

and

Xij(t) =

{

1 with probability q,

0 with probability 1− q,
(2)

for some p, q ∈ (0, 1). All the random variables Ai(t) and

Xjk(s) are mutually independent for all possible values of

the involved parameters. Each queue maintains a buffer of

infinite size, so that no packets are ever dropped. If Xij(t) = 1,
then the server Sj can potentially serve queue Qi in timeslot

t, reducing the length of Qi by 1 (unless it is empty). Our

aim is to define a service rule for allocating the servers

to the queues this system, that meets certain performance

metrics to be defined. The service rule is allowed to use the

entire history of queue-lengths, arrivals, channel realizations,

and server allocation decisions, as well as the queue-lengths,

channel realizations and arrivals in the current timeslots, and

any amount of external randomness (if necessary), and is

required to define the following random variables for each

timeslot t :

Yij(t) =

{

1 if Sj is allocated to serve Qi in timeslot t,

0 otherwise.

As in an OFDM system, a server can serve at most one

queue, but a queue may be served by multiple servers. That is,

for all t and all j ∈ {1, 2, . . . , n}, we require
∑n

i=1 Yij(t) ≤ 1.
The queue-lengths at the end of a timeslot are defined by the

following equation:

Qi(t) =
(

Qi(t− 1) +Ai(t)−
∑n

j=1 Xij(t)Yij(t)
)+

.

The service model is as shown in Figure 2.

A finite integer b ≥ 0 is fixed. The queuing system is started

at time −∞. Our objective is to design a service rule that

maximizes

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Qi(0) > b

)

. (3)

The above expression is called a rate-function in the large

deviations theory, and thus our goal is to design a service

1We adopt such a system model for ease of exposition. Significant gener-
alization of this model is possible, as noted in Section IX.

4

Qi(t− 1) Arrival, Ai(t) Qi(t)

Timeslot t

Service,
∑

j Xij(t)Yij(t)

Time

Fig. 2. Service Model

rule that is rate-function optimal. We refer to the event

{maxiQi(t) > b} as the small buffer overflow event, or

simply the overflow event. We consider only ergodic service

policies that make all the queues in the system positive

recurrent, so that the probability in (3) is well defined, and

equals the fraction of timeslots for which {maxi Qi(t) > b}.

Roughly, for large values of n and any fixed b, (3) is equivalent

to designing a scheduling policy that results in the largest

value of α(b), where

P

(

max
1≤i≤n

Qi(0) > b

)

≈ e−nα(b)

This means that (for large systems) the algorithm with such a

property will result in the smallest buffer overflow probability,

for any buffer size b. It is therefore desirable to have as large

a value of the rate function as possible.

V. ALGORITHM-INDEPENDENT LOWER BOUND ON

OVERFLOW PROBABILITY

In this section, we present a lower bound on the overflow

probability (3). This is an algorithm-independent lower bound,

so it holds for any scheduling algorithm. In Section VII, we

develop a class of iterative algorithms (iLQF) that achieve this

bound.

Theorem 1. For the system Υn, under any rule for allocating

servers to queues, and for all possible values of the parameters

n > 0, 0 < p, q < 1, b ≥ 0,

P

(

max
1≤i≤n

Qi(0) > b

)

≥ pb+1(1− q)n(b+1).

Consequently, for any p > 0,

lim sup
n→∞

−1

n
logP

(

max
1≤i≤n

Qi(0) > b

)

≤ (b+ 1) log
1

1− q
.

(4)

Proof: Consider the following event which implies that

{Q1(0) > b} : for b + 1 consecutive timeslots before (and

including) timeslot 0, there are arrivals to Q1, and all the

channels connecting Q1 to the servers are OFF in each of

the b + 1 timeslots. The probability of this event is equal to

pb+1((1 − q)n)b+1, and the result follows.

VI. STABILITY AND PERFECT MATCHINGS

In this section, we first show that the system under consid-

eration is stabilizable under some scheduling rule, for n large.

That is, there exists a scheduling algorithm that makes the

queue-length Markov chain positive recurrent.

Theorem 2. For given values of p, q ∈ (0, 1), there exists

n0 = n0(p, q) such that for all n ≥ n0, the queuing system

Υn can be stabilized by some service rule.

Proof: Please see Appendix A.

Let λ
(n)
i denote the arrival rate (expected number of arrivals)

to queue Qi, in the system Υn. Assuming that

lim sup
n→∞

max
1≤i≤n

λ
(n)
i ∈ (0, 1),

the above stability result can be generalized to the following

cases:

1) Bernoulli arrivals to the queues, with arrival rates to the

different queues being different.

2) The number of arrivals to a queue in a given timeslot

takes on values in a finite, non-negative integer set.

We analyze the two cases mentioned above in Section IX.

Next we prove a result regarding perfect matchings in bipartite

graphs that is useful for the analysis of the proposed algorithm

later in the paper.

Lemma 1. Consider an undirected bipartite graph G(U ∪
V , E), where U ∪ V is the set of vertices with |U| = |V| = n,
and E is the set of edges. Every edge e ∈ E has one of its

endpoints in U and the other in V . For every node u ∈ U
and v ∈ V , the edge (u, v) is present in E with probability q,
independently of all other edges. Then, for large n,
(1− q)n ≤ P(G has no perfect matching) ≤ 3n(1− q)n,

where a perfect matching is defined as a matching of cardi-

nality n.
Proof: Please see Appendix B.

Qualitatively, this result shows that the large bipartite graphs

as described here have perfect matchings with very high

probability.

VII. CHARACTERISTICS OF OPTIMAL SERVICE RULES

In this section, we consider a special class of service rules

- iLQF (iterated Longest Queues First), and present sufficient

conditions for an iLQF scheduling policy to be rate-function

optimal. In the next section, we present an algorithm in this

class that maximizes (3).

Definition 2 (iterated Longest Queues First (iLQF)). A

scheduling rule Λ is said to belong to the iLQF class if,

in every timeslot t, it allocates servers to queues in multiple

rounds of allocations as follows:

1) In a given round, the scheduling rule Λ finds a largest

cardinality matching in the bipartite graph whose node-

sets are the set of longest queues and set of available

servers, and the edges are defined by the channel real-

izations (an edge from Qi to Sj is present if Xij(t) = 1).

If the cardinality of the matching thus found equals the

cardinality of the set of the (current) longest queues, then

the rule is required assign at least one server to each of

the (current) longest queues (for example, by assigning

servers to the queues as dictated by the matching, or by

any other means).

2) The service rule Λ updates the lengths of all the queues

(to take into account the service received by a subset of

5

the longest queues in the particular round) and the set

of available servers (to remove from further consider-

ation the servers allocated to some of the queues) and

proceeds to the next round. ⋄
Note that the class iLQF contains more than one scheduling

algorithm, since the following parameters are unspecified:

1) The tie-breaking rule if in a round, there exist multiple

largest cardinality matchings among the (current) longest

queues and available servers.

2) The number of rounds to be performed, i.e. the termina-

tion condition. In particular, if in a given round not all

the (current) longest queues can be allocated a server,

then in that round, the rule Λ can arbitrarily allocate the

servers to the queues, or terminate and proceed to the

next timeslot.

An iLQF-class algorithm can terminate (for the given time-

slot) as soon as there happens to be a round where at least

one of the (current) longest queues cannot be allocated at least

one server. This is potentially wasteful of resources, and other

considerations (such as throughput-optimality under more gen-

eral arrival and channel processes) would demand a more

judicious utilization of these “remaining” resources. However,

we allow such “wasteful” allocation schemes because: (a)

they are easier to analyze, (b) they provide lower bounds on

the performance of the non-wasteful algorithms (this can be

formally demonstrated in the case of the proposed iLQF with

PullUp algorithm (Definition 6), and is a consequence of its

dominance property (Lemma 6)), (c) they can still be rate-

function optimal (as demonstrated later for the case of iLQF

with PullUp), which is the objective of this paper, and (d) it

helps limit the complexity of implementation.

This class of algorithms is interesting because it gives

priority to the longer queues, thereby trying to minimize the

probability of the overflow event.

Lemma 2 (Forward jump bound). For any algorithm in the

iLQF class, and for n large enough,

P

(

max
1≤i≤n

Qi(t+ 1) > max
1≤i≤n

Qi(t)

)

≤ 3n(1− q)n.

Proof: Consider the bipartite graph G(Q ∪ S, E), where

E := {Xij(t) : Xij(t) = 1}. If G has a perfect matching

(i.e., a matching of cardinality n), then for an algorithm in the

iLQF class, max1≤i≤n Qi(t+1) ≤ max1≤i≤n Qi(t). Further,

by Theorem 1, the graph G has a perfect matching with

probability at least 1− 3n(1− q)n for large n.

Definition 3 (Dominance property of an iLQF rule Λ). Con-

sider the queuing system with Q = {Qi}ni=1 as the queues,

and S = {Si}ni=1 as the servers. Let Ai(t) and Xij(t) be

the arrival process and channel processes respectively (see

Equations (1), (2)). Now, a new queuing system with queues

R = {Ri}ni=1 and servers S = {Si}ni=1 is obtained as follows:

at each time t, the queues Ri(t), i = 1, 2, . . . , n see the same

arrivals as those incoming to Qi(t), i = 1, 2, . . . , n and the

channel states of the servers are identical to those of system

Q (i.e., the arrival processes and channel states in the system

R are sample-path coupled with the system Q). In addition,

there are extra packet arrivals (an arbitrary, finite number)

that occur to an arbitrary subset of queues in the system R
immediately after service, and at arbitrary timeslots T1, T2, . . .
(see Figure 3). The service policy used in the queuing system

R is the same iLQF policy (Λ) that is used in the system Q
(also the process R is defined over the same probability space

as Q).

Arrival, Ai(t)

Timeslot t

Service,
∑

j Xij(t)Yij(t)

Time

Ri(t− 1) Ri(t)

Extra Arrivals

Fig. 3. Service model for the queuing system R

A rule Λ in the iLQF class is said to have the dominance

property if the following holds: for all timeslots t, all b ≥ 0,
and over all possible choices for extra arrivals, we have that

P

(

max
1≤i≤n

Ri(t) > b

)

≥ P

(

max
1≤i≤n

Qi(t) > b

)

. ⋄

Intuitively, the dominance property requires that adding

extra packets to the queuing system driven by the iLQF policy

Λ does not decrease the maximum queue length. In other

words, the system under the rule Λ does not “benefit” from an

addition of packets. This property is extremely useful because

it allows us to “carefully” add packets so that the resulting

queuing system can be explicitly analyzed and whose rate

function can be computed in closed-form. More precisely, we

can derive bounds on the transition probabilities between dif-

ferent states of the queue-length Markov chain, and construct a

dummy Markov chain (by adding extra packets to the original

Markov chain) for which the transition probability bounds hold

with equality, and the dummy Markov chain’s rate-function is

analyzable in closed-form.

Definition 4 (Drain property of a scheduling rule Λ). A

scheduling rule Λ (not necessarily from the iLQF-class) is

said to have the drain property if there exists a constant k0
independent of n such that

P

(

max
1≤i≤n

Qi(t+ k0) < max
1≤i≤n

Qi(t)

∣
∣
∣
∣
max
1≤i≤n

Qi(t) > 0

)

≥ 1

2
,

for all n large enough and all integers (timeslots) t. ⋄
Theorem 3. Suppose that a service rule in the iLQF-class

has the drain and dominance properties. Then, this iLQF-class

service rule results in

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Qi(0) > b

)

= (b+ 1) log
1

1− q
.

Further, by Theorem 1, no other service rule can give a larger

value for the left hand side of the above expression.

Proof: Please see Appendix C.

Thus, the drain and dominance properties are two of the

desired properties of an iLQF-class rule. It turns out that

6

the drain property is typically easier to guarantee than the

dominance property, and a significant part of the next Section

is devoted to analyzing a particular algorithm in the iLQF-class

and proving that it has the dominance property.

VIII. A SPECIFIC ALGORITHM

We now focus our attention on constructing an algorithm in

the iLQF class that satisfies the requirements in the statement

of Theorem 3. The algorithm employs a particular tie-breaking

rule (PullUp) when there exist multiple largest-cardinality

matchings in the bipartite graph defined by the set of longest

queues and unallocated servers, where the edges are defined

by the ON links. This tie-breaking rule ensures the following

sample-path property: if a queuing system R is obtained by

adding an arbitrary number of extra (dummy) packets to some

or all the queues in a queuing system Q at the end of some

timeslot t, and the two queuing systems Q and R see the same

arrivals and channel realizations for all future timeslots, then

Qi(s) ≤ Ri(s) for all 1 ≤ i ≤ n, and all s ≥ t.

Definition 5 (PullUp). Consider a bipartite graph G(U ∪
V , E), where the sets of nodes, not necessarily of the same car-

dinality, are U = {u1, u2, . . . , um} and V = {v1, v2, . . . , vn}.
Given a matching M in G, M′ := PullUp(G,M,V) is a

new matching obtained by the following steps, which we call

PullUp:

1) Mark all the edges in M as forward edges (i.e. from U
to V), and all the other edges in E as backward edges,

to get a directed graph G1. Define M1 := M. Initialize

k = 1.
2) Obtain Mk+1 from Mk as follows: If the node vk has

an incoming edge, then define Mk+1 := Mk, Gk+1 :=
Gk. Otherwise, in the directed graph Gk, find the set Nk

of all nodes reachable from vk. Let Γ(Gk, vk) := Nk∩U
and ∆(Gk, vk) := Nk∩V . Find the smallest index l > k
such that vl ∈ ∆(Gk, vk). If no such l exists, then define

Mk+1 := Mk and Gk+1 := Gk. If such an l exists, then

reverse the directions of all the edges on a path from vk
to vl, to obtain a graph Gk+1. Define Mk+1 to be the

set of all forward edges in Gk+1.
3) Increment k by 1. If k = n+1, then return the matching

M′ := Mn+1, else go to step 2. ⋄
An example of the PullUp operation is shown in Figure 4.

In the next lemma, we prove that the output of the PullUp is

also a matching.

Lemma 3. The output M′ of PullUp(G,M,V) is a matching,

and |M| = |M′|.
Proof: Please see Appendix D.

The objective of the PullUp operation is to efficiently find a

“good” matching. Based on the PullUp technique, we construct

an iLQF-class algorithm that is rate-function optimal for the

small buffer overflow event under consideration. To avoid

trivialities, we define the algorithm for the case when at least

one of the queues is nonempty.

Definition 6 (iLQF with PullUp).

Input:

1) The queue lengths, Q1(t−1), Q2(t−1), . . . , Qn(t−1).

2) The channel realizations, Xij(t) for 1 ≤ i, j ≤ n.
3) The arrivals to the queues, Ai(t) for 1 ≤ i ≤ n.

Steps:

1) Update the queue-lengths to account for arrivals, that

is, compute the new length of queue Qi after arrivals,

Q
(0)
i (t) := Qi(t− 1)+Ai(t). Hereafter, the length of a

queue always refers to its most current updated length,

accounting for arrivals and service. Find the length of

the longest queue, Q̂. Define L = Q̂. Initialize r = 0.
Let S⋆ denote the set of unallocated servers. To begin

with, we have S⋆ = S.
2) Let QL denote the set of queues whose length (i.e.,

Q
(r)
i (t)) is exactly L. Let GL denote the (undirected)

bipartite graph with nodes QL ∪ S⋆, and the edges as

defined by the channel realizations. More specifically, an

edge (Qi, Sj) is present in GL if Qi ∈ QL, Sj ∈ S⋆ and

Xij(t) = 1. Find a largest cardinality matching ML in

the graph GL.

a) If |ML| = |QL|, then define

M′ := PullUp(GL,ML,S⋆).
b) If |ML| < |QL|, then define

M1 := PullUp(GL,ML,S⋆).
Obtain Mk+1 from Mk as follows: if k is odd,

then define T := QL; otherwise T := S⋆, and

Mk+1 := PullUp(GL,Mk, T). Continue obtain-

ing Mk+1 from Mk until Mi+1 = Mi for some

i. Define M′ := Mi.

Finally, as defined by the matching M′, allocate the

servers to queues. For example, if (Qx, Sy) ∈ M′, then

define Yxy(t) = 1, allocate Sy to serve Qx, remove

Sy from S⋆, decrease the length Qx by 1, i.e., define

Q
(r+1)
x (t) := Q

(r)
x (t)−1. For a node (queue) Qz that is

not an endpoint of any edge in M′, define Q
(r+1)
z (t) :=

Q
(r)
z (t).

3) If at the end of step 2, we have |ML| < |QL|, then

stop. If |S⋆| = 0 or L = 1, then stop. Else, decrease the

value of L by 1, increment r by 1, go to step 2.

Output:

1) The allocation decisions, Yij(t) for 1 ≤ i, j ≤ n.

2) The final queue-lengths, Qi(t) := Q
(r+1)
i (t). (Here, the

value of r refers to its value at the end of step 3.) ⋄
Here is a description of the algorithm in words: in every

timeslot, the algorithm proceeds in multiple rounds of service.

In every round, the algorithm finds a largest-cardinality match-

ing M in the (bipartite) graph defined by the longest queues

and the unallocated servers, where the edges in the graph are

defined by the channel realizations. The algorithm then applies

the PullUp operation (once or multiple times) to the matching

M and obtains a matching M′. It allocates servers to the

queues as defined by the edges in the matching M′, updates

(decreases by one) the lengths of the served queues, removes

the allocated servers from the set of available servers, and

proceeds to the next round.

Let every execution of step 2 be called a round. If in the

step 2 we have |ML| = |QL|, then that round is called a

perfect queue matching round, else a maximal matching round.

7

Path to reverse: v1 → u3 → v3

Path to reverse: v2 → u3 → v1 → u4 → v4

u1 u1 v1

v2

v3

v4

u2

u3

u4

v1

v2

v3

v4

u1

u2

u3

u4

v1

v2

v3

v4

u2

u3

u4

M = {(u3, v3), (u4, v4)} M′ = {(u3, v2), (u4, v1)}

Fig. 4. An example of the PullUp operation

Theorem 4. The iLQF with PullUp is rate-function optimal,

i.e., it results in

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Qi(0) > b

)

= (b+ 1) log
1

1− q
.

Further, the algorithm can be implemented in O(n4) compu-

tations per timeslot.

Proof: We prove that the iLQF with PullUp satisfies

the drain property (Lemma 8) and the dominance property

(Lemma 6). Thus, the first part of the claim holds according

to Theorem 3. The second part of the claim (the computational

complexity result) follows from Lemma 4.

A. Computational Complexity

We first analyze the computational complexity of the iLQF

with PullUp.

Lemma 4. The proposed algorithm (iLQF with PullUp) can

be implemented in O(n4) computations per timeslot.

Proof: Please see Appendix E.

B. Rate-function Optimality

We establish the rate-function optimality of the iLQF with

PullUp by proving that the algorithm has the drain property

and the dominance property as required by Theorem 3. The

following is a technical lemma that is useful in the proof of

Lemma 6.

Lemma 5 (No edge, no path). Under the notation of Defini-

tion 5, in the graph Gn+1, if a node va has no incoming edge,

then there does not exist a (directed) path from va to any node

vb with b > a. Consequently, if PullUp(G,M,V) = M′, then

PullUp(G,M′,V) = M′.
Proof: Please see Appendix F.

Lemma 6. [Sample-path-wise Dominance] Consider two

queuing systems Q and R with queues Q = {Q1, Q2, . . . , Qn}
and R = {R1, R2, . . . , Rn} respectively, with the property

that Qi(t− 1) ≤ Ri(t− 1) for all i. Let the two systems have

identical channel realizations, Xij(t) and identical arrivals,

Ai(t) for 1 ≤ i, j ≤ n. Both the queuing systems implement

the algorithm described in Section VIII, i.e. iLQF with PullUp.

Then, Qi(t) ≤ Ri(t) for all i.
Proof: Please see Appendix G.

Note that this theorem immediately implies that the iLQF

with PullUp algorithm has the dominance property as required

by Theorem 3.

Corollary 1. The iLQF with PullUp algorithm has the dom-

inance property defined in Section VII.

The corollary follows by repeated applications of Lemma 6.

The queuing system is started at time −∞, and we are

interested in the probability that the length of the longest queue

exceeds a constant b at a finite time t. By applying the result

of Lemma 6 to timeslots T1, T2, . . . (in the definition of the

Dominance property), it follows that the packet-added system

has sample-path wise longer queues than the original system.

The probabilistic dominance is an immediate consequence of

this sample-path dominance.

We now demonstrate a property of the PullUp operation

which is useful in proving that the proposed algorithm has the

Drain property as required by Theorem 3.

Lemma 7 (Use smaller indexed nodes). Let a bipartite graph

G(U ∪ V , E) and a matching M be given, with

U = {u1, u2, . . . , un},V = {v1, v2, . . . , vn}.
Suppose there exists a matching M⋆ in G with the following

properties:

1) |M| = |M⋆|.
2) If u ∈ U is an endpoint of some edge e ∈ M, then u is

an endpoint of some edge e′ ∈ M⋆.
3) Mark all the edges in M⋆ as forward edges (i.e., from

U to V), and all the edges in E\M⋆ as backward edges,

to get a directed graph G‡(U ∪V , E). Then, in the graph

G‡, if a node vi ∈ V has no incoming edge, then there

does not exist a directed path from vi to any vj , j > i.
4) There exists an index a ≤ n such that for every b > a,

no node vb ∈ V is an endpoint of any edge in M⋆.

Let M′ = PullUp(G,M,V). Then, any edge in M′ does not

have, as an endpoint, any node in V with index larger than a.
Proof: Please refer to Appendix H.

Let Q̂(T) denote the length of the longest queue at the end

of the timeslot T . We next prove that the iLQF with PullUp

satisfies the drain property.

Lemma 8. (The Drain property) For the proposed algorithm,

there exists a constant k = k(p) =
⌈

3
1−p

⌉

such that, for all n

large enough, all m > 0 and all T ,

P(Q̂(T + k) < m|Q̂(T) = m) ≥ 1

2
.

Proof: Please refer to Lemma 10, which proves a more

general claim. Substituting L = 1 in that lemma gives the

desired result.

8

This completes our analysis of the iLQF with PullUp

algorithm for the basic system model, Υn.

IX. GENERALIZING THE SYSTEM MODEL

In this section, we consider a number of natural extensions

of the system model Υn defined in Section IV, and analyze

the performance of the proposed iLQF with PullUp algorithm

for them.

A. The Asymmetric Arrivals Case

Consider a queuing system Υ′
n that is a modification of

the system Υn. Let the queues, servers, arrivals and chan-

nels for the system Υ′
n be indexed by n and denoted by

Q
[n]
i , S

[n]
j , A

[n]
i (t) and X

[n]
ij (t) respectively. Let

A
[n]
i (t) =

{

1 with probability p
(n)
i ,

0 with probability 1− p
(n)
i ,

and

X
[n]
ij (t) =

{

1 with probability q,

0 with probability 1− q.

In particular, the number of packets arriving to the ith queue

in timeslot t in the system Υ′
n is a Bernoulli random variable

whose parameter is arbitrarily fixed in (0, 1). For stability, we

impose the condition

lim sup
n→∞

max
1≤i≤n

p
(n)
i = α ∈ (0, 1). (5)

Under this condition, following an argument similar to that in

the proof of Theorem 2, the system Υ′
n is stable for all n large

enough. We refer to this system as a system with asymmetric

arrivals.

Theorem 5. For any given ǫ ∈ (0, α), there exists a constant

n0 = n0(ǫ) such that under any rule for allocating servers

to queues, and for all possible values of the parameters 0 <
α, q < 1, b ≥ 0, and for infinitely many n ≥ n0,

P

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≥ (α− ǫ)b+1(1− q)n(b+1).

Consequently,

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≤ (b + 1) log
1

1− q
.

Proof: Please see Appendix I.

The next claim establishes that the proposed iLQF with

PullUp algorithm results in a matching lower bound on the

rate function for the system with asymmetric arrivals, and is

therefore rate function optimal for the small buffer overflow

event for this system.

Theorem 6. For the system with asymmetric arrivals, the

iLQF with PullUp algorithm has the property

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≥ (b + 1) log
1

1− q
.

Proof: Please see Appendix J.

As a result of Theorems 5 and 6, the proposed algorithm

(iLQF with PullUp) is rate-function optimal for the system

with asymmetric arrivals.

B. Symmetric, Bursty, ON-OFF Arrivals

Let the arrival process for the system Υ′
n be given by

A
[n]
i (t) =

{

L with probability p,

0 with probability 1− p,

for some fixed constants p and L, with pL ∈ (0, 1). We refer

to this system as a system with symmetric, bursty, ON-OFF

arrivals. Note that the channel process of this system is exactly

as that of the system Υn defined in Section IV.

Hereafter in this section, for ease of notation, we drop the

explicit dependence of the variables on n. As before, we let

Q̂(t) := max1≤i≤n Qi(t).

Theorem 7. For a system with symmetric, bursty, ON-OFF

arrivals implementing any algorithm for assigning servers to

queues, and for all b ≥ 0,

lim sup
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≤
⌈
b+ 1

L

⌉

log
1

1− q
.

Proof: The proof is similar to that of Theorem 1, and

presented in Appendix K.

Lemma 9. Fix any p̃ ∈ (p, 1/L). Define Θ1 := nH(p̃|p) and

Θ2 := 3np̃(1−q)np̃. Then for the symmetric, bursty, ON-OFF

arrivals system, for n large enough, and for all t,

P

(

max
1≤i≤n

Qi(t+ 1) > max
1≤i≤n

Qi(t)

)

≤ exp(−Θ1) + LΘ2.

Proof: Please see Appendix L.

Lemma 10. For the symmetric, bursty, ON-OFF arrivals

system implementing the iLQF with PullUp algorithm, there

exists a constant k = k(L, p) =
⌈

3
1−pL

⌉

such that for all n

large enough, for all m > 0 and all T ,

P(Q̂(T + k) < m|Q̂(T) = m) ≥ 1
2 .

Proof: Please see Appendix M.

Theorem 8. For a system with symmetric, bursty, ON-OFF

arrivals implementing the iLQF with PullUp algorithm, for

all b ≥ 0, and for p̃ = (1/L+ p)/2,

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≥
⌈
b+ 1

L

⌉

min

(

p̃ log
1

1− q
,H(p̃|p)

)

> 0.

Proof: Please see Appendix N.

C. Symmetric Arrivals with Bounded Support

Let the arrival process for the system Υ′
n be given by

A
[n]
i (t) =







0 with probability p0,

1 with probability p1,
...

...

L with probability pL,

(6)

and P(A
[n]
i (t) > L) = 0. We require that pi ≥ 0 for all

i, pL > 0,
∑L

i=0 pi = 1 and
∑L

i=0 ipi ∈ (0, 1) for stability

9

for n large. We refer to this system as a system with symmetric

arrivals with bounded support.

Notation:

Let r = [r0, r1, . . . , rL] be a probability vector, that is, ri ≥ 0
for all i and

∑

i ri = 1. Let M1(Σ) denote the probability

simplex in ℜL+1, that is, the set of all probability vectors in

ℜL+1.
Let λp :=

∑

i ipi < 1 denote the expected number of

arrivals to a queue in the system. Define

Fǫ := {r ∈ M1(Σ), pk = 0 ⇒ rk = 0,
L∑

k=0

krk ≤ 1 + λp

2
, max
0≤k≤L

|rk − pk| ≤ ǫ

}

.

For all ǫ > 0, the set Fǫ is nonempty (∵ p ∈ Fǫ) and

compact. There exists ǫ0 ∈ (0, pL) such that for all ǫ ≤ ǫ0, the

complement of the set Fǫ with respect to M1(Σ) is contained

in the closure of its interior w.r.t. M1(Σ). Since H(r|p) = 0 if

and only if r = p, and using results from [21], Section 2.1.1,

it follows that

ζ := inf
s∈M1(Σ)\Fǫ0

H(s|p) > 0.

Define J := mind∈Fǫ0
dL, where dL denotes the Lth co-

ordinate of d = [d0, d1, . . . , dL].

Theorem 9. For the system with symmetric arrivals with

bounded support, under the iLQF with PullUp algorithm, for

all b ≥ 0,

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≥
⌈
b+ 1

L

⌉

min

(

J log
1

1− q
, ζ

)

> 0.

Proof: Please see Appendix O.

Theorem 10. For a system with symmetric arrivals with

bounded support, implementing any algorithm for assigning

servers to queues, and for all b ≥ 0,

lim sup
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≤
⌈
b+ 1

L

⌉

log
1

1− q
.

Proof: Similar to that of Theorem 7.

D. Asymmetric Arrivals with Bounded Support

Let the arrival process for the system Υ′
n be given by

A
[n]
i (t) =







0 with probability p
(n)
i (0),

1 with probability p
(n)
i (1),

...
...

L with probability p
(n)
i (L),

(7)

and P(A
[n]
i (t) > L) = 0. We require p

(n)
i (j) ≥ 0 for all i, j,

∑L
j=0 p

(n)
i (j) = 1 for all i and (for stability for n large)

lim sup
n→∞

max
1≤i≤n

L∑

j=0

jp
(n)
i (j) ∈ (0, 1).

Theorem 11. For the system under consideration, under the

iLQF with pullup algorithm, for all b ≥ 0,

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

> 0.

Proof: Similar to that of Theorems 6 and 9.

Thus, we see that the proposed iLQF with PullUp algorithm

is robust to changes in the system model, and results in a

strictly positive value of the rate function for the small buffer

overflow event under a number of scenarios.

X. SIMULATION RESULTS

In this section, we compare the performance of the proposed

iLQF-class algorithms with the standard MaxWeight (MW)

algorithm [4] under a number of conditions. We consider a

system with n = 20 queues and 20 servers, with the channel

between a queue and a server being ON with probability q =
0.5. We run the simulations for 5 × 105 timeslots, based on

which the empirical probabilities that the maximum queue-

length exceeds a constant b are computed.

In the first set of simulations (Figure 5), we run the two

algorithms for the system Υn described in Section IV, with

{0, 1} i.i.d. arrivals, with different values of the probability of

arrival (p).

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Buffer size (b)

P
(m

a
x

i Q
i(t

)
>

 b
)

Performance of the iLQF and MaxWeight Algorithms for n = 20, q = 0.5, Bernoulli (0 − 1) arrivals

p = 0.8, MW

p = 0.9, MW

p = 0.98, MW

p = 0.8, iLQF

p = 0.9, iLQF

p = 0.98, iLQF

Fig. 5. Arrivals as per the system model, Υn

In the second set of simulations (Figure 6), we study the

performance of the algorithms under bursty arrivals – in a

given timeslot, every queue sees either 0 or 4 arrivals. The

probability of arrival is adjusted so that the system is stable

but heavily loaded (96% for p = 0.24). The results are

summarized in Figure 6.

In the third set of simulations (Figure 7), we consider

a system with asymmetric arrival rates to the queues. The

arrivals to queues Q11, Q15, Q19 are modeled by a uniform

random variable in [0, 2L], while the rest of the queues see

Bernoulli packet arrivals with p = 0.12. For L = 5, the system

is at about 85.7% of the maximum stable load.

The results are summarized in the accompanying plots.

As can be seen, the proposed iLQF with PullUp algorithm

performs consistently better than the MaxWeight algorithm as

far as the finite buffer overflow probabilities are concerned.

The intuition for this is due to the reasoning that iLQF

10

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Buffer size (b)

P
(m

a
x

i Q
i(t

)
>

 b
)

Performance of the iLQF and MaxWeight Algorithms for n = 20, q = 0.5, Bursty (0 − 4) arrivals

p = 0.2, MW

p = 0.22, MW

p = 0.24, MW

p = 0.2, iLQF

p = 0.22, iLQF

p = 0.24, iLQF

Fig. 6. Bursty arrivals

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Buffer size (b)

P
(m

a
x

i Q
i(t

)
>

 b
)

Performance of the iLQF and MaxWeight Algorithms for n = 20, q = 0.5, Asymmetric arrivals

L = 3, MW

L = 4, MW

L = 5, MW

L = 3, iLQF

L = 4, iLQF

L = 5, iLQF

Fig. 7. Asymmetric arrivals

balances the servers among the long-queues, whereas the

traditional MaxWeight algorithm focuses on a single longest-

queue. When the buffers are large, this does not affect stability.

However, for small buffer performance, there is a definite

improvement as seen from the plots.

XI. CONCLUSIONS AND FUTURE WORK

We considered the problem of designing scheduling al-

gorithms for multi-user, multi-channel (e.g., OFDM-based)

wireless downlink networks. Our aim was to design an al-

gorithm that guarantees small per-user delay, which in turn

is closely related to the per-user queue-lengths at the base-

station. We formulated this problem as a rate-function maxi-

mization problem in a large deviations setting. We proposed

a class of algorithms called iLQF (iterated Longest Queues

First) as a solution to this problem. An iLQF-class scheduling

rule proceeds by repeatedly finding a maximum cardinality

allocation of servers to serve the longest queues, updating the

queue-lengths to account of service, and proceeding to the next

round without back-tracking. We showed that the iLQF-class

algorithms, under certain mild technical conditions (namely,

the drain and dominance properties) are rate-function optimal

for the problem. We further showed that an algorithm in this

class, namely iLQF with PullUp, satisfies the two properties

and is therefore rate-function optimal for the problem.

This algorithm does not need to know or learn the arrival

or channel process statistics, or the history of past decisions,

and can be implemented with the knowledge of the current

queue-lengths and channel realizations. Its computational com-

plexity is O(n4) computations per timeslot. We investigated

the performance of the iLQF with PullUp algorithm under a

variety of modifications to the basic system model, and showed

that it results in a strictly positive rate function under those

changes. This implies a good small-queues performance, and

a high quality of service for all the users. Further, through

simulations, we compared the performance of the iLQF with

PullUp algorithm with the classic MaxWeight algorithm, and

showed that the iLQF with PullUp algorithm consistently

performs better that the MaxWeight algorithm.

While this paper has dealt with rate-function optimality, one

could potentially consider giving up rate-function optimality

for lower computational complexity. A working draft that

includes such a complexity vs. rate-function trade-off, as

well as a proof of throughput-optimality of iLQF is available

in [13].

In closing, the new intuition that emerges from this work is

that, for guaranteeing good (low) per-user delay or small per-

user queue-lengths, the scheduling algorithm must proceed in

an iterative fashion in every timeslot, taking into account the

effect of prior resource allocations while making allocation

decisions for the remaining resources (channels).

REFERENCES

[1] S. Bodas, S. Shakkottai, L. Ying, and R. Srikant, “Scheduling in Multi-
Channel Wireless Networks: Rate Function Optimality in the Small-
Buffer Regime,” in Proc. SIGMETRICS/Performance Conf., Jun. 2009.

[2] W. Forum, “Mobile WiMAX Part I: A technical overview and perfor-
mance evaluation,” March 2006, white Paper.

[3] G. T. 25.913, “Requirements for Evolved UTRA (E-UTRA) and Evolved
UTRAN (E-UTRAN),” March 2006.

[4] L. Tassiulas and A. Ephremides, “Dynamic server allocation to paral-
lel queues with randomly varying connectivity,” IEEE Trans. Inform.

Theory, vol. 39, pp. 466–478, March 1993.

[5] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,
and P. Whiting, “CDMA data QoS scheduling on the forward link with
variable channel conditions,” Bell Labs Tech. Memo, April 2000.

[6] S. Shakkottai, “Effective capacity and QoS for wireless scheduling,”
IEEE Trans. Automat. Contr., vol. 53, no. 3, pp. 749–761, February
2008.

[7] L. Ying, R. Srikant, A. Eryilmaz, and G. Dullerud, “A large deviations
analysis of scheduling in wireless networks,” IEEE Trans. Inform.

Theory, vol. 52, no. 11, pp. 5088–5098, November 2006.

[8] A. Stolyar, “Large deviations of queues sharing a randomly time-varying
server,” Queueing Systems, vol. 59, pp. 1–35, 2008.

[9] V. J. Venkataramanan and X. Lin, “Structural properties of LDP for
queue-length based wireless scheduling algorithms,” in Proc. Ann.
Allerton Conf. Communication, Control and Computing, Monticello,
Illinois, September 2007.

[10] A. Stolyar, “MaxWeight scheduling in a generalized switch: State space
collapse and workload minimization in heavy traffic,” Ann. Appl. Prob.,
vol. 14, no. 1, 2004.

[11] S. Shakkottai, R. Srikant, and A. Stolyar, “Pathwise optimality of the
exponential scheduling rule for wireless channels,” Ann. Appl. Prob.,
vol. 36, no. 4, pp. 1021–1045, December 2004.

[12] S. Meyn, “Stability and asymptotic optimality of generalized MaxWeight
policies,” SIAM J. Control and Optimization, vol. 47, no. 6, pp. 3259–
3294, 2009.

[13] S. Bodas, S. Shakkottai, L. Ying, and R. Srikant, “SSG Tech Report:
Working Draft,” http://users.ece.utexas.edu/∼bodas/ssg-tech-report-wip.
pdf, 2009.

[14] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Automat. Contr., vol. 4, pp.
1936–1948, December 1992.

11

[15] S. Shakkottai and A. Stolyar, “Scheduling for multiple flows sharing a
time-varying channel: The exponential rule,” Ann. Math. Statist., vol.
207, pp. 185–202, 2002.

[16] M. J. Neely, E. Modiano, and C. E. Rohrs, “Power and server allocation
in a multi-beam satellite with time varying channels,” in Proc. IEEE

Infocom, vol. 3, New York, NY, June 2002, pp. 1451–1460.
[17] A. Eryilmaz, R. Srikant, and J. Perkins, “Stable scheduling policies for

fading wireless channels,” IEEE/ACM Trans. Network., vol. 13, pp. 411–
424, April 2005.

[18] A. Ganti, E. Modiano, and J. Tsitsiklis, “Optimal transmission schedul-
ing in symmetric communication models with intermittent connectivity,”
IEEE Trans. Inform. Theory, vol. 53, pp. 998–1008, March 2007.

[19] M. J. Neely, “Delay Analysis for Max Weight Opportunistic Scheduling
in Wireless Systems,” in Forty-Sixth Annual Allerton Conference On

Communication, Control, and Computing, Sep. 2008.
[20] S. Kittipiyakul and T. Javidi, “Delay-Optimal Server Allocation in

Multiqueue Multiserver Systems with Time-Varying Connectivities,”
IEEE Trans. Inform. Theory, vol. 55, no. 5, pp. 2319 – 2333, May
2009.

[21] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applica-

tions, 2nd ed. Springer-Verlag New York, Inc., 1998.
[22] J. Kleinberg and E. Tardos, Algorithm Design. Pearson Education,

2006.
[23] J. E. Hopcroft and R. M. Karp, “An n5/2 Algorithm for Maximum

Matchings in Bipartite Graphs,” SIAM Journal on Computing, vol. 2,
no. 4, pp. 225–231, Dec. 1973.

[24] R. Durrett, Probability: Theory and Examples, 3rd ed. Brooks-Cole,
Thomson Learning, 2005.

APPENDIX A

PROOF OF THEOREM 2

Claim: For given values of p, q ∈ (0, 1), there exists n0 =
n0(p, q) such that for all n ≥ n0, the queuing system Υn can

be stabilized by some service rule.

Proof: Consider a service rule where in each timeslot,

each server uniformly and randomly picks a queue to which

it has an ON channel, and serves it. If that particular chosen

queue is empty, then that server does not serve any queue in

that timeslot. (Multiple servers can serve the same queue, but

there is no co-ordination between the servers.)

Then, the probability that the first server offers its service

to the first queue in a particular timeslot is

P(Y11(t) = 1) = P(Y11(t) = 1|X11(t) = 1) ·P(X11(t) = 1).

Now, for the service rule under consideration,

P(Y11(t) = 1|X11(t) = 1)

=
n−1∑

j=0

P(S1 offers service to Q1 in timeslot t|X11(t) = 1,

Exactly j of the rest n− 1 channels from S1 are ON)

· P(Exactly j of the rest n− 1 channels from S1 are ON)

=

n−1∑

j=0

1

j + 1

(
n− 1

j

)

qj(1 − q)n−1−j

=
1− (1− q)n

qn
, after some calculations.

Thus, P(Y11(t) = 1) =
1− (1− q)n

n
, implying that the

total amount of service offered to the first queue (or to any

other queue, by symmetry) in timeslot t is 1−(1−q)n. If p < 1
and q > 0 are fixed, then 1− (1 − q)n > p for large enough

n ≥ n0(p, q), where n0(p, q) :=

⌈
log(1− p)

log(1− q)

⌉

, implying that

all the queues are stable (positive recurrent) under the specified

policy, for n large enough.

APPENDIX B

PROOF OF LEMMA 1

Claim: Consider an undirected bipartite graph G(U ∪ V , E),
where U ∪ V is the set of vertices with |U| = |V| = n, and E
is the set of edges. Every edge e ∈ E has one of its endpoints

in U and the other in V . For every node u ∈ U and v ∈ V , the

edge (u, v) is present in E with probability q, independently

of all other edges. Then, for large n,

(1− q)n ≤ P(G has no perfect matching) ≤ 3n(1− q)n,
where a perfect matching is defined as a matching of cardi-

nality n.
Proof: For A ⊆ U , let Γ(A) denote the neighborhood A,

i.e.,

Γ(A) := {b ∈ V : (a, b) ∈ E for some a ∈ A}.
We know from Hall’s theorem ([22], Thm. 7.40) that if a

bipartite graph G(U ∪V , E) does not have a perfect matching,

then there exists a subset A ⊆ U such that |Γ(A)| < |A|. Fix

a nonempty subset A ⊆ U and a subset B ⊆ V . Let |A| = a.

Then, we have

P(Γ(A) ⊆ B)
= P(No node in A connects to any node in V\B)
= (1− q)(n−|B|)a.

If the graph has no perfect matching, then by Hall’s theorem,

there must exist sets A and B such that A ⊆ U ,B ⊆ V , |B| =
|A| − 1, and Γ(A) ⊆ B. Hence, by union bound over all

possible subsets A ⊆ U and all possible corresponding subsets

B ⊆ V , we have

P(G has no perfect matching)

≤
n∑

a=1

(
n

a

)

·
(

n

a− 1

)

· (1− q)a(n−a+1)

≤ 2

⌈n/2⌉
∑

a=1

(
n

a

)

·
(

n

a− 1

)

· (1− q)a(n−a+1), (8)

where the last inequality holds with equality if n is even.

We consider the case when n is large, in particular n > 2.
Now, for n > 2 and 1 < a ≤ ⌈n/2⌉, a−1 ≥ a/2, n−a ≥ n/3,
and we have
(
n
a

)(
n

a−1

)
(1− q)a(n−a+1)

n(1− q)n

≤ na · na−1 · (1− q)a(n−a+1)

n(1− q)n

≤ n2a(1 − q)(n−a)(a−1)

≤ n2a(1 − q)na/6

= exp

(

2a logn− na

6
log

1

1− q

)

= exp

[

−a

6

{

n log
1

1− q
− 12 logn

}]

≤ exp

{

−a

6
· n
2
· log 1

1− q

}

, for n large enough

≤ exp

{−n

12
log

1

1− q

}

, since a > 1.

12

Hence, from Equation (8), we have for any fixed ǫ > 0,

P(G has no perfect matching)

≤ 2n(1− q)n ·
(

1 + (
⌈n

2

⌉

− 1) exp

{−n

12
log

1

1− q

})

≤ 2n(1− q)n · (1 + ǫ), for n large enough. (9)

Now, fix a node ui ∈ U . Let Ei denote the event that ui is

an isolated node. Then, P(Ei) = (1− q)n. It follows that

P(G has no perfect matching) ≥ (1− q)n.

Hence, putting ǫ = 0.5 in Equation (9), we have (for large

enough n)

(1− q)n ≤ P(G has no perfect matching) ≤ 3n(1− q)n.

This completes the proof.

APPENDIX C

PROOF OF THEOREM 3

Claim: Suppose that a service rule in the iLQF-class has the

drain and dominance properties. Then, this iLQF-class service

rule results in

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Qi(0) > b

)

= (b+ 1) log
1

1− q
.

Further, by Theorem 1, no other service rule can give a larger

value for the left hand side of the above expression.

Proof: The proof proceeds according to the following

steps:

1) We know that under any iLQF class algorithm with

the drain property, in any given timeslot, the maximum

queue-length in the system increases by 1 with a very

small probability (at most αn = 3n(1 − q)n). Further,

over k0 timeslots, the maximum queue-length decreases

by at least 1 (provided it is nonzero to begin with) with

probability at least 1/2.
2) If we sample the original queue-length process ev-

ery kth0 timeslot, then the maximum queue-length

increases by 1, 2, . . . , k0 with probabilities at most

k0αn,
(
k0

2

)
α2
n, . . . , α

k0
n , and decreases by 1 with proba-

bility at least 1/2. Note that the maximum queue-length

in the system (on its own) does not have the Markovian

property.

3) We construct a dummy Markov chain by “carefully”

adding extra packets to the original Markov chain’s

queues, where the aforementioned bounds on transi-

tion probability are met with equality. By the domi-

nance property, the stationary distribution of the dummy

Markov chain stochastically dominates that of the orig-

inal Markov chain.

4) We derive bounds on the stationary distribution of the

dummy Markov chain.

The proof in detail: Under any algorithm in the iLQF class,

the queue-length vector

Q(t) := [Q1(t), Q2(t), . . . , Qn(t)]
T

forms a Markov chain on a countable state space, W
n,

where W = {0, 1, 2, . . .}. This is because the algorithm

takes decisions based only upon the current queue-lengths and

arrivals and channel states. We consider a new Markov chain

Z(t) := [Q(t), Q(t− 1), . . . , Q(t− k0 + 1)],

where we recall that k0 is the parameter in the Drain property.

Z(t) is a Markov chain under the given algorithm. We

sample Z(t) every kth0 time-slot to get a Markov chain

B(t) := Z(k0t).

The Markov chains B(t) and Z(t) have the same stationary

distribution. Let B(t) = [Bij(t)] with 1 ≤ i ≤ n and 1 ≤ j ≤
k0. Specifically, Bij(t) = Qi(k0t − j + 1). Define B⋆(t) :=
max1≤i≤n Bi1(t) = max1≤i≤n Qi(k0t). Let αn = 3n(1 −
q)n. Then, for all m and sufficiently large n, we have:

P(B⋆(t+ 1) < m|B⋆(t) = m > 0) ≥ 1

2
(10)

P(B⋆(t+ 1) = m+ 1|B⋆(t) = m) ≤ k0αn

P(B⋆(t+ 1) = m+ 2|B⋆(t) = m) ≤
(
k0
2

)

α2
n

...
...

P(B⋆(t+ 1) = m+ r|B⋆(t) = m) ≤
(
k0
r

)

αr
n

...
...

P(B⋆(t+ 1) = m+ k0|B⋆(t) = m) ≤ αk0

n

P(B⋆(t+ 1) > m+ k0|B⋆(t) = m) = 0. (11)

The inequality (10) follows from the Drain property in the

statement of the theorem. For the transition probability bounds

in (11), we use Lemma 2 (Forward jump bound) which shows

that in a given timeslot, the probability that the maximum

queue-length increases with a probability at most αn =
3n(1−q)n. Over k0 timeslots, for the maximum queue-length

to increase by r, there must exist r timeslots in which the

queue-length increases by 1, and the union bound over the
(
k0

r

)
choices yields the desired bounds.

Recall that the dominance property allows us to add packets

to a queuing system and the resulting tail probabilities are

only larger than without the packet additions. This motivates

us to construct a queuing system R where the packets are

“carefully” added to ensure that the bounds in (10) and (11)

are met with equality, as explained in the following.

We consider n large enough such that (1+αn)
k0 −1 ≤ 0.1.

We consider a queuing system R that has the same sample-

path wise external arrivals and channel realizations as the

system Q, and we add extra packets to one of the longest

queues in R at timeslots that are integer multiples of k0. Define

Z̃(t) := [R(t), R(t− 1), . . . , R(t− k0 + 1)],

B̃(t) := Z̃(k0t),

and

B̃⋆(t) = max
1≤i≤n

B̃i1(t).

We want to ensure that the inequalities (10) and (11) are met

with equality if we replace B⋆(t) with B̃⋆(t).

13

Matching the transition probabilities: In Appendix P, we

define the procedure for adding extra packets to the queuing

system. Because the argument is heavy in notation, we present

it in a separate Appendix. The conclusion is that under the

specified packet addition method, the transition probabilities

of B̃⋆(t′) obey (10) and (11) with equality. With the specified

packet-additions, the process B̃(t) is Markovian, because

given B̃(t), {B̃(u)}u>t is independent of {B̃(s)}s<t.
Thus, for the Markov chain B̃, B̃⋆(t) obeys the inequalities

in (10) and (11) with equality. The Markov chain B̃(t) is

positive recurrent for n large enough, because it is aperiodic,

irreducible and the Lyapunov function for any valid state B̃
of the Markov chain is Lyap(B̃) = B̃⋆ (the reason this

works is that the maximum queue-length decreases by one

with probability half, and increases by a finite amount with

an arbitrarily small probability when n is large – thus, there is

a negative drift whenever the value of the Lyapunov function

is strictly positive, and Foster’s theorem completes the proof).

Computing P(B̃⋆(0) > b) in the Steady State:

Partition W
k0n into the following disjoint sets, for j ≥ 0 :

Vj :=














x11 x21 . . . xk01

x12 x22 . . . xk02

...
...

...
...

x1n x2n . . . xk0n







∈ W

k0n : max
1≤i≤n

x1i = j







.

Let πj := P(B̃(0) ∈ Vj), i.e., πj = P(B̃⋆(0) = j).
Let Vj = {vj1 , vj2 , . . .}, σ(ji) = P(B̃(0) = vji) in

the steady state, and let p(i1, j2) denote the probability of

transition from state vi1 to state vj2 for the Markov chain

B̃(t).
Now consider a “cut” in the state-space of the Markov chain

B̃(t) that separates the states {x ∈ Vj : j < m} from the states

{x ∈ Vj : j ≥ m}. In the steady-state, the total probability

mass crossing this cut in either direction must be equal (by

flow-balance of the (positive recurrent) Markov chain B̃(·)).
Thus, for every m ≥ 1,

m−1∑

j=(m−k0)+

k0+j−m
∑

ℓ=0

P(B̃(t) ∈ Vj , B̃(t+ 1) ∈ Vm+ℓ)

= P(B̃(t) ∈ Vm, B̃(t+ 1) ∈ Vm−1).

The above equation holds because from any given state in Vj ,
the Markov chain B̃(t) can transition to some state in Vℓ for

(j − 1)+ ≤ ℓ ≤ j + k0. Rewriting, for all m ≥ 1,

m−1∑

j=(m−k0)+

πj

k0+j−m
∑

ℓ=0

P(B̃(t+ 1) ∈ Vm+ℓ | B̃(t) ∈ Vj)

= πmP(B̃(t+ 1) ∈ Vm−1 | B̃(t) ∈ Vm),

or

m−1∑

j=(m−k0)+

πj

k0+j−m
∑

ℓ=0

=(k0
m+ℓ−j)α

m+ℓ−j
n

︷ ︸︸ ︷

P(B̃⋆(t+ 1) = m+ ℓ | B̃⋆(t) = j)

= πm P(B̃⋆(t+ 1) = m− 1 | B̃⋆(t) = m)
︸ ︷︷ ︸

=1/2

. (12)

We consider n large enough, so that αn = 3n(1− q)n ≤ 1.
For m ≥ 0, we prove the following statement about πm by

induction:

g(m) : πm ≤ π0 · 5k0mαm
n .

Base Case:

Clearly, g(0) is true, since π0 = π0.

Induction Step:
Let g(0), g(1), . . . , g(m − 1) be true, and we need to prove

g(m). From (10), (11) and (12), and noting that πj = 0 for

j < 0, we have:

πm

2
= πm−1

k0∑

j=1

(
k0
j

)

αj
n + πm−2

k0∑

j=2

(
k0
j

)

αj
n

+ · · ·+ πm−k0
αk0

n .

Thus,

πm = 2

k0∑

r=1



πm−r

k0∑

j=r

(
k0
j

)

αj
n





≤ 2

k0∑

r=1



πm−rα
r
n

k0∑

j=r

(
k0
j

)




≤ 2

k0∑

r=1

(
πm−rα

r
n2

k0
)

(a)

≤ 2

k0∑

r=1

(

π0 · 5k0(m−r)αm−r
n αr

n2
k0

)

= 2k0+1αm
n · π0

k0∑

r=1

5k0(m−r)

= π0α
m
n 2k0+15k0(m−k0) 5

k2
0 − 1

5k0 − 1

≤ π0α
m
n 5k0m

2k0+1

5k0 − 1

≤ π0α
m
n 5k0m,

since 2k+1 ≤ 5k − 1 for all k ≥ 1. Here, the inequality

(a) follows from induction hypothesis. Hence, by principle of

mathematical induction, g(m) is true for all integers m ≥ 0.

Now,

∞∑

m=1

5k0m[3n(1− q)n]m =
5k0 [3n(1− q)n]

1− 5k0 [3n(1− q)n]

n→∞→ 0.

Since π0 + π1 + · · · = 1, we have

π0 =
1

1 +
∑∞

m=1
πm

π0

≥ 1

1 +
∑∞

m=1 5
k0m[3n(1− q)n]m

>
1

3
,

for n large enough. Further,

14

P(B̃⋆(0) > b)

=

∞∑

m=b+1

πm = π0

∞∑

m=b+1

πm

π0

≤ π05
k0(b+1)[3n(1− q)n]b+1

∞∑

m=0

5k0m[3n(1− q)n]m

= π05
k0(b+1)[3n(1− q)n]b+1 1

1− 5k0 [3n(1− q)n]

≤ 2π05
k0(b+1)[3n(1− q)n]b+1,

for n large enough. Hence,

lim supn→∞
1
n logP(B̃⋆(0) > b)

≤ lim sup
n→∞

1

n
[log 2 + log π0 + k0(b + 1) log 5

+ (b + 1) log(3n) + n(b+ 1) log(1− q)]

Noting that lim supn(an + bn) ≤ lim supn an + lim supn bn
and that lim supn→∞

1
n log π0 = 0 since π0 > 1

3 for n large

enough, we get

lim inf
n→∞

−1

n
logP(B̃⋆(0) > b) ≥ (b+ 1) log

1

1− q
,

and, by (4), the proof of Theorem 3 is complete.

APPENDIX D

PROOF OF LEMMA 3

Claim: The output M′ of PullUp(G,M,V) is a matching, and

|M| = |M′|.
Proof: We prove that if Mk is a matching, then so is

Mk+1, and |Mk| = |Mk+1|. We need to focus only on the

case where in step 2 of PullUp, the node vk has no incoming

edge and there exists vl ∈ ∆(Gk, vk) with l > k. Let the path

from vk to vl be vk → ui1 → vj1 → ui2 → vj2 · · · → uic →
vl. Let

Mk = {(ui1 , vj1), (ui2 , vj2), . . . , (uix , vjx)},
with vjc = vl, and vjy 6= vk for any y. Then, by definition,

Mk+1 = {(ui1 , vk), (ui2 , vj1), . . . , (uic , vic−1
),

(uic+1
, vjc+1

), . . . , (uix , vjx)}.
Hence, |Mk+1| = |Mk|. Further, the edges in Mk+1 are

node-disjoint because all the nodes vk, vi1 , vi2 , . . . , vix are

different. Hence, Mk+1 is a matching. Therefore, M′ =
PullUp(G,M,V) is a matching and |M′| = |M|.

APPENDIX E

PROOF OF LEMMA 4

Claim: The proposed algorithm (iLQF with PullUp) can be

implemented in O(n4) computations per timeslot.

Proof: Consider a bipartite graph G(U ∪ V , E) with a

given matching M, |U| = |V| = n and |E| = m.

1) For each node vk ∈ V , the set of all nodes reachable

from vk can be found in O(m + n) computations via

Depth First Search (DFS) (Theorem 3.13 in [22]). Since

m = O(n2) and there are at most n nodes from which

the set of reachable nodes needs to be found out, the

operation PullUp(G,M,V) can be completed in O(n3)
operations.

2) For a matching

M = {(ua1
, vb1), (ua2

, vb2), . . . , (uak
, vbk)},

define

SUM(M) :=
∑k

i=1(ai + bi).

Let PullUp(G,M,V) = M′. If M 6= M′, then

SUM(M′) ≤ SUM(M)− 1.

Since SUM(M1) is O(n2), the number of times the

PullUp operation is performed in the step 2b of the

algorithm is O(n2).

The step 1 of the algorithm can be implemented in O(n)
computations. For step 2, the set QL can be found in O(n)
computations. From [23], we know that in a bipartite graph

G(U ∪ V , E) with |U| = |V| = n and |E| = m, it is

possible to find a largest cardinality matching in O(m
√
n)

computations. Adding isolated dummy nodes if necessary, the

graph GL can be made to have n nodes on either side. Further,

m = O(n2). A largest matching can therefore be found with

O(n2.5) computations. For any fixed server node, the set of

all nodes to which this server node has a path can be found by

depth-first search (DFS) in O(m+n) computations ([22], Thm.

3.13) and since m = O(n2), in O(n2) computations. The

step 2a can thus be performed in O(n3) computations, while

the step 2b can be performed in O(n4) computations. Noting

that the step 2b needs to be executed at most once, every round

(except possibly the last round) can be implemented in O(n3)
computations, and the last round can be performed in O(n4)
computations.

By step 3, the number of rounds to be completed is at most

L. However, if QL = ∅ for a round, then no computations need

to be performed for that round at all, since ML is the vacuous

matching of cardinality 0. Hence, instead of redefining L to

L−1 in step 3, we can define L to be the length of the longest

queue at the end of that round, and the algorithm will result

in the same set of allocations of queues to servers as before.

The maximum of the queue-lengths can be obtained in O(n)
computations. With this modification, the number of rounds is

at most n, since every round allocates at least one server, or

else it is the last round.

Thus, all the perfect matching rounds (i.e., except possibly

the last round of maximal matching) can be implemented in

O(n4) computations, and the last round of largest matching

(step 2b) can be implemented in O(n4) computations. Finally,

the output (updated queue-lengths and server allocation deci-

sions) can be reported in O(n) computations (memory reads),

since at most n of the Yij(t) are nonzero.

Therefore, the proposed algorithm can be implemented in

O(n4) computations per timeslot.

APPENDIX F

PROOF OF LEMMA 5

Claim: Under the notation of Definition 5, in the graph Gn+1,

if a node va has no incoming edge, then there does not exist

15

a (directed) path from va to any node vb with b > a. Conse-

quently, if PullUp(G,M,V) = M′, then PullUp(G,M′,V)
= M′.

Proof: Consider b > a. If the node va has an incoming

edge in the graph Gb, then it has an incoming edge in Gb+1,
even if Gb 6= Gb+1. This is because if Gb 6= Gb+1, then the

node vb does not have an incoming edge in Gb and there exists

a path from vb to vc, c > b in Gb. Even if this path contains

va, the incoming edge to va (in Gb) becomes an outgoing

edge, while another one of va’s outgoing edges, on reversal,

becomes an incoming edge, since the path cannot terminate

on va. Hence, if va has an incoming edge in Ga+1, then it

has an incoming edge in Gn+1.
Now, let va ∈ V and assume that va has no incoming

edge in Gn+1, therefore in Ga+1, implying Ga = Ga+1. The

following notation is used throughout this proof:

Na(b) = The set of all nodes reachable from va in

the graph Gb

Γ(Gb, va) = Na(b) ∩ U
∆(Gb, va) = Na(b) ∩ V
Ea = The set of edges in the graph Ga

(According to this notation, Na = Na(a).) Thus, we have

∆(Ga, va) ⊆ {v1, v2, . . . , va−1}, and Γ(Ga, va) = S1 ∪ S2,
where

S1 = {ui : (ui, vj) ∈ Ma for some vj ∈ ∆(Ga, va)},
S2 = {ui : (vj , ui) ∈ Ea for some vj ∈ ∆(Ga, va),

and ui has no outgoing edge}.
To see this, note that any node vj ∈ ∆(Gb, va) has exactly

one incoming (forward) edge, since the forward edges belong

to a matching. Therefore, S1∪S2 ⊆ Γ(Ga, va). Further, every

node ui ∈ Γ(Ga, va) is reachable from va, so if ui has an

outgoing (forward) edge, it must, by definition, end on some

vj ∈ ∆(Ga, va), or else it must not have an outgoing edge.

Hence, Γ(Ga, va) = S1 ∪ S2.
We now prove the following statement, which immediately

implies the claim: Fix any b > a. In the graph Gb, if vb has

no incoming edge, and there exists a path from vb to vc (with

c > b) in Gb, then that path does not contain any node from

Na. (⋆)
Before proving the statement (⋆), let us see how it implies

the claim that in the graph Gn+1, there exists no directed path

from va to any node vb for b > a. Fix any b > a. If vb has

an incoming edge, then we have Gb = Gb+1. If vb has no

incoming edge, and in the graph Gb there exists no path from

vb to vc for any c > b, then again Gb = Gb+1. If vb has no

incoming edge in Gb and there exists a path from vb to vc
with c > b, then (by (⋆)) this path contains no node from Na.
Thus, in every possible scenario, the edge-configuration (i.e.,

the (directed and labeled) pattern of incoming and outgoing

edges) for the nodes in Na is the same in both the graphs Gb

and Gb+1. Thus, if the node va has no incoming edge in the

graph Ga+1, then it does not have an incoming edge in the

graph Gn+1, proving the first part of the claim.

Now, if PullUp(G,M′,V) 6= M′, then the following is true:

if all the edges in G that belong to M′ are forward edges and

all the other edges are backward, then there exists a node va
with no incoming edges, and has a directed path to a node vb,

with b > a. No such path exists by the previous argument,

completing the proof if (⋆) is true.

Proof of (⋆):
If the statement (⋆) is true, then the set of nodes in V

reachable from va under Ga is the same as those under

Gb for any b > a, in particular for b = n + 1. Suppose,

for obtaining a contradiction, that the statement (⋆) is false,

and let b be the smallest index greater than a for which

the statement is false. Therefore, Na(a) = Na(b), since the

edge-configurations for all the nodes in Na(a) are unchanged

under the transformations that convert the graph Ga to Gb, by

definition of b. Let the path from vb to a node vc, c > b
contain one or more nodes from Na(a). Let this path be

vb → ui1 → vj1 → ui2 → vj2 → · · · → vjk = vc. This path

does not contain any node from S2, since the nodes in S2

have no outgoing edges. If the path contains a node ui ∈ S1,
then it contains the node vj for which (ui, vj) ∈ Mb, the only

forward edge associated with ui. Since the edge configurations

of the nodes in Na(a) = Na(b) are the same under the graphs

Ga and Gb, we have (ui, vj) ∈ Ma. Hence, the path from vb
to vc contains at least one node from ∆(Ga, va) = ∆(Gb, va).

Define

j0 := min{j : vℓ /∈ Na(b) ∀ ℓ ≥ j}.
Since vc = vjk /∈ Na(b), we have 0 < j0 ≤ k. Then, vj0−1 ∈
Na(a), and the edge vj0−1 → uj0 is present in Ga, since the

edge configuration of vj0−1 is the same under Ga and Gb.
Hence, uj0 ∈ Na(a), and the edge configuration of uj0 is the

same under Ga and Gb, implying vj0 ∈ Na(a), a contradiction

to the definition of j0 since Na(a) = Na(b). Therefore, the

statement (⋆) is true.

APPENDIX G

PROOF OF LEMMA 6

Claim: Consider two queuing systems Q and R with queues

Q = {Q1, Q2, . . . , Qn} and R = {R1, R2, . . . , Rn} respec-

tively, with the property that Qi(t−1) ≤ Ri(t−1) for all i. Let

the two systems have identical channel realizations, Xij(t) and

identical arrivals, Ai(t) for 1 ≤ i, j ≤ n. Both the queuing

systems implement the algorithm described in Section VIII,

i.e. iLQF with PullUp. Then, Qi(t) ≤ Ri(t) for all i.
Proof: The proof proceeds according to the following

steps: in timeslot t, if the number of perfect queue-matching

rounds in the system R, nR, is less than that in the system

Q, nQ, then it is straightforward to show that the claimed

queue-length inequalities (i.e., Qi(t) ≤ Ri(t) for all i) holds.

If nR = nQ + w > nQ, then we inductively show that

1) The set of servers available for allocation in round r
in the system Q is a superset of those available in the

round r + w in the system R, and

2) The set of longest queues in the system Q in the round r
is a subset of those in the system R in the round r+w.

Note that the length of the queue(s) served in round r in

the system Q is the same as those served in th system R in

the round r + w. Hence, when the algorithm reaches a given

queue-length level in the two systems, it has “more” resources

(servers) and “fewer” queues to work with in the system Q
than in the system R, where more, fewer, etc. are used in the

16

set inclusion sense. Thus the claimed queue-length inequality

holds in this case as well.

The proof in detail: The following notation is used

throughout this proof.

Mr = The set of queues served in the rth round,

in the system R
Yr = The set of servers allocated in the rth round,

in the system R
Nr = The set of queues served in the rth round,

in the system Q

Zr = The set of servers allocated in the rth round,

in the system Q

For simplicity of notation, throughout this proof, we use Q
(r)
i

and R
(r)
i to denote Q

(r)
i (t) and R

(r)
i (t) respectively. By defini-

tion, R
(0)
i := Ri(t−1)+Ai(t) and Q

(0)
i := Qi(t−1)+Ai(t).

Let R̂ := maxiR
(0)
i , Q̂ := maxiQ

(0)
i and w := R̂ − Q̂. Let

there exist nR and nQ rounds of perfect queue matchings in

the system R and Q respectively.

Case 1: nR < w.

If a queue Ri was served even once in the nR rounds, then at

the end of nR rounds, R
(nR)
i = R̂−nR > R̂−w = Q̂. Since

there are exactly nR rounds of perfect queue matching in the

system R,

Ri(t) ≥ R
(nR)
i − 1 ≥ Q̂ ≥ Qi(t).

If Ri was not served even once in the first nR rounds of perfect

queue matching, but was served in the last round of maximal

matching, then

Ri(t) = R̂− (nR + 1) ≥ R̂− w = Q̂ ≥ Qi(t).
Finally, if the queue Ri was not served at all, then

Ri(t) = Ri(t− 1)+Ai(t) ≥ Qi(t− 1)+Ai(t) ≥ Qi(t),
and the claim is true in this case.

Case 2: nR = w.
We have R

(nR)
i ≥ R̂− nR = Q̂, with equality holding if and

only if R
(0)
i ≥ Q̂. Let Rlast = {Ri1 , Ri2 , . . . , Ria} denote

the set of longest (i.e. of length Q̂) queues at the beginning

of the maximal matching round for the system R, with i1 <
i2 < · · · < ia. Let Qfirst = {Qj1 , Qj2 , . . . , Qjb} denote the

set of longest queues in the system Q, at the beginning of the

first round, with j1 < j2 < · · · < jb. Then, {j1, j2, . . . , jb} ⊆
{i1, i2, . . . , ia}. If the first round in the system Q is a perfect

queue matching round (i.e. nQ > 0), then all of the queues

in Qfirst are served, and only some of Rlast, and the claim

is true because the queues in the system R are not served for

more than nR + 1 rounds.

Now, let nQ = 0. Let a queue Ric be served by a server

Sa in the (nR + 1)th round, but Qic is not served in the 1st

(maximal matching) round. Then, Sa must serve a queue Qid

with d < c, otherwise the size of the largest matching can

be strictly increased (∵ Xica = 1), or there exists a directed

path Qic → Sa → Qid , contradicting Lemma 5 (No edge,

no path). Specifically, the queue Qic has no incoming edge,

because it is not assigned a server, and has a directed path to a

higher-indexed queue Qid , contradicting Lemma 5 (No edge,

no path).

The queue Rid must be served by a server Se, otherwise

there exists a directed path Rid → Sd → Ric , again

contradicting Lemma 5 (No edge, no path). The server Se

must serve a queue Qif with f < c, otherwise the size

of the largest matching in Q can be strictly increased (by

allocating Se to Qid , Sa to Qic), or there exists a directed

path Qic → Sa → Qid → Se → Qif and f > c, contradicting

the specifications of the algorithm and in particular, Lemma

5 (No edge, no path). This process of finding newer servers

and queues in the two systems can be continued indefinitely,

contradicting the finiteness of the number of queues and

servers in the system. Therefore, if a queue Ric is served in

the largest matching round of the system R, then so is Qic in

the system Q, and the claim holds in this case.

Case 3: nR > w.

We prove the following statement f(r), for 0 ≤ r ≤ nR−w,

by induction: let f(r) = f1(r) ∧ f2(r) ∧ f3(r), where

f1(r) : Nr ⊆
r+w⋃

i=1

Mi,

f2(r) : Zr ⊆
r+w⋃

i=1

Yi, and

f3(r) : Q
(r)
i ≤ R

(r+w)
i for all 1 ≤ i ≤ n.

Base case:

We need to prove that f(0) is true. Since N0 = ∅ and

Z0 = ∅, we only need to prove that Q
(0)
i ≤ R

(w)
i . If Ri is not

served during the first w rounds, then R
(w)
i = R

(0)
i ≥ Q

(0)
i . If

Ri was served in at least one of the first w rounds of service,

then R
(w)
i ≥ R̂− w = Q̂ ≥ Q

(0)
i . Hence, f(0) is true.

Induction step:

Suppose f(0), . . . , f(r − 1) are true for some r ≥ 1. We

need to prove f(r).

We first show that f(0), . . . , f(r − 1) implies f1(r). For

some 1 ≤ i ≤ n, let Qi ∈ Nr. We show that Ri ∈ Mr+w.

Since r ≤ nR − w, we have r − 1 + w ≤ nR − 1. Hence

the (r − 1 + w)th round (and all of the rounds before that)

in the system R are perfect queue matching rounds. Hence,

R
(r−1+w)
i ≤ R̂ − (r − 1 + w) = Q̂ − (r − 1). Since the

queue Qi is served in the rth round, at the end of r − 1
rounds it is one of the longest queues in the system Q. Since

a queue can lose at most one packet in a given round, we

have Q̂− (r−1) = Q
(r−1)
i . Together, the last two inequalities

imply R
(r−1+w)
i ≤ Q

(r−1)
i . By induction hypothesis, we have

R
(r−1+w)
i ≥ Q

(r−1)
i . Thus, all of the previous inequalities

must hold with equality, and

R̂− (r − 1 + w) = R
(r−1+w)
i = Q

(r−1)
i = Q̂− (r − 1).

Thus, if Qi ∈ Nr, then the queue Ri is a longest queue at

the beginning of the (r + w)th round in the system R. Since

r+w ≤ nR, the (r+w)th round in the system R is a perfect

queue-matching round, implying that the queue Ri is allocated

a server, i.e., Ri ∈ Mr+w. This proves that f(0), . . . , f(r−1)
implies f1(r).

Now we show that f(0), . . . , f(r − 1) implies f3(r). For

some 1 ≤ i ≤ n, let Ri ∈ Mr+w. By induction hypothesis,

we have R
(r−1+w)
i ≥ Q

(r−1)
i . If R

(r−1+w)
i > Q

(r−1)
i , then

17

(because Ri can lose at most 1 packet in a given round) we

have R
(r+w)
i ≥ Q

(r)
i , and the claim holds.

If R
(r−1+w)
i = Q

(r−1)
i , then we show that Qi ∈ Nr. Since

Ri ∈ Mr+w, it was, at the beginning of that round, a longest

queue. Let Ri ∈ Mr+w be allocated a server Sa in the

(r + w)th round. Therefore, Xia = 1. Since (by induction

hypothesis)
⋃r−1

i=1 Zi ⊆
⋃r−1+w

i=1 Yi, and Sa /∈ ⋃r−1+w
i=1 Yi,

we have

Sa /∈ ⋃r−1
i=1 Zi,

so the server Sa is available to serve Qi in the rth round.

Therefore, if there exists a perfect matching in the system R
in the (r + w)th round, then there exists a perfect matching

in the rth round in the system Q : a perfect queue matching

can be found by mimicking the corresponding allocations in

the system R. Thus, Qi ∈ Nr, implying that Q
(r)
i ≤ R

(r+w)
i

and proving that f(0), . . . , f(r − 1) implies f3(r).
Next we show that f(0), . . . , f(r − 1) implies f2(r). For

the purpose of obtaining a contradiction, let Sc ∈ Zr, and

Sc /∈ Y1 ∪ · · · ∪ Yr+w. Let Qi be served by Sc in the rth

round, while Ri was served by Sd in (r+w)th round. Hence,

d < c. Sd must serve some queue Qe in the system Q in rth

round, because otherwise it can replace Sc to serve Qi and the

server Sd was unused (in the system Q) until the beginning

of the rth round by induction hypothesis. Re, in turn, must be

served by a server Sf in the (r+w)th round in the system R.

We must have f < c, otherwise there exists a connecting path

Sc → Ri → Sd → Re → Sf and Sc cannot remain unused

in the system R, according to Lemma 5 (No edge, no path).

This process can be continued indefinitely, contradicting the

fact that the number of queues and servers is finite. Hence,

Zr ⊆ Y1 ∪Y2 ∪ · · · ∪ Yr+w. Thus f(0), . . . , f(r− 1) implies

f2(r), and the induction is complete, i.e., f(0), . . . , f(r − 1)
implies f(r).

Hence, if we compare the state of the system R after

nR rounds of perfect matching (i.e. at the beginning of the

maximal matching round) and Q at the end of nR−w rounds

of perfect matching, we have the following structure:

1) The set of unallocated servers available in the system Q
is a superset of the set of unallocated servers available

in the system R.
2) The set of longest queues in the system Q is a subset

of the set of longest queues in the system R.

As before, let Rlast = {Ri1 , Ri2 , . . . , Ria} denote the set

of longest queues at the beginning of the maximal matching

round for the system R, with i1 < i2 < · · · < ia. Let Qfirst =
{Qj1 , Qj2 , . . . , Qjb} denote the set of longest queues in the

system Q, at the beginning of the (nR−w+1)th round, with

j1 < j2 < · · · < jb. Then, {j1, j2, . . . , jb} ⊆ {i1, i2, . . . , ia}.

If the (nR − w + 1)th round in the system Q is a perfect

matching round (i.e. nQ > nR − w), then all of the queues

in Qfirst are served, and only some of Rlast, and the claim

is true because the queues in the system R are not served for

more than nR + 1 rounds.

Now, let nQ = nR − w. We need to prove that if a queue

Ri is served in the largest matching round of the system R,

then so is Qi in the system Q. The proof is almost identical

to that of the case nR = w, and is skipped to avoid repetition.

Therefore, the proof of the theorem is complete.

APPENDIX H

PROOF OF LEMMA 7

Let

M = {(ui1 , vj1), (ui2 , vj2), . . . , (uix , vjx)},
M⋆ = {(ui1 , vk1

), (ui2 , vk2
), . . . , (uix , vkx

)},
with ky ≤ a for all y ∈ {1, 2, . . . , x}. For obtaining a con-

tradiction, if possible, let there exist an edge (uic , vb) ∈ M′

with c ≤ x and b > a. Then there exists a node vkd
, d ≤ x,

such that no edge in M′ has vkd
as one of its endpoints. Let

(uid , vα1
) ∈ M′ for some α1 < kd (by Lemma 5 (No edge,

no path)). Therefore, in the matching M⋆, the node vα1
is an

endpoint of some edge (uβ1
, vα1

), else there exists a directed

path in G‡ from vα1
to vkd

, namely vα1
→ uid → vkd

,

contradicting property 3 of M⋆ as required by the statement

of the Lemma. There must exist an edge (uβ1
, vα2

) ∈ M′,
with α2 < kd by Lemma 5 (No edge, no path). Hence, the

node vα2
is an endpoint of an edge in M⋆, since there exists

a directed path vα2
→ uβ1

→ vα1
→ uid → vkd

. This process

can be continued indefinitely, contradicting the finiteness of

the number of nodes in U ∪ V . Hence, the proof is complete.

APPENDIX I

PROOF OF THEOREM 5

Claim: For any given ǫ ∈ (0, α), there exists a constant n0 =
n0(ǫ) such that under any rule for allocating servers to queues,

and for all possible values of the parameters 0 < α, q < 1, b ≥
0, and for infinitely many n ≥ n0,

P

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≥ (α− ǫ)b+1(1− q)n(b+1).

Consequently,

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≤ (b + 1) log
1

1− q
.

Proof: Fix any ǫ ∈ (0, α). By (5), there exists a strictly

increasing sequence of natural numbers {n1, n2, . . .} such that

for all k ≥ 1,

max
1≤i≤nk

p
(nk)
i ∈ (α− ǫ, α+ ǫ).

Hence, in the system Υ′
nk

, there exists a queue Q
[nk]
ik

that

has the packet-arrival probability at least α− ǫ. Consider the

following event that, under any scheduling algorithm, implies

{Q[nk]
ik

(0) > b}: for b + 1 consecutive timeslots before (and

including) timeslot 0, there are arrivals to Q
[nk]
ik

, and all the

channels connecting Q
[nk]
ik

to the servers are OFF in each of

the b + 1 timeslots. The probability of this event is at least

(α− ǫ)b+1((1 − q)nk)b+1. Hence, for all k ≥ 1,

P

(

max
1≤i≤nk

Q
[nk]
i (0) > b

)

≥ (α− ǫ)b+1((1 − q)nk)b+1,

implying

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≤ (b + 1) log
1

1− q
,

18

and the result is proved.2

APPENDIX J

PROOF OF THEOREM 6

Claim: For the system with asymmetric arrivals, the iLQF with

PullUp algorithm has the property

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≥ (b + 1) log
1

1− q
.

Proof: From (5), it follows that there exists a natural

number n0 such that for all n ≥ n0,

max
1≤i≤n

p
(n)
i ≤ 1 + α

2
< 1.

Consider a sequence of systems {Υ′′
n}. The channel process

of the system Υ′′
n is identical to that of the system Υ′

n (and

Υn), but the arrival process is given by A′′[n]
i (t) = A′[n]

i (t)
for n < n0, and by

A′′[n]
i (t) =

{

1 with probability 1+α
2 ,

0 with probability 1− 1+α
2 ,

for n ≥ n0. Further, let {A′[n]
i (t) = 1} ⇒ {A′′[n]

i (t) = 1}.

By Kolmogorov’s extension theorem ([24], Appendix A), there

exists a probability space on which the above construction

is valid and well-defined. Let the two systems Υ′
n and Υ′′

n

be started with the same initial queue-lengths. Then, by

the sample-path-wise dominance property of the iLQF with

PullUp algorithm (Lemma 6), it follows that for the two

systems,

P

(

max
1≤i≤n

Q′[n]
i (0) > b

)

≤ P

(

max
1≤i≤n

Q′′[n]
i (0) > b

)

.

The sequence of systems Υ′′
n, for n ≥ n0 is identical to the

one considered in Section IV, in particular a symmetric arrival

system. Hence, Theorem 4 implies

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Q′′[n]
i (0) > b

)

≥ (b+ 1) log
1

1− q
.

The result follows by combining the last two inequalities.

APPENDIX K

PROOF OF THEOREM 7

Consider the following event which implies {Q1(0) > b}
under any scheduling rule: for m :=

⌈
b+1
L

⌉
consecutive

timeslots before (and including) timeslot 0, there are L arrivals

per timeslots to Q1, and all the channels connecting Q1 to the

servers are OFF in each of these timeslots. The probability of

this event is pm(1− q)nm, and the result follows.

2For a sequence of real numbers {an}, if an ≤ b for infinitely many
values of n, then lim inf

n→∞

an ≤ b.

APPENDIX L

PROOF OF LEMMA 9

Claim: Fix any p̃ ∈ (p, 1/L). Define Θ1 := nH(p̃|p) and

Θ2 := 3np̃(1 − q)np̃. Then for the symmetric, bursty, ON-

OFF arrivals system, for n large enough, and for all t,

P

(

max
1≤i≤n

Qi(t+ 1) > max
1≤i≤n

Qi(t)

)

≤ exp(−Θ1) + LΘ2.

Proof: This proof proceeds by showing that the event(

max
1≤i≤n

Qi(t+ 1) > max
1≤i≤n

Qi(t)

)

is a subset of the union of

the following two (low-probability) events:

1) In timeslot t+ 1, the number of queues with a nonzero

number of arrivals is ≥ np̃ with p̃ > p.
2) In a bipartite graph with 2np̃ nodes, where each edge is

present with probability q, there does not exist a perfect

matching (in fact, a union of L such events).

The union bound then gives the desired result.

The proof in detail: Let Q̂(t) = m. By adding packets to

the queues if necessary, we ensure Qi(t) = m for all i. By

the sample-path-wise dominance property of the iLQF with

PullUp algorithm (Lemma 6), we know that the probability of

overflow of the packet-added system is at least as large as that

of the original system.

By the Chernoff bound, in any given timeslot t+1, we have

P

(
∑n

i=1 A
[n]
i (t+ 1) ≥ np̃L

)

≤ exp {−nH(p̃|p)} .
Consider the event when in the (t+1)th timeslot, the number

of queues with a nonzero number of arrivals does not exceed

np̃. Adding packets to queues if necessary, let the number of

queues with L packet arrivals in the timeslot (t+1) be exactly

np̃. By the sample-path-wise dominance property of the iLQF

with PullUp algorithm (Lemma 6), by adding packets to the

queues we get a system whose overflow probability is larger

than the original system. We focus our analysis on this packet-

added system.

First round of service:
With probability ≥ 1 − exp {−nH(p̃|p)}, the queue-length

distribution at the beginning of the first round of service is:

Queue-length Number of queues

m+ L np̃
m n(1− p̃)

There exists a perfect matching between the set of the longest

queues and the first np̃ servers with probability at least 1 −
3np̃(1 − q)np̃, by Lemma 1. Hence, using this matching for

M⋆ in Lemma 7 (Use smaller indexed nodes), it follows that

the first np̃ servers are allocated to serve the longest queues

in the first round, decreasing their queue-lengths by one each.

Thus, the queue-length distribution at the end of the first round

of service is:

Queue-length Number of queues

m+ L− 1 np̃
m n(1− p̃)

The servers with indices greater than np̃ are available for

allocation in the subsequent rounds, if any.

19

rth round of service, for 1 < r ≤ L:

Let the queue-length distribution at the beginning of rth round

of service be:

Queue-length Number of queues

m+ L− (r − 1) np̃
m n(1− p̃)

Then, by an argument exactly as in the case r = 1, it follows

that with probability at least 1−3np̃(1−q)np̃, the servers with

indices in the set {(r− 1)np̃+1, (r− 1)np̃+2, . . . , rnp̃} are

allocated to serve the longest queues, so that the queue-length

distribution at the end of the rth round of service is:

Queue-length Number of queues

m+ L− r np̃
m n(1− p̃)

The servers with indices greater than rnp̃ are available for

allocation in the subsequent rounds, if any.

Further, by Lemma 7 (Use smaller indexed nodes), the event

of finding a bipartite perfect matching between the set of

longest queues and the set of servers indexed (r − 1)np̃ + 1
to rnp̃ (in the rth round) is conditionally independent of

all previous rounds, conditioned on the existence of perfect

matchings in the earlier rounds, such that for all s < r, the

round s resulted in allocation of a (perfect) matching between

the set of longest queues and the set of servers indexed

(s − 1)np̃+ 1 to snp̃. Hence, considering the first L rounds

of service,

P

(

max
1≤i≤n

Qi(t+ 1) ≤ max
1≤i≤n

Qi(t)

)

≥ (1−e−Θ1)(1−Θ2)
L.

Therefore,

P

(

max
1≤i≤n

Qi(t+ 1) > max
1≤i≤n

Qi(t)

)

= 1− P

(

max
1≤i≤n

Qi(t+ 1) ≤ max
1≤i≤n

Qi(t)

)

≤ 1− (1 − exp(−Θ1))(1 −Θ2)
L

≤ 1− (1 − exp(−Θ1))(1 − LΘ2)

= exp(−Θ1) + LΘ2 − LΘ2 exp(−Θ1)

≤ exp(−Θ1) + LΘ2

= exp(−nH(p̃|p)) + LΘ2.

Thus, the proof is complete.

APPENDIX M

PROOF OF LEMMA 10

Claim: For the symmetric, bursty, ON-OFF arrivals system

implementing the iLQF with PullUp algorithm, there exists

a constant k = k(L, p) =
⌈

3
1−pL

⌉

such that for all n large

enough, for all m > 0 and all T ,

P(Q̂(T + k) < m|Q̂(T) = m) ≥ 1
2 .

Proof: To simplify notation, let T = 0 and Q̂(0) = m
in a queuing system Q. Consider a queuing system Q′ where

Q′
i(0) = m for all i, implying Q′

i(0) ≥ Qi(0) for all i, and

this property continues to hold for all further timeslots if the

arrivals and the channel realizations are identical for the two

systems (Lemma 6). Hereafter in this proof, we will not make

references to the system Q.

Fix p̃ ∈ (p, 1/L), say p̃ = (p+1/L)/2 for concreteness. The

probability that in a given timeslot there are, in all, more than

np̃ queues with a nonzero number of arrivals is upper bounded

by exp(−nH(p̃|p)) (by the Chernoff bound). Hence, by union

bound, the probability that there are no more than np̃ queues

with a nonzero number of arrivals in any of the k consecutive

timeslots from 1 to k is at least 1 − k exp(−nH(p̃|p)). We

condition the rest of the proof on this (high probability) event,

and further (if necessary), in every timeslot, we artificially add

packets to queues that did not receive packets to enforce the

condition that the number of queues receiving L packets is

exactly np̃.

Timeslot 1:
After packet arrivals, there are np̃ queues each with a length

= m+L, and the rest with length = m. Following an analysis

similar to that in the proof of Lemma 9, there is service for

at least L rounds with probability at least (1− 3n(1− p̃)(1−
q)n(1−p̃))L, so that after L rounds of service, all the queues

have a length = m and there exist n(1 − p̃L) unallocated

servers, with indices {n(1− p̃L) + 1, n(1− p̃L) + 2, . . . , n}.
In the (L + 1)th round of service, there exists a matching of

cardinality n(1 − p̃L) between the set of unallocated servers

and the set of longest queues (i.e. the set of all the queues)

with probability at least 1−3n(1− p̃L)(1−q)n(1−p̃L), so that

(with high probability) the queue-length distribution at the end

of the first timeslot is:

Queue-length Number of queues

m np̃L
m− 1 n(1− p̃L)

Timeslot r, 1 < r ≤ k:

We show that if, at the beginning of timeslot r the queue-

length profile is

Queue-length Number of queues

m x
m− 1 n− x

then with high probability, at the end of the timeslot r (i.e., at

the beginning of the timeslot r + 1) the queue-length profile

is given by (or, can be obtained by adding dummy packets):

Queue-length Number of queues

m (x− nǫ)+

m− 1 n− (x− nǫ)+

Since x ≤ n, the above claim implies that with high

probability, at the end of at most k = ⌈1/ǫ⌉ timeslots, the

maximum queue-length in the system decreases from m to

m−1 (or less). Further, by Lemma 2 (Forward jump bound), if

the maximum queue-length is less than m at a timeslot before

k, then with high probability it remains less than m until the

end of timeslot k. Hence, the above claim yields essentially

the desired result with a careful choice of ǫ.

To this end, consider the queue-length distribution after

arrivals, i.e., at the beginning of the first round of service,

given by

20

Queue-length Number of queues

m+ L y
m+ L− 1 np̃− y

m x− y
m− 1 n− x− np̃+ y

Here we have y ≤ np̃, because we have conditioned on the

(high-probability) event that in any timeslot, the number of

queues with a nonzero number of arrivals is no more than np̃.
Fix any δ ∈ (0, 1 − Lp̃), say δ = (1 − Lp̃)/3 for

concreteness.

CASE 1: y ≥ nδ.
By Lemma 1, the set of the first y servers and the y longest

queues have a perfect matching with probability at least 3y(1−
q)y ≥ 3nδ(1− q)nδ, where the inequality is valid for n large.

Thus, by Lemma 7 (Use smaller indexed nodes), this matching

(if it exists) is used to serve the y longest queues, regardless

of the channel realizations of the servers indexed from y + 1
to n.

Thus, at the end of the first round of service, the queue-

length profile (with high probability) is given by

Queue-length Number of queues

m+ L− 1 np̃
m x− y

m− 1 n− x− np̃+ y

Further, all of the servers with indices from y + 1 to n
are available for allocation, and their channel realizations are

conditionally independent of any allocations in the first round

of service.

At the end of the next L− 1 rounds of service, following a

similar argument to the one above, with high probability, the

queue-length profile is given by

Queue-length Number of queues

m np̃+ x− y
m− 1 n− x− np̃+ y

Further, all of the servers with indices from y+(L−1)np̃+1
to n are available for allocation, and their channel realizations

are conditionally independent of any allocations in the first

round of service.

Next, the (last) n − y − (L − 1)np̃ servers are available

for service, and the set of longest queues is of cardinality

np̃+x− y. Hence, with high probability, after one more (i.e.,

(L+1)th) round of service, the number of queues of length m
is at most (x+np̃−y−n+y+(L−1)np̃)+ = (x−n(1−Lp̃))+.

CASE 2: y < nδ.
By Lemma 1, the set of the first nδ servers and the y

longest queues have a perfect queue matching with probability

at least 3nδ(1−q)nδ, where the inequality is valid for n large.

(Lemma 1 holds for a bipartite graph with equal number of

nodes on either side of the cut, but we can imagine adding

nδ−y dummy queue-nodes for the purpose of finding a perfect

matching, and allocating servers to the (real) queues according

to its projection on the set of (real) queues, which results in

a perfect queue matching.) Thus, by Lemma 7 (Use smaller

indexed nodes), this matching (if it exists) is used to serve the

y longest queues, regardless of the channel realizations of the

servers indexed from nδ + 1 to n.

Thus, at the end of the first round of service, the queue-

length profile (with high probability) is given by

Queue-length Number of queues

m+ L− 1 np̃
m x− y

m− 1 n− x− np̃+ y

Further, all of the servers with indices from nδ + 1 to n
are available for allocation, and their channel realizations are

conditionally independent of any allocations in the first round

of service.

At the end of the next L − 1 rounds of service, following

an argument similar to CASE 1 above, with high probability,

the queue-length profile is given by

Queue-length Number of queues

m np̃+ x− y
m− 1 n− x− np̃+ y

Further, all of the servers with indices from nδ+(L−1)np̃+1
to n are available for allocation, and their channel realizations

are conditionally independent of any allocations in the first

round of service.

Next, the (last) n−nδ− (L−1)np̃ servers are available for

service, and the set of longest queues is of cardinality np̃+x−
y. Hence, with high probability, after one more (i.e., (L+1)th)

round of service, the number of queues of length m is at most

(x+np̃− y−n+nδ+(L− 1)np̃)+ ≤ (x−n(1−Lp̃− δ))+.
We have p̃ = (p + 1/L)/2 and δ = (1 − Lp̃)/3. Hence,

with the choice

ǫ = 1− Lp̃− δ =
2(1− Lp̃)

3
=

1− Lp

3
,

the proof is complete.

APPENDIX N

PROOF OF THEOREM 8

Claim: For a system with symmetric, bursty, ON-OFF arrivals

implementing the iLQF with PullUp algorithm, for all b ≥ 0,

and for p̃ = (1/L+ p)/2,

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≥
⌈
b+ 1

L

⌉

min

(

p̃ log
1

1− q
,H(p̃|p)

)

> 0.

Proof: As a result of Lemmas 9 and 10, and adding

dummy packets if necessary, we obtain a system whose queue-

length process is a stochastic process with the following

properties:

1) In a given timeslot, the maximum queue-length either

remains unchanged, or increases by an amount L. If the

timeslot index is a multiple of k (from Lemma 10), then

the maximum queue-length may also decrease by 1, in

addition to remaining unchanged or increasing by an

amount L.
2) The probability that in a given timeslot, the queue-length

increases by an amount L, is at most

2max
(
exp(−nH(p̃|p)), 3nLp̃(1− q)np̃

)
,

21

for all p̃ ∈ (p, 1/L). In particular, p̃ = (1/L+ p)/2 is a

valid choice.

3) Let k be the parameter from Lemma 10. For an integer

T, if the maximum queue-length in the system at the

end of the timeslot T is positive, then over the next k
timeslots, it decreases by at least 1 with probability at

least 1/2.

By the sample-path-wise dominance property of the iLQF

with PullUp algorithm (Lemma 6), the probability of finite

buffer overflow of the modified queue-length process is an

upper bound on the probability of finite buffer overflow in the

original system. Hence, we analyze the modified process that

has the three properties described above.

By an argument similar to the one presented in Appendix C,

the queue-length process is stable (the Lyapunov function that

equals the maximum queue-length works here too). Arguing

along the same lines as the Markov-chain coupling proof in

the Appendix C, we get for all p̃ ∈ (p, 1/L), in particular for

p̃ = (1/L+ p)/2 :

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≥
⌈
b + 1

L

⌉

min

(

p̃ log
1

1− q
,H(p̃|p)

)

,

completing the proof since the right hand side is strictly

positive for all b ≥ 0.

APPENDIX O

PROOF OF THEOREM 9

Claim: For the system with symmetric arrivals with bounded

support, under the iLQF with PullUp algorithm, for all b ≥ 0,

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≥
⌈
b+ 1

L

⌉

min

(

J log
1

1− q
, ζ

)

> 0.

Proof: We give a sketch of the proof here. The main idea,

as before, is:

(1) To upper-bound the probability of an “upward” transi-

tion, i.e., P
(

max1≤i≤n Q
[n]
i (t+ 1) > max1≤i≤n Q

[n]
i (t)

)

by

exp(−nα) for some α > 0. In case this upward tran-

sition occurs, we bound the magnitude of increment in

max1≤i≤n Q
[n]
i (t) by L, the maximum number of arrivals to

a queue in the timeslot t.
(2) To lower-bound (by a constant, say 1/2) the probability of

a “downward” transition, i.e.,

P

(

max
1≤i≤n

Q
[n]
i (t+ k) < max

1≤i≤n
Q

[n]
i (t) | max

1≤i≤n
Q

[n]
i (t) > 0

)

.

Then we use an argument similar to that in the proof of

Theorem 4 to conclude the desired rate-function result. Since

this argument has been spelled out in detail in the earlier proof,

we only sketch a proof of the upper-bound on the upward

transition. (The downward transition proof and the calculation

of bounds on the stationary distribution, similar to those in

Appendix C, are routine calculations and have been omitted.)

Fix any timeslot t and any δ > 0. Consider the event

that the empirical probability mass function of the arrivals

in the timeslot t + 1 lies outside the set Fǫ0 . By Sanov’s

theorem (Theorem 2.1.10 in [21]), the probability of the

aforementioned event is at most exp(−n(ζ − δ)) for n large

enough. We condition the rest of the proof on the (high-

probability) event that the empirical probability mass function

of the arrivals in timeslot t+ 1 is in the set Fǫ0 .

Consider the case when max1≤i≤n Q
[n]
i (t) = m, and

(adding packets if necessary) Q
[n]
i (t) = m for all i. Af-

ter arrivals in timeslot t + 1, let the empirical probabil-

ity mass function of the number of arrivals be given by

a = [a0, a1, . . . , aL] ∈ Fǫ0 . Under the iLQF with PullUp

algorithm, in the first round of service, the naL queues at

length m + L are served (if possible). For n large enough,

the probability of finding a matching that can serve the naL
queues with the first naL servers is at least 1−3naL(1−q)naL .
In the next round of service, the n(aL+aL−1) queues at length

m + L − 1 are served with the next n(aL + aL−1) servers

(i.e., servers indexed from naL + 1 to n(aL + aL−1)) with

probability at least 1− 3n(aL+ aL−1)(1− q)n(aL+aL−1), and

so on, for the L rounds when each of the queues is of length m
and n

∑

i iai ≤ n(1+λp)/2 servers are used (allocated), thus

resulting in a feasible allocation. Using the standard arguments

about the principle of the smallest exponent, the probability

that at the end of timeslot t+1, the longest queue is of length

at least m + 1 is at most L × 3naL(1 − q)naL for n large

enough. Since the smallest value of aL in the set Fǫ0 is J,
and since aL ≤ 1, we have (for n large enough, and by the

union bound)

P

(

max
1≤i≤n

Q
[n]
i (t+ 1) > max

1≤i≤n
Q

[n]
i (t)

)

≤ e−n(ζ−δ) + 3nL(1− q)nJ .

Since the above result holds for any prespecified δ > 0
for n large enough, using calculations similar to those in

Appendix C, in the limit as n → ∞, we have

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Q
[n]
i (0) > b

)

≥
⌈
b+ 1

L

⌉

min

(

J log
1

1− q
, ζ

)

> 0.

This completes (an outline of) the proof.

APPENDIX P

MATCHING THE TRANSITION PROBABILITIES

Fix an integer t, define t′ := k0(t + 1), and for all j such

that −B̃⋆(t) ≤ j ≤ k0, consider the set of sample-paths

Cj :=
{

ω ∈ Ω : B̃⋆(t)(ω) + j

= max
1≤i≤n

(

Ri(t
′ − 1) +Ai(t

′)−
n∑

ℓ=1

Xiℓ(t
′)Yiℓ(t

′)

)+

(ω)

}

,

where Ω is the space over which all the random variables are

defined. Each ω ∈ Ω belongs to precisely one of the sets Cj .
The sets Cj are functions of the time-index, which we suppress

for ease of notation.

22

The set Cj is the set of all sample paths where in the

system R, the maximum queue length changes (increases) by

j over the k0 timeslots after timeslot t, up to and including the

timeslot t′. (Note that j can be negative.) This follows because

in k0 timeslots, the maximum queue-length can increase by an

amount at most k0, and can possibly decrease to 0, therefore

P(Cj) can possibly be nonzero only for −B̃⋆(t) ≤ j ≤ k0.

In the course of the proof, we need to make references to

the set

Ξ := arg max
1≤i≤n

(

Ri(t
′ − 1) +Ai(t

′)−
n∑

ℓ=1

Xiℓ(t
′)Yiℓ(t

′)

)+

which contains the indices of the longest queues after service-

completion in the timeslot t′, before any extra packets are

added. Note that Ξ is a function of ω, which we suppress for

ease of notation.

The drain property implies that for B̃⋆(t) > 0,

Θt := P(C−1) + P(C−2) + · · ·+ P(C−B̃⋆(t)) ≥
1

2
.

We now define the procedure for adding extra packets to

the queuing system. There are two cases: B̃⋆(t) = 0 and

B̃⋆(t) > 0. For 1 ≤ r ≤ k0, define βr :=
(
k0

r

)
αr
n − P(Cr).

Note that βr ≥ 0 for n large enough. We only consider the

case
∑k0

i=1 βi > 0, which corresponds to at least one of the

inequalities (11) being strict. The other case can be handled

similarly.

Case 1: B̃⋆(t) > 0.

There are four sub-cases:

Sub-case C1. P(C−1) ≥ 1/2,Θt − 1/2 ≥∑k0

r=1 βr.

Define β0 := Θt − 1/2−∑k0

r=1 βr ≥ 0. For each 2 ≤ j ≤
B̃⋆(t), define a random variable Dj(t

′), independent of all

other random variables, as follows:

P(Dj(t
′) = j + r) =

βr
∑k0

i=0 βi

, 0 ≤ r ≤ k0.

Define the random variable D1(t
′), independent of all other

random variables, as

P(D1(t
′) = r) =

{

(1/2)/P(C−1), r = 0,
βr−1

∑k0
i=0

βi

· P(C−1)−1/2
P(C

−1)
, 1 ≤ r ≤ k0 + 1.

If ω ∈ C−j for some j ≥ 1, then add Dj(t
′) packets to the

smallest-indexed element of the set Ξ.

Sub-case C2. P(C−1) ≥ 1/2,Θt − 1/2 <
∑k0

r=1 βr.

For each 2 ≤ j ≤ B̃⋆(t), define a random variable Ej(t
′),

independent of all other random variables, as follows:

P(Ej(t
′) = j + r) =

βr
∑k0

i=1 βi

, 1 ≤ r ≤ k0.

Define the random variable E1(t
′), independent of all other

random variables, as

P(E1(t
′) = r) =

{

(1/2)/P(C−1), r = 0,
βr−1

∑k0
i=1

βi

· P(C−1)−1/2
P(C

−1)
, 2 ≤ r ≤ k0 + 1.

Define the random variable E0(t
′), independent of all other

random variables, as

P(E0(t
′) = r) =







P(C0)+Θt−1/2−
∑k0

i=1
βi

P(C0)
, r = 0,

∑k0
i=1

βi−(Θt−1/2)

P(C0)
· βr
∑k0

i=1
βi

, 1 ≤ r ≤ k0.

If ω ∈ C−j for some j ≥ 0, then add Ej(t
′) packets to the

smallest-indexed element of the set Ξ.

Sub-case C3. P(C−1) < 1/2,Θt − 1/2 ≥∑k0

r=1 βr.

Define β−1 := 1/2 − P(C−1), and β0 := Θt − 1/2 −
∑k0

r=1 βr ≥ 0.

For each 2 ≤ j ≤ B̃⋆(t), define a random variable Fj(t
′),

independent of all other random variables, as follows:

P(Fj(t
′) = j + r) =

βr
∑k0

i=−1 βi

, −1 ≤ r ≤ k0.

If ω ∈ C−j for some j ≥ 2, then add Fj(t
′) packets to the

smallest-indexed element of the set Ξ.

Sub-case C4. P(C−1) < 1/2,Θt − 1/2 <
∑k0

r=1 βr.

Define β−1 := 1/2− P(C−1).

For each 2 ≤ j ≤ B̃⋆(t), define a random variable Gj(t
′),

independent of all other random variables, as follows:

P(Gj(t
′) = j + r) =

{ β
−1

Θt−P(C−1)
, r = −1,

βr
∑k0

i=1
βi

· Θt−1/2
Θt−P(C1)

, 1 ≤ r ≤ k0.

Define the random variable G0(t
′), independent of all other

random variables, as

P(G0(t
′) = r) =







βr
∑k0

i=1
βi

·
∑k0

i=1
βi−(Θt−1/2)

P(C0)
, 1 ≤ r ≤ k0,

P(C0)+Θt−1/2−
∑k0

i=1
βi

P(C0)
, r = 0.

If ω ∈ C−j for some j ≥ 0, j 6= 1 then add Gj(t
′) packets

to the smallest-indexed element of the set Ξ.

Case 2: B̃⋆(t) = 0.

As before, define a random variable H0(t
′) with

P(H0(t
′) = r) =

{
βr

P(C0)
, 1 ≤ r ≤ k0,

P(C0)−
∑k0

i=1
βi

P(C0)
, r = 0.

If ω ∈ C0, then add H0(t
′) packets to the smallest-indexed

element of the set Ξ.

We now analyze the four sub-cases of Case 1, and the

Case 2. The analysis of the different cases is similar, but we

present it for the sake of completeness.

Case 1, Sub-case C1: For each 1 ≤ j ≤ B̃⋆(t), the random

variables Dj(t
′) are valid and well-defined, and non-negative.

Thus, we add only a non-negative number of packets to one

23

of the queues in the system. For 1 ≤ r ≤ k0,

P(B̃⋆(t+ 1) = m+ r | B̃⋆(t) = m > 0)

= P(Cr) + P(C−1) · P(D1(t
′) = r + 1)

+

B̃⋆(t)
∑

j=2

P(C−j) ·P(Dj(t
′) = j + r)

= P(Cr) + P(C−1) ·
P(C−1)− 1/2

P(C−1)
· βr
∑k0

i=0 βi

+

B̃⋆(t)
∑

j=2

P(C−j) ·
βr

∑k0

i=0 βi

= P(Cr) +
βr

∑k0

i=0 βi

·





B̃⋆(t)
∑

j=1

P(C−j)−
1

2





︸ ︷︷ ︸

=Θt−1/2=
∑k0

i=0
βi

= P(Cr) + βr

=

(
k0
r

)

αr
n.

Further,

P(B̃⋆(t+ 1) = m− 1 | B̃⋆(t) = m > 0)

= P(C−1) ·
1/2

P(C−1)
= 1/2,

and for any r > 1,

P(B̃⋆(t+ 1) = m− r | B̃⋆(t) = m > 0) = 0.

Case 1, Sub-case C2: For each 1 ≤ j ≤ B̃⋆(t), the random

variables Ej(t
′) are valid and well-defined, and non-negative.

Since Θt − 1/2 <
∑k0

r=1 βr, in order to prove that E0(t
′)

is a valid random variable, we need to show that P(C0) +
Θt − 1/2 − ∑k0

r=1 βr ≥ 0 and P(C0) > 0. We show that

P(C0)+Θt−1/2−∑k0

r=1 βr ≥ 0.3, which implies P(C0) > 0.

We have

k0∑

i=1

βi ≤
k0∑

i=1

(
k0
i

)

αi
n = (1 + αn)

k0 − 1 ≤ 0.1.

Further, P(C0) + Θt +
∑k0

i=1 P(Ci) = 1, and

k0∑

i=1

P(Ci) ≤
k0∑

i=1

(
k0
i

)

αi
n = (1 + αn)

k0 − 1 ≤ 0.1.

Thus, P(C0)+Θt ≥ 0.9, or P(C0)+Θt−1/2 ≥ 0.4, implying

P(C0) + Θt − 1/2 − ∑k0

r=1 βr ≥ 0.3. Since Θt − 1/2 −
∑k0

r=1 βr < 0, we have P(C0) ≥ 0.3 > 0.

Next, we have for 1 ≤ r ≤ k0,

P(B̃⋆(t+ 1) = m+ r | B̃⋆(t) = m > 0)

= P(Cr) +
B̃⋆(t)
∑

j=0

P(C−j) · P(Ej(t
′) = j + r)

= P(Cr) + P(C−1) ·
P(C−1)− 1/2

P(C−1)
· βr
∑k0

i=1 βi

+

B̃⋆(t)
∑

j=2

P(C−j) ·
βr

∑k0

i=1 βi

+ P(C0) ·
∑k0

i=1 βi − (Θt − 1/2)

P(C0)
· βr
∑k0

i=1 βi

= P(Cr) +
βr

∑k0

i=1 βi





B̃⋆(t)
∑

j=1

P(C−j)−
1

2

+

k0∑

i=1

βi −Θt + 1/2

)

= P(Cr) + βr, since Θt =

B̃⋆(t)
∑

j=1

P(C−j)

=

(
k0
r

)

αr
n.

Further,

P(B̃⋆(t+ 1) = m− 1 | B̃⋆(t) = m > 0)

= P(C−1) ·
1/2

P(C−1)
= 1/2,

and for any r > 1,

P(B̃⋆(t+ 1) = m− r | B̃⋆(t) = m > 0) = 0.

Case 1, Sub-case C3: For each 2 ≤ j ≤ B̃⋆(t), the random

variables Fj(t
′) are valid and well-defined, and non-negative.

For 1 ≤ r ≤ k0,

P(B̃⋆(t+ 1) = m+ r | B̃⋆(t) = m > 0)

= P(Cr) +
B̃⋆(t)
∑

j=2

P(C−j) · P(Fj(t
′) = j + r)

= P(Cr) +
B̃⋆(t)
∑

j=2

P(C−j) ·
βr

∑k0

i=−1 βi

= P(Cr) +
βr

∑k0

i=−1 βi

·
B̃⋆(t)
∑

j=2

P(C−j)

(a)
= P(Cr) + βr

=

(
k0
r

)

αr
n.

Here the step (a) holds because
∑k0

i=−1 βi =
∑B̃⋆(t)

j=2 P(C−j).
Further, applying the above argument verbatim (until step (a))
for the case r = −1,

P(B̃⋆(t+1) = m−1 | B̃⋆(t) = m > 0) = P(C−1)+β−1 =
1

2
,

24

and for any r > 1,

P(B̃⋆(t+ 1) = m− r | B̃⋆(t) = m > 0) = 0.

Case 1, Sub-case C4: For each 2 ≤ j ≤ B̃⋆(t), the random

variables Gj(t
′) are valid and well-defined, and non-negative.

(To see that they are valid random variables, note that β−1 =
1/2−P(C−1) ≤ Θt−P(C−1), and Θt−P(C−1) > Θt−1/2 ≥
0.)

In order to prove that G0(t
′) is a valid random variable,

we need to show that P(C0) ≥ ∑k0

i=1 βi − (Θt − 1/2) and

P(C0) > 0. We show that P(C0)+Θt−1/2−∑k0

r=1 βr ≥ 0.3,

which implies P(C0) > 0 (since Θt − 1/2−∑k0

r=1 βr < 0).

We have

k0∑

i=1

βi ≤
k0∑

i=1

(
k0
i

)

αi
n = (1 + αn)

k0 − 1 ≤ 0.1.

Further, P(C0) + Θt +
∑k0

i=1 P(Ci) = 1, and

k0∑

i=1

P(Ci) ≤
k0∑

i=1

(
k0
i

)

αi
n = (1 + αn)

k0 − 1 ≤ 0.1.

Thus, P(C0)+Θt ≥ 0.9, or P(C0)+Θt−1/2 ≥ 0.4, implying

P(C0) + Θt − 1/2 − ∑k0

r=1 βr ≥ 0.3. Since Θt − 1/2 −
∑k0

r=1 βr < 0, we have P(C0) ≥ 0.3 > 0.
Next, for 1 ≤ r ≤ k0,

P(B̃⋆(t+ 1) = m+ r | B̃⋆(t) = m > 0)

= P(Cr) +
B̃⋆(t)
∑

j=2

P(C−j) · P(Gj(t
′) = j + r)

+ P(C0) ·P(G0(t
′) = j + r)

= P(Cr) +
B̃⋆(t)
∑

j=2

P(C−j) ·
βr

∑k0

i=1 βi

· Θt − 1/2

Θt − P(C−1)

+ P(C0) ·
∑k0

i=1 βi − (Θt − 1/2)

P(C0)
· βr
∑k0

i=1 βi

(a)
= P(Cr) +

βr
∑k0

i=1 βi

(
k0∑

i=1

βi

)

=

(
k0
r

)

αr
n,

where the step (a) holds because Θt − P(C−1) =
∑B̃⋆(t)

j=2 P(C−j), and the final step holds because βr =
(
k0

r

)
αr
n − P(Cr).

Further,

P(B̃⋆(t+ 1) = m− 1 | B̃⋆(t) = m > 0)

= P(C−1) +

B̃⋆(t)
∑

j=2

P(C−j) ·P(Gj(t
′) = j − 1)

= P(C−1) +

B̃⋆(t)
∑

j=2

P(C−j) ·
β−1

Θt − P(C−1)

(a)
= P(C−1) + β−1

(b)
= 1/2,

where the step (a) holds because Θt − P(C−1) =
∑B̃⋆(t)

j=2 P(C−j), and the step (b) holds because β−1 = 1/2−
P(C−1). Finally, for any r > 1,

P(B̃⋆(t+ 1) = m− r | B̃⋆(t) = m > 0) = 0.

Case 2: To show that H0(t
′) is a valid and well-defined

random variable, we need to show that P(C0) > 0 and P(C0)−∑r
i=1 βi ≥ 0. We have

k0∑

i=1

βi ≤
k0∑

i=1

(
k0
i

)

αi
n = (1 + αn)

k0 − 1 ≤ 0.1.

Further, since P(Ci) ≤
(
k0

i

)
αi
n for 1 ≤ i ≤ k0 and P(C0) +

∑k0

i=1 P(Ci) = 1, we have P(C0) ≥ 0.9 > 0, and P(C0) −∑r
i=1 βi ≥ 0.8 > 0. Also, the random variable H0(t

′) is

nonnegative.

Next, for 1 ≤ r ≤ k0,

P(B̃⋆(t+ 1) = r | B̃⋆(t) = 0)

= P(Cr) + P(C0) ·P(H0(t
′) = r)

= P(Cr) + P(C0) ·
βr

P(C0)

=

(
k0
r

)

αr
n,

since βr =
(
k0

r

)
αr
n − P(Cr).

Thus, under the specified packet addition method, the tran-

sition probabilities of B̃⋆(t′) obey (10) and (11) with equality.

Clearly with the specified packet-additions, the process B̃(t)
is Markovian, because given B̃(t), {B̃(u)}u>t is independent

of {B̃(s)}s<t.

