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Abstract— The single-source min-cost multicast problem, Tree (DST) problem. Approximation algorithms for the DST,
which can be framed as a convex optimization problem with which is known to be NP-hard, has received considerable

the use of network codes and convex increasing edge costs isattention in recent years. Charikar et al. [6] present a non-
considered. A decentralized approach to this problem is preented . . | O(ili E1/1) algorithm inO(ni ki) ti herek |

by Lun, Ratnakar et. al. for the case where all users cooperat trivial O(i(i — 1) _) algorithm inO(n . i) time where: is
to reach the global minimum. Further, the cost for the scenaio the number of receivers. An LP-relaxation of the problend¢ea

where each of the multicast receivers greedily routes its fles is  Zosin and Khuller [7] to aO(D + 1)-approximation for the
analyzed and the existence of a Nash equilibrium is proved.  gpecial case when the subgraph induced by the non-terminal
An allocation rule by which edge cost at each edge is allocate nodes is a tree of depth.

to flows through that edge is presented. We prove that under au . .
pricing rule, the flow cost at user equilibrium is the same as lie A decentralized but cooperative scheme has been suggested

min-cost. This leads to the construction of a selfish flow-seging PY Lun et al. in [1] where the authors solve the network-
algorithm for each receiver, which is also globally optimal coding min-cost optimization from [8] using primal-dual

Further, the algorithm is extended for completely distributed flow  methods by message passing between intermediate routers.
adaptation at nodes in the network to achieve globally miniral However, this scheme requires a separate (differentiadian
cost in steady state. Analogous results are also presenteaf fthe based) controller at each intermediate router for every flow
case of multiple multicast sessions. . :

passing through it. Further, many current models of heterog
neous network service provisioning assume that selfishingut
decisions are made by end-users based on the price of the
links [9], [10]. Such scenarios are likely to emerge with ad
I. INTRODUCTION hoc or sensor networking where each end node is attached to

The single-source multicast problem for network coding h&sSingle multicast sink and therefore seeks to minimizevits o
received much attention in recent years due to the traittabilCOSt: The dual problem of maximizing utility in a congestion
of designing optimal linear network codes for this casg@me over a packet-forwarding network is considered in [9],
Ahlswede, et. al. in [2] prove that for networks where the mir11]- Recently, the authors in [12] have framed this conigest
cut max-flow rate cannot be achieved by simple forwardirfgPntrol problem for network coding for single- and multiple
of packets, coding incoming packets at intermediate reut§oUrce multicasts as a generalization of the Eisenberg-Gal
(network-coding) can help achieve the max-flow min-cut raf®NVex program to compute market equilibrium in the presenc
for such networks. Further, Ho et al. [3], [4] suggest thef economies of scgle. Fur_ther, the primal-dual algorithrfi]
use of Random Linear Codes (RLCs) that can achieve tfRglUires computationally intensive steps to be perfornted a
above linear network code rate asymptotically in the size 8fCh intermediate router. _ , ,
the symbol alphabet used for encoding/decoding. Since thdn this paper, we seek to design a min-cost flow-allocation
intermediate routers can code randomly independent of otifg0rithm when users are non-cooperative and minimize com-
routers in the network, RLCs offer the means for decentlizPutation performed at each intermediate router. The users a
design of network codes and form the basis for practic@Sumed to be selfish agents that play a non-cooperative game
network coding schemes [5]. to minimize personz_;tl costs selfishly Wlthogt rggard to the

The problem of finding the minimum-cost multicast tree foflobal or social optimal, and the expectation is that these
networks has been studied extensively. For a general ditect'Sers reach a Nash equilibrium if one exists. It is well-know
graph with a cost function at each edge, a specified rdg@t Nash equilibria do not optimize social welfare in geer
(source) and a subset of the nodes (receivers), the problerd classical example of such an inefficient equilibrium is
of finding a minimum-cost arborescence rooted at the souff¥¢ ‘Prisoner's Dilemma’ [13]. Thus it immediately becomes

and spanning all the receivers is called the Directed Steirf@Portant to quantify the inefficiency inherent in a selfish
solution - dubbed the ‘price of anarchy’ [14], [15].
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analysis. perform per-flow primal-dual type calculations at every
intermediate router. All that links have to do in UESSM

is to allocate link costs according to the rule developed
in subsection IlI-A.

In this paper, we consider the min-cost flow routing proiy) we next develop the Local Distributed Selfish Routing
lem with network coding for the selfish-agent case. We first Algorithm (LDSRA for min-cost routing. This algorithm
consider the case with a single source @ndnulticast sinks is a local distributed algorithm where nodes in the net-
(receivers), with each sink requiring a total rdte We study work adjust flow fractions based on the local flow and
the case where the network supports multi-path routing. W flo  cost information at each node and its neighbors. This is
(along a particular path) from the source to a sink accuraslat  gn analog of the Bellman-Ford algorithm, however, in
a cost that depends on the flow rate as well as the congestion the context of network coding. By using the end-to-end

A. Main Contributions

on each of the links the flow traverses. Each sirfisteers” de|ay experienced by a probe packet as the margina' cost,
the flow rate allocation among its paths (i.e., among all path | pSRA minimizes the total network latency (sum cost)
from the source to the selected sitilsuch that the sum rate by rea”ocating flows from the more expensive (greater
across paths i®) such thaits total costis minimized (in other delay) neighbor toward a cheaper (lower delay) one. We

words, a “greedy” setup for each sink). We then generalise th  finally present simulation results for both UESSM and
framework to consider a multiple-sources scenario. Theymai | pSRA to illustrate convergence properties.

contributions are as follows.

(i) We present the min-cost optimization problem for the Il. GLOBAL EQUILIBRIUM
single-source multicast with network coding and derive Consider a directed grapd = (NN, A) that models the
an asymptotically accurate approximation to that problenetwork with the set of node¥ and the set of directed edges
in Section Il. The selfish routing scenario is presentdsetween themd. We consider a multicast session of rdte
in Section Il where a market is defined for bandwidthfrom sources € N to each of the sinkg € T,7 C N
being sold by links (sellers), that is utilized by flows tdmplemented via multipath routing along the directed graph
individual sinks (buyers). (network model). Flows along the set of patRs from s to
We develop a mechanism for links (sellers) to allocate theare indexed agp € R for all P € P;; P = UserP; is the
link-costs among users of the link and demonstrate thedt of all possible paths. Note that an edge may carry two or
for monomial edge cost functiofsee section Il), a Nash more flows to the same sink due to the presence of multipath
equilibrium exists, and that the flow allocation at Naskouting.
equilibrium corresponds to the min-cost flow. Further, We will associate a cost with the flow through each link on
we show that capacitated links (i.e, links with capacitthe network and formulate a global min-cost problem as one
constraints) can be approximated arbitrarily closely gisirthat minimizes the sum cost over the network. Accordingly,
edge cost functions in the monomial class described ligt c.(-) be the cost function corresponding to edges A
Section llI. taking as argument a variable dependent on the flows
In other words, we show that the mechanism that warough edge. We assume that the functian(z) is strictly
develop for link pricing leads to a rate allocation amongonvex, positive, differentiable and monotonically irasing
users such that “greedy” flow rate allocation by eacim variable z, with ¢.(0) = 0. Further, we define the edge
sink leads to a globally optimal flow rate allocation thainarginal costn.(z) = c.(x)/z. We assume that the marginal
minimizes thetotal costin the network. In terms of cost is continuous and strictly increasing, with.(0) = 0.
algorithmic game-theoretic literature, this means that th Under traditional packet forwarding where packets are
‘price of anarchy’ [14], [15] for the considered “greedy"treated as objects, the cost of operating an edge in the éggaph
system is 1. a function of the load of all packets that traverse that edge t

(i) In Section IV, we consider the multiple-source mulsta all sinks. Most of the classical work on network optimizatio
problem and demonstrate a sub-optimal greedy schetherefore deals with cost functions that take as argument th
to achieve min-cost by selectively network coding withinotal fluid flow of packets to all sinks passing through that
individual multicast sessions and not across sessioesige. That isy = >, > pcp, fp @and the corresponding
(We note in passing that the general multi-source mulédge cost incurred i&.(>_, 1 > pcp, fP)-
destination network coding problem is intractable (NP However, since we consider the case where intermediate
hard) [20].) routers perform random linear coding across packets terdliff

(iii) Next, in Section V we presettESSM User Equilibrium ent sinks, it can be shown that the cost functipfi) takes as
with Single Source Multicast, a non-cooperative deceafgumentr = max;cr ZPGP, fp [8]. To see this intuitively,
tralized flow-steering algorithm that provably convergesbserve that under Random Linear Coding (RLC), packets to
arbitrarily close to a min-cost flow allocation for thedifferent sinks are linearly combined by the router to form
class of convex, monomial edge cost functions definedcoded packet. In the fluid sense therefore, RLC allows for
in Section Ill. At each receiver, UESSM “steers” flowdlows to different sinks to 'merge’ to form the coded flow.
across the paths leading to it in order to greedily minimiZéhis implies that on any edge, the effective size of the coded
its own cost. This allows us to achieve the min-cost flopacket stream is dominated by the largest among net flows to
with network coding, without having to maintain state oeach sink that traverse the edge.



Formally, the optimal cost for a rat® multicast connection for,

from a single source € N to sink nodesl’ C N is given by (n) 1
the solution to the following optimization problem similay ai".) s Ze —_— 2
[1], [8], ! Tej dperla )" _
Proof: We append the cost function with the linear constraints
GLOBAL(G, ¢, R) via the Lagrangian multipliers,, up to form the Lagrangian
minimize C(f) = ZACe(Ze) LA =CalH)+ M fo =R = 3 prts
e€ teT  PcPy pePp
subject toz, = max{ Z fp} Ve € A We differentiate the Lagrangian with respect to each flow
PEPrecP fp, and the Lagrangian multipliers and equate each partial
fp > 0 VYPeP differential to zero to form a set of simultaneous equations
Z fp = R WteT in f, A and u. Solving these equations yields a minimizing

solution f*, \*, u*. Note that for allP € P, f; andu} are

complementary slack, i.€;up = 0 with u > 0. Hence for
However, sincemax{. ..} is not differentiable everywhere, paths with strictly positive flow, differentiating(f, \, u) with

motivated by the approach in [21], [1], we use tifg,- respect to a particular floyip,, for P, € P;, gives

approximation = ; -
o P
E\YT > ) (—Pepﬂ('nfp ) =0,

max{x1, X9, ... 2k} = lim (Zx?) 2 Ze
=1

wherec,(z) = 2%7 This implies that/Py, P, € P; with
for analysis, thereby avoiding sub-gradient methods oiagtig fp, >0,
the approximation of themax() above thel,-relaxed cost

PecP;

n—1
function of GLOBAL(G, c, R), S ) <Zpe7>j:eep fﬁ)
1/n ecP; o Zén)* (3)
Cn(f) = Z Ce [Z( Z fP)n‘| , ZPGP-:eeP Ip n
ecA teT PEP.:ecP < Z (M) # .
echP; Ze

is differentiable everywhere. Formally, I€t* be the optimal
solution to £,-GLOBAL(G, ¢, R) and C* be the optimal e are now done.

solution to GLOBAL(G, ¢, R). n
We note that this,,-approximation is motivated by the fact . ) )

that asn — oo, |C* — C*| — 0. Later (in Section Ill) we will ~ We note in passing that the behavior of

derive bounds on the approximation error for finitfor the o 2 im o™ (4)

class of functions considered in Section Il (cf. Remark).3.1 “ n—oo ©J

Since the cost functions are convex and the constraiigsnot immediately clear — we cannot immediately state if the
form a convex set, the first-order Karush-Kuhn-Tucker coflimit even exists. However, for any € N and any edge

ditions [22] are necessary and sufficient to sol#g- with positive flows, we have from (2) that
GLOBAL(G, ¢, R). We summarize the results in the following

n—1
lemma. Za(”) _ Sn=D
Let zé") be the corresponding,, relaxation ofz. defined P et 2
as > 1 5)
L) A Z 2 where the last inequality follows since the continuous fiamc
¢ Py et Lip) = 3, xf)l/i’ can be seen to be monotone decreasing
in p for all p > 1 when allz; > 0. Further, from Holder's
where inequality,
T 2 ), el < Qar) T QT
PcPj:ecP teT teT teT

_ n)\n—1 1/n
is the total flow of typej through the edge. = (M)t

Lemma 2.1:A network coded multicast flowy™ is optimal - sjng the definition o&"™) from (2) and the above inequality,
for £,-GLOBAL(G, ¢, R) if and only if for all t € T', and any '

paths P, P, € P, with strictly positive flowsfz, , f3, > 0 Z ) rer x?,fl
Qg 4 = e e
& (nM)yn—1
Z Cé(zé")*)ai?* _ Z cé(zén)*)a((;;)*’ ) teT (Zf )
ec P, ecPs < |T| /n (6)



for every value ofn. Then, from (6) and (5), it follows that Definition 3.1: Auser equilibriumis a flow allocation f
feasible in£,,-GLOBAL(, ¢, R) such that for anyP;, P, €

JHEOZ ol =1. P, where fp, > 0,
teT
di(f) < d (). (8)
I1l. SELFISH ROUTING AND EQUILIBRIUM Note that this version of user equilibrium is also referrecs$

_ i _ a local Nash equilibriumor Wardrop equilibriumin existing
The solution to GLOBAL finds the optimum flow thatjioraiure [16], [19].

minimizes routing cost in the overall network cost. This
section deals with the system under the condition that e
receiver minimizes its own cost to achieve user equilibrium
under a defined bandwidth market to model selfish behavior Cn(f)2 Z dg;”(f)fp,
as shown below. The ultimate goal of this section (and th¢ nex Pep
respectively), is to show that under certain conditionscgn

the user equilibrium corresponds to the global equilibrifisn . . .
. L allocations from pattP; to P, will only increase the sum cost
comparable to the global equilibrium of a related optimiat ) . ;
P 9 q b along the paths irP; for sink ¢t. The notion of a local Nash

respectively). These results will motivate a user-eqiilim A : S .
based distributed optimization algorithm, discussed m_Seequmbnum can .be _pract|cally_just|f|¢d In scenarios wherel
tion V. users are in a distributed setting, with no or partial knagke
of the system, and try to reach their own local selfish optima
by making small modifications to the flow allocations across
A. The bandwidth market and link price-allocation paths inP;, where the flow steering proceeds only if that
j)rovides the selfish agent with immediate cost reduction.

Corresponding to this equilibrium, the total system cost fo
flow f at Nash equilibrium is then

In other words, any smalk — 0 change to the flow

Each edges € A sells bandwidth to the receivers (sinks
which are the users. Note that in the solution to the global
problem we were merely concerned with the effective cost @f. User equilibrium vs. Global optimum

the edge?e(zén)) and did not need to consider how the cost of 1, gimjjarity between the conditions in Lemma 2.1 and
an edge in the network is divided among the flows through thghiniion 3.1 have been noticed for the case of costs de-
network, while this sharing of costs (price allocation) dee pending on sum flows through an edge by Dafermos and

to be defined for the user costs. _ Sparrow [16] and Beckman [17] and is cited by [14]. An

Hence, we propose a price allocation rule at each link affqrtant difference in our case is that while the edge qost |
subsequently show that under this protocol, the sum costrun 4], [16], [17] is proportionally divided among all the flaw
user equilibrium is equal to the min-cost for a wide range ‘i’lf]rough it, here, the cost is mainly borne by the sink with
cost functionsc.. Our price allocation rule is as follows. FOrthe maximum flow through the edge. The following lemma
each edgee the total cost of the ﬂow&iglzé")) is divided (adapted from [16], [17]) allows us to formulate the Nash
among flows of all type € T' so that ~—=Z— fraction of  equilibrium condition for a particular set of edge cost ftiows
the edge cost is borne by the flows fp, P € P; of typej. in terms of a global optimum for the same graph ower
In turn z. ; is divided among all flows of typg through edge different set of edge-cost functions

e in the ratiofp/x. ; for all P € P;. Thus the marginal cost Lemma 3.1 ( [16], [17]): A single-source multicast flovf

of a flow fp through a pathP? € P;, j € T' solvesL,,-GLOBAL(G, ¢, R) if and only if it is in local Nash
" equilibrium for £,,-GLOBAL(G, ¢/(x)x, R). Further, a local
dg‘)(f)ézce(zén)) 1 Lﬂn (7) Nash equilibrium flow f exists for £,-GLOBAL(G, c, R).
ccp Tej Dot Tot Moreover, if f and f are feasible flows at Nash equilibrium,

Observe that by simply multiplying and dividing by, (7) Proof: Comparing the KKT conditions from Lemma 2.1

can be written as with the user equilibrium conditions from Definition 3.1
leads us directly to the first statement of the Lemma. For
dgf) (f) = Z Ce(fz) )ag’_lj), the second statement, note that solving for a flow in local
ecP “e Nash equilibrium for.Z,-GLOBAL(G, ¢, R) corresponds to
(n) ] ) finding a (local) optimum flow forl,-GLOBAL(G, h, R),
wherea, ; is as defined in (2). where he(z) = [3 c.(t)/t dt. Sincec, is continuous and

monotonically increasingj. is strictly convex. Consequently,
L,-GLOBAL(G, h,R) is a convex optimization over a

_ - convex set which implies that the optimum cost is unique,
Under the selfish condition, each flow from sousd® des- even though the solution points (the local minima) are not

tination j tries to minimize its marginal cost. This correspondgecessarily unique. [
to each receiver minimizing its own total cost selfishly.

Since the cost functions are continuous and differentiableThijs ensures that there exists a flow allocation that sagisfie
everywhere, we definaser equilibriumas follows, the user equilibrium (8).

B. User costs and equilibrium



We can now present the analog of the main result in Rougie class of functions of the form (z) = a.2z**! considered
garden and Tardos [14] for the min-cost multicast problem Theorem 3.1. For any give& > 0, we compute am(J)

with network coding in the following theorem. such that for any: > n(6), the fractional approximation error
Theorem 3.1:If for an instancel, — (G,c, R) the cost (i.e., percentage errof{* — Cyx|/C* < ¢ is satisfied.
function at each edge is of the monomial forme, (z{") = Let f* be a solution to GLOBALG,c, R) and f;; be a

ac(z8)R+1 for any fixedk € R, k > 0, then for alln € N, solution to£,-GLOBAL (G, ¢, R). Further, let an optimal sum
the cost of flowf at local Nash equilibriunt,, () equals the flow through edge: in the unrelaxed GLOBAL problem be

costC,(f*) of the global min-cost flowf*. denoted byr} , =" pep,.ccp [5 _ _

Proof: Since ¢ (Z(n))/z(n) - 4 (Z(n))k is monotonic Observe that for ar(1y) vectofz, +)ier Of size |T, if
e\~e e e\~e N n) A n \1/n

increasing in={") for k& > 0, we know from Lemma 3.1 that Ze= MaXter Te,r ANd 2 =3 cp a7y) /m, then we can

a Nash equilibrium exists. Further, note that for the givehound the difference

class of cost functions, the Nash condition (8) is the same L) _ < (lTll/n 1)z,

as the KKT condition in (1). Hence, a Nash flow is also an
optimum flow for the instance,, — (G,c, R) and thus the  Since f* is not necessarily an optimal flow allocation for

cost functions are the same. B [£,-GLOBAL(G,c, R),
We note that notwithstanding the simplicity of the proof th Cr < Y ac|T|*FD/m )k
above result is significant due to it's application in Settia e€A
The result above implies that for a large class of edge cost < TN " (20)E
functions, a global min-cost multicast with network codaam ecA
be achieved by merely steering flows across edges to achieve - |T|(k“>/"0*.
user equilibrium corresponding to each sinkn other words,
the price of anarchyis 1. Thus, to ensure thgC* — C*|/C* < 4, we can solve for
Note that in general, the global min-cost flow can ba to arrive at
aghieved if each link charges the “Lagrangian cdst{z) = (k+1)log|T|
Jo ce(t)/t dt instead of the true cost.(x). However, this n(9) Tlog(l+o)

would imply that the seller (link) earns an amount disprepor

tionate to the true value of the goods or services (bandyidth We note in passing that this bound is independent of the
sold. The link-price allocation scheme detailed in sukisact 9raph topology. We also refer the reader to Figures 1 and
lll-A ensures that the seller receives the ‘“fair’ cestz) but 2 in Section V-E which show that thé,-relaxation closely
charges the selfish users differently so as to ensure that LAjProximates thenax(-) function for even small values of.
equilibrium coincides with the socially-optimal flow allac L
tion.

_ Observe that ab = 1, 'Fhe £1?GLOBAL(G,C, R) problem D. Multicast over Capacitated Links

is the same as the classical min-cost flow-allocation prable ) )

Also, correspondingly, our price allocation reduces to the W& Next construct a feasible multicast over a set of ca-
allocation of link cost to a sink in linear proportion to thd*@citated links based on the above analysis. ketbe the
magnitude of flow to that sink through the particular link -S@Pacity of edge: € A. Suppose it is further desirable that
thereby making the marginal cost of every flow through a linf0St links in the network are loaded belaw — 9) factor

the same. This is exactly the same as the anarchic scen&Qfi¢heir capacities. This may be necessary to satisfy qualit
in [14] where each flow through a particular edgdas the of service requirements, such as those on the average delay

same marginal cost (edge deldy)and the net cost of that (note that in the presence of bursty traffic, the queueingydel
edgece =l Y oep pep P becomes unbounded as the load approachesjinity
e — le ec A c .

In general, the results her_eln define a differentiated pyici !Recall that in the presence of stochastically time-varyftays (for
scheme for a shared service whose cost depends notifafince, bursty packet rates from applications such afrielltimedia, flow
the sum of the demands but on the max demand. At thennection initiations and terminations, etc), the averdglay of a flow in a

i _ queueing system becomes large as the flow size gets close liokitapacity.
limit 7 — oo, we observe that Only the set of usefs This can be readily seen in an M/M/1 queue where the averdgg thereases

arg maxser ZPGPt:eGP fp pay_for th? cost of the link. Our ‘as1/6. In general, for a GI/GI/1 queue, with inter-arrival tim&sof variance
price allocation rule automatically induces separate selfic? and inter-service times( of variances?;, from Kingman's upper and

agents to collaborate to benefit from this economy of scalg/®e" bounds  [23],
Remark 3.1:We now revisit the issue of the approximation E[T]o% — E[X](2 - p) < BW] < 0% +o02
error resulting from theC, -relaxation of GLOBALG, ¢, R). 2(1 — p) - = 2(1—p)
Recall that in Section “'_ the apprquatlon was mOt'Vatgd tllve know that as the offered loadapproached — that is as the mean arrival
the fact that the error in the optimal cost (for any conveXate of data on a link is close to the link capacity — the meaitingatime

increasing, differentiable link cost function) approasheas for a packet entering the quedg{iV] scales in proportion t¢1 —p)~*. The
.result can be extended from one queue to a Generalized Jabletoork of

n — . In this remark, we strgngthen this .Stf’ﬂement by de“\ﬂaeues, where Gamarnik and Zeevi [24] demonstrate thakiméavy traffic
ing bounds on the approximation error for finite values dbr limit as p,, = 1 — k/+/n for largen, the mean delay scales &5+y/n).




To solve the above constrained multicast problem, we defineThe correspondingL,-relaxed cost function for M-
the cost function of each edgec A, as GLOBAL(G, ¢, R) is

1/n
A

X
ce(®)= <7k6(1 - 5>> : )=S0 S g
e€cA seS |[teTs PeP;iecP

Observe that asn — oo, edge costs will tend to zero for
edges that satisfy the above constraints and become large fdlifferentiating the equivalent Lagrangian
edges that do not. Hence, if there is a feasible flow allonatio
f for (G, ¢, R) over the constrained links, then the a@sf) at (s)
Nash equilibrium will be small, tending to zero msbegm)”nes E(F A m) )+ Z Z At Z Ir = B Z o fo
large. In fact, there existsiy such that for allm > mg the
flow at Nash equilibrium satisfy the capacity constraintslbf with respect to a particular flowp,, P1 € P7 and applying
edges. More specifically, letd| denote the size ofl (i.e., it the limitn — oo, we observe that at the minimizing floyy
is the total number of edges in the network), then an uppler all P, P € P7,

bound onmy is o1
/() ZPGP;:eeP frp
Z . (z") —

seSteTs eP; PeP

log |4
0= Tlog(1—0)° ©) “<h 1
. . . . ZPGP" :e€P fr "
The reason for this is as follows. Since there exists a féasib < Z (M) T . (10)
flow f satisfying the above constraints, the global min-cost e€P; Ze,q
with the edge cost functions as above is at most Now, where
from Theorem 3.1, the cost of floy at Nash equilibrium is
the same as the global min-cost. Hence, it is too at méjst 1/m
However, if f were to assign flow to an edge greater than its 20 0= 10 Y ) (11)
capacity, the cost on that edge alone will be at le#ét—o6)™, teT PEPi:ecP
which would be greater thaji| for any m > mg, wherem, ) (n)
is as in (9). andze” = cg%es-
Analogously, for eacls € S, we define
IV. MULTIPLE MULTICASTS x((jj)é Z fp.

e€P:PEP;
In this section, we generalize the single-source multicast
problem to the multiple-multicast sessions problem whaghe ~ The edge cost at each edggze ) is divided among each
session corresponds to a source node taken from thé set s € S in pFOPOFIIOH to the=") max flow from eachs through
N. Within each multicast session € S, network coding is ¢, i.e.c.(z.)2es (n) is the fraction of the cost picked up by the set

performed across packets destined for sinks in73eC N. ¢ flows towards sinks e T Further, eacht € T, picks up
However, packets are not encoded across sessions to ensurg())»

computationally tractable decoding at each sink. So, eméh sm

t € T, can steer it's flows across the set of pafsfrom || flows on pathsP P7 in the Fa'ﬂOfP/fC

sources to sink¢ so as to deliver a total rate @f;. As before,  Each sinkt € T attempts to selfishly m|n|mize the cost

the total set of path®= (J,c g U,cr, Pi- of transmission to itself. Since the costs across different

We can then formulate the min-cost problem Msessions{s : t € T} are additive at each edge and cost

GLOBAL(G, ¢, R) for multiple multicasts in the same wayfunctions at each edge are convex, minimizing total cost at

as [12]: sink ¢ is the same as minimizing the cost for each session
individually. Hence the criterion for local Nash equilibm for
multiple-session multicasts can be summed up in the foligwi

fraction of ze Y which in turn is divided among

M-GLOBAL(G, c, R) definition.
minimize C(f) = Z ce(2e) Definition 4.1: A flow f, feasible for the instancg, c, R)
ey with multiple-multicast session§, is in local Nash equilib-
subject toz, — Zz Vee A rium if for all o € S andj € T,, for any P, P, € P7,
sES n—1
© Z ce(zén)) <ZP€73" e€P fP)
Ze,s = %%X Z fp , fp=0 VPeP e€Py Z‘gn) ‘gn‘j)
s s.e n—1
PePjecP ce(zén)) ZPEP;':eEP fP
Z fp=R;] VseSvtel. < Z (n) (n) (12)
PEP; e€hy ¢ oo



We observe the similarity between (10) and (12) analogotiss information need not be carried by every downstream
to that between (1) and (8). The following corollary followgacket, but only by representative packets at each iteratio
analogously from the reasoning in Section IlI: of the algorithm.

Corollary 4.1: If for an instancel,, — (G, ¢, R), the cost
function at each edge is of the power law form:e(zén)) =
ac(z")E+1 for any fixedk € R, k > 0, then the cost of flow
f at local Nash equilibriunt,, (f) equals the cost’, (f*) of
the global min-cost flowf*.

Algorithm: UESSM

Initialization: In our implementation, we will choose&a> 0
small enough [cf. Section V-C] such th#t/e is a positive
V. DISTRIBUTED ALGORITHMS FORMIN-COST FLOW m_teg:ar, and require that all flow _rates.be at-_laa$a keep-.
i alive” rate). Also, the flow allocations in our implementati
Section Il demonstrates that the sum-cost of the edd§% elements from a lattic& — {0,A,2A,..., R}, for
with any uniform power-law edge cost function under Usyme fixedA > 0 such thatR/A and ¢/A are positive

equilibrium is the same as the min-cost. This result lendgeqgers. Thus, we can initialize at any arbitrary point bis t
itself readily to the construction of a simple non-coopeeat |5iice. For instance, for each sike T' we can initialize at

optimal min-cost flow routing algorithm for a single-sourc p = R — (Q; — 1)e for someP, € P, and fp = ¢ for all
multicast with network coding. The following section deal$ = P\{P!} !

with the single-source multicast for sake of simplicity.igt

easy to show that due to the separable and additive natgqu: Now, one of the sinkst € T is chosen at
of the costs for the multiple-source multicast, we can & thynqom. Let us label the pathsPy, P,,. .., Po,,
same algorithm independently over each session to reach }thH—la s Po+0as - Poy+. Qr 141, - - PO+ Q0 14O

user equilibrium in this case too. . whereQ); is the number of paths from the source to destination
In this section, we develop two algorithms: User Equir por some fixedt > 0, a receivert picks a pair of paths

librium with Single Source Multicast (UESSM) and Localp_, , yand Peuip, ., for any Lm = 1,2,...,Q;
Distributed Selfish Routing Algorithm (LDSRA). with 7 ;’Z;L Denot%&l Qitm

UESSM is a non-cooperative decentralized flow-steering al-
gorithm that provably converges to the min-cost flow all@oat Py = PEE;I Qi+l (13)
for the class of convex, monomial edge cost functions defined Py = szfll Quim (14)

in Section Ill. At each receiver, UESSM *“flow-steers” amon
the paths leading to it in order to greedily minimize its cost
This allows us to achieve the min-cost flow with network(@) dp,,(f) > dp, . (f) +£
coding, without having to perform per-flow primal-dual type(b) fr,, > ¢+ A
calculations at every intermediate router. ©) fp., <R-A

The Local Distributed Selfish Routing AlgorithhDSRA  then, fp,, < fp,, — A, fp,,. < fp.,. + A. Conversely, if
for min-cost routing is a local distributed algorithm wherga), (b) and (c) hold withP,; and P, ,, interchanged, then
nodes in the network adjust flow fractions based on the locg, ., < fp, .. — A, fp,, — fp, +A.
flow and cost information at each node. This is an analog
of the Bellman-Ford algorithm, however, in the context ofermination:No user can make any flow switch if and only if
network coding. By using the end-to-end delay experienged bp, , (f) —dp, ,, (f) > =&, Vt,1,m which are feasible (i.e., (b)
a probe packet as the marginal cost, LDSRA minimizes tlaad (c) above are satisfied). In other words, at terminatamn,
total network latency (sum cost) by reallocating flows frorany receiver and any pair of flows, m dp, , (f)—dp, ,,(f) <
the more expensive (greater delay) neighbor toward a cheapé if and only if fp,  =e.
(lower delay) one. Note that we would like to distinguish between the terms

‘step’ and ‘iteration’ as follows. By a ‘step’, we will meahe

A. UESSM: User Equilibrium with Single Source Multicast S€duence of operations defined in the algorithm above. On the
. . . . other hand by an ‘iteration’ we mean a ‘step’ that results in
The implementation of this algorithm, UESSM, assumes . N
. L a flow reallocation. This distinction is made because due to
flow routing between the source and destination, where the . .
.~ random selection, at a step no flow reallocation may occur. In
source router encodes downstream hop-by-hop routing-inf re rest of the paper. we will onlv count ‘iterations’
mation into the IP-header, as can be implemented in IPv6. The Paper, y '
intermediate routers in the network between the source and _ )
sink do not need to maintain state-information locally. tt B. Asynchronous implementation
the intermediate routers need to do is route packets alang th The implementation of the algorithm above doesrequire
outgoing edges corresponding to the hop-by-hop informatisynchronous timing between the clocks at the various sink
embedded in each packet and network code across packetsarfes but only requires that the clocks have the same cycle
the same type at each instant of time using a random lindeequency. We assume that the path-delay timescale aleng th
code. network (for the update of the path costs etc.) is negligible
Also, each downstream packet aggregates the cost that it bampared to the time-steps in which the algorithm proceeds.

paid along each edge on a particular flow path. For efficiendyach sink;j € T picks a random delay that is exponentially



distributed before adjusting it's flows in the manner owin (scaled) simplex (i.e., for eache T, Zzth fti=R, fri>
in Subsection V-A. Since the exponential distribution is 8). For eachf in the constraint set, we denof f) C £ to
continuous time-distribution, the collision probabilisysmall. be the set ofeasible direction vectorsvhere anye,; ; € £(f)
Further, since all flow steering is implemented at the squrcatisfies the following: a\ shift of flow in the directione,
the source can be designed to sequentially adjust flows fadm f leads tof’ which is a feasible flow vector.

each sink. This ensures that only one sink adjusts flows atemma 5.2:Fix any « > 0. Then, choose the following
a time in the asynchronous algorithm, thereby retaining tiarameters for the UESSM algorithm:

same features as the synchronous implementation. Hetftefor(j) |et ¢ = W’ wherek is the exponent in the edge
we will denote each source adjustment (reallocation) as an .t function €.(z) = ae(z(")F+1)
€ - e ’

iteration of the algorithm. (i) Choose anyA < min{e/10, 52(12?:))} such thate/A is a
) positive integer, and.(¢) is given in Lemma 5.1.
C. Convergence of UESSM to the min-cost flow With the above conditions, the following holds: Suppose
In this section, we restrict ourselves to edge cost funstafn that the algorithm UESSM terminates at iteratidfi Then,
the forme.(z) = a.z*', k > 0, as discussed in Section Ill. |, (fM)) — C*(¢)| < a, whereC,, (™)) is the cost with
From Theorem 3.1, it follows that a global optimum is th@low allocation f(*), and C*(¢) is the optimal cost of the
same as the cost at a Nash equilibrium. convex problems,,-GLOBAL(G, ¢, R) under the constraint
Recall that in UESSM we are restricting each flow to hav@at for all P € P, fp > «.

a rate of at least. Now, we choose as follows: Given any proof: Let f*(¢) be an optimal flow corresponding to solu-

a > 0, we will choosee such that tion C#(¢) and f(M) denote the flow in thel/-th iteration
@i e>0 (termination) of the algorithm.

(i) e<R/Q¢ Vt=1,2,...,|T| SinceC,,() is convex, it follows from the gradient formula

(i) R/eeN that

(IV) |C;; - C;;(EH <a, C (f(]u)) > (f*(e))

where C is the optimal cost ta,,-GLOBAL (G, ¢, R), and " (A " (MNNT | oo ()

C:(¢) is the optimal cost toC,,-GLOBAL (G, ¢, R) under the > Cn(f™M)) + VCL(FYNT(F*(e) — fM)). (15)
additional constraint thafp > ¢, VP € P. Observe that — Now, recalle(f(M)) is the set of feasible direction vectors
under this restricted simplex, the GLOBAL problem is stilkorresponding to flowf ().

convex and differentiable. Further, since the cost fumstiare cjajm: There exists non-negative ; . such that
differentiable and finite, and the constraint sets are canve -

given anya > 0, there exists are such that the above i) = fOM 4 > Tumenim  (16)
conditions hold. Also, lef*(¢) be an optimal solution t&,,- er1mEE(FOM))

GLOBAL(G, ¢, R) with the e-restricted convex constraint set

o ; ) .~ “"Proof: For eacht € T, we define the vectof; to be a{0,1}
Next, for any destination € T' we will formalize the notion vector of dimensiorP where,; — 1 for all | = Qp_; +

of an infinitesimal reallocation of flows from patk,; to 1 0, and 0 other-wise (i.e4; corresponds to the flows
path P, ,,, as defined in Equations (13),(14). Recall that dugi ool . Cat P
' estined for receivet).

to monomial cost edge function and tlg,-approximation, w0\ p(M) _ Wy p(M)
the global cost functiorC,,() is differentiable at all points. We now decomposg” (e) f o= ZtGT((I{[;) ()= f™)
where f = f*(e) x v, (and similarly for f;,™’) where the

Accordingly, we can defin&/C,,(f) = (2= to be , )
h .g yd h | (£) ( n? 5 Jper * operation corresponds to term-by-term multiplicatiorugh
the |P|r-1$|ze vecto(;v:_ osz_e ements a éfp ' b fi(e) corresponds to the flows for receivgr

Further, ‘we define direction vectors & 1o be ""now consider the (scaled and shifted)) simplex of feasible
the collection of all vectors of the formletl’l"m = flows to receiver 1, i.e.d; = {ZlQll fii=Randfi, > e}

_ - P ' =141, L=
[2""’0’h 1’;)""’0’,1’0""’%] he { 1’071}d' wherhe Let v;,i = 0,1,2,...Q; be the vertices of the (scaled and
the P4 -th element is—1 and the corresponding .-t  gpiged) simplexA, (then dimensional scaled and shifted sim-
element isl. (Note that the vectors are not necessarily Imearléﬂex hasQ, vertices, with each vertex having one component

independent — for example, ;,m = —evm,). AcCordingly, eq a1 —(; — 1)c and all other components beiny

an infinitesimal shift of flow fromP,; to P, ,, is given by As the set is a convex simplex, we have for some>

the inner produc¥C,, () .e.1.m. 0,5 a; = 1 ' -
In the following, we will utilize the property that the ~~—¢ " '

gradient functionvVC,,(f) is Lipschitz over the the space of Qr
feasible flow vectors. il = > ai

Lemma 5.1:VC,(f) is Lipschitz in the space of feasible =0
flow vectorsf with Lipschitz constant(e). Now, we consider two cases:
Proof: We refer the reader to [28]. |

Case (i):fl(M) is an interior point ofA;.
Recall that the constraint set (set of feasible flow rates) isIn this case, all directions vectots; at f(M) are feasible,
described by a convex set where the flows correspondingatod the existence of non-negative of ; is immediate. All
each receivett is constrained to lie on &Q:|-dimensional direction vectors are feasible for the following reason: dge
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by the algorithm description (and the explicit constructef where ., are non-negative ane,; ,, are feasible. From

the values given in the Lemma statement) tiig’) lies on the termination condition of UESSM, we now have that along

the A lattice ande/A and R/A are positive integers. Thus,all feasibledirections,dp, ,, (f) — dp,,(f) > —¢. This is due

fM) Jies in the interior of A; implies that each componentto the following reason: Supposel m 1S a feasible direction.

of f (M) has flow rate value of at-least+ A, in which case This implies aA flow reallocation is allowed from flowp, , to

all direction vectors are feasible. flow fp,,, at iteration)/. However, by the statement of the

Case (ii): fl(M) is a boundary point of4; . Lemma, iteration}/ is the termination step. Thus, UESSM
Now, note that for a simplex of dimensio; — 1, all decides not to re-allocate from floyip, , to flow fp,, ,. This

boundary points can be described(ay points that lie strictly can happen due to one of two possibilitiés) dp, , (f(M))

within the interior of a simplex of dimensiok for some dp,,, (f M>) (i.e., P, is already a “cheaper” path thap ,,,,

k=1,...Q: — 2 or (b) the boundary point lies on a vertexso UESSM does not further decrease the rate along figw),

of the 5|mplex (i.ek = 0). in which case we havép, , (f) —dp, ,(f) > 0> —¢. The
For case (a), without loss of generality, let the boundaother possibility is(B) wheredp, ,, (f™)) < dp, ,(f*)) <

point be in the interior of a simplex of dimensignwith dp, (f*))+£ (i.e., the cost along path;  is only “slightly”

verticesvg, v1, . ..v,. Then, more expensive than paf ,,,, and thus, UESSM decides not
to switch). In cas¢B), we haved > dp, ,, (f)—dp,,(f) > —¢&.
M) Zb v; Now, because the edge cost function is of the form
ae(zM)F1 k> 0, we have
for non-negativeéh; such that) . b; = 1. Thus, we have VO.(fM)T e = (k+1) (dp,..(f) = dp,,(f))
fi(e Z a;v; — Zb Vi Thus, from the termination condition, we have

o M) Z T 1metlm > —(k+1) Z thmf

i=k+1 i=k+1 (In other words, at termination, along all feasible dirent,
Now, let the negative gradient is small).
_ ol Now, due to the fact thair.;,, are bounded byR (as
Zaivi + <Z ai) O the space is bounded) and the fact thétf(*))| is finite
; ; (because the number of paths are finite, an upper bound is

. s . . 2|P|?), we can choosé as in the Lemma statement to ensure
Then, note that sincg_, a; = 1, f; lies in thek-dimensional IP) ¢

. i : that the difference in cost is no more than |
simplex with vertices{v;,i =0,...,k}. We now have
Q@1 Lemma 5.3:For a givena > 0, let us fix¢ = 57—%~—=m-
(M) ; (M) o ) 2(k+1)R[P|2
file) = fi = (hi=fi" )+ Z ai(vi — vk) Choose any (strictly) positive, < £4*1 such that/A is a
i=k+1

positive integer, and, = L(e) is given in Lemma 5.1. Further,
where, by constructiony; z O and £ and £ lie on the chooses = A ((k + 1§ —AL). _

k-dimension simplex, withf{*) in the strict interior of this _ SUPPOSe that at iteration/, there exists a usef ¢ T,
simplex. Thus, all vectors within the simplex are feasible.( £t = Pyi-1¢, 4, for somel = 1,2,...,Q; and P, =
the direction vectors corresponding to bath, — v;) and x>t Q.+m, fOr somem =1,2,....Q; (i-8. Py, Prm € Pr)
(v —v;) for i =0,1,..., k are feasible ag™ in the strict such thaTdPt (f)—dp,,, (f) <—=¢andfp,, >c+A (e,
interior), we can choose feasible directions with non-tiega &2 flow switch is feasible).

weights to move fronjfl M to f,.In other-words( f; — f M)) Then, we have that a flow switch df from flows P; .,

can be expressed as a non-negative weighted sum of feasfble ensures that’; MY o < —p <.

direction vectors. Proof: To prove that a flow readjustment will cause a reduction
For case (b) where we are terminating at the vertex (sHy the overall cost function, we will borrow some results

vo) of the Q; — 1 dimension simplex, the existence of nonfrom the proof of convergence of constant step-size descent

negativer,, follows becausef; (¢) is in the (¢)-constrained algorithms. Specifically, we will use the techniques in [22,

set, and the feasible directions include all directionshaf t Props 1.2.3, A.24] to demonstrate that if the gradient of the

form v; — vo,4 = 1,2,...,Q, which span the simplex set. ~ cost function is Lipschitz over the state space of flows, then
The proof is analogous for all other receivers. B the difference of marginal costs between the paths aredeutsi

a ball of sizet, the net cost reduction followingA < wgfl)

Thus, from (15) and (16), we have readjustment of flows will be at least by > 0, where

) B=A((k+1)§—-AL).

Cu(f) 2 Cu(f7(€)) Note that by considering a flow reallocation from

> Co(fM) 4+ VO, (fFMNT, Z Teimeiim Pim 10 Py, the direction of descente;,,; =

eetm EE(FON) [0,0,...,0,—1,0...0,1,0...0], where elements-1 and 1



correspond to path®;,, and P,; in the |P| length vector Further, note that we have chosea such that

etm.l- |Cr — Cr(e)] < «a holds. Hence, by the triangle
Now, inequality|C,,(fM)) — C¥| < 20 |
Cu(f) = Z ae(ze)" " Although, UESSM converges and has provably good con-
ced vergence properties, UESSM requires the source to maintain
= Z ae(ze)" + Z ae(ze)" 1. path information for all paths from the source to the destina
ecP e€A\P tions. This motivates the design of a local distributed athm

Thus, differentiating with respect to flof» whereP € P, where nodes adjust flow fractions based on the local flow and
aC P cost information at each node. We present such an algorithm
n(f) — Z ae(ze)* 40 in the following subsection.
ofp ofp

n—1 . . . . .
B e Tet D. Local Distributed Selfish Routing Algorithm (LDSRA) for
- Z ae(k +1)(z) ( > ) - (7" Min-cost Routing

ecP ¢

Also, observe that from (7) and (17), for the considere&
class of cost functions,(z.) = a.z*+1,

Local routing algorithms for cost minimization have been
udied in the past in the context of ad hoc network routing
protocols, such as STARA [25], [26]. Such an algorithm can
aC, oC, be implemented with an exponential-forgetting estimatisn
ofp,, - ofp, in STARA to estimate marginal costs from the source to
= (k+1) (dP“(f) —dp, . (f)) (18) each downstream node in the network and adjust fractional
’ ’ allocation of flows at each node so as to minimize the local
< —(k+1)¢ (19) marginal cost.
where the last step follows from the lemma flow condition. The algorithm proceeds in two phases. In the first phase,
From the descent lemma [22, Prop A.24], we have that¢fch node identifies a set of neighbor§” to reach destina-
L is the Lipschitz constant fo¥C,,(f) over the space of, tion k. Also, each node intermittently transmits probe packets

VC.()T etmu

then along N*, which accumulate marginal costs along the paths,
and the feedback from these are used to estimate the marginal
Cn(f + Aetmi) = Culf) cost D§7n(t) from s to k along each particular neighbor
< AVC,(HT ermai + 1A2L||€t,m,l||2 n € NF at timet. The second phase ?s the flow re_allocation
2 phase. Each node compares the estimated marginal costs of
<A (—(k: +1)E+ 1AL||€t,m,l||2) flows to a_particular destina_tion and _then_shifts flow _allmmt
2 by a fractionA from the neighbor with higher marginal cost
<A(=(k+1)§+AL) to one with lower marginal cost.

It can be shown that under steady state a flow allocation
is at a user equilibrium (cf. Definition 3.1) and only if all
utilized paths from each node to each sink have equal mdrgina

We are now ready to state the main result of this Sectioncosts (see for instance Lemma 6.1 [26]). Since the above flow

Theorem 5.1:Choose the parameters, ¢ and A given reallocation phase achieves the latter objective, undeadgt

in Lemma 5.2. Then, UESSM converges in a finite numbgFate it will also bg at a user equilibrium. Eurther, if aliged
. . . . . S .. Costs are monomials, from Theorem 3.1 it follows that the
of iterations (at iteration\/), with the termination condition

satisfying|C,, (1) — C| < 20, whereC, (£OD) is the cost above flow reallocation will have globally minimum cost in

with flow allocation f o, andC;, is the optimal cost of the Stelﬁdgu?t;t;.ulations discussed next, we assume that the rate
convex problem_,,-GLOBAL(G, ¢, R). '

Proof: For each flow allocatiory that is not at the terminal at which nodes reallocate flows is much slower than the

condition, by the description of UESSM, there exists attlearsate at which probe packets are generated and cost estimates

. are gathered by each node. This allows us to assume, for
one usert € T and some pair of pathg; ;, P, ,, € P; such . . .
: P . purposes of simulation, that the estimai#’s, () at each node
thatdp, ,(f)—dp, . (f) > —& for which aA flow reallocation . . A .
is feasible bm s are ideal. Future work will focus on designing stochastic-
' . pproximation based algorithms for joint estimation anig ra
Then, we have from Lemma 5.3 any feasible flow real- LT T .
. : : allocation in this distributed framework, as well as anaigz
location will reduce the sum cost by at least> 0, i.e. its convergence and the rate of convergence under these
Co(fE)) — O, () < —B < 0 at iterations. Hence, 9 g

at each iteration until the termination condition is rezd:hecondltlons similar to the analysis in [27].

the cost function decreases by at le@st The initial cost . )

C,(f©) of the iterations is positive bounded and the co Simulation results

is non-negative. This implies that the algorithm will termaie We simulate UESSM over the classic 7-node butterfly
in a finite number of iterations. Finally, from Lemma 5.2 th@etwork in [1], [2] with the edge costs shown in Figure 1 for a
termination condition satisfiel,, (™)) — C% (¢)| < a. rate 1 multicast session from sourgeto destinationd); and

ChoosingA < %, (such thate/A is a positive integer),
we have the desired result. |
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Fig. 3. UESSM Algorithm trajectories: Sum costs and flowstfar Butterfly
network, £19-GLOBAL(G, ¢, R), A = 0.01.

0 100 200 300 400

Number of lterations tions. We observe that, irrespective of initial conditipiise

simulation sum-cost trajectories converges to the meah wit
' I , I _ progressively small variance. Typical trajectories of flates
?92 S 10?5%?'\/' Algorithm: Comparing... approximation forr = through various paths for the Butterfly network are presknte
in Figure 3 with a step-size o = 0.01.
We next provide simulation results with the LDSRA algo-
Ds. The links are marked with the edge cost functiepe). ~ ithm for the same Butterfly network. The costs under e
In this examplePy = {f1, fo, fs} and Py = {F}, F», F3}. approximations (n = 1, 10) are plotted in Figure 4. We note

We first study howC,,(f) changes with increasing valuesth"’lt as _expected:_;n cost decreases gh_.‘increases. Further, a
of n in the £, -approximation to themax function. The comparison of Figures 2 and 4 verifies that both algorithms

trajectories for 100 representative UESSM runs wlith- 0.01  CONVerge to the same sum-cost. Also, we compare the flows
with varying values ofu are plotted in Figure 2. The — 1 through the central edge in Figure 5 and observe that the

case corresponds to multicast without network coding arq:&wilibrium_state corresponds to the symmetric min-sunt cos

has a much higher sum-cost than that achieved byCthg- flow allocation.

approximation, which is very close to the cost with using

the non-differentiablemax function in GLOBAL(G, ¢, R). VI. CONCLUSION

However, we note that there is not much gain in going from In this work, we have presented a cost splitting rule at

n =10 to n = 100. This suggests that th&, -approximation each link for the min-cost problem using network coding and

works well for even small values of. Recall that we have demonstrated that under this rule, the sum-cost across the

bounded the minimum value of(J) given an approximation network at user equilibrium is the same as the min-cost stibje

error targety > 0 in Remark 3.1. to the condition that all edges satisfy a uniform monomiaitco
We have also shown error bars corresponding to one stéumction. Further, based on this result, we present twosselfi

dard deviation about the mean, with random initial condmin-cost routing algorithms - UESSM and LDSRA - which
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Fig. 5. Butterfly Network with the LDSRA Algorithm: Flow [19]
allocation to central edge.
[20]

have desired performance in simulations. Additionally, we
prove that UESSM converges to the min-cost flow allocatidei]
for any network topology.

Observe that in our discussion of multicast with many,
sources, we restricted the mixing of data to only between
flows from a a particular sink. However, note that mixinﬁi}
between flows from different sources would involve designi
a network code for the many-sources many-sinks problem.
It is known that optimal code-design for such a case is NE=!
Hard [20]. Thus, the design and analysis of approximation
algorithms for network coding with multiple-sources multi[26]
casting simultaneously would be an important area of futu{zen
research.
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