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Abstract— Congestion control algorithms used in the Internet
are difficult to analyze or simulate on a large scale, i.e., wén
there are large numbers of nodes, links and sources in a
network. The reasons for this include the complexity of the atual
implementation of the algorithm and the randomness introdwced
in the packet arrival and service processes due to many faate
such as arrivals and departures of sources and uncontrollde
short flows in the network. To make the analysis or simulation
tractable, often deterministic fluid approximations of these algo-
rithms are used. These approximations are in the form of eitler
deterministic delay differential equations, or more geneally,
deterministic functional differential equations (FDESs). In this
paper, we ignore the complexity introduced by the window-baed
implementation of such algorithms and focus on the randomnss
in the network. We justify the use of deterministic models fo
proportionally-fair congestion controllers under a limit ing regime
where the number of flows in a network is large.

Index Terms— Delay-differential equations, fluid model, In-
ternet congestion control, many-flows asymptotics, propdional
fairness

I. INTRODUCTION

There has been a lot of recent work on decentralized er{

to-end congestion control algorithms for the Internet. Séhe . i
weguations models correspond to “real” systems does not seem

are based on ECN marking with the goal of building a lo
loss, low-queueing-delay network. The control algorithens

we focus on the case where all users have the same utility
function oflog(z), leading to a proportionally fair sharing of
the bandwidth. It is easy to extend the results to the case of
weighted proportional fairness as we outline in SectiorDIV-

There have been various delay differential equation models
for Internet congestion control. The generic model of such a
system consists of a flow, which sends data at ugt9, a
router which signal congestion to flows by marking packets,
and a receiver which detects the marks and informs the flow
to increase or decrease it's transmission rate. Associaitid
the router is a marking function, which marks the a fraction
of the flow as a function of the total arrival rate. The larger
the fraction is, the more aggressively the flow “backs off”.
Such scenarios have been studied ([3], [4], [2]. [5]), and in
the absence of delays, differential equation models of such
systems have been shown to converge. With delays, bounds
have been derived on the behavior of the flow ([6]). However,
in a realistic scenario, we have short flows which do not
adapt, thus causing “noise” at the router. Further, the mgrk
ynction could base its decision on more than the instaoiase
arrival rate. A formal justification of how delay differeati

to exist in current literature.

designed on the premise that each user has a utility function|, this paper, we study “noisy” congestion control algo-
which the user is trying to maximize, while the networkityms and show that the deterministic differential ecormai

is simultaneously trying to maintain some sort of faireshat have been studied earlier in the literature are apjatepr
amongst various users. In the algorithms proposed, theanketWiimits in a many flows regime.

tries to achieve it's goal bynarkingpackets during congestion

(see [1], [2]). The notion of fairness (from the network’s Related work includes that of [7], where a stochastic ap-
point of view) which has been used is weightgportional proximations (see [8]) based model is considered. The asitho
fairness(see [3]). Through appropriate choice of the weightsfudy the rate process for additive increase, multipheati
other fairness criteria such as minimum potential delayéss decrease (AIMD) algorithms. Under the assumption of small
can be realized. If we interpret the utility function of theem gains A and 3 defined in Section II-A are small), they
as the users’ willingness to pay for bandwidth, and supposow that an asynchronous implementation of a generic AIMD
that the price paid by the user is proportional to the number @onverges to an ordinary differential equation. Howevee, t
marks received, then, a weighted proportionally fair sobensmall gain assumption is not valid in practice. Furthers thi
leads tosame price per unit bandwidtpaid by any user approach leads to a fluid limit which does not capture the
for utilizing some resource in the network. The algorithmescillations due to delayed feedback. In fact, it is known
proposed have decentralizedmplementation to achieve thethat the rate control algorithms do not always converge when
network and user objectives simultaneously. In this papelelays are present (see [9], [10], [6], [11], [12]). We betie
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that a justification of the delay-differential equation rebd
arises from a many-flows approximation, where we scale the
capacity of the system along with the number of flows. We will
show that in this regime, the delay-differential equatians
suitable limits of such a system. Our approach can be thought
of as a functional-differential equation analog of “aveénaj

used for ordinary differential equations [13], [14].



have not been able to establish that the rates of individual
flows will remain non-negative for reasonable initial
conditions. In the case of a network with multiple delay

A. Organization of the Paper and Summary of the Main
Results

The rest of paper is organized as follows:

« In Section II, we present two basic models of congestion

control. The models differ in the way that congestion
information is generated by routers in the Internet. In
one model, congestion is measured in terms of the arrival
rate at the router and in the other model, congestion ise
measured based on the queue length at the router.

In Section I, we present a set of sufficient conditions
for a sequence of stochastic delay-difference equations to
converge to a deterministic functional differential equa-

classes and/or a general topology, the non-negativity of
each flow’s rate can be established for reasonable initial
conditions only if the number of delay classes is small and
the number of nodes in the network is small. Obtaining
more general results is an open problem.

In Sections IV through VII, we only consider congestion
control algorithms derived from a penalty function form
of a resource allocation convex program introduced in
[15]. In Section VIII, we discuss the extension of these
results to congestion controllers derived from a dual

tion.
« In Section IV, the result in Section Il is shown to be
applicable directly to the average rate per flow in a single-

link network accessed by many flows with identical |, g section, we describe two widely-used models of

delays, subject to feedback provided by a rate-basgghgestion control. We will use these models, and variants

marking scheme. The randomness in this scheme can)§pese pasic models, throughout the rest of the paper.
viewed as arising due to implementation dynamics that

cannot be precisely modeled in the equations describ- . _ ) )
ing the rate-control algorithm and due to the presenée Rate-Based Marking with Arrival Noise
of uncontrollable or unresponsive flows in the system. We consider a sequence of systems (indexed m)y
However, a caveat in applying this result is that we hawehere the first system is the following. A single congestion-
to assume that the rate transmitted by each flow is neentrolled flow accesses a single link of capacifyand the
constrained to be non-negative. We then show that, ungystem is assumed to evolve in discrete time-steps. At each
reasonable initial conditions for the rate of each flowme i = 0,1,...,T, the user adapts its transmission rate
and when the number of flows is large, the rate of eagh depending on the feedback it receives from the router.
source remains positive, thus showing that the constraifite router marks some amount of the flow it receives, and
is redundant. We also show that, after a rate allocatéftis amount is proportional to the user transmission rate. |
to each individual flow, converges to the average rapgactice, for a packet-based system, such marking could be
per user, thus showing fairness to each individual usénplemented using ECN marks (see [1]). For a fluid model
In Section IV-C, these results are extended[@poo). such as ours, we assume that some volume of the fluid is
Again, the crucial part of the proof is in establishingnarked (see [3], [4], [2]). The fraction of fluid marked is
that non-negativity constraint on each flow’s rate is ndtetermined by means of a marking function, about which we
violated for reasonable initial conditions. We make thwill discuss more later. We assume that there is a round trip
assumption that the limiting delay differential equatiodelay between the flow and router dfe Z. Thus, the rate
is exponentially stable. While local stability has bee#t timei + 1 depends on the amount marked at the router
established recently [11], whether the system is globalljalf a round trip back, which in-turn, depends on the user
exponentially stable is an open question. transmission rate a further half round-trip time back. Thus

« In prior sections, we had assumed that the router had tWe can describe the evolution of the user transmission sate b
ability to mark a specified fraction of the arriving flow. . +
In Section V, we relax this assumption to include random (@i + A = B2i-ap(Tiza + éiva))
marking where the fraction of the flow that is marked isvhereA, 8 are positive constants which determine the rate at
random. We also point out the difficulties in extendingvhich flow increases or decreases it's transmission gtg;
the results of this section to the time intery@) o). is the marking function, and; is a “noise” process. We can

« In Section VI, we prove convergence results over a finiiaterpret the above equation as though two flows are acggssin
time interval where the marking is done based on thhe router: the first is the congestion-controlled flow, wos
dynamics of queue whose buffer is of the order of theata transmission rate is represented{by} and the other
round-trip feedback delay. Again, we establish the fatd an uncontrolled flow, possibly generated by some other
that non-negativity constraints of the arrival rates ofreacshort-duration flows, popularly known as web-mice, passing
flow and the queue are not violated for suitable, yeéhrough the link, which is represented by the sequefizé.
practical, initial conditions, thus allowing us to applyeth The sequencgé;} is assumed to be a stochastic process,
results of Section IIl. with E(é1) = a > 0. Let é; = é; — a. We assume that the

« In Section VII, we show how the results of Section lIFnoise” process; is a bounded, stationary-ergodic zero-mean
can be applied to networks with adaptive marking [23tochastic process far > 0; and fori < 0, é; = &y. The
and to networks with multiple delay classes and arbitrarpean initial conditions (i.e., fot < 0) is given by sampling
topologies. However, in the case of adaptive marking, wit), —T < t < 0, where#(t) is a non-negative, bounded,

formulation of the convex program [16], [17].

Il. MODELS OFCONGESTIONCONTROL

Tit1r =



Lipschitz continuous trajectory. Thus, the initial comalits for processed by a typical router. For example, the time-stafalco

above system are givern._; = 6(—i) + ép. be “100 packets long.” By scaling both the time-step and
Finally, we comment on the marking function itself. Thighe capacity, we maintain a constant time-step, as measured

function is based on the total data rate accessing the routerpackets. The flows are now represented faff}, k =

and determines the fraction of flow to be marked, and satisfie=, ..., n where the subscript € {0,1,...,nT} represents

satisfies the following criteria: the time-index, and the superscriptepresents the flow index.
Assumption 2.1We assume thai(.) satisfies As the delay seen by a user does not changenvitht the time
() 0<p(x) <1 resolution increases in, it follows that the delay (measured in
(i) p(x) = 0 for z < 0. Further, there exists & satisfying index steps) scales im. Thus, each flow* evolves according
0 < § < A such thai8p(z)| < d/a for z < a. to the following stochastic delay-difference equation

(iii) p(x) is an increasing function.

+
(iv) p(z) is Lipschitz continuous.
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The first property is obvious, as the marking function repreyith initial conditions given byd(i) + && for i < 0. Thus, the
sents the fraction of flow marked. To understand the secofgtial conditions of each user could be possibly differeks
property, we first note that, the mean arrival rate of thejn the single flow case, the above equations represéiotvs,
uncontrolled flows, is typically less thaB5% of the link each which has an additive increase factor of and the backoff
capacity. Thus, condition (ii) expresses the intuitivesteang for each flow is proportional to the delayed transmission
that, if the total arrival rate (i.e., sum of arrival rates ofate, which the fraction marked being a function of toeal
uncontrolled and controlled rates) at a link is less tBa%, arrival rate to the router. We remark that the above system
very little congestion indication should be provided. Thed can be interpreted as a decentralized means of achieving a
property is again clear: the larger the arrival rate is, tte&ter proportionally fair allocation (see [3]) of bandwidth angpn

is the fraction marked. Finally, the last condition is a t&chl the n, users.

condition, which says that the function is “smooth”. As an e npote three features in the above equation. First, the gain
example, a possible rate-based marking function is of the fo ;g ystantsA and 3 are scaled by. This is because the time

(x—é&)t step in now’ of the first system. Thus, the gains are also
p(z) = z scaled to maintain the same gain for each flow over the ofligina
In a deterministic fluid model, this has the interpretatidn ¢'Me-Step.

the fraction of fluid lost when the arrival rate exceeds a Second, there are now uncontrolled flows (i.e{ef}, % =
certain level, called the “virtual’ capacityVé [2]. In the 1,2;-..,n,i > 0) accessing the system. We assume that each
absence of delays and noise (i.e., there is no fluctuationein tincontrolled flow has a bounded rate, i.e., there K a 0
uncontrolled flows), the flow rate; is assumed to convergeSuch thatjé}| < K. We assume that these flows are i.i.d.

to (c — a) for somec > a. Thus,p(-) satisfies (across flows, although these could be correlated in tinme), a
are stationary and ergodic. For< 0, we assume a random
A = B(c—a)p(c) perturbation about a nominal initial conditigi), i.e., the

T e . . ~k . ~k _ ~k
Our goal in this study is to determine when the above stochdalial condition is6(i) + &; with & = é5. Then, we have for
tic system can be approximated by the following determimist2"y € > 0,

system:

z = A—pfz(t—d)plxit—d) +a) (1) Pr sup % Z El>e
=1

—nT<i<nT

with initial conditions given byd(¢), —T <t < 0. The con- !
gestion control algorithm corresponds to a resource dilmta
problem where all flows havieg(.) utility functions [15]. As n
an aside, we note that the local stability of this equatios (i <  (nT+1)Pr 1 Zgg > €
whetherz(t) — c—a for a linearized system) has been studied ni3
in [9], [10], while global boundedness has been studied jn [6 < (T +1)em

We have so far described the system model when a single -
flow accesses the link. We now describe how the model scajgs someq = a(€) > 0. The first step follows from the union

in n. First, there aren flows, and for every time step in thepo,nqd, and the fact that the flows are stationary. The second
first model, we assume that there ardime-steps in thesth step (i.e., existence af > 0) follows from Chernoff’s bound

model. This represents the fact that we need to increase f€jyially follows that the MGF exists, as the process is
time resolution to study processes. In practice, we can viewyoynded). Thus, it follows that

each time slot at a measurement interval over which rates are

measured in the system and control actions by the routers 15

and flows are updated. Typically, this measurement interval Pr sup — Zéﬁ >e€ =0
is measured in terms of the number of packets that can be —nT<i<nT |V 520



exponentially fast. Now, applying Borel-Cantelli Lemma, iis given by 8(t). Also, note that from (3), it follows that

follows that e"(t) — 0 uniformly in [-T,T]. We note that the above
n differential equation is to be interpreted as a shorthartdtiom
sup 1 Zég - 0 as. 3 to represenF the procea§(t) given by the unique trajectory
—nT<i<nT |V = solving the integral equation
]_
13 H ” t p— d
We remark that the above model allows each “noise processl(t) = 2(0)+ A — o [n(s )J)
to be long-range dependent. We only need the flows to be s=0 n
bounded and iid. n, Ln(s —d)] ny (s —d)]
Third, the marking function is seen to scale its argument p (m () tate(— )) ds

by n (the marking function acts on theveragearrival rate as _ _ _ o
opposed to theotal arrival rate), i.e., if the marking function /N this paper, unless otherwise stated, any differentiadéqn

for thenth system were to be representedgfyz), then, we IS to be interpreted as a representation of the correspgndin
would have integral equation.
Our objective is to show that the trajectory generated by (4)
p"(nz) = p(z) and that in (1) are “close” in some suitable sense.

This is done so that for eaeh if the centered error processes
{e*¥},k =1,...,n were identically zero, the delay-differenceg. Queue-Based Marking
equations (if they converge) would have a steady state valu

of limg_,o ¥ = ¢ — a. We remark thatadaptive marking
. ! : .__could be based on queue lengths. Examples of a such system
functions have been proposed (see [5]) which automaﬂcaﬁye RED [18] which |qs apopulagrqueue-baged marking sch)eme

scale inn as described above, without explicitly haVlm‘;EM, a resource-pricing-based algorithm which can also be

knowledge ofn. interpreted as a queue-based marking scheme [19] and a

Now, let =7 represent the average rate at tiheand e}
represent the average (centered) noise at fime., i.e., scheme closely-related to REM, based on feedback control

E{Ne will now study systems where the marking function

ideas [20].
I We assumen flows access the router. However, unlike
i = E;yi before, where the marking depended on the instantaneous

n rates, here, we consider marking functions based on queue-
et — lZéf lengths. As before_letc”(t) t_)e the aggregate average data
ni4 rate at the router, with capacityC. We have the uncontrolled
i i _ _ . “noise” process given by + e"(t), wherea > 0, €"(¢) is a
Then, (by adding the various equations fg and ignoring ero_mean process satisfying suitable assumptions asebefo

non-negativity constraints ogf, which will be justified later), We lete = C — a. Then, the evolution of the aggregate rate
we have thatz™ satisfies the following stochastic delay—Can be described by the following SFDE:

difference equation:

R N L )
Thy = @+ P gmzﬂfnd p (2l patatel q) ) A = fa n )
L . nln(t—d)] nln(t—d)]
Now, we embed the above equation in “continuous-time”, i.e. p{a"( " ) )+ &7 " ) ) (5)

we study the above process over an interval of tijfel]

(without loss of generality, assume th&t = (d, for some whereg”(t) is the scaled queue length. The marking function
¢ >1). Fornt € Z, we let acts on the scaled (b%) queue length, whose evolution is
iven b

()=, D)= e ey

and use a straight line approximation to interpolate betwee ¢"(t)

{ z™(t) +e™(t) —c if ¢"(t) >0
the timest = % Thus, we see that the above equation can be

(@™(t) + e(t) — )t if g*(t) =0 O

represented by the equation We have not explicitly shown the non-negativity constraion
In(t —d)] z(t). We will later show that for reasonable initial conditions
" (t) = A" -— ﬂm”(T) (4) and sufficiently largen, the trajectories will remain positive

)+a+e"( conditions (i), (iii) and (iv) of Assumption 2.1. We assume

that the initial forz™(t) is given by

for all time. The marking functiomp(-) is assumed to satisf
In(t —d)] )) g m(-) y

Further, assume that the initial condition is given by

z"(t) = 0@t)+e™(0) —-T<t<0, nteZz

a"(t) = 0(t)+e*(0) —-T<t<0, nteZ

and a straight line interpolation is used far ¢ Z. The queue

and a straight line interpolation is used fat ¢ Z. This length is initially assumed to be zero overT, 0], i.e.,
means that each flofy*},k = 1,2,...,n could have a

different initial condition, but the nominal initial conébn qg"t) = 0 —-T<t<0



Now, consider a deterministic system consisting of a single truncate this zero trajectory {6, 7] and use this truncated
flow z(t) driving a queue with capacity and whose evolution trajectory. To avoid unnecessary notation, we slightly sabu

is given by notation and use the same symbol. The initial condition is
. iven b
i(t) = A-Balt—dp(glt—d) (7)
. _ z(t) —c if g(t) >0 2"t) = 0t -T<t<0,nteZ
i) = { Lo D=0 ©®

) ) . _ . and a straight line interpolation is used far ¢ Z. The above
andp(.) is aqueue-basedharking function. The equilibrium gitferential equation is to be interpreted as a shorthanaitian
point is given byq(t) = qo, z(t) = ¢, and they are related {4 represent the proces&(t) given by the unique trajectory
as A = fBep(qo)- The initial conditions are given bg(t) for solving the integral equation
t € [0,—d] which is Lipschitz continuous and < 6(t) < \
¢, and ¢(t) = 0 for ¢t < 0. Our objective is to show that n B n = n
the traje(ct)ories described by (5) and (6) are “close” to ¢hos 2 = /SZO bn (x Lol ’0) ds +2"(0)
described by (7)-(8) for large.

In the next section, we will prove a general convergen
result for functional differential equations. We will thehow
that the models we have described fit into this framework, a
the desired results can be proved.

ég this paper, unless otherwise stated, any differentiahégn
IS to be interpreted as a representation of the correspgndin
m]tegral equation.

Assumel6(.)| < A, and that(t) is Lipschitz continuous
with parameterd . Then, it followsz(¢) is Lipschitz contin-
uous with Lipschitz constand/ and bounded (with bounds

I1l. CONVERGENCE OFFUNCTIONAL DIFFERENTIAL +(A+ MT)).

E(?UATIONS Next, consider fott € [0,T], the SFDE
Let R? be endowed with thel; norm, andC'([0,T], R?)
be the space of continuouR? valued functions o0, 7] with x"(t) = by (;—Jfﬂ” 75@”)

the supremum norm. We denote any elemen®'g, 7], R?)

by the tuple(s, ¢), and||(¢, ¥)|| = sup,epo 11 (I6(®) |+ ¥ (t))-  herex} € C([0,T],R), is given byx} = [x"(s),s € [t —
Let us consider a sequence of fun_ctlonabg : T,t]), e € C([0,T],R) is given bye} = [e"(s),s € [t —

C([0,T],R?) = R, such that{b,} are Lipschitz continuous T ]|, and the initial condition is given by

and bounded with parametefsand M respectively, i.e.,

Assumption 3.1: z"(t) = 0@t)+e™(t) —-T<t<0,nteZ
ba(o,0)| < M and a straight line interpolation is used for ¢ Z.
br(61,91) = bn(Ba,2)| < Lil(1,41) — (f2,9)] [e"(t), =T < t < T] is a zero mean “error” process,
b1 () — (b)) satisfying the following condition.
tes[lé?T] o1 (£) — o (2)] Assumption 3.2Assume thaBK > 0 such thatle(t)| <

K uniformly in n, and satisfying the following condition:
|
sup |e"(t)] =3 0 as.

Let C([0,T],R) be the space of continuous, real-valued tel-1.11
functions on[0, T}, and endowed with theup topology. Next, ]
we definez; to be the trajectory of(-), in the time interval
[t—T,1t]. Note that a time-shifted version of is an elementof  Now, let b : C([0,T],R?) — R satisfy the following
C([0,T],R). However, to avoid notational complexity, we will condition.
avoid defining a shift operator and simply abuse the notationassumption 3.3:Assume thab(.,.) is a Lipschitz continu-
and refer toz, as being an element of([0,T],R). Fix ous and bounded function with parametérs\/ respectively
a,b > 0 and 1etC[0, T]ap,c = {2r € C([0,T],R) : Zr (without loss of generality, assunie> 1), satisfying
is Lipschitz continuous with parameter, z(t) > —c and

z(t) < b}. As an aside, it can be shown th&{0,T], s . B sup |bn (Z¢,0) — b(Z:,0)] =3 0
is a compact subset @ ([0,T], R). 2:€C[0,T) s, a4+ MT,—(A+M1T)
Now, we consider the following stochastic functional diffe B

ential equations (SFDEs). Lef'(t) be the unique, continuous

solution of the following FDE. By the conditions imposed-. .

on b,, there exists such a solution [21] (the Caratheodo%}nally' for ¢ € [0, 7], consider the FDE

conditions). Fort € [0,T], consider i(t) = b(&,0)
&"(t) = bn (”ETLL%J’G) ©) wherez; £ [z(s),s € [t—T,t]] € C([0,T],R), and the initial

A o condition is given by

wherez} = [z"(s),s € [t — T, t]] € C([0,T],R), andO0 is a

process identically equal to zero jrT,T]. In (9), we need z(t) = 6(t) -T<t<0



Forn large, it seems reasonable to believe that the trajectorigsformly Lipschitz continuous (i.e., the sanid works for
of z(t), z™(t) andx™(¢t) are “close”. We will show that this all the trajectories), we have
is indeed true. Formally, we will show that

m"(0) = sup |z(u)—z"(u)
sup |z(t) —x"(t)] — 0 as. ue[-T,0]
te[—T,T] < %
We prove the desired result in two steps. We first show _ . Toon . _ _
that ||z — 2"||c(o,r;,r) — 0. Next, we show that|z” — We co_nS|d¢r different terms in the (10). First, &5,.) is
x"||o(jo,1, =) — 0 almost surely, and the required result will-ipschitz with constant, ands € [0, ¢],
follow. n _ = n A
s)—y"(s)] = |b(zs,0) —b(z5,0
Lemma 3.1:For the framework we have discussed, given ly(#) =9"() < |L( ° 2,) (_Sn ﬁ)l
anye > 0, 3N > 0 such thatvn > N, > [[(Zs,0) — (25, 0)]|
< Lm"(s)

2M LT
sup |a(t) —2"(t)] < LT (T +€) e Next, asz™(t) and z(t) are Lipschitz with constand/ and

tel0] bounded with+(A + MT), for all n large enough, by the
Thus, uniform convergence df,(.,0), we have
b ) =] =0 ) e = [z, 0) ~ ba(2,0)
S )
Proof. Fix anyn > 1. Let < Le
_ - 2
y(t) = b('ft’o_) Finally, from Lipschitz continuity of(.,.) andz"(¢),
y"(t) = b(zf,0) . (ns] . L
plt) = ba(a00) @ - ()] = 00 - ey 0)
n n (2]
Then, we have < L sup [z"(z)—a"|— )]
L tJ z€[s—T,s] n
.n n
0 = v () L LM
n - n
&(t) = y(t) Thus, we have

Fix anyt > 0. We have

lz(t) — 2™ ()| < L/t m"(s)ds
0
LM

t _.n |ns]
o) —an(p) = | @~ (B)ds ,
¢ Ins Next, for any0 < 7 < ¢, asm™(s) > 0, we have
< [ b -ua (2 a5+ 1200 - n0) :
3 n o) 2”0 < L[ mi(e)ds
0
< ly(s) — yn(s)|ds LM
i + (T + L€> 7+ m"™(0)
ns
m (\s)ds _— m
t - 0 n
< ly(s) —y"(s)|ds For anyr < 0, we have
t n n
[ 16 = yalo)lds ) =l < mio)
< =
t —_—
[ns] n
+/0 lyn(s) = yn ( n |ds Thus, it follows that
+ _an 10 t
Sup | Jo(z) =2 (@) W) vy < L[ mreds+ (B 4 Le) 1+ m0)
0 n
Let us define t
. - < L[ m™(s)ds+ (L— + Le> t+ M
m"(t) = |2 — 2} ||clo,1) o n n
= su z(z) — z"™(z n M
S [e(z) —a"(2) < L[ metds+ (B vLe) T4

IA
h
3
3
=
U
&
4
h
N

T
Consider a timeu € [-T,0]. If nu € Z, we havez(u) = ¢ 2M
z"(u). Fornu ¢ Z, asz(u) and z"(u),n = 1,2,... are €



where we used the fact tha@tT > 1. Using Gronwall's
inequality, it now follows that

- < L|[(RTnsy,€Tnst ) — (@T0es, 0)]|
m"(t) < LT{—+c¢€ ekt |nz| n [ [nz]
n x(5) —2" (5) |
< L sup 1z
ThUS, 2€[s—T,s] +|en ( T:Lz |
limsup sup |z(t) —z™(t)] < LTeelT [nz] n ( Ln2]
n—s00 te[O,T]l ® ®) < Lze[sslist] x )T\ |
As e is arbitrary, we have the desired result. [ | |nz]
+L sup |e"< - )|
. . z€[s—T,s]
Lemma 3.2:For the framework we have discussed, we have < Lm"(s)+ LE"(s)
n _n < n LT )
tes[%%] () —a"®)] < 2LTE(T)e Thus, using the fact that for anye [-T,T],
where, E"(s) < E™T)
E*(T) = sup |[e"(2)] we have,
zE[—T,T]

t
X(t) — ()| < L / m(s)ds + LtE"(T) + E"(0)
Thus, we have 0
sup |x"(t) —z"(t)] =3 0 as. < L/o m(s)ds + (Lt + 1)E™(T)
te[0,T]
Proof. The proof of this result follows a similar approach tqyext, for any0 < 7 < ¢, asm™(s) > 0, we have
Lemma 3.1. As before, let us fix any> 1, and let - N

W) = ba@0) )=o) < L[ mtda+ (Lr+ DENT)
n(t — bn —n,—n t
y' () (&7, ) < L/ m"(s)ds + (Lt + 1)E™(T)
Thus, we have 0
|nt] For anyr < 0, we have
n [x"(r) —2™(r)] < E™(T)
x"(t) = y" M Thus, it follows that for anyt > 0,
y
n
i
Let! mh(t) < L / m™(s)ds + (Lt + 1)E"(T)
0
E"(t) = ESUET ] le”(2)| From Gronwall’s inequality, it follows that
m"(t) = sup |x"(2)—2"(2)] m"(t) < 2LTE™T)e!
z€[t—T,t]
Fort € [T, 0] Asn — oo, we haveE™(T') — 0 a.s., and the result followdl
ort € [-T,0],
x"(t) —2™(t)] < E™(0) Theorem 3.1:
Fort > 0, we have ts[l(l)PT] z(t) —x(t)] "= 0 as.
> o
Ix™(t) — 2" ()| = Proof. We have from Lemmas 3.1 and 3.2,
sup |z(t) — x"(t)|
_ Ot(yn (LZSJ —yn (L":J))ds te[0,T]
tx"<0> ij”@ - < s [a(t) - 2" (1)
o 107 (152) —om (152 s .
<+ [x"0) - 2”(0) welor]
—_——
<E"(0) [t |
As by(.,.) is Lipschitz with constanL, ands € [0, ], Thus, we have the desired result. ]

n (sl _ sl _ _

y n Yy n Remark 3.1:We note that this result can be easily extended
to the case where™(¢) and e™(t) are finite-dimensional

LAl processes are defined to be zero fog T'. (say J) vectors. In such a case, we assume that :



C([0,T],R*) — R’ satisfies the following: for each < Fort € [0, 00), consider the FDE
i < Jandn > 1, by ;, whereb,, ; is thei*® component ob,,, _

is Lipschitz continuous and bounded with parameterand #(t) = b(@,0) (12)
M respectively. In other words, wherez, € C([0,T],R), i.e., % = [z(s),s € [t — T, t]], and
bni(d, ) < M the initial condition is given by
br,i(D1,01) = bni(2,2)| < L[(61,41) — (¢2,92)]| z(t) = 6(t) —-T<t<0
To the framework described in the previous section, we
- 7 |p1,;(t) — ¢2,;(t)] make the following additional assumptions. The first assump
N tes[l(l)’pT] 121%)5 +hr,;(t) — 2, (V)] ) tion deals with the stability of the mean FDE. Suppose that

(12) converges to 0 exponentially fast, i.e.,

Further, we assume thaf, converges to a functionai(., .) Assumption 3.4The mean FDE described by (12)dspo-
uniformly (analogous to Assumption 3.3), and that each cofapialy stablei.e., there exists some> 0, a > 0 such that
ponent of the vector noise process goes to zero uniformly oyg, o >0

[0,T] asn — oo. Under these assumptions, we can show that
asn — oo, almost surely, we have lz(t)] < &||Zo|le”*
n — .

Sub A, [xi'(t) —zi(®)] = 0, ]
wherex?(t) and z;(t) are thei*® component ofx™(¢t) and Secondly, we strengthen the noise process assumption.
x™(t) respectively. [ | Assumption 3.5Let[e"(t),—T <t < nT] be a zero mean

“error” process. Assume th&akK > 0 such thate™(t)| < K

We note that the above result is the functional differentiginiformly in n, and satisfying the following condition:
equation analog of the result in [13] (see also [22, pages n n—oo
219-222]). However, due to the Lipschitz and boundedness te[ilépnT] le*®] —" 0 as.
assumption orb,, we are able to show almost sure conver-
gence. In this sense, ours is a sample-path proof that extend n
the deterministic averaging results for differential eiprss )
in [14] to functional differential equations. Specificallpy Finally, we strengthen the convergence assumption on the
defining the functionm™(-), we were able to apply the functionals{b,(.)}.

Gronwall inequality to functional differential equations Assumption 3.61n the previous section, we assumed that
these functionals converged uniformly over a compact set to

a functionalb(.). We now assume that the convergence is

] i ~uniform over the entire state-space, i.e.,
In the previous section, we showed that under suitable

A. Extensions to Infinite Time

conditions, over any bounded interval of time, the SFDE ~sup  [bn(24,0) — b(Z¢, 0)) = 0
converges to the mean FDE. However, the rate of convergence ~ Z:€¢(0.T1R)
depends on the length of the time interval. Thus, given any [ |

T > 0,e > 0, we could find an large enough such that for

all t € [0,T], |z(t) — x"(t)| < e. However, for a fixed > 0, We remark that if for alh, b, = b, then, the above assumption
asT increasesn will correspondingly increase. This is notis trivially satisfied.

very surprising, as we made no assumptions on the stabilityNext, we present the following result has been proved in
of the mean FDE. In this section, under stricter condition®3, Section 7.4, vol. Il & Section 3.8, vol. 1], [24, Theorem
and assuming that the mean FDE is stable, we will derivelja12].

uniform bound over arbitrarily large intervals of time. Theorem 3.2:Consider gerturbationof the functional dif-

We consider a sequence of systems as in the previggfential equation described in (12). Foe [0, c0), consider
section. However, unlike the previous section, where WRe FDE
considered all systems over the time interifalT’], here, the

nth system is defined over the interval of tirf@nT)]. For yt) = b(y:,0) +g(ys) (13)
X"(t) = bn (ihaéh) (11) the initial condition is given by
herex € C([0,T],R), is given byx} = [x"(s),s € [t — y(t) = 0(t) -T<t<0
T,t]], & € C([0,T],R) is given bye} = [e"(s),s € [t — Assume that (12) satisfies Assumption 3.4. Fix any 0.
T,t]], and the initial condition is given by Then, there exist§; = d;(€) > 0,2 = d2(e) > 0 such that if
z"(t) = 0@t)+e"(t) —-T<t<0,nteZ |9~(t)| < & te[-T,0]

and a straight line interpolation is used for ¢ Z. lg(ge)] < d2 t>0



then, for anyt > 0, we have d>. We have
@) < e g(xfel) = (bn

I
/N
o~
wi
—S
3|3
o]l
—S
3|3
N——
|
=
3
Hi
—S
3|3
(e]]
N——
N——

This result says that if the unperturbed system is expoalgnti = ~
stable, and the initial condition and perturbation terme ar + (b (%7, 0) — b(x7', 0))

small enough, then the trajectory of (12) and (13) will bgig,, p

‘_‘close” for_all t> 0._ Using this result, alqng with the r_esu_ltters L, M respectively). Thusx”(#) is Lipschitz continuous
in the previous section, we relax the requirement on thealnit,, ;1. parameter) . Further, choosingVs large enough, from

conditions and next show thalip,c(_ 7, 7 [#(t) —x"(t)| <e. Assumption 3.6 and 3.5, it follows that for all > N5,
Theorem 3.3:Consider the systems described in (11) and

» IS Lipschitz continuous and bounded (with parame-

(12). Suppose that (12) satisfies Assumptions 3.4, 3.5 &d 3. (b (X7, 0) — b(x7,0)) < i

Fix any R > 0 ande > 0. Then, there exist&v > 0 such gL

that for allm > N, for all initial trajectoriesf(t) satisfying sup |e™(t)] < =

[l6o]] < R, we have te[—T,nT) 3
Thus,Vn > N,

sup |z(t) —x"(t)] < e 5

te[—T,nT) (7n n. ) < Llle? L||x" —x", v
Proof. We can rewrite (11) as the the SFDE g\Xt>Clnul llez'll + Ll XLTJ“ T3

26
< T+ LXK -%T.
Xn(t) == bn (i?n” ,é?n”) - 3 || ¢ LniJ”
o B < 26 n LM

= b(&,0) + (bn (Rass s ) — b (R1,0)) < 3t

n A _ Thus, choosing: large enough, for alt > to, |g(.,.)| < 4,
—_ n n n - ?
= b0 +yg (Xt @ L"n”) (14) " and thus|x"(t)| < £. The result then follows by the triangle

inequality. |
where a 4
SN AT _ o =N _h(e™ 0
g (Xt ’eL"T”) - (b” (XL’;—”’eL’;—”) b(x; ’0)) IV. RATE-BASED MARKING AND THE MANY-FLOWS
LiMiT

Note thatg(.,.) is a function of onlyx} and x7,., need
not be included as an argument because knowledgg!of
implicitly gives the trajectoryx”,,, (appropriate straight line
extrapolation). "

’\tl)(l)w ;ix anyrf >0. As (1?)fis||assurr?ed rt10 be exponentiallyy - convergence to the Fluid Limit: The Unconstrained Case
stable, from Theorem 3.2, it follows that there exis& & 0, We recall from the model description in Section 1I-A that

82 > 0 such that for any, > 0, if there is a non-negativity constraint on each of the flows. We
ignore this constraint in this subsection. This issue wél b
handled in the next subsection, where we will show that for

In this section, we show that in the many-flows regime,
the trajectories for the stochastic difference and detastic
differential equations introduced earlier are “close.”

Xl < &

lg ()‘c?,e’fn_”) | < &2 V>t “reasonable” initial conditions, the trajectories remaian-
" negative.
then, we have for alt > t, Formally, we consider the delay-differential equations
€ n n,ln(t—d
Kol < i) = a-per 209D (15)
; ngln(t —d)] ngLn(t —d)]
Let us denote = ™in(0192:9) Now, consider the mean FDE p (w () +tate" (=)

described in (12). For any initial condition satisfyifig:|| <
R, from Assumption 3.4, it follows that there exigfg such
that for allt > to, ||Z¢|| < 6. From Theorem 3.1, it follows "(t) = O(t)+e”(0) —-T<t<0,nteZ
that there existsV; such thatvn > Ny,

with initial conditions given by

and a straight line interpolation is used fat ¢ Z. The
sup  |x"(t) —z(t)] < & candidate limiting system is described by

te[~T\to] z(t) = A—pBz(t—d)plz(t—d)+a)

with initial conditions given byd(¢). Using Theorem 3.1, we
show the following result.

Thus, it follows from the triangle inequality that far> Ny,
[|%7 || < é1. Next, we show that for all > to, |g(X}, el..;) <
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Theorem 4.1:For the systems described above, we have = Byt -] p(yE—d)]+[r(t—d)] +a)
sup |£L'n(t) _ $(t)| - 0 a.s. _B[x(t - )] p([:l;'( )] + [ ( d)] + a) |
tef0,1] < BllyE—d)] p(y(t —d)] +[r(t — d)] + a)
23n f_)V?/o es of (15). Fist o that =zt =d)] p(yt -] +[r(t —d)] +a)
roof. We prove some properties o . First, we note tha ot — . a
as |e?| < K, we have that ifa + w"(w) < —-K, jmg B H EEE _ ;]] i [[eit _ ;1 j—_ a;|
p (;U”(L(t_d“) +a+ en(int=dl )) = 0 (asp(z) = 0 for
2 <0). Th"us, we have that " As p(.) is Lipschitz continuous with parametét, and[z] <
it - )] M, we have
—(K+a) < mn(T) [b(ze,€0) — b(ye,me)| < Blly(t —d)] — [z(t - d)]|
ngln(t—d)] nln(t—d)] +BPM(|ly(t — d)] — [=(t — d)]]
e ) et = )] = (¢ = D))
and < B+ PM)la(t —d) - y(t - d)

+BPMle(t — d) — r(t — d)|
< BA+PM)[(zese0) = (ye,me)|

Thus, the conditions for Theorem 3.1 are satisfied, and we
have the desired result, i.e., as— oo, we have

i"(t) < A+B(K +a)

As we are studying the process over the inteféall'], and

|z™(0)] < K + 6(0) £ 4, we can uniformly upper bound (in
n) z™(t) by A+ (A + B(a + K))T. Next, we lower bound
xz™(t). As p(z) <1, and using our upper bound, we have sup |z"(t) —z(t)] — 0 as.

t€[0,T]
g"(t) > —BlA+(A+B(a+K))T) a

Thus, we have
Next, we study a similar limit foeach flowas opposed to
z"(t) > 60(0)— K —TB[A+ (A+ B(a+ K))T] the aggregate flow. Recall that the rate of flofwhen there
aren flows in the system) adapts according to (2), which can

Next, we define be represented by

16(0) i Lt = )|

M, = max| —TB[A+ (A+B(a+ K))T], grrt) = A= Byt () (18)
A+ (A+ Bla+ )T 4 —d

L, = max(B[4+(A+f(a+K)T],A+B(K +a)) P(v’””(im(tn ) as e )J))

we observe thatz™(t)| < M, and is Lipschitz continuous with the initial conditions given by)(¢) + &4, sampled appro-
with parameterL,. Let M = max(K, M,). For anyz € R, priately and interpolated. It can be shown using an analysis

define[z] = (-M) \/(z A\ M). Define similar to that carried out for the aggregate flow that, as
n — oo, the flow trajectory approaches the trajectory of the

b(zi,e) = A—plz(t—d)]p(zt—d)]+[et -d)] +a) following delay-differential equation

As we note that in (4)|z™(t)] < M and|e™(t)| < M, we Jit) = A—Byi(t—dpat—d) +a) (19)

can rewrite it as ]
In(t - d)] and with randominitial conditions given by§(t) + &, with
g"(t) = A—pl™( )] (16) [&] < K.
In(t — d)] In(t - d)] In the following section, we will address the issue of non-
([ ") +a+]e (ni)]) negativity of the trajectories of*"(t), z"(t) and z(t). We
n n will show that under reasonable initial conditions, fotarge

= b(iv’f,%“e@) (17 enough, the trajectories will remain non-negative.
Now, we show thab(., .) is bounded and Lipschitz continuous.
First, as0 < p(.) < 1, we have B. Behavior of the Trajectories: Non-negativity and Conver
gence
A = Blz(t — d)] ‘ . . . . .
b(zy, e = We now study the pair of delay differential equations given
bz e ‘ p(z(t — ) + le(t — d)] + a) by
< A+pM )
A &(t) = A—pz(t—dp(zt—d+a)  (20)
Next, we have ) = A=pylt-dpait—d) +a) (21
(21, €1) — b(ye, )| with initial conditions ovef—T, 0] given by6(¢) andé(t)+ro,

respectively, for somér,| < K; and the marking function
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p(z) is chosen such that in the absence of delafy, — c—a, Proof. Definer(t) = z(t) — y(t). Then, the evolution of this
i.e.,A = B(c—a)p(c). Equation (20) corresponds to the “fluid-is described by
limit” of the aggregate flow derived in the previous section,

and (21) corresponds to a sample path of the “fluid-limit” of rt) = —Brt-dplatz(t-d)
an individual flow. We first show the following result. with (t) = ro for t < 0. If 7o = 0, clearly,(t) = 0 for all
Lemma 4.2:If 0 < 0(t) < ¢c—a, V¢t <0, then t > 0. Thus, we can assumg # 0.
I < a(t) < M, V>0, We first observe that if for als € [t — d, t), r(s) < 0, then
we have
where
_ it) = —pr(t—dpla+z(t —d))

M=c—a+Ad and I=c—a—d(BMp(M+a)-A). = B(~r(t—d)pla+z(t—d))

Proof: Let A = A + 4, whered was defined in As-
sumption 2.1. We now observe thaft) < A. To see this, 2 0

supposez(t — d) < 0, then we have from Assumption 2.10n the other-hand, if for alé € [t — d, t), we haver(s) > 0
that |A — Bz(t — d)p(z(t — d) + a)| < A. On the other- theny(¢) < 0.
hand, if z(t — d) > 0, asp(.) > 0, we havez(t) = Let us now assume thag < 0, and lett; the first time such
A—pr(t—d) plat+z(t—d) <A.LetM; =c—a+Ad+e thatr(t;) = 0. Then, for alls € [-d, t1), 7(s) < 0. Thus, from
for somee > 0. Suppose that(t) = My for somet > 0. the observation in the previous paragraph, it follows thegro
Then, sincei(t) < A, we have thati(t —d) > c—a. Thus, ¢ [—d,t), #(s) > 0. Thus, from the facts thaty < 0 and
Lo — A _ _ _ — r(t) is increasing, it follows thatt < ¢1, |r(t)| < |rol.
&(t) = & = folt = dp(c) < A= fle—a)p(c) =0. N(03/v, for anyt € [t1,t1 +d], as—r(t — cl)| 2( 2)|, W(la hlave
In other words, ifz(t) reachesM, it decreases. Thus, if the
initial trajectoryf(t) < ¢ — a, we see that(t) < ¢ —a+ Ad i(t) = B(—r(t—d)p(x(t—d) +a)
for all t > 0. > 0
Next, letl; = I — e for somee > 0 and suppose that for
somet > 0, z(t) = l;. Then, asz(t) < M, it follows that

z(t—d) < L+dBMp(M+a)—A)=c—a—c¢

Thus, it follows thatr(t) is increasing oveft;, ¢ + d]. Next,
asp(.) is increasing in it's argument ane(t) < M, we have

i) = B(=r(t—d)p(z(t—d) +a)

Thus, < B(=r(t—d)p(M +a)
#(t) = A pa(t-dpe(t - d) Now, for anyt € [t1,t; + d], we haved < —r(t —d) < |ro|.
> A-Blc—a—eplc—a—e) Thus,
SinceA—p(c—a)p(c) =0, &(t) > 0, and the result followsll it) < B(—r(t—d)p(M +a)
< Bp(M + a)lro|

We note that, since—a > 0 by our assumptions, it follows
that M > 0. From now, we will also assume that- 0. We with r(¢;) = 0. Thus, integrating the above expression, we
justify this through a numerical example at the end of thisave for anyt € [t1,t1 + d],
section. In fact, for most parameters of interest in therhge
I > K, where we recall that noise process is bounded by 0 <rt) < Bp(M +allrol(t —t1)

a + K. For more discussion on this, see [6]. < Bp(M +a)lrold
For the rest of this section, we also assume = alro|
a 2 Bp(M+a)d < 1. (22) < ol

To understand what this means, we note that it has been shoigre the last step follows from (22), where we have assumed
in [6] that, for reasonable values of network paramet&fsy thata < 1. o
¢ — a. Further, we note that = 8(c — a)p(c). Thus, Next, lett, be the first time aftet; + d such that-(¢) = 0.

As we haver(t) > 0 for t € [t1, 2], it follows that |r(t)| <
Ad ) a|rg| for all ¢ € [t1,t2]. This follows becausey|ry| > r(t) >
c—-a 0 in [t1,t1 + d], and fort € [t; + d,t2], 7(t) < 0, because
For self-clocked congestion controllers (see [2}f ~ 1 and r(t —d) > 0 over this interval. Thusr(t) < alre| for all
since the bandwidth-per-user;- a, is typically large,a <1 ¢ ¢ [t;,1,].

Bp(M + a)d ~

is satisfied. Now, repeat the above argument for the negative cycle (i.e.,
Theorem 4.2:Supposel, 3,d satisfy (22) and > K. for t € [ta,t3], Wherets is the first timer(t) hits zero after
(i) Forallt>0,|z(t) —y@)| < |=(0) — y(0)|. ta +d) and lower bound () by —a?|rg| > —|re|. Continuing
(i) If the initial condition y(0) is non-negative, i.e4(0) + this argument proves (i) and (ii).
ro > 0, theny(¢) > 0. Now noting thafrg| < K and by choosingy > 0 such that

(i) For anye > 0, there is ar < oo such that for alt > 7, o™ K < ¢, eventually we can upper boutd(t)| by o K < €
|z(t) —y(t)| < e. provided thatw zero crossings of(¢) occur in finite time.
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However, if the derivative were to be equal to zero, it ithe marking function is of the form
possible that sufficient number of zero crossings will not (@ —&)*
occur in finite time. This will happen ip(a + x(t)) = 0 for p(z) =
all t. However, noting that:(¢) > 0 if p(z(t —d) +a) = 0,

it can be easily shown that there exists> 0,0 < p < 1 Thus, ap(c) satisfiesA = f(c—a)p(c), we havet = 3749.5.
and a time7 > 0 such that overny interval of time 7', Computing the boundd/,! from the last section, we have
p(iﬂ(t) + a) > for at-least an amount of t|mpj" Using M = 3000.5 and! = 29995, while the nominal rate per
this, it can be shown that zero crossings will occur in finitéourcec: = ¢ — a = 3000. Further, checking the condition

time intervals, and-(¢) will eventually go to zero. B in (22), we havefp(M + a)d = 5555 < 1. Thus, the

conditiona < 1 is satisfied. Recall thaK is defined such

We now briefly discuss the implications of the abovéhat the “noise” rate is» + K. If K satisfiesl — K > 0,
theorem. Recall from the previous section thahas oo, the 1-€., K < 2999.5, and the initial conditions are non-negative,
rate process of an individual flow/:" (t) converges uniformly from the results in the previous section, the rates remain
over [0, 7] to a fluid-limit processy(t) with random initial Non-negative, and from (i) in Section IV-B, all users
conditions which are bounded hi{, and similarly for the €ventually get a fair share of the bandwidth. L
aggregate flow. Thus, from the results above, for any finite
T > 0, it follows that for n large enough, the trajectories
of y*"(t) and z™(t) will remain non-negative. Further, by C. Rate Based Marking: Extensions to Infinite Time

choomgg_tTf i 4 &(rj]efmne(;m ("z!?,)l' ;nd Zhoosmgl large 5o far, we have studied convergence of rate processes over
enough, it follows thafa"™(T) —y**(T)| < 2e. a finite time interval0, T']. We now extend this framework to

Remark 4.1:The results of this section can be extended ﬁﬂfi@ite time. As in Section I1I-A, we consider fix son®@> 0

the case where the arrival rate at a router is estimated bagﬂ consider a sequence of systems over progressively large

on averaging over a finite window. In other words, ConSid‘ﬁ[}tervals of time. We study (15), but over the time interval
a system where the marking at the router is a function f_T nT), ie., fort € [0,nT] cons’ider
e b 1 " " bl 1

the average arrival rate over some interval of time, and$a
' isi i i i .n nsln(t—d
the marking decision on this average. Consider the corayesti i) = A—fa (L ( . )J) (25)

control equation
» (mn( Ln(tn— d)] ) Ln(tn— d)] ))

T

i) = A-pe(MCD) (23) aten

. n /Wn—l wn(Ln(t—ns—d)J) +a) with initial conditions given by
W /oo fen(lntze—dly "(t) = O(t)+e"(0) —-T<t<0,nteZ

We observe that in the above system, the rate is integratd oand a straight line interpolation is used fot ¢ Z. Fort €
an interval of time%, notWr;l_RecaII that each time-step (for[0, 0o), the candidate limiting system is described by
the nth system) is of length-. Thus, in an interval of time .
W we a}rle ave)raging ovgwn steps. This would correspond #(t) = A-po(t-dpa(t—d)+a) (26)

to averaging over someolume of dataso that instantaneouswith initial conditions given by#(t). As before, the equilib-
effects from a small fraction of the data does not affect th&im point of the above equation is* = ¢ — a. We make the
system dynamics. As the number of flows increase, the volufitflowing stability assumption.

of data over any interval of time linearly increases. We @&t~ Assumption 4.1:Consider the fluid limit process described

to have the same reliability in the estimates, we need to kegp (26). We assume that this process is exponentially stable
the volume fixed for alk. Hence, the interval of time shrinksj.e., 3 > 0, > 0 such that for allt > 0,
inversely inn. We can see that a reasonable limit to expect as

n — oo is given by (1), i.e., z(t) —2*| < &|lfole=**
i(t) = A—pBu(t—dp(e(t—d)+a)  (24) Wherebo =supierrq[0(t) — 27| u
with initial conditions given byd(¢),0 > ¢ > —T. | Similar to that in the finite time case, there are now

n uncontrolled flows (i.e.{ef},k = 1,2,...,n, i > 0)
Example 4.1:We consider a network witln flows. The accessing the system, with each flow having a bounded rate,

target arrival rate due to controlled flows is assumed to he., |¥| < K. We assume that these flows are iid, and are
n x 120 kbytes/sec, and the mean arrival rate of uncontrolledlationary and ergodic. Far < 0, we assume a constant
flows is assumed to bex 30 kbytes/sec. We let the round trip(random) initial condition, i.e.e®, = ek. In the finite time
delay be50 msec. To translate these numbers into our modekse, we were interested in the interval of tifrel’, 7. In
we need to map time in msec into time units of the model. Whis interval, we ha®nT + 1 discrete-time steps, and thus,
normalize with respect to one-way propagation delay. Thugnged from—nT' to nT. Here, we are studying the system
we haved = 2, ¢ = 3750 anda = 750. Further let the gain over the time-interva[—T,nT]. As each discrete time-step
parameters b& = 0.25, andg = 0.67. Now, we assume that corresponds to a “continuous time” interval of Ieng%h it
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follows that thati ranges from—nT to n2T. Then, we have show as in Lemma 4.1 that there exist6 > 0 such that for

for anye > 0, alln >0,
1 sup [2"(t)] < M (30)
Pr ( sup - Zég > 6) te[—T,nT]| ®)
—nT<i<n?T |1 5 sup |2(t)] < M (31)
te[—T,00)
15 The rest of the proof consists of showing that the assump-

< (n2T+ 1)Pr ﬁzéé >e€ tions in Theorem 3.3 are satisfied for the delay-differéntia

j=1 equations described in (28) and (29). Let us define=
< (T +1)e ™ A + B(z* + M). We observe that

for somea = a(e) > 0. The first step follows from the union A— ﬂ(z”(“‘(tni_d”) + z*)
bound, and the fact that the flows are stationary. The second p (zn( [n(t—d)] )+ c+e( [n(t—d)] ))
step (i.e., existence af > 0) follows from Chernoff’s bound n n

(it trivially follows that the MGF exists, as the process isl'hus, it follows that|3" ()
bounded). Thus, it follows that

< L

| < L, and similarly forz(t), and
hence, the trajectories af*(t) are Lipschitz continuous with

n parameterL.
Pr sup 1 Zé{ se| ™% 9 As in Lemma 4.1, for anyz € R, define [z] =
—nT<i<n?T | T [ (—M) V(2 \ M). Define
exponentially fast. Now, applying Borel-Cantelli Lemma, ip(z;,e;) = A-f
follows that (ot — d)] + 2*) p (2t — d)] + [e(t — d)] + )
sup 1 Z &l 5 0 as. (27) Then, we can rewrite (28) and (29) as
—nT<i<n2T |1V 5 !
1S j=1
: In(t —d)]
n — A _ n *
As before, we remark that the above model allows eacﬁ ®) A" n N+27) (32)
“noise” process to be long-range dependent. We only need [ [n(t —d)] M+ e+ [ [n(t —d)] )
the flows to be bounded and iid. Thus, we have that b n
= b nnt ) "nt 33
sup |e"(t)] — 0 as. ) (ZLnJ e%) i 33)
te[—T,nT] 2t) = A=-B(zt—-d)]+z")p(z(t—d)] +¢)
The main result in this section is the following. = b(z,0) (34)

Theorem 4.3:For the systems described above, we have i , i )
Now, we show thab(., .) is bounded and Lipschitz continuous.

sup |z"(t) —=z(t)] — 0 as. First, as0 < p(.) <1, we have
te[0,nT]
_ | A=B([x(t-d)] + ")
asn — oo. bz, e)| =
Proof: Define z*(t) = a™(t) — z* and 2(t) = z(t) — |b(z¢, er)] p([z(t —d)] + [e(t — d)] + ¢

z*. These are the “centered” rate processes, and satisfy the < A+pM

following equations. Fot € [0,nT], 2"(¢) satisfies The proof of the Lipschitz property di(.,.) is identical to
n B n, Ln(t—d)] . that in Lemma 4.1.
&) = A-BE n )+27) (28) Next, we have, by Assumption 4.1, that the fluid-limit is
ny L0t —d)] n, L0t —d)] exponentially stable. Finally, as discussed earlier, thaise”
p (z ( )+t e’ n ) process satisfies

with initial conditions given by noe g

sup [e™(t)] —
te[—T,nT)
2"t) = 0@t)+e”(0)—z* —-T<t<0,ntez
Thus, the conditions for Theorem 3.3 are satisfied, and we
and a straight line interpolation is used fot ¢ Z. Fort € have the desired result, i.e., as— oo, we have
[0,00), 29t) satisfies

Ht) = A-Bt—dp(t—d)+c)  (29) S 1270~z @] 0 as

with initial conditions given byd(t) — z*. As before, assume |
|6(t)| < K is a Lipschitz continuous initial trajectory. We can
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D. Weighted Proportional Fairness Analogous to the study in Section IV-A, we can study a

In the previous sections, we considered the case whdfgit for each flonas opposed to the aggregate flow. It can be
all users share the same utility functidog(z). We now shown that the trajectory of (35) approaches the trajeabdry

generalize this to the case where the utility function ofwFlothe following delay-differential equation

iis A;log(x;) (leading toweighted proportional fairnesgs]) . _  avifp _

whereA; > 0 are possibly different for different flows. From git) = Ai—pBy'(t—d)p(a(t —d) +a) (38)
a resource allocation point of view, the resource allocatiyng withrandominitial conditions given by 6(t) + &}, with
achieved under any concave, increasing utility functiarsize l&i| < K.

achieved by a weighted proportionally-fair allocationaigh '\ o _negativity of the trajectories follows the analysis in

appropriate choice of weigh{s\; } [3]. To implementthisina gection 1v-B, once we realize that we need to studscaled

truly decentralized fashion, the weights themselves hauset trajectory of yi(¢). Let us define
adapted by the individual users; however, we do not address
this case here. A1)

Suppose there are flows, and useri uses the utility y(®) A;
function A log(y?*). Let us define

Then, we have
n 1 - n
AY = =3 OA; gty = A—By(t—dp(a(t—d) +a)
=1

Continuing the same notation and framework as in the previoyith initial conditions ovef{—T', 0] given by6(t) +rj, respec-

) . - _ AK :
sections, the evolution of the user’s rate follows the delafjvely, for some|rg| < K', where K" = Z=. The results in
differential equation Section IV-B then follow for these scaled system, and thus,

non-negativity is ensured under suitable initial conditio
In(t — d)]

) = A7 - By () (35)
’ <m"( [n(t —d)] )t aten( [n(t—d)] )) . V. RANDOM MARKING
n n In this section, we consider random marking functions,
with initial conditions given by and show that in the many-flows limit, this random function
' AR . behaves like a deterministic function operating on the ayer
y () = K’G(t) +€,00 —-T<t<0,nteZ rate as in the previous sections.

) T o We begin with motivating why we should study random
and a straight line interpolation is used fot ¢ Z. We can marking. Consider a packet-based model operating in descre
then describe the evolution of the mean rate analogous 10 (}%e. In a particular time-slot, supposé) packets arrive,
by and the marking functiorp(.), takes the value€).2. Then,

. " Wt —d)] every packet needs to marked with the valu@. However,
i"(t) = A"-fz (T) (36) in practice, a packet is either marked or not marked. Thus, a
o n(t—d)] o ln(t—d)] possible solution is to mark each packet independently with
p (ﬂf (=) +a+te (7)) probability0.2. Thus, we can see that the marking function is
o N . random with meamp(.).
with initial conditions given by Now, we go back to our stochastic fluid model. Suppose
n A" N there aren flows y®"(t),i = 1,2,...,n with ¢ such that
a'(t) = Ka(t) +e’(0) -T<t<0,nteZ nt € Z and0 < ¢t < T. Ideally, a fractiony®”(¢)p(.) of the

and a straight line interpolation is used far¢ Z. This means ith flow should be marked. However, due to randomness in

that each flow{y*},k = 1,2,...,n could have a different marking, the fraction marked will bg""(t)(p(.) + £"(t)),

initial condition, but the nominal initial condition is g by where£*"(t),i = 1,2,...,n are iid random variables with
526(t). zero mean, and¢»™(t)| < 1. Further, we have thag“™(t)

A is independent of%"(t). This follows because/®"(t) de-

Suppose we assume thA" — A asn — oo. Using ; ; (- d)]
methods identical to those in Section IV-A, we can show thBENds on the noise and marking up to ti e, and

the trajectory of (36) is close to that described by _the randomness in the marking process is assumed_ to be
independent of past marking decisions (i.e., at each time, a

z(t) = A-pPz(t—-dplx(t—d)+a) (37) flow is marked independently of the past, and with mg@y).
Thus, analogous to (2), the congestion control model foheac

with initial conditions given byd(t). Formally, flow will be given by

Lemma 4.2:As n — oo, we have

sup [z"(t) —z(t)] — 0 ghn(t) =
te[o,T]

n(M)
L

A - By" -
B ( p (xn( n(tn_d” )+ a+ e"(itn(t"_d)J )) )
+§im( Ln(tn—d)J)
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with suitable non-negative initial conditions. Also, afdre and|y®™(1)| < M, |¢4™(1)| < 1. Thus, expanding and using
in (4), let the fact the¢®™(1) and &;(1) are independent, zero mean
random variables (and thus, many product-terms cancel), we

1 > i) have
n i=1

We first state the following lemma that the states that the ind < Zy’ TL)ER(1)] > 6) <

vidual sources rates and the average source rate are bounded

We omit the proof since it is similar to earlier proofs. ) )
Lemma 5.1:There existsM > 0 such that fort € [0, T, Y (e ()1

for all n, +15% 04,5 (y*™(1)€

ly"" (®)]

—F
M nbeb itj
|z" ()] M

(Y (L)En (1))
. TR (5 (D6 (1)) (D€ (1)?
)

Now, using the boundedness ¢#"(1) and£%™(1), we have

IAIA

Next, from the definition ofz™(t), we can see that is
satisfies the following delay-differential equation. Famya Zyzn )En(1)] > e
t € [0,T], we have

, Ln(t —d)]
#"(t) = A=pa"(——) 1 .
- (%J - d)] < W(n + 1502 4 20n2 + n®) M©
e e ) _ e
nelnt = )| 29 _en?
—BE%( n ) (39) " and the result follows. Thus, we hasep,c(o, 71" ()| = 0
where almost surely as — oo. |
-1 zn:yi*"(t)f"*"(t) (40) Now, we can show that the appropriate limit to study even

with random marking is the same as that of rate-based marking

We now show that™(¢t) — 0 almost surely, uniformly over without noise in the marking process, i.e.,

t €[0,T] asn — oo. z = A—-Bz(lt—dplt-d) +a) (41)
Lemma 5.2:As n — oo, o - )
with initial conditions given byd(¢),0 > t > —T. We state

t SlépT] €"@®) — 0 as. the following result without proof since the proof is sinmita
€[ . . g .
Proof. To show this. it is sufficient to show that the proof of Theorem 4.1, with minor modifications that use
Lemma 5.2.
Lemma 5.3:For the systems described in (39) and (41), we
Pr | sup |£"(t)| > € = have
t€[0,T]
ntez

. sup |z"(t) —z(t)] — 0 as.
fast enough, so that we can use the Borel-Cantelli lemma to te[o%' ®) @)

show almost sure convergence. From the union bound, we have

asn — 0. |
Pr(sup |E™(t |>e) < ZPr<|§” |>€>

t€l0,T]

ntez A. Non-negativity of the Trajectories

We consider any term of this summation and show that it goes
to zero at least as fast a;}s Thus, as there are ontyterms in
the summation, we have convergence at FnéteFrom Borel-
Cantelli Lemma, the result then follows. We hag®(1) =
Ly yP™(1)€5(1). Thus, from Chebyshev's inequality,
have we have

In the previous section, we studied a relaxed problem,
where the user rates were not constrained to be non-negative
Similar to Section IV-B, we will now show that under suitable
assumptions, the user rates will remain non-negative.
W€ First, we observe that as the limit of treggregate flow

x™(t) is the same as that in Section IV-B, it follows that under

in(1)gin reasonable initial conditions, the limiting process) is non-
Zy DE (L) > e negative, and bounded away from 0 for alle [0,7]. As
we have shown in the previous section that the aggregate rate

) n z™(t) converges taz(t) uniformly over[0, 7], it follows that
< —=E (Z Yt (1)€0m (1)) for n_large enough, the aggregate rate defined in (39) will
n°e P remain non-negative.



16

We now study each individual user’s rate, i.e., forlarge We now consider (43), but without any random perturbation

enough, fort € [0, T], we study of the marking process, i.e., fare [0,T], we consider the
delay-differential equation
< i,n im0t — d
i) = A g2zl @2) o
Lnu_Jﬁ In(t—d)] ) = _5T"(Ln( )J)
<p<:1;n(—n 24) +a+ e (o )) ) |_n(tn—d)J In(t —d)|
g (LE) P (”’"”(T) tot e"(T)>

Consider the randomness in marking for each flow, i'EUsing (44), an analysis of this delay-differential equatio a

.’éi’n(t): Suppose that the variability in the marking_is smally,anner identical to that in Lemma 4.2 yields theft(¢)| <
Le., [€5"(¢)] <y for some smally > 0. This assumption can r™(0)]. In fact, even though we will not use this here, the

be justified by the following reasoning. We cons_lder for th nalysis will yield that-™(t) converges to zero exponentially
moment, the packet mode we hagl used 10 motivate rand(? t (recall that we have a geometrically decreasing bound o
marking. Suppose that at some time, each is to be marli trajectory).

with probability p. For a user with only one packet in theNow consider the “marking perturbation” terms in (43),,i.e
gueue, the variance in the number of marks received will be o
p(1 — p). However, it the user has a large number of packets gin( L"(tn*d)J yn (lnt=d)]
(IV packets) in the queue, then the variance in the average _fn(Ln(t—d)J)xn(Ln@—d)J)
number of marks received will b&(;). The analog in the " "
rate based model is the large rate regime. If each user hasrem the discussion above, we have thﬁ(w) is
large enough data rate, then a law of large numbers resuilt vdbunded byM + £. Further, from Lemma 5.2, we know that

ensure that the variability in marking per user at any time is,, s o fn(Ln%t._d)J) goes to zero uniformly oveli, 7.
small. In the following Lemma, we will assume that the usefpys it follows that

data rates are large enough for this regime to operate.
Lemma 5.4:There exists somey > 0 such that sup |€"( [n(t —d)] Yz ( [n(t —d)] ) =50 as.

sup;epo, 71 [€°"(t)] < v, then, for alln large enough, for all  t€fo.7] n n

te[0,T), y" () >20. , Using ideas similar to that in Lemmas 3.1 and 3.2, where

Proof. Fix any and definez"(t) = z"(t) — y*"(t), where Gronwall's inequality on the sup-norm is used to give a bound

z"(t) is defined in (39). Themy™ (¢) satisfies on differences between the trajectories of systems withlsma
o o n(t—d)] perturbaﬁions, we can show thay > 0 small enough such
o) = =) that if [€57(¢)| < 7, then,sup,ego ) [ (¢) — 2" (t)| is small.

n
o n(t —d)] ot —d)] Thus, it will follow that over|[0,7T], by choosingy small
p (5’7 (F———)+a+te (7)> enough, we can ensure thgt”(t) remains non-negative.ll

ln(t —d)]

. t—d
+,8§””(Ln( ) Jy™( ) For the marking schemes described in this section, the
ln(t _nd)J ln(t —nd)J difficulty in extending the convergence result to arbitsari
—B&"( - L - ) (43) large intervals of time lies in proving uniform boundedness

of the trajectories with random perturbations, i.e., thalag

NO,V\_" recall from Section IV-B that under reasonable initiaéf (30)-(31). If the existence of a uniform finite bound can be
conditions, there is somaf > ¢ —a andl > 0 such that (41) proved, the extension to infinite time will easily follow. iEh

satisfies! < supye(o,r)2(t) < M (in fact, the bound is valid ig 5 interesting problem for future research.
for all ¢ > 0). Assume that (22) is satisfied, i.e., we assume

M .
that M, , d satisty VI. QUEUE-BASED MARKING

a = Bp(M +a)d < 1 We will now study systems where the marking function
B'could be based on queue lengths as described in Section II-
B. As in th previous section, we will first consider the case
where the trajectories can be negative or positive, andeprov
convergence in the many flows regime over a finite interval of
time. Then, we show that the trajectories are non-negative f

A discussion of this condition is provided in Section IV-
Next, as the above inequality is strict, apfl) is continuous
and increasing, there exists some 0 such that for alld) <

4 <€, Bp(M +a+6)d < 1. Now, we choose: large enough

such that _ S .
suitable initial conditions.
€
sup |e"(t)] < g
te[—T,T] . L. i
" € A. Convergence to the Fluid Limit: The Unconstrained Case
S t) —z(t < = . . .
tE[PET”w () — =) 2 Like systems considered earlier, we assumdlows ac-
. cess the router. However, unlike before, where the markin
Thus, it follows that for alk € [0, T, g

depended on the instantaneous rates (or average rate over a
time-window), here, we consider marking functions based on
gueue-lengths.
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As described in Section II-B, let™(t) be the aggregate bounded. Similarly, a lower bound can be derived, and we
average data rate at the router, with capaeity. We have the can show that there exisf®; > 0 such that|z™(t)| < M;
uncontrolled “noise” process given lay+ e™(t), wherea > 0, for ¢t € [0,T].

e"(t) is zero-mean process satisfying suitable assumptions aRecall thatg™(t) = 0 for all ¢ < 0. Thus, for anyt €

before. We letc = C' — a. Then, fort € [0,T], the evolution [0,T], the queue-lengthh™(t) depends only on the trajectory

of the aggregate rate can be described by the following SFD&:z" (¢) in the intervall0, t] C [¢t—T, t]. Thus, we can interpret
g"(t) as a functional mapping of the trajectory &t (¢) to a

t—d t—d
i"(t) = A- ﬂx”(w) (p (q"(M))%S) non-negative number. We will now show that this mapping is
n n Lipschitz continuous, so that we can apply Theorem 3.1.
whereq™(t) is the scaled queue-length. We assume as beforerormally, we defineM, = K + M; and let[z] =

that the marking functiom(.) is chosen so that for eaal, (—Ms)\/(z A M2). We let@ : C([0,T],R?) x [0,T] = R
the fixed point is(z(t),q(t)) = (c,q0). Thus, the marking to be defined as follows. Witly = {y(v),0 < v < T}, a
function acts on the scaled (b},{) gueue-length, and whosecontinuous trajectory of lengtli, we define

evolution is given by .
_ s—d) seld,T
{ () +e™(t) —c if ¢"(t) >0 Q@,s) = { g( s E)[O,d)e 1]

@ (1) + () — ot it gy =0 O | | |
o T whereg(s — d) is the queue-length at time— d (with s > d)
As before, assume that the initial condition is given by o 5 queueing system with zero initial conditions, and drive
2"(t) = ) +e"(0) —T<t<0, nteZ by_the trajector{[y(T — s + v)],0 < v < 5= d}. This is a
_ o o “sliced” and bounded segment of the trajectorygobver the
and a straight line interpolation is used fot ¢ Z, and the interval [T — s, T — d], which is of lengths — d. Formally, we

q"(t)

q"(t) satisfies defineg(t) by the following differential equation:
*(t) = 0 te[-T,0] i(r) = [T —s+r)—c ifg(r)>0
L= VW@ —s+n]-oF i) =0

Also consider a deterministic system consisting of a single
flow z(t) driving a queue with capacity, and whose evolution and §(r) = 0 for »r < 0. From the above definition, the

is given by following properties of@(7, s) follow:
#(t) = A=pa(t—dp(a(t - d)) (47) Q@,t) —QF,s)] < (Mx+c)[t—s
i) = { ZEZ)__CC) i qi(ft)q(>t)0= 0 (48) Qy,t) - Qz, 1) < Tlly— 2l

_ Finally, we note that for the rate trajectorie8(t) andz(t),
andq(t) = 0 fort € [T, 0]. We assume(.) is aqueue-based ;o have

marking function. The marking function is chosen such that

in equilibrium,z =0, ¢ = 0, ¢(t) = qo, z(t) = ¢, and Q™) M) _ q(M)
Tn n n
A = Bep(qo) Qz,t) = ¢(t—d)
Lemma 6.1:For the system described above,ras+ oo, |t can also be easily shown th&(7,s) is bounded over
we have g € C[0,T] ands € [0,T]. Let us denote the bound by
n Ms. Defining M = max(M,, Ms) and redefining[z] =
sup |z"(t) —z(t)] — 0 a.s. 8 ’
te[o%]l () — () (=M) V(2 \ M), we define
Proof. We first show boundedness of the trajectories, i.e.,
dM > 0 such that for alln, b(mtaetat) = A- /B([x(t - d)]) p([Q(xt;t)])
sup |z"()] < M It can easily be shown thak(.,.,.) is a Lipschitz continu-
te[0,T] ous, bounded functional using techniques identical to ifmat
To see this, from the fact tha(, ) < 1, we have I(;]?rl;rw(ma)\ 2;51. Equations (45) and (47) can be written in terms
. In(t—d)| ’
n X (t) = b(xﬂ,eﬂ,%)
The trajectory ofz™(t) can thus seen to be upper bounded i) = bl b " "
by the trajectory ok(¢) (with non-negative initial conditions) o
satisfying We can easily generalize Theorem 3.1 to include conver-
In(t—d)] gence of finite-dimensional vector processes, i.e., we can
2(t) = A+4+pBz(————) let x™(t),e™(t) to be vector processes of dimensidh and
< A+ B2(D) " let b,(.,.),b(.,.) map vector processes ®”’. With similar

assumptions as before (i.e., the functions are bounded and
The second step follows as(t) is increasing int. Thus, Lipschitz continuous), we can derive Theorem 3.1 in thisenor
clearly, overt € [0,T], the trajectory ofz™(t) is uniformly general setting.
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h Fig. 2. Trajectory of the rate proces$t). The shaded area corresponds to
the queue length at tim& .

o

t

"0 t1 t‘2 t3
Fig. 1. Typical trajectories for the rate procesg) and the queue lengt
processy(t).

In this case, we havd = 2. We treat(x(t),t) to be the If 0 <6(t) <cforallt<0, andl > 0, then,

vector process. Using the fact theis Lipschitz continuous 0<I<z(t) <M, vVt >0,
(with parameter 1) and bounded (Y, from a vector version 0 < 4(t) < mas, vt > 0.

of Theorem 3.1, it follows that Proof. Let us first define the following epochs. L&t be the

sup |z"(t) —z(t)] — 0 a.s. first time after O such that(t) crosses, t; be the first time
t€[0,7] afterty such thatz(t) is decreasingt, be the first time after
asn — oo. g 11 for z(t) to crossc andt; be the first time aftet, for z(t)

to increase. These times are illustrated in Figure 1. Fdymal

Next, as in Section IV-A, we study a similar limit feach We can define these epochs by
flow as opposed to the aggregate flow. Recall that the rate of to = inf{t>0:z(t) >c}
flow ¢ (when there are flows in the system) adapts according

to (2), which can be represented by tr = inf{t >to: &(t) <0}
) ) Ln(t—d)J Ln(t—d)J to = il’lf{t>t1 :.’L’(t) <C}
grne) = A-Bytt () p (q"(TO ts = inf{t >ty :(t) > 0}
ty = inf{t >t3:2(t) >c}

with the initial conditions given by(t) + &}, sampled appro- _ .
priately and interpolated. It can be shown using an analy&§ia!ly, letér = ¢ —d. We observe that ag(t) = 0 up to
similar to that carried out for the aggregate flow that d¢- Z(t) is increasing ovef0, o] and will continue to increase

n — oo, the flow trajectory approaches the trajectory of thdP 0 ¢1. Further.z(t,) is the maximume(t) will grow to in
following delay-differential equation [0,t4]. We will hereafter refer to the interv§d, t4] as a cycle.

' . In this cycle, the minimum will bex(ts). Further, over this
9'@t) = A=yt —d)plgt-d) (49) cycle, the queue-length process will be increasingtgnts]
. I i . [P (i.e., when everz(t) > ¢) will achieve its maximum atx.
and with randominitial conditions given byd(t) + €}, with We will derive upper bounds fa(t) andg(t,) and we wil

el < K. der 1dg( _
. . . . erive a lower bound fax(¢3). Then, using induction, we can
In the following section, we will address the issue of non: (ts) 9

negativity of the trajectories of®"(t), z"(t) and z(t). We propagate” the bounds for all times.

. N " We first derive a bound ogr(t,), i..e, we want to find a
will show that under reasonable initial conditions, fotarge . .
. . . . . M > ¢ such that ifz(t,) = M, we must have:(¢;) < 0. Now,
enough, the trajectories will remain non-negative.

asz(t) > 0 on[—d, t1], we have over this intervat(t) < A.
Thus, atf; = t; — d, we have

B. The Fluid Limit: Bounds for Queue Based Marking M-Ad<z(E) < M (50)
- <z(t) <

We study the pair of delay differential equations given by ~
(47) and (49), with the queue-length process driven by (48)s £(t) < A, z(to) = ¢, andz(t1) > M — Ad, we have
We first show the following result. M—-Ad-c

Lemma 6.2:Define M, ¢,nqz,! to be th—to 2 A (51)
A — M Ad (M — Ad — ¢)? Finally, from Figure 2, we see thatt,) (given by the area of
= B(M - Adjp 2A the shaded region) can be lower-bounded by the area of the
' g0+ + (M — ¢)d triangle given by the dotted line, i.e.,
Qmaz = inf (M—c)*? ~ 1.
20\ + 3 Fepaota)=4) a(t1) > 5t —to)(M —Ad~c)
A(1 + Bdp(gmaz)) — (BP(Qmaw))2Md M — Ad —¢)?
- > (M-Ad—cf (52)

Bp(@maz) - 2A
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Bounding Trajectory the upper and lower bounds. Note tiidt [ derived over this
Mz s cycle will work over the next cycle too as we assumed a
////// ’/ “worst-case” behavior for the first cycle analysis. Formpall
7 y we can now setup an induction (over cycles) and prove that
7 / M, are suitable upper and lower bounds fat). As this
/ / step is straightforward, we shall skip the details in thiggrall
%/ Analogous to Section IV-B, we now assume that
c 7 f ﬂp(Qmaz)d <1 (56)

t ttr+d [

-
N}
i

We now state the following result without proof since it is
Fig. 3. Trajectory of the rate proces$t) and the upper-bounding process.identical to that of Theorem 4.2.

The shaded area, along with the growth in the intefi@lt1] corresponds to  Theorem 6.1:Supposel, 3,d satisfy (56 andl > K.
dmaz- Then,

(i) Forallt>0,|z(t) — y'(t)| <|z(0) —y(0)].

N L AP ) ) S
where the last step follows from (51). Thus, from (50) and(") gthe initial conditiony*(0) is non-negative, thep(t) >

(52), it follows thatd(t,) < 0 if M is chosen to satisfy (iii) Fc-Jr any e > 0, there is ar < oo such that for allt > T,

A < B(M—Adp (M) j2(t) — 4 ()] < e.

~—

2A (53) n

) . As in Section IV-B, the implication of this theorem is that
Thus, we have over this cycle;(t) < M. We next derive

o\v) = i for n large enough, the trajectories ¢f"(¢) and 2™ (¢) will
an upper-bound og(t;) (and will implicitly derive an upper remain non-negative. Further, by choosifig= = (defined in

bound ont; — ;). _ (iii)), and choosingn large enough, it follows tha: (T)) —

As a trivial bound (see Figure 3), we assume th@) does yo™(T)| < 2.
not decrease for some time (say upttpaftert;. As aresult, ~ \we comment that in the queue-based marking scheme, an
q(t) will con}mue to increase (at ratef —c). Sayt' is clhosen extension to infinite time seems difficult. This difficultyises
such thaig(t') = gy + go for someg, > 0. Then, fromt' +d,  from the fact that the queue-length process is not a Lipschit
x(t) will decrease till it hitsc, at leastas fast agep(go+9)—  continuous functional (in the sup topology) of the arrival
A, and will hit ¢ eventually. An upper bound to this hittingrocess over an unbounded interval of time. Under weaker
H o H n ! —_ —C . . .
time, denoted by, is given byt —#' —d = s T=5—x-  topologies on the space of trajectories, where the quengiHe
During this interval, an upper bound to the additional amouBrocess is a Lipschitz continuous map, it is not clear that

the queue will grow is given byM — c)d + 0.5(f2 —#' — we can prove convergence results for functional diffeeenti
d)(M — c) (the area of a triangle with sid& — ¢ and base gqyations.

f,—t' —d), i.e.,(M—a)d+Wﬁ_M, As g, is arbitrary,
we have the upper-boung,,, given by VIl. ADAPTIVE MARKING, MULTIPLE DELAYS AND

b+ (M )d GENERAL NETWORK TOPOLOGY
—C
do ~ 4b ) (54)

2 So far, we have considered a single link case where all

Gmaz < infqb>0 ( +
2(Bep(qo+ap)—A) the flows share the same round trip delay. We now generalize

This procedure is illustrated in Figure 3. the above framework to include the more.than one round trip
Finally, we derive a lower-bound ar(t3). Suppose:(ts) = delay, and more general network topologies.
l. We want to choosé such thati(t3) > 0. Now, from (53) ) )
and (54), we have that A. Adaptive Marking
Using the vector framework from the previous section, we
2ty —d) < 1+ d(BMp(¢maz) — A) now consider adaptive marking functions. Marking funcsion
q(ts —d) < Gmaz we considered so far were designed so that for eacthe

equilibrium point wasc — a per flow. Recall that for this to

Thus, we have happen, we assumed that for thth system (see Section IV-

i(ts) > A—B(1+dBMp(gmaz) — A)P(@maz) A), the marking functiorp™(.) satisfied
Thus, choosing such that p'(nz) = p(z) (57)
_ 2 For example, if we consider a marking function of the form
I = Al + de(qmﬂazzzl (fp(Qmaz)) Md (55) (o — é)+

we have the required lower bound. Now, by assumpticn0 L

(this will be the case for typical marking functions). ThenIhen, for thenth system, we need to choog®(}) to be
over this cycle (i.e.[0, t4]), we havez(t) > 0. Thus, a similar A — On)+

; . L n ( )
analysis can be carried out over the next cycle for deriving OIS X
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with €™ = né&, which we denote as theirtual capacityof where there are flows of each delay class, and derive the
the link. Thus, we explicitly need to know to design the appropriate limit ag — oo.
marking function, which is hard to implement in practice. Consider{y};(t),1 <i <n,1<j < J} with ¢ € [-T,T],
In [5], the authors have proposedaptive marking functions wherey?,(t) be the transmission rate of tih flow of thejth
where they have shown that even without the knowledge, of class at time. We assume that associated with each data flow
marking functions can be designed to satisfy (57). We will?*; (t), there is a bounded, stationary ergodic “noise” process
illustrate this with the example considered above. Supposek ef;(t), with E(e};(t)) = 0. Analogous to the previous
we let C™ adapt based on the total arrival raf”(t) = sect|ons the system evolves in discrete time steps of%;ze
nz™(t) + na + ne™(t), which consists of the sum of theand a straight line interpolation is used in-between thiese t
controlled and the uncontrolled arrival rates over all flowsteps to embed the process in continuous time. The source
and the total link capacit¢™ = nc in the following manner. rate at timet (with nt € calZ) depends on the amount of
Fix somea > 0, and let flow marked half a round-trip time back. This amount in-turn,
() = a(Cm—X"(t) depends on the_z th_e amount of data sent by egch flow, a further
half a round-trip time back. Thus, the evolution of the rates

) = (A-cm* {y?;(t),1 <i<n,1<j<J}can be described by
A 9,
The equilibrium state of this is theX™(¢t) — C™. Thus, U7t = A;j—=B n_(M) (59)
in the absence of noise variations (i.€?(t) = 0), we have Id;—d
z™(t) = c—a which is the desired equilibrium point. As in the Z Z u) V) + Ja
previous sections, we consider the aggregate fi6\é) and n = M
the scaled virtual capaci@# (¢). With delays and “noise”, the . . ) o
evolution of this pair can be given by with suitable initial conditions. HereAj is the additive
increase factor, which could be different for each delassl
@t = A—fz" (L”( - )J) Now, let
n(ln(t-a)] n(ln(t-a)] 1<
" (————) +a+e"(———), n = = n.
p ( n (Ln(tﬁd) ] ) ) ) 77 () n Zy’ ®)
C (T) =1
&t = «a (c - (w"(l‘?;—”) +a+e (l_me))> ej(t) = n Zez’,j(t)
i=1
where p(z,é) = @=9" \We can show using the vectorThen, it follows from (59) that the evolution of the aggregat

framework used in the past section (treatiag (t),&"(t)) as rate of eactdelay-classcan be described by

a vector process) that the above pair of equations converge a n(t — 2d.
n > oo 10 w0 = ;- p ey 20 (60
it) = A—Bz"(t—d) I [ pnlrtt=di=dy)]
. p (S T ataad), |+ Ta
p(z(t —d) +a,&(t — d)) o\ e (/)
et) = alc—a-z(t)) (58) for eachj = 1,2, ..., J, and with initial conditions given by

As before, we have studied a relaxed problem where tAg(t)+e7(0), for nt € Z and linearly interpolated in-between.
non-negativity constraints on the trajectories were igdoffo Note that in this framework, each class has a possibly éiffer
prove that the trajectories are indeed non-negative, we teee mean initial trajectory.
study the limiting process (58) and show that the trajeetori We can easily generalize Theorem 3.1 to include con-
of this system is non-negative. A study of this system is ha¥grgence of finite-dimensional vector processes, i.e., are ¢
even without delays (see [5]). With delays, we do not know let x"(¢),e"(t) to be vector processes of dimensidn and
the trajectories will remain non-negative. We conjecturatt '€t b.(.,.),b(.,.) map vector processes ®’. With similar
for initial conditions close enough to the equilibrium ppiand assumptions as before (i.e., the functions are bounded and
small enough delays, the trajectories will remain non-tiega Lipschitz continuous), we can derive Theorem 3.1 in thisenor
Thus, the results for adaptive marking hold only for thexeth general setting. We define
problem, where we do not constrain the rate processes to be () = [27(8) ()]

!

non-negative.
en(t) = [6?(1’), s aeJ(t)]

B. Multiple Round-Trip Delays As in Section IV-A, we can show that the trajectories of (60)

Let D = {di,ds,...,d;} be a set non-negative integersare bounded, and we can rewrite (60) as
and D be the set of possiblene-waypropagation delays nEY = bz (b). e
that any flow can have. We say that a collection of flows 2" (%) (z"(t),€e"(t))
are of the samelelay-classif they all share the same one-where b(.,.) : C([0,T],R?*/) — R’, is a bounded, Lips-
way propagation delay. In this section, we will study theecashitz continuous functional. The details of it's constrantis
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analogous to that in Section IV-A, where the scalar case W assume router (resourgejises a congestion cost function
considered. Thus, it can be shown that the appropriate tamitp,.(-). If p.(-) is interpreted as a marking function, then it is
consider in the multiple delay case is given by the followingften assumed that the network operates in the rare negative

coupled delay-differential equations feedback regime (see [7], [9]) and thus, the end-to-endifrac
J of marked packets is approximated by the sum of the fraction
t;(t) = A;— Pzt —2d;)p Zxk(t —d; —dy) + Ja | Maiked at gach link along the path of the flow. However,
b1 this approximation is not necessary if we interppgt-) as

a congestion cost. For notational ease, we will assume that

l\ﬁ%e marking functions are rate based, deterministic fonsti

of this section to include random marking and queue—basgda could egsny generalize to random mar!qng or/anq queue-
ased marking also, but for ease of exposition, we will avoid

marking. : . . )
We finally comment that non-negativity of the trajectorietsh"jlt setup in this paper. Then, we can describe the evolution

can be established when the number of delay classes %frggl(t) by

small. To show this, as a worst case, we can assume that In(t — Dy)|
the congestion is caused due to a single class. Then we I = A =Byn(t———
can derive an upper bound on how large each class can

grow using methods identical to that in Section 1V-B. Using n 1 Ln(t—d (k) —da (L))
these upper bounds, we can construct lower bounds on the LS e, VI n(t—dy (L) —dal k)))J
trajectories. This procedure is very similar to tiigN?) Z Pe | ™ Thi<u<n ey pLmnl)
bounds constructed in [6]. In this case, we can show that *€R +|Lkla

bounds ar@(|J|). Thus, as we increasg |, the lower bound

will become negative.

with initial conditions{6;(¢),-T <¢ < 0,5 =1,2,...,J}.
Analogous to Sections V and VI, we can generalize the res

)

n

with suitable initial conditions. As in the previous sectjiave
can study the evolution of the aggregate rate of each class,

) and this process is described by
C. Arbitrary Network Topology

So far, we have studied the congestion control problem i?(t) = A; -8 mlﬂ(M)
with a single router. We now study the case where we have n
a more general network topology. We assume that there are ‘
|R| routers (resources) in the network, and they are indexed g7 (lnl=diGh)-da (k)]
by R = {1,2,..., R}. We assume that there al€| classes Z D 2jec. _,_e;,z(L"(t*dl(j’k)*dﬂ”k))J)
of traffic flows, and they are indexed by = {1,2,...,L}. kER, +|Lila n
Each class consists of a collection of flows sharing the same
path through the network. for eachl = 1,2,..., L, and with initial conditions given by

For example, consider the UIUC domain. We will model thé () +e7*(0), for nt € Z and linearly interpolated in-between.
interior of the domain as a network with unlimited resource¥Ve can show that the appropriate fluid limit to study in this
and thus, no congestion occurs there. The only place whéi@nework is described by
congestion could occur is at the edge router, which connects
this domain to the Internet. Similarly, we consider varioug’!(t) = 81— 8 z(t = Dia , (61)
domains, and assume that their interiors are well-pronesio 3 < Yjer, Ti(t —di(4, k) — da(l, k) >
and cause no congestion. The model we study would cor- +|Lxla
respond to such a scenario, with many flows between each
domain. for eachl = 1,2,..., L, and with initial conditions given by

Let us denotel; (I,) to be the forward-path delay from adi(t). The.proof follows a vector formulation of Th_(eorem 3..1
source of class to the resource (router) Let da (1, ) be the (see Section _VII—B anq Remark 3.1_ fo_r a description of this).
reverse-path delay from resounceo the source of clagswith ~ The assumptions of Llpsch|t_z continuity aqd boundedness of
di(1,7),d>(l,7) being integers, and; = di(l,r) + do(l,7) the trajectories over any finite interval of time follows rino
being the round-trip delay of any flow of classFurther, let the fact that for anyR; C R, we have
R; be the collection of resources along the path of any flow
of classl, and £, be the collection of flow-classes passing Z p() < R
through resource. keR

We assume that there areflows in each class, and theThus, a proof analogous to that in Theorem 4.1 can be used
system evolves in discrete time-steps}bofAs before, we have to establish the required result.

a collection of uncontrolled flows, iid, stationary and etgo As in the previous section, we would like to establish
We denote the source transmission rate for itheflow of the non-negativity of the trajectories. However, the baund
classl, when there arex flows in each class bygl(t) for used to establish non-negativity become less tight as the
t € [-T,T], with nt € Z. The source additively increasesnumber of classes and the number of links increase. Thus,
its rate and backs off proportional to the aggregate amolntestablishing non-negativity of the trajectories for a gahe
marks it receives due to congestion at resources on its patpology network is still an open issue.

kER,
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VIIl. D UAL ALGORITHMS: CONVERGENCE WITHDELAYS Now, let 57 (k) be theprice per userat link , andz} (k)
be the average rate at tinkeover flows of clasg, i.e.,
So far, we have have studied primal algorithms based on the
framework developed in [3]. We next study differential equa k) = Lpf(k) reR
tion models derived from a dual approach to the congestion n|L,|
control problem [25]. As in the primal case, we restrict our

study to thelog utility function. o (k) = n Zygl(k) lel
Analogous to the primal problem with an arbitrary network 1 !
topology (Section VII-C), we study a system consisting of ef(k) = EéZl(k) lel

|R| routers (resources) in the network, which are indexed by

R = {1,2,...,R}. We assume that there ajé| classesof Thus, fork € {0,...,nT} and eachr € R, the evolution of
traffic flows, and they are indexed y= {1,2,...,L}. Each the average cost at each resource follows

class consists of a collection of flows sharing the same path

through the network. prk+1) = pr(k) — 7™ (e, + a)
As before, let us denoté (I, ) to be the forward-path delay 1
from a source of claskto the resource (router) Letd(l,r) AL Z yiu(k) +a+ el (k)
be the reverse-path delay from resourde the source of class nLr €Ly
1, with dy (I, 7),d»(l,r) being integers, and; . = d1(I,7) + - isisn
d»(1,7) being the round-trip delay of any flow of clagsto = pr(k) - Y™ (e, + a)
resourcer. Further, letR; be the collection of resources along n 1 n n
the path of any flow of clasg and £, be the collection of +y™ .1 <IZL ay (k) + lZL € (t)> ta
L=l Niec, €L,

flow-classes passing through resource

We assume that there ame flows in each class, andand
the system evolves in discrete time. As before, we have a Ky
collection of uncontrolled flows, iid, stationary and ergod z' (k) = 5 57 (k —nDi,) lel.
and with meann|L,|a. We denote this collection bya + rer, Pr N
en(k)},1 <i <n,l €L, wheree?,(k) are zero mean. We
assume that the resource capacity is scaled|8s|(c, +a). Thus, we have for any € R,
We denote the source transmission rate for itheflow of
classl, when there are: flows in each class. Now, from the #r(k+1) = p7(k) - 7 (er +a)
dual formulation, we have that the each resource updates its
link cost (marking function) based on the total arrival rde
it, and each user is fed back the sum of the link costs along

Ell

its path. We study the system in discrete time, the time indexy"™)
beingk € {0,1...,nT}. We denote the link cost (marking
function) at discrete timé at resourcer by p.(k), and the
date rate of usei of classl at time & by y};(k). Then, for
anyr € R, the update algorithms can be written as

i el a
IGZL', ZrERlpT(k_nDlT)+l€Z£ ! >+
Embedding this equation in in continuous time (each discret
time-step corresponds to an interval to time of Iength—();‘
we see that as the step size is orderthe gainy(™ should
be scaled as well, i.e., for some> 0, 4(™) = v/n. Thus,
in a differential equation form (as in the primal algorithms
considered earlier), we have few [0,T], for anyr € R,

prk+1) = pf(k) =y ™nlLl e

< ! pr —v(er+a
+’Y(") (min (Z Z(y:l(k) +a+é21(k))7Mn|ﬁr|>> pr(t) = —v(e+a) (62)

leL, i=1
1 Ky
— + er'( +a
|£r| (lezﬁr ZTER[ p’r‘ (t - ‘Dl "' IEZL )

Finally, asp(t) is Lipschitz continuous (as the derivative is
bounded byL = v(M + ¢ + a), wherec = max,cr ¢,) and

where (™ is the update “gain” for thenth system. We _
p(t) is bounded ovef0, T (the bound beingLT), we have
will later see that this is of the ordelE after embedding that asn —s oo, from a vector formulation of Theorem 3.1,

in continuous time. For technical reasons we assume that
— 0, where is defined
there is a large enoughf such that if the total input rate > Pt€[0.7] aXreR 1B7 ()= pr (2)] pr (?)
exceedsMn|L,|, then the link will react as though the rate is
Mn|L,|. Further, if the total rate goes belddy then the link < [
Y

+7

Ky .
n = 1< <
yi (k) S on i (k—nDi,) <i<n,lel

will react as though the rate & As before, we will denote pr(t) =

[2] = 0V (z A M).

(E)IEL m) +a] )



A. Non-negativity of the Trajectory: A Fluid Limit Analysis

So far, we have neglected the constraint #hdt) should be
non-negative. We will now consider a special case of the abol!!
system, where we have only one router and a single delay;
class. We will show that fory small enough, the trajectory
will remain non-negative.

We consider the delay-differential equation

lﬁwLa] —(c+a)>

with suitable non-negative initial conditions.

Lemma 8.1:There exists somé& > 0 such that/0 < v < 4,
the trajectory of (63) remains non-negative for## [0, co).
Proof. It is sufficient to show thaBl > 0 such that if at any
time ¢t > d, p(t) < I, p(t) > 0. Thus, if the initial condition
is “reasonable”, the trajectory will remain non-negatiweio
[0,d] and we will be done.

Suppose for somé > 0, p(t) < I. From (63), it follows
that 5(t — d) <1+ vy(c + a)d. Thus, we have

pt) = W(Lﬁ*'a] —(c+a))

7([reraa el e+ o)

Now, recall thafz] = 0\/(z A\ M). By choosing)M arbitrarily
large (but finite), we can ensure that

(3]
(4]

i = 63)

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[# + a] - K ta [13]
L+v(c+a)d I +v(c+a)d
Thus, we have that (14]
Z K [15]
A > eraa e erd
_ k- [16]
~ l+v(c+a)d

. 17
Thus, to ensurg(t) > 0, we must have i)

K

l4+v(c+a)d ¢ (64)

(18]

Also, note that the equilibrium poinpt* of (63) satisfies (again 19
M is chosen large enough so that the ceiling does not matter)]
[20]

" K
rp = -
C
[21]
Thus, from (64), it follows that choosing ardysatisfying
[22]

I < p*—~(c+a)d 23]
ensures thaf(t) > 0. Now, choosingy > 0 small enough, we
can ensure that we can chodse 0. Thus, we are done. B  [24]
Finally, for n, the number of flows large enough, it now
follows from the uniform convergence result in the last gect [25)
that the trajectory of the stochastic system (for a singhs<l
case) will be non-negative as well.
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