
1

Min-cost Selfish Multicast with Network Coding
Sandeep BhadraStudent Member, IEEE,Sanjay ShakkottaiMember, IEEE,and Piyush GuptaMember, IEEE

Abstract— The single-source min-cost multicast problem,
which can be framed as a convex optimization problem with
the use of network codes and convex increasing edge costs is
considered. A decentralized approach to this problem is presented
by Lun, Ratnakar et. al. for the case where all users cooperate
to reach the global minimum. Further, the cost for the scenario
where each of the multicast receivers greedily routes its flows is
analyzed and the existence of a Nash equilibrium is proved.

An allocation rule by which edge cost at each edge is allocated
to flows through that edge is presented. We prove that under our
pricing rule, the flow cost at user equilibrium is the same as the
min-cost. This leads to the construction of a selfish flow-steering
algorithm for each receiver, which is also globally optimal.
Further, the algorithm is extended for completely distributed flow
adaptation at nodes in the network to achieve globally minimal
cost in steady state. Analogous results are also presented for the
case of multiple multicast sessions.

Index Terms— network coding, minimum cost multicast, game
theory, Nash equilibrium, convex optimization

I. I NTRODUCTION

The single-source multicast problem for network coding has
received much attention in recent years due to the tractability
of designing optimal linear network codes for this case.
Ahlswede, et. al. in [2] prove that for networks where the min-
cut max-flow rate cannot be achieved by simple forwarding
of packets, coding incoming packets at intermediate routers
(network-coding) can help achieve the max-flow min-cut rate
for such networks. Further, Ho et al. [3], [4] suggest the
use of Random Linear Codes (RLCs) that can achieve the
above linear network code rate asymptotically in the size of
the symbol alphabet used for encoding/decoding. Since the
intermediate routers can code randomly independent of other
routers in the network, RLCs offer the means for decentralized
design of network codes and form the basis for practical
network coding schemes [5].

The problem of finding the minimum-cost multicast tree for
networks has been studied extensively. For a general directed
graph with a cost function at each edge, a specified root
(source) and a subset of the nodes (receivers), the problem
of finding a minimum-cost arborescence rooted at the source
and spanning all the receivers is called the Directed Steiner
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Tree (DST) problem. Approximation algorithms for the DST,
which is known to be NP-hard, has received considerable
attention in recent years. Charikar et al. [6] present a non-
trivial O(i(i− 1)k1/i) algorithm inO(nik2i) time wherek is
the number of receivers. An LP-relaxation of the problem leads
Zosin and Khuller [7] to aO(D + 1)-approximation for the
special case when the subgraph induced by the non-terminal
nodes is a tree of depthD.

A decentralized but cooperative scheme has been suggested
by Lun et al. in [1] where the authors solve the network-
coding min-cost optimization from [8] using primal-dual
methods by message passing between intermediate routers.
However, this scheme requires a separate (differential-equation
based) controller at each intermediate router for every flow
passing through it. Further, many current models of heteroge-
neous network service provisioning assume that selfish routing
decisions are made by end-users based on the price of the
links [9], [10]. Such scenarios are likely to emerge with ad
hoc or sensor networking where each end node is attached to
a single multicast sink and therefore seeks to minimize its own
cost. The dual problem of maximizing utility in a congestion
game over a packet-forwarding network is considered in [9],
[11]. Recently, the authors in [12] have framed this congestion
control problem for network coding for single- and multiple-
source multicasts as a generalization of the Eisenberg-Gale
convex program to compute market equilibrium in the presence
of economies of scale. Further, the primal-dual algorithm in [1]
requires computationally intensive steps to be performed at
each intermediate router.

In this paper, we seek to design a min-cost flow-allocation
algorithm when users are non-cooperative and minimize com-
putation performed at each intermediate router. The users are
assumed to be selfish agents that play a non-cooperative game
to minimize personal costs selfishly without regard to the
global or social optimal, and the expectation is that these
users reach a Nash equilibrium if one exists. It is well-known
that Nash equilibria do not optimize social welfare in general
- a classical example of such an inefficient equilibrium is
the ‘Prisoner’s Dilemma’ [13]. Thus it immediately becomes
important to quantify the inefficiency inherent in a selfish
solution - dubbed the ‘price of anarchy’ [14], [15].

The unicast selfish-agent min-cost routing problem is a
classical problem in transportation literature and has been
discussed in [16], [17], which corresponds to the uncoded
packet forwarding scenario. Recently, [14], [18], [19] calcu-
lated the price of anarchy for this problem for a variety of
convex cost functions for the capacitated and uncapacitated
links. However, the optimization problem for the multicast
min-cost flow with network coding as shown in the following
section departs significantly from the min-cost unicast flow
problem for uncoded packets and thus motivates independent



analysis.

A. Main Contributions

In this paper, we consider the min-cost flow routing prob-
lem with network coding for the selfish-agent case. We first
consider the case with a single source andT multicast sinks
(receivers), with each sink requiring a total rateR. We study
the case where the network supports multi-path routing. A flow
(along a particular path) from the source to a sink accumulates
a cost that depends on the flow rate as well as the congestion
on each of the links the flow traverses. Each sinkt “steers”
the flow rate allocation among its paths (i.e., among all paths
from the source to the selected sinkt such that the sum rate
across paths isR) such thatits total costis minimized (in other
words, a “greedy” setup for each sink). We then generalize this
framework to consider a multiple-sources scenario. The main
contributions are as follows.

(i) We present the min-cost optimization problem for the
single-source multicast with network coding and derive
an asymptotically accurate approximation to that problem
in Section II. The selfish routing scenario is presented
in Section III where a market is defined for bandwidth,
being sold by links (sellers), that is utilized by flows to
individual sinks (buyers).
We develop a mechanism for links (sellers) to allocate the
link-costs among users of the link and demonstrate that
for monomial edge cost functions(see section III), a Nash
equilibrium exists, and that the flow allocation at Nash
equilibrium corresponds to the min-cost flow. Further,
we show that capacitated links (i.e, links with capacity
constraints) can be approximated arbitrarily closely using
edge cost functions in the monomial class described in
Section III.
In other words, we show that the mechanism that we
develop for link pricing leads to a rate allocation among
users such that “greedy” flow rate allocation by each
sink leads to a globally optimal flow rate allocation that
minimizes the total cost in the network. In terms of
algorithmic game-theoretic literature, this means that the
‘price of anarchy’ [14], [15] for the considered “greedy”
system is 1.

(ii) In Section IV, we consider the multiple-source multicast
problem and demonstrate a sub-optimal greedy scheme
to achieve min-cost by selectively network coding within
individual multicast sessions and not across sessions.
(We note in passing that the general multi-source multi-
destination network coding problem is intractable (NP
hard) [20].)

(iii) Next, in Section V we presentUESSM, User Equilibrium
with Single Source Multicast, a non-cooperative decen-
tralized flow-steering algorithm that provably converges
arbitrarily close to a min-cost flow allocation for the
class of convex, monomial edge cost functions defined
in Section III. At each receiver, UESSM “steers” flows
across the paths leading to it in order to greedily minimize
its own cost. This allows us to achieve the min-cost flow
with network coding, without having to maintain state or

perform per-flow primal-dual type calculations at every
intermediate router. All that links have to do in UESSM
is to allocate link costs according to the rule developed
in subsection III-A.

(iv) We next develop the Local Distributed Selfish Routing
Algorithm (LDSRA) for min-cost routing. This algorithm
is a local distributed algorithm where nodes in the net-
work adjust flow fractions based on the local flow and
cost information at each node and its neighbors. This is
an analog of the Bellman-Ford algorithm, however, in
the context of network coding. By using the end-to-end
delay experienced by a probe packet as the marginal cost,
LDSRA minimizes the total network latency (sum cost)
by reallocating flows from the more expensive (greater
delay) neighbor toward a cheaper (lower delay) one. We
finally present simulation results for both UESSM and
LDSRA to illustrate convergence properties.

II. GLOBAL EQUILIBRIUM

Consider a directed graphG = (N, A) that models the
network with the set of nodesN and the set of directed edges
between themA. We consider a multicast session of rateR
from sources ∈ N to each of the sinkst ∈ T, T ⊆ N
implemented via multipath routing along the directed graph
(network model). Flows along the set of pathsPt from s to
t are indexed asfP ∈ R for all P ∈ Pt; P = ∪t∈TPt is the
set of all possible paths. Note that an edge may carry two or
more flows to the same sink due to the presence of multipath
routing.

We will associate a cost with the flow through each link on
the network and formulate a global min-cost problem as one
that minimizes the sum cost over the network. Accordingly,
let ce(·) be the cost function corresponding to edgee ∈ A
taking as argument a variablex dependent on the flows
through edgee. We assume that the functionce(x) is strictly
convex, positive, differentiable and monotonically increasing
in variable x, with ce(0) = 0. Further, we define the edge
marginal costme(x) = ce(x)/x. We assume that the marginal
cost is continuous and strictly increasing, withme(0) = 0.

Under traditional packet forwarding where packets are
treated as objects, the cost of operating an edge in the graphis
a function of the load of all packets that traverse that edge to
all sinks. Most of the classical work on network optimization
therefore deals with cost functions that take as argument the
total fluid flow of packets to all sinks passing through that
edge. That is,x =

∑

t∈T

∑

P∈Pt
fP and the corresponding

edge cost incurred isce(
∑

t∈T

∑

P∈Pt
fP ).

However, since we consider the case where intermediate
routers perform random linear coding across packets to differ-
ent sinks, it can be shown that the cost functionce(·) takes as
argumentx = maxt∈T

∑

P∈Pt
fP [8]. To see this intuitively,

observe that under Random Linear Coding (RLC), packets to
different sinks are linearly combined by the router to form
a coded packet. In the fluid sense therefore, RLC allows for
flows to different sinks to ’merge’ to form the coded flow.
This implies that on any edge, the effective size of the coded
packet stream is dominated by the largest among net flows to
each sink that traverse the edge.
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Formally, the optimal cost for a rateR multicast connection
from a single sources ∈ N to sink nodesT ⊂ N is given by
the solution to the following optimization problem similarto
[1], [8],

GLOBAL(G, c, R)

minimize C(f) =
∑

e∈A

ce(ze)

subject toze = max
t

{

∑

P∈Pt:e∈P

fP

}

∀e ∈ A

fP ≥ 0 ∀P ∈ P
∑

P∈Pt

fP = R ∀t ∈ T.

However, sincemax{. . .} is not differentiable everywhere,
motivated by the approach in [21], [1], we use theLn-
approximation

max{x1, x2, . . . xk} = lim
n→∞

(

k
∑

i=1

xn
i

)1/n

for analysis, thereby avoiding sub-gradient methods. Following
the approximation of themax() above theLn-relaxed cost
function of GLOBAL(G, c, R),

Cn(f) =
∑

e∈A

ce





[

∑

t∈T

(
∑

P∈Pt:e∈P

fP )n

]1/n




is differentiable everywhere. Formally, letC∗
n be the optimal

solution to Ln-GLOBAL(G, c, R) and C∗ be the optimal
solution to GLOBAL(G, c, R).

We note that thisLn-approximation is motivated by the fact
that asn→∞, |C∗−C∗

n| → 0. Later (in Section III) we will
derive bounds on the approximation error for finiten for the
class of functions considered in Section III (cf. Remark 3.1).

Since the cost functions are convex and the constraints
form a convex set, the first-order Karush-Kuhn-Tucker con-
ditions [22] are necessary and sufficient to solveLn-
GLOBAL(G, c, R). We summarize the results in the following
lemma.

Let z
(n)
e be the correspondingLn relaxation ofze defined

as

z(n)
e ,

(

∑

t∈T

xn
e,t

)1/n

where

xe,j ,
∑

P∈Pj :e∈P

fP

is the total flow of typej through the edgee.
Lemma 2.1:A network coded multicast flowf∗ is optimal

for Ln-GLOBAL(G, c, R) if and only if for all t ∈ T , and any
pathsP1, P2 ∈ Pt with strictly positive flowsf∗

P1
, f∗

P2
> 0

∑

e∈P1

c′e(z
(n)∗
e )α

(n)∗
e,j =

∑

e∈P2

c′e(z
(n)∗
e )α

(n)∗
e,j , (1)

for,

α
(n)
e,j ,

z
(n)
e

xe,j
.

1
∑

t∈T (
xe,t

xe,j
)n

. (2)

Proof: We append the cost function with the linear constraints
via the Lagrangian multipliersλt, µP to form the Lagrangian

L(f, λ, µ) = Cn(f) +
∑

t∈T

λt(
∑

P∈Pt

fP −R)−
∑

P∈P

µP fp.

We differentiate the Lagrangian with respect to each flow
fP , and the Lagrangian multipliers and equate each partial
differential to zero to form a set of simultaneous equations
in f , λ and µ. Solving these equations yields a minimizing
solutionf∗, λ∗, µ∗. Note that for allP ∈ P , f∗

P andµ∗
P are

complementary slack, i.e.f∗
P µ∗

P = 0 with µ∗
P ≥ 0. Hence for

paths with strictly positive flow, differentiatingL(f, λ, µ) with
respect to a particular flowfP1 , for P1 ∈ Pj , gives

∑

e∈P1

c′e(z
(n)
e )

(
∑

P∈Pj :e∈P fP

z
(n)
e

)n−1

+ λj = 0,

wherec′e(x) = ∂ce(x)
∂x . This implies that∀P1, P2 ∈ Pj with

f∗
P1

> 0,

∑

e∈P1

c′e(z
(n)∗
e )

(
∑

P∈Pj :e∈P f∗
P

z
(n)∗
e

)n−1

≤
∑

e∈P2

c′e(z
(n)∗
e )

(
∑

P∈Pj :e∈P f∗
P

z
(n)∗
e

)n−1

.

(3)

We are now done.

We note in passing that the behavior of

αe,j , lim
n→∞

α
(n)
e,j (4)

is not immediately clear – we cannot immediately state if the
limit even exists. However, for anyn ∈ N and any edgee
with positive flows, we have from (2) that

∑

t∈T

α
(n)
e,t =

[

z
(n−1)
e

z
(n)
e

]n−1

≥ 1 (5)

where the last inequality follows since the continuous function
L(p) = (

∑

i xp
i )

1/p can be seen to be monotone decreasing
in p for all p ≥ 1 when all xi ≥ 0. Further, from Hölder’s
inequality,

∑

t∈T

xn−1
e,t .1 ≤ (

∑

t∈T

xn
e,t)

n−1
n (
∑

t∈T

1)
1
n

= (z(n)
e )n−1|T |1/n.

Using the definition ofα(n)
e,t from (2) and the above inequality,

∑

t∈T

α
(n)
e,t =

∑

t∈T xn−1
e,t

(z
(n)
e )n−1

≤ |T |1/n (6)
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for every value ofn. Then, from (6) and (5), it follows that

lim
n→∞

∑

t∈T

α
(n)
e,t = 1.

III. SELFISH ROUTING AND EQUILIBRIUM

The solution to GLOBAL finds the optimum flow that
minimizes routing cost in the overall network cost. This
section deals with the system under the condition that each
receiver minimizes its own cost to achieve user equilibrium
under a defined bandwidth market to model selfish behavior
as shown below. The ultimate goal of this section (and the next,
respectively), is to show that under certain conditions once,
the user equilibrium corresponds to the global equilibrium(is
comparable to the global equilibrium of a related optimization,
respectively). These results will motivate a user-equilibrium
based distributed optimization algorithm, discussed in Sec-
tion V.

A. The bandwidth market and link price-allocation

Each edgee ∈ A sells bandwidth to the receivers (sinks)
which are the users. Note that in the solution to the global
problem we were merely concerned with the effective cost of
the edgece(z

(n)
e ) and did not need to consider how the cost of

an edge in the network is divided among the flows through that
network, while this sharing of costs (price allocation) needs
to be defined for the user costs.

Hence, we propose a price allocation rule at each link and
subsequently show that under this protocol, the sum cost under
user equilibrium is equal to the min-cost for a wide range of
cost functionsce. Our price allocation rule is as follows. For
each edgee the total cost of the flowsce(z

(n)
e ) is divided

among flows of all typet ∈ T so that
xn

e,j
P

t∈T
xn

e,t
fraction of

the edge cost is borne by the flows infP , P ∈ Pj of type j.
In turn xe,j is divided among all flows of typej through edge
e in the ratiofP /xe,j for all P ∈ Pj . Thus the marginal cost
of a flow fP through a pathP ∈ Pj , j ∈ T

d
(n)
P (f),

∑

e∈P

ce(z
(n)
e )

1

xe,j

xn
e,j

∑

t∈T xn
e,t

. (7)

Observe that by simply multiplying and dividing byz(n)
e , (7)

can be written as

d
(n)
P (f) =

∑

e∈P

ce(z
(n)
e )

z
(n)
e

α
(n)
e,j ,

whereα
(n)
e,j is as defined in (2).

B. User costs and equilibrium

Under the selfish condition, each flow from sources to des-
tinationj tries to minimize its marginal cost. This corresponds
to each receiver minimizing its own total cost selfishly.

Since the cost functions are continuous and differentiable
everywhere, we defineuser equilibriumas follows,

Definition 3.1: A user equilibriumis a flow allocationf
feasible inLn-GLOBAL(G, c, R) such that for anyP1, P2 ∈
Pt wherefP1 > 0,

d
(n)
P1

(f) ≤ d
(n)
P2

(f). (8)
Note that this version of user equilibrium is also referred to as
a local Nash equilibriumor Wardrop equilibriumin existing
literature [16], [19].

Corresponding to this equilibrium, the total system cost for
the flow f at Nash equilibrium is then

Cn(f),
∑

P∈P

d
(n)
P (f)fP .

In other words, any smallε → 0 change to the flow
allocations from pathP1 to P2 will only increase the sum cost
along the paths inPt for sink t. The notion of a local Nash
equilibrium can be practically justified in scenarios whereend
users are in a distributed setting, with no or partial knowledge
of the system, and try to reach their own local selfish optima
by making small modifications to the flow allocations across
paths inPt, where the flow steering proceeds only if that
provides the selfish agent with immediate cost reduction.

C. User equilibrium vs. Global optimum

The similarity between the conditions in Lemma 2.1 and
Definition 3.1 have been noticed for the case of costs de-
pending on sum flows through an edge by Dafermos and
Sparrow [16] and Beckman [17] and is cited by [14]. An
important difference in our case is that while the edge cost in
[14], [16], [17] is proportionally divided among all the flows
through it, here, the cost is mainly borne by the sink with
the maximum flow through the edge. The following lemma
(adapted from [16], [17]) allows us to formulate the Nash
equilibrium condition for a particular set of edge cost functions
in terms of a global optimum for the same graph overa
different set of edge-cost functions.

Lemma 3.1 ( [16], [17]): A single-source multicast flowf
solvesLn-GLOBAL(G, c, R) if and only if it is in local Nash
equilibrium for Ln-GLOBAL(G, c′(x)x, R). Further, a local
Nash equilibrium flowf exists for Ln-GLOBAL(G, c, R).
Moreover, if f and f̃ are feasible flows at Nash equilibrium,
thenCn(f) = Cn(f̃).
Proof: Comparing the KKT conditions from Lemma 2.1
with the user equilibrium conditions from Definition 3.1
leads us directly to the first statement of the Lemma. For
the second statement, note that solving for a flow in local
Nash equilibrium forLn-GLOBAL(G, c, R) corresponds to
finding a (local) optimum flow forLn-GLOBAL(G, h, R),
where he(x) =

∫ x

0
ce(t)/t dt. Since ce is continuous and

monotonically increasing,he is strictly convex. Consequently,
Ln-GLOBAL(G, h, R) is a convex optimization over a
convex set which implies that the optimum cost is unique,
even though the solution points (the local minima) are not
necessarily unique.

This ensures that there exists a flow allocation that satisfies
the user equilibrium (8).
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We can now present the analog of the main result in Rough-
garden and Tardos [14] for the min-cost multicast problem
with network coding in the following theorem.

Theorem 3.1:If for an instanceLn − (G, c, R) the cost
function at each edgee is of the monomial formce(z

(n)
e ) =

ae(z
(n)
e )k+1 for any fixedk ∈ R, k > 0, then for alln ∈ N,

the cost of flowf at local Nash equilibriumCn(f) equals the
costCn(f∗) of the global min-cost flowf∗.

Proof: Since ce(z
(n)
e )/z

(n)
e = ae(z

(n)
e )k is monotonic

increasing inz(n)
e for k > 0, we know from Lemma 3.1 that

a Nash equilibrium exists. Further, note that for the given
class of cost functions, the Nash condition (8) is the same
as the KKT condition in (1). Hence, a Nash flow is also an
optimum flow for the instanceLn − (G, c, R) and thus the
cost functions are the same.

We note that notwithstanding the simplicity of the proof, the
above result is significant due to it’s application in Section V.
The result above implies that for a large class of edge cost
functions, a global min-cost multicast with network codingcan
be achieved by merely steering flows across edges to achieve
user equilibrium corresponding to each sinkt. In other words,
the price of anarchyis 1.

Note that in general, the global min-cost flow can be
achieved if each link charges the “Lagrangian cost”he(x) =
∫ x

0
ce(t)/t dt instead of the true costce(x). However, this

would imply that the seller (link) earns an amount dispropor-
tionate to the true value of the goods or services (bandwidth)
sold. The link-price allocation scheme detailed in subsection
III-A ensures that the seller receives the ‘fair’ costce(x) but
charges the selfish users differently so as to ensure that user
equilibrium coincides with the socially-optimal flow alloca-
tion.

Observe that atn = 1, theL1-GLOBAL(G, c, R) problem
is the same as the classical min-cost flow-allocation problem.
Also, correspondingly, our price allocation reduces to the
allocation of link cost to a sink in linear proportion to the
magnitude of flow to that sink through the particular link –
thereby making the marginal cost of every flow through a link
the same. This is exactly the same as the anarchic scenario
in [14] where each flow through a particular edgee has the
same marginal cost (edge delay)le and the net cost of that
edgece = le

∑

e∈P,P∈P fP .
In general, the results herein define a differentiated pricing

scheme for a shared service whose cost depends not on
the sum of the demands but on the max demand. At the
limit n → ∞, we observe that only the set of usersT ′ =
arg maxt∈T

∑

P∈Pt:e∈P fP pay for the cost of the link. Our
price allocation rule automatically induces separate selfish
agents to collaborate to benefit from this economy of scale.

Remark 3.1:We now revisit the issue of the approximation
error resulting from theLn-relaxation of GLOBAL(G, c, R).
Recall that in Section II, the approximation was motivated by
the fact that the error in the optimal cost (for any convex,
increasing, differentiable link cost function) approaches 0 as
n→∞. In this remark, we strengthen this statement by deriv-
ing bounds on the approximation error for finite values ofn for

the class of functions of the formce(x) = aex
k+1 considered

in Theorem 3.1. For any givenδ > 0, we compute ann(δ)
such that for anyn > n(δ), the fractional approximation error
(i.e., percentage error)|C∗ − C∗

n|/C∗ ≤ δ is satisfied.
Let f∗ be a solution to GLOBAL(G, c, R) and f∗

n be a
solution toLn-GLOBAL(G, c, R). Further, let an optimal sum
flow through edgee in the unrelaxed GLOBAL problem be
denoted byx∗

e,t,
∑

P∈Pt:e∈P f∗
P .

Observe that for any vector(xe,t)t∈T of size |T |, if
ze,maxt∈T xe,t and z

(n)
e ,(

∑

t∈T xn
e,t)

1/n, then we can
bound the difference

z(n)
e − ze ≤ (|T |1/n − 1)ze.

Sincef∗ is not necessarily an optimal flow allocation for
Ln-GLOBAL(G, c, R),

C∗
n ≤

∑

e∈A

ae|T |
(k+1)/n(z∗e )k+1

≤ |T |(k+1)/n
∑

e∈A

ae(z
∗
e )k+1

= |T |(k+1)/nC∗.

Thus, to ensure that|C∗ − C∗
n|/C∗ ≤ δ, we can solve for

n to arrive at

n(δ) >
(k + 1) log |T |

log(1 + δ)
.

We note in passing that this bound is independent of the
graph topology. We also refer the reader to Figures 1 and
2 in Section V-E which show that theLn-relaxation closely
approximates themax(·) function for even small values ofn.

D. Multicast over Capacitated Links

We next construct a feasible multicast over a set of ca-
pacitated links based on the above analysis. Letke be the
capacity of edgee ∈ A. Suppose it is further desirable that
most links in the network are loaded below(1 − δ) factor
of their capacities. This may be necessary to satisfy quality
of service requirements, such as those on the average delay
(note that in the presence of bursty traffic, the queueing delay
becomes unbounded as the load approaches unity1).

1Recall that in the presence of stochastically time-varyingflows (for
instance, bursty packet rates from applications such as video/multimedia, flow
connection initiations and terminations, etc), the average delay of a flow in a
queueing system becomes large as the flow size gets close to the link capacity.
This can be readily seen in an M/M/1 queue where the average delay increases
as1/δ. In general, for a GI/GI/1 queue, with inter-arrival timesT of variance
σ2

T
and inter-service timesX of varianceσ2

X
, from Kingman’s upper and

lower bounds [23],

E[T ]σ2

X
− E[X](2 − ρ)

2(1 − ρ)
≤ E[W ] ≤

σ2

X
+ σ2

T

2(1 − ρ)

we know that as the offered loadρ approaches1 – that is as the mean arrival
rate of data on a link is close to the link capacity – the mean waiting time
for a packet entering the queueE[W ] scales in proportion to(1−ρ)−1 . The
result can be extended from one queue to a Generalized Jackson Network of
queues, where Gamarnik and Zeevi [24] demonstrate that in the heavy traffic
limit as ρn = 1 − k/

√
n for largen, the mean delay scales asO(

√
n).
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To solve the above constrained multicast problem, we define
the cost function of each edge,e ∈ A, as

ce(x),

(

x

ke(1− δ)

)m

.

Observe that asm → ∞, edge costs will tend to zero for
edges that satisfy the above constraints and become large for
edges that do not. Hence, if there is a feasible flow allocation
f for (G, c, R) over the constrained links, then the costC(f) at
Nash equilibrium will be small, tending to zero asm becomes
large. In fact, there existsm0 such that for allm > m0 the
flow at Nash equilibrium satisfy the capacity constraints ofall
edges. More specifically, let|A| denote the size ofA (i.e., it
is the total number of edges in the network), then an upper
bound onm0 is

m0 =
log |A|

− log(1− δ)
. (9)

The reason for this is as follows. Since there exists a feasible
flow f satisfying the above constraints, the global min-cost
with the edge cost functions as above is at most|A|. Now,
from Theorem 3.1, the cost of floŵf at Nash equilibrium is
the same as the global min-cost. Hence, it is too at most|A|.
However, if f̂ were to assign flow to an edge greater than its
capacity, the cost on that edge alone will be at least1/(1−δ)m,
which would be greater than|A| for any m > m0, wherem0

is as in (9).

IV. M ULTIPLE MULTICASTS

In this section, we generalize the single-source multicast
problem to the multiple-multicast sessions problem where each
session corresponds to a source node taken from the setS ∈
N . Within each multicast sessions ∈ S, network coding is
performed across packets destined for sinks in setTs ⊆ N .
However, packets are not encoded across sessions to ensure
computationally tractable decoding at each sink. So, each sink
t ∈ Ts, can steer it’s flows across the set of pathsPs

t from
sources to sink t so as to deliver a total rate ofRs

t . As before,
the total set of pathsP,

⋃

s∈S

⋃

t∈Ts
Ps

t .
We can then formulate the min-cost problem M-

GLOBAL(G, c, R) for multiple multicasts in the same way
as [12]:

M-GLOBAL(G, c, R)

minimize C(f) =
∑

e∈A

ce(ze)

subject toze =
∑

s∈S

ze,s ∀e ∈ A

ze,s
∆
= max

t∈Ts







∑

P∈Ps
t :e∈P

fP







, fP ≥ 0 ∀P ∈ P

∑

P∈Ps
t

fP = Rs
t ∀s ∈ S, ∀t ∈ T.

The correspondingLn-relaxed cost function for M-
GLOBAL(G, c, R) is

Cn(f) =
∑

e∈A

ce







∑

s∈S





∑

t∈Ts

(
∑

P∈Ps
t ;e∈P

fP )n





1/n





.

Differentiating the equivalent Lagrangian

L(f, λ, µ) = Cn(f) +
∑

s∈S

∑

t∈Ts

λ
(s)
t





∑

P∈Ps
t

fP −Rs
t



−
∑

P∈P

µpfp

with respect to a particular flowfP1 , P1 ∈ P
σ
j and applying

the limit n → ∞, we observe that at the minimizing flowf ,
for all P1, P2 ∈ P

σ
j ,

∑

e∈P1

c′e(z
(n)
e )

(∑

P∈Pσ
j
:e∈P fP

z
(n)
e,σ

)n−1

≤
∑

e∈P2

c′e(z
(n)
e )

(
∑

P∈Pσ
j
:e∈P fP

z
(n)
e,σ

)n−1

. (10)

where

z(n)
e,s =





∑

t∈T

(
∑

P∈Ps
t :e∈P

fP )n





1/n

(11)

andz
(n)
e =

∑

s∈S z
(n)
e,s .

Analogously, for eachs ∈ S, we define

x
(s)
e,j,

∑

e∈P :P∈Ps
j

fP .

The edge cost at each edgece(z
(n)
e ) is divided among each

s ∈ S in proportion to thez(n)
e,s max flow from eachs through

e, i.e.ce(ze)
z(n)

e,s

z
(n)
e

is the fraction of the cost picked up by the set
of flows towards sinkst ∈ Ts. Further, eacht ∈ Ts picks up

(x
(s)
e,j)

n

P

t∈T
(x

(s)
e,t)

n
fraction of z(n)

e,s , which in turn is divided among

all flows on pathsP ∈ Ps
t in the ratiofP /x

(s)
e,j .

Each sinkt ∈ T attempts to selfishly minimize the cost
of transmission to itself. Since the costs across different
sessions{s : t ∈ Ts} are additive at each edge and cost
functions at each edge are convex, minimizing total cost at
sink t is the same as minimizing the cost for each session
individually. Hence the criterion for local Nash equilibrium for
multiple-session multicasts can be summed up in the following
definition.

Definition 4.1: A flow f , feasible for the instance(G, c, R)
with multiple-multicast sessionsS, is in local Nash equilib-
rium if for all σ ∈ S andj ∈ Tσ, for anyP1, P2 ∈ P

σ
j ,

∑

e∈P1

ce(z
(n)
e )

z
(n)
e

(∑

P∈Pσ
j
:e∈P fP

z
(n)
e,σ

)n−1

≤
∑

e∈P2

ce(z
(n)
e )

z
(n)
e

(∑

P∈Pσ
j
:e∈P fP

z
(n)
e,σ

)n−1

. (12)
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We observe the similarity between (10) and (12) analogous
to that between (1) and (8). The following corollary follows
analogously from the reasoning in Section III:

Corollary 4.1: If for an instanceLn − (G, c, R), the cost
function at each edgee is of the power law formce(z

(n)
e ) =

ae(z
(n)
e )k+1 for any fixedk ∈ R, k > 0, then the cost of flow

f at local Nash equilibriumCn(f) equals the costCn(f∗) of
the global min-cost flowf∗.

V. D ISTRIBUTED ALGORITHMS FORM IN-COST FLOW

Section III demonstrates that the sum-cost of the edges
with any uniform power-law edge cost function under user
equilibrium is the same as the min-cost. This result lends
itself readily to the construction of a simple non-cooperative
optimal min-cost flow routing algorithm for a single-source
multicast with network coding. The following section deals
with the single-source multicast for sake of simplicity. Itis
easy to show that due to the separable and additive nature
of the costs for the multiple-source multicast, we can run the
same algorithm independently over each session to reach the
user equilibrium in this case too.

In this section, we develop two algorithms: User Equi-
librium with Single Source Multicast (UESSM) and Local
Distributed Selfish Routing Algorithm (LDSRA).

UESSM is a non-cooperative decentralized flow-steering al-
gorithm that provably converges to the min-cost flow allocation
for the class of convex, monomial edge cost functions defined
in Section III. At each receiver, UESSM “flow-steers” among
the paths leading to it in order to greedily minimize its cost.
This allows us to achieve the min-cost flow with network
coding, without having to perform per-flow primal-dual type
calculations at every intermediate router.

The Local Distributed Selfish Routing Algorithm (LDSRA)
for min-cost routing is a local distributed algorithm where
nodes in the network adjust flow fractions based on the local
flow and cost information at each node. This is an analog
of the Bellman-Ford algorithm, however, in the context of
network coding. By using the end-to-end delay experienced by
a probe packet as the marginal cost, LDSRA minimizes the
total network latency (sum cost) by reallocating flows from
the more expensive (greater delay) neighbor toward a cheaper
(lower delay) one.

A. UESSM: User Equilibrium with Single Source Multicast

The implementation of this algorithm, UESSM, assumes
flow routing between the source and destination, where the
source router encodes downstream hop-by-hop routing infor-
mation into the IP-header, as can be implemented in IPv6. The
intermediate routers in the network between the source and
sink do not need to maintain state-information locally. Allthat
the intermediate routers need to do is route packets along the
outgoing edges corresponding to the hop-by-hop information
embedded in each packet and network code across packets of
the same type at each instant of time using a random linear
code.

Also, each downstream packet aggregates the cost that it has
paid along each edge on a particular flow path. For efficiency,

this information need not be carried by every downstream
packet, but only by representative packets at each iteration
of the algorithm.

Algorithm: UESSM

Initialization: In our implementation, we will choose aε > 0
small enough [cf. Section V-C] such thatR/ε is a positive
integer, and require that all flow rates be at-leastε (a “keep-
alive” rate). Also, the flow allocations in our implementation
are elements from a latticeL = {0, ∆, 2∆, . . . , R}, for
some fixed∆ > 0 such thatR/∆ and ε/∆ are positive
integers. Thus, we can initialize at any arbitrary point on this
lattice. For instance, for each sinkt ∈ T we can initialize at
fP ′

t
= R − (Qt − 1)ε for someP ′

t ∈ Pt and fP = ε for all
P ∈ P\{P ′

t}.

Step: Now, one of the sinkst ∈ T is chosen at
random. Let us label the pathsP1, P2, . . . , PQ1 ,
PQ1+1, . . . , PQ1+Q2 , . . . PQ1+...QT−1+1, . . . PQ1+...QT−1+QT

whereQt is the number of paths from the source to destination
t. For some fixedξ > 0, a receivert picks a pair of paths
PPt−1

i=1 Qi+l and PPt−1
i=1 Qi+m, for any l, m = 1, 2, . . . , Qt

with l 6= m. Denoting

Pt,l = PPt−1
i=1 Qi+l (13)

Pt,m = PPt−1
i=1 Qi+m (14)

if
(a) dPt,l

(f) > dPt,m
(f) + ξ

(b) fPt,l
≥ ε + ∆

(c) fPt,m
≤ R−∆

then,fPt,l
← fPt,l

− ∆, fPt,m
← fPt,m

+ ∆. Conversely, if
(a), (b) and (c) hold withPt,l and Pt,m interchanged, then
fPt,m

← fPt,m
−∆, fPt,l

← fPt,l
+ ∆.

Termination:No user can make any flow switch if and only if
dPt,l

(f)−dPt,m
(f) ≥ −ξ, ∀t, l, m which are feasible (i.e., (b)

and (c) above are satisfied). In other words, at termination,for
any receivert and any pair of flowsl, m dPt,l

(f)−dPt,m
(f) <

−ξ if and only if fPt,m
= ε.

Note that we would like to distinguish between the terms
‘step’ and ‘iteration’ as follows. By a ‘step’, we will mean the
sequence of operations defined in the algorithm above. On the
other hand by an ‘iteration’ we mean a ‘step’ that results in
a flow reallocation. This distinction is made because due to
random selection, at a step no flow reallocation may occur. In
the rest of the paper, we will only count ‘iterations’.

B. Asynchronous implementation

The implementation of the algorithm above doesnot require
synchronous timing between the clocks at the various sink
nodes but only requires that the clocks have the same cycle
frequency. We assume that the path-delay timescale along the
network (for the update of the path costs etc.) is negligible
compared to the time-steps in which the algorithm proceeds.
Each sinkj ∈ T picks a random delay that is exponentially
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distributed before adjusting it’s flows in the manner outlined
in Subsection V-A. Since the exponential distribution is a
continuous time-distribution, the collision probabilityis small.
Further, since all flow steering is implemented at the source,
the source can be designed to sequentially adjust flows of
each sink. This ensures that only one sink adjusts flows at
a time in the asynchronous algorithm, thereby retaining the
same features as the synchronous implementation. Henceforth,
we will denote each source adjustment (reallocation) as an
iteration of the algorithm.

C. Convergence of UESSM to the min-cost flow

In this section, we restrict ourselves to edge cost functions of
the formce(x) = aex

k+1, k > 0, as discussed in Section III.
From Theorem 3.1, it follows that a global optimum is the
same as the cost at a Nash equilibrium.

Recall that in UESSM we are restricting each flow to have
a rate of at leastε. Now, we chooseε as follows: Given any
α > 0, we will chooseε such that
(i) ε > 0
(ii) ε < R/Qt ∀t = 1, 2, . . . , |T |
(iii) R/ε ∈ N

(iv) |C∗
n − C∗

n(ε)| < α,
whereC∗

n is the optimal cost toLn-GLOBAL(G, c, R), and
C∗

n(ε) is the optimal cost toLn-GLOBAL(G, c, R) under the
additional constraint thatfP ≥ ε, ∀P ∈ P . Observe that
under this restricted simplex, the GLOBAL problem is still
convex and differentiable. Further, since the cost functions are
differentiable and finite, and the constraint sets are convex,
given any α > 0, there exists anε such that the above
conditions hold. Also, letf∗(ε) be an optimal solution toLn-
GLOBAL(G, c, R) with the ε-restricted convex constraint set.

Next, for any destinationt ∈ T we will formalize the notion
of an infinitesimal reallocation of flows from pathPt,l to
path Pt,m as defined in Equations (13),(14). Recall that due
to monomial cost edge function and theLn-approximation,
the global cost functionCn() is differentiable at all points.
Accordingly, we can define∇Cn(f) = (∂Cn(f)

∂fP
)P∈P to be

the |P|-sized vector whose elements are∂Cn(f)
∂fP

.
Further, we define direction vectors E to be

the collection of all vectors of the formet,l,m =
[0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0] ∈ {−1, 0, 1}|P| where
the Pt,l-th element is−1 and the correspondingPt,m-th
element is1. (Note that the vectors are not necessarily linearly
independent – for example,et,l,m = −et,m,l). Accordingly,
an infinitesimal shift of flow fromPt,l to Pt,m is given by
the inner product∇Cn(f)T .et,l,m.

In the following, we will utilize the property that the
gradient function∇Cn(f) is Lipschitz over the the space of
feasible flow vectorsf .

Lemma 5.1:∇Cn(f) is Lipschitz in the space of feasible
flow vectorsf with Lipschitz constantL(ε).
Proof: We refer the reader to [28].

Recall that the constraint set (set of feasible flow rates) is
described by a convex set where the flows corresponding to
each receivert is constrained to lie on a|Qt|-dimensional

(scaled) simplex (i.e., for eacht ∈ T,
∑

l∈Qt
ft,l = R, ft,l ≥

0). For eachf in the constraint set, we denoteE(f) ⊆ E to
be the set offeasible direction vectors, where anyet,l ∈ E(f)
satisfies the following: a∆ shift of flow in the directionet,l

from f leads tof ′ which is a feasible flow vector.
Lemma 5.2:Fix any α > 0. Then, choose the following

parameters for the UESSM algorithm:

(i) Let ξ = α
2(k+1)R|P|2 , wherek is the exponent in the edge

cost function (ce(z) = ae(z
(n))k+1),

(ii) Choose any∆ ≤ min{ε/10, ξ(k+1)
2L(ε) } such thatε/∆ is a

positive integer, andL(ε) is given in Lemma 5.1.

With the above conditions, the following holds: Suppose
that the algorithm UESSM terminates at iterationM. Then,
|Cn(f (M)) − C∗

n(ε)| < α, whereCn(f (M)) is the cost with
flow allocation f (M), and C∗

n(ε) is the optimal cost of the
convex problemLn-GLOBAL(G, c, R) under the constraint
that for all P ∈ P , fP ≥ ε.
Proof: Let f∗(ε) be an optimal flow corresponding to solu-
tion C∗

n(ε) and f (M) denote the flow in theM -th iteration
(termination) of the algorithm.

SinceCn() is convex, it follows from the gradient formula
that

Cn(f (M)) ≥ Cn(f∗(ε))

≥ Cn(f (M)) +∇Cn(f (M))T .(f∗(ε)− f (M)). (15)

Now, recallE(f (M)) is the set of feasible direction vectors
corresponding to flowf (M).
Claim: There exists non-negativeπt,l,m such that

f∗(ε) = f (M) +
∑

et,l,m∈E(f(M))

πt,l,met,l,m (16)

Proof: For eacht ∈ T, we define the vectorγt to be a{0, 1}
vector of dimensionP where γt,l = 1 for all l = Qt−1 +
1, . . . , Qt and 0 other-wise (i.e.,γt corresponds to the flows
destined for receivert).

We now decomposef∗(ε)− f (M) =
∑

t∈T (f∗
t (ε)− f

(M)
t )

wheref∗
t = f∗(ε) ∗ γt, (and similarly forf (M)

t ) where the
∗ operation corresponds to term-by-term multiplication (thus,
f∗

t (ε) corresponds to the flows for receivert).
Now, consider the (scaled and shifted)) simplex of feasible

flows to receiver 1, i.e.,A1 = {
∑Q1

l=1 f1,l = R andf1,l ≥ ε}.
Let vi, i = 0, 1, 2, . . .Q1 be the vertices of the (scaled and
shifted) simplexA1 (then dimensional scaled and shifted sim-
plex hasQ1 vertices, with each vertex having one component
equalR− (Q1 − 1)ε and all other components beingε).

As the set is a convex simplex, we have for someai ≥
0,
∑

i ai = 1,

f∗
1 (ε) =

Q1
∑

i=0

aivi

Now, we consider two cases:

Case (i):f (M)
1 is an interior point ofA1.

In this case, all directions vectorse1,l,m atf (M) are feasible,
and the existence of non-negative ofπ1,l is immediate. All
direction vectors are feasible for the following reason: Wehave
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by the algorithm description (and the explicit construction of
the values given in the Lemma statement) thatf (M) lies on
the ∆ lattice andε/∆ and R/∆ are positive integers. Thus,
f (M) lies in the interior ofA1 implies that each component
of f

(M)
1 has flow rate value of at-leastε + ∆, in which case

all direction vectors are feasible.
Case (ii): f (M)

1 is a boundary point ofA1.
Now, note that for a simplex of dimensionQ1 − 1, all

boundary points can be described by(a) points that lie strictly
within the interior of a simplex of dimensionk for some
k = 1, . . .Q1 − 2 or (b) the boundary point lies on a vertex
of the simplex (i.e,k = 0).

For case (a), without loss of generality, let the boundary
point be in the interior of a simplex of dimensionk with
verticesv0, v1, . . . vk. Then,

f
(M)
1 =

k
∑

i=0

bivi

for non-negativebi such that
∑

i bi = 1. Thus, we have

f∗
1 (ε)− f

(M)
1 =

Q1
∑

i=0

aivi −

k
∑

i=0

bivi

=

k
∑

i=0

aivi +

Q1
∑

i=k+1

ai(vi − vk) + vk(

Q1
∑

i=k+1

ai)−

k
∑

i=0

bivi

Now, let

f̃1 =

k−1
∑

i=0

aivi +

(

Q1
∑

i=k

ai

)

vk

Then, note that since
∑

i ai = 1, f̃1 lies in thek-dimensional
simplex with vertices{vi, i = 0, . . . , k}. We now have

f∗
1 (ε)− f

(M)
1 = (f̃1 − f

(M)
1 ) +

Q1
∑

i=k+1

ai(vi − vk)

where, by construction,ai ≥ 0 and f̃1 and f
(M)
1 lie on the

k-dimension simplex, withf (M)
1 in the strict interior of this

simplex. Thus, all vectors within the simplex are feasible (i.e.,
the direction vectors corresponding to both(vi − vk) and
(vk − vi) for i = 0, 1, . . . , k are feasible asf (M)

1 in the strict
interior), we can choose feasible directions with non-negative
weights to move fromf (M)

1 to f̃1. In other-words,(f̃1−f
(M)
1 )

can be expressed as a non-negative weighted sum of feasible
direction vectors.

For case (b) where we are terminating at the vertex (say
v0) of the Q1 − 1 dimension simplex, the existence of non-
negativeπtl

follows becausef∗
1 (ε) is in the (ε)-constrained

set, and the feasible directions include all directions of the
form vi − v0, i = 1, 2, . . . , Q1 which span the simplex set.

The proof is analogous for all other receivers.

Thus, from (15) and (16), we have

Cn(f (M)) ≥ Cn(f∗(ε))

≥ Cn(f (M)) +∇Cn(f (M))T .
∑

et,l,m∈E(f(M))

πt,l,met,l,m

where πt,l,m are non-negative andet,l,m are feasible. From
the termination condition of UESSM, we now have that along
all feasibledirections,dPt,m

(f)− dPt,l
(f) ≥ −ξ. This is due

to the following reason: Supposeet,l,m is a feasible direction.
This implies a∆ flow reallocation is allowed from flowfPt,l

to
flow fPt,m

at iterationM. However, by the statement of the
Lemma, iterationM is the termination step. Thus, UESSM
decides not to re-allocate from flowfPt,l

to flow fPm,l
. This

can happen due to one of two possibilities:(A) dPt,l
(f (M)) ≤

dPt,m
(f (M)) (i.e., Pt,l is already a “cheaper” path thanPt,m,

so UESSM does not further decrease the rate along flowfPt,l
),

in which case we havedPt,m
(f) − dPt,l

(f) ≥ 0 > −ξ. The
other possibility is(B) wheredPt,m

(f (M)) ≤ dPt,l
(f (M)) <

dPt,m
(f (M))+ξ (i.e., the cost along pathPt,l is only “slightly”

more expensive than pathPt,m, and thus, UESSM decides not
to switch). In case(B), we have0 ≥ dPt,m

(f)−dPt,l
(f) ≥ −ξ.

Now, because the edge cost function is of the form
ae(z

(n))k+1, k > 0, we have

∇Cn(f (M))T .et,l,m = (k + 1)
(

dPt,m
(f)− dPt,l

(f)
)

Thus, from the termination condition, we have

∇Cn(f (M))T .
∑

et,l,m∈E(f(M))

πt,l,met,l,m ≥ −(k + 1)
∑

et,l,m∈E(f(M))

πt,l,mξ

(In other words, at termination, along all feasible directions,
the negative gradient is small).

Now, due to the fact thatπt,l,m are bounded byR (as
the space is bounded) and the fact that|E(f (M))| is finite
(because the number of paths are finite, an upper bound is
2|P|2), we can chooseξ as in the Lemma statement to ensure
that the difference in cost is no more thanα.

Lemma 5.3:For a givenα > 0, let us fix ξ = α
2(k+1)R|P|2 .

Choose any (strictly) positive∆ ≤ ξ(k+1)
2L such thatε/∆ is a

positive integer, andL = L(ε) is given in Lemma 5.1. Further,
chooseβ = ∆((k + 1)ξ −∆L) .

Suppose that at iterationM, there exists a usert ∈ T ,
Pt,l = PPt−1

i=1 Qi+l for some l = 1, 2, . . . , Qt and Pt,m =
PP

t
i=1 Qi+m, for somem = 1, 2, . . . , Qt (i.e. Pt,l, Pt,m ∈ Pt)

such thatdPt,l
(f) − dPt,m

(f) < −ξ andfPt,m
≥ ε + ∆ (i.e.,

a ∆ flow switch is feasible).
Then, we have that a flow switch of∆ from flows Pt,m to

Pt,l ensures thatC(M+1)
n − C

(M)
n < −β < 0.

Proof: To prove that a flow readjustment will cause a reduction
in the overall cost function, we will borrow some results
from the proof of convergence of constant step-size descent
algorithms. Specifically, we will use the techniques in [22,
Props 1.2.3, A.24] to demonstrate that if the gradient of the
cost function is Lipschitz over the state space of flows, thenif
the difference of marginal costs between the paths are outside
a ball of sizeξ, the net cost reduction following a∆ ≤ ξ(k+1)

2L
readjustment of flows will be at least byβ > 0, where
β = ∆((k + 1)ξ −∆L) .

Note that by considering a flow reallocation from
Pt,m to Pt,l, the direction of descentet,m,l =
[0, 0, . . . , 0,−1, 0 . . .0, 1, 0 . . .0], where elements−1 and 1
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correspond to pathsPt,m and Pt,l in the |P| length vector
et,m,l.

Now,

Cn(f) =
∑

e∈A

ae(ze)
k+1

=
∑

e∈P

ae(ze)
k+1 +

∑

e∈A\P

ae(ze)
k+1.

Thus, differentiating with respect to flowfP whereP ∈ Pt

∂Cn(f)

∂fP
=

∂

∂fP

∑

e∈P

ae(ze)
k+1 + 0

=
∑

e∈P

ae(k + 1)(ze)
k

(

xe,t

ze

)n−1

. (17)

Also, observe that from (7) and (17), for the considered
class of cost functionsce(ze) = aez

k+1
e ,

∇Cn(f)T .et,m,l =
∂Cn

∂fPt,l

−
∂Cn

∂fPt,m

= (k + 1)
(

dPt,l
(f)− dPt,m

(f)
)

(18)

< −(k + 1)ξ (19)

where the last step follows from the lemma flow condition.
From the descent lemma [22, Prop A.24], we have that if

L is the Lipschitz constant for∇Cn(f) over the space off ,
then

Cn(f + ∆et,m,l)− Cn(f)

≤ ∆∇Cn(f)T .et,m,l +
1

2
∆2L||et,m,l||

2

< ∆

(

−(k + 1)ξ +
1

2
∆L||et,m,l||

2

)

≤ ∆(−(k + 1)ξ + ∆L)

Choosing∆ ≤ ξ(k+1)
2L , (such thatε/∆ is a positive integer),

we have the desired result.

We are now ready to state the main result of this section.
Theorem 5.1:Choose the parametersα, ξ and ∆ given

in Lemma 5.2. Then, UESSM converges in a finite number
of iterations (at iterationM ), with the termination condition
satisfying|Cn(f (M))−C∗

n| < 2α, whereCn(f (M)) is the cost
with flow allocationf (M), andC∗

n is the optimal cost of the
convex problemLn-GLOBAL(G, c, R).
Proof: For each flow allocationf that is not at the terminal
condition, by the description of UESSM, there exists at least
one usert ∈ T and some pair of pathsPt,l, Pt,m ∈ Pt such
thatdPt,l

(f)−dPt,m
(f) > −ξ for which a∆ flow reallocation

is feasible.
Then, we have from Lemma 5.3 any feasible flow real-

location will reduce the sum cost by at leastβ > 0, i.e.
Cn(f (s+1)) − Cn(f (s)) ≤ −β < 0 at iteration s. Hence,
at each iteration until the termination condition is reached,
the cost function decreases by at leastβ. The initial cost
Cn(f (0)) of the iterations is positive bounded and the cost
is non-negative. This implies that the algorithm will terminate
in a finite number of iterations. Finally, from Lemma 5.2 the
termination condition satisfies|Cn(f (M))− C∗

n(ε)| < α.

Further, note that we have chosenε such that
|C∗

n − C∗
n(ε)| < α holds. Hence, by the triangle

inequality,|Cn(f (M))− C∗
n| < 2α.

Although, UESSM converges and has provably good con-
vergence properties, UESSM requires the source to maintain
path information for all paths from the source to the destina-
tions. This motivates the design of a local distributed algorithm
where nodes adjust flow fractions based on the local flow and
cost information at each node. We present such an algorithm
in the following subsection.

D. Local Distributed Selfish Routing Algorithm (LDSRA) for
Min-Cost Routing

Local routing algorithms for cost minimization have been
studied in the past in the context of ad hoc network routing
protocols, such as STARA [25], [26]. Such an algorithm can
be implemented with an exponential-forgetting estimationas
in STARA to estimate marginal costs from the source to
each downstream node in the network and adjust fractional
allocation of flows at each node so as to minimize the local
marginal cost.

The algorithm proceeds in two phases. In the first phase,
each nodes identifies a set of neighborsNk

s to reach destina-
tion k. Also, each node intermittently transmits probe packets
alongNk

s , which accumulate marginal costs along the paths,
and the feedback from these are used to estimate the marginal
cost Dk

s,n(t) from s to k along each particular neighbor
n ∈ Nk

s at time t. The second phase is the flow reallocation
phase. Each node compares the estimated marginal costs of
flows to a particular destination and then shifts flow allocation
by a fraction∆ from the neighbor with higher marginal cost
to one with lower marginal cost.

It can be shown that under steady state a flow allocation
is at a user equilibrium (cf. Definition 3.1)if and only if all
utilized paths from each node to each sink have equal marginal
costs (see for instance Lemma 6.1 [26]). Since the above flow
reallocation phase achieves the latter objective, under steady
state it will also be at a user equilibrium. Further, if all edge
costs are monomials, from Theorem 3.1 it follows that the
above flow reallocation will have globally minimum cost in
steady state.

In our simulations discussed next, we assume that the rate
at which nodes reallocate flows is much slower than the
rate at which probe packets are generated and cost estimates
are gathered by each node. This allows us to assume, for
purposes of simulation, that the estimatesDk

s,n(t) at each node
s are ideal. Future work will focus on designing stochastic-
approximation based algorithms for joint estimation and rate
allocation in this distributed framework, as well as analyzing
its convergence and the rate of convergence under these
conditions similar to the analysis in [27].

E. Simulation results

We simulate UESSM over the classic 7-node butterfly
network in [1], [2] with the edge costs shown in Figure 1 for a
rate 1 multicast session from sourceS1 to destinationsD1 and
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Fig. 1. 7-node Butterfly network.

0 100 200 300 400
4

6

8

10

12

14

Number of Iterations

C
os

t

 

 

n=1
n=2
n=5
n=10
n=100

Fig. 2. UESSM Algorithm: ComparingLn approximation forn =
1, 2, 5, 10, 100.

D2. The links are marked with the edge cost functionsce(x).
In this example,P1 = {f1, f2, f3} andP2 = {F1, F2, F3}.

We first study howCn(f) changes with increasing values
of n in the Ln-approximation to themax function. The
trajectories for 100 representative UESSM runs with∆ = 0.01
with varying values ofn are plotted in Figure 2. Then = 1
case corresponds to multicast without network coding and
has a much higher sum-cost than that achieved by theL100-
approximation, which is very close to the cost with using
the non-differentiablemax function in GLOBAL(G, c, R).
However, we note that there is not much gain in going from
n = 10 to n = 100. This suggests that theLn-approximation
works well for even small values ofn. Recall that we have
bounded the minimum value ofn(δ) given an approximation
error targetδ > 0 in Remark 3.1.

We have also shown error bars corresponding to one stan-
dard deviation about the mean, with random initial condi-
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Fig. 3. UESSM Algorithm trajectories: Sum costs and flows forthe Butterfly
network,L10-GLOBAL(G, c, R), ∆ = 0.01.

tions. We observe that, irrespective of initial conditions, the
simulation sum-cost trajectories converges to the mean with
progressively small variance. Typical trajectories of flowrates
through various paths for the Butterfly network are presented
in Figure 3 with a step-size of∆ = 0.01.

We next provide simulation results with the LDSRA algo-
rithm for the same Butterfly network. The costs under twoLn-
approximations (n = 1, 10) are plotted in Figure 4. We note
that as expected,Ln cost decreases asn increases. Further, a
comparison of Figures 2 and 4 verifies that both algorithms
converge to the same sum-cost. Also, we compare the flows
through the central edge in Figure 5 and observe that the
equilibrium state corresponds to the symmetric min-sum cost
flow allocation.

VI. CONCLUSION

In this work, we have presented a cost splitting rule at
each link for the min-cost problem using network coding and
demonstrated that under this rule, the sum-cost across the
network at user equilibrium is the same as the min-cost subject
to the condition that all edges satisfy a uniform monomial cost
function. Further, based on this result, we present two selfish
min-cost routing algorithms - UESSM and LDSRA - which

11



0 50 100 150 200 250 300 350 400
4

6

8

10

12

14

16

Number of Iterations

co
st

n = 1
n = 10

Fig. 4. Butterfly Network with the LDSRA Algorithm:Ln approx-
imation for n = 1, 10.

0 50 100 150 200 250 300 350 400
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Iterations

flo
w

 v
al

ue
s

Flow to D
1

Flow to D
2

Fig. 5. Butterfly Network with the LDSRA Algorithm: Flow
allocation to central edge.

have desired performance in simulations. Additionally, we
prove that UESSM converges to the min-cost flow allocation
for any network topology.

Observe that in our discussion of multicast with many
sources, we restricted the mixing of data to only between
flows from a a particular sink. However, note that mixing
between flows from different sources would involve designing
a network code for the many-sources many-sinks problem.
It is known that optimal code-design for such a case is NP-
Hard [20]. Thus, the design and analysis of approximation
algorithms for network coding with multiple-sources multi-
casting simultaneously would be an important area of future
research.
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