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Mean FDE Models for Internet Congestion Control
Under a Many-Flows Regime

Sanjay Shakkottai and R. Srikant

Abstract— Congestion control algorithms used in the Internet
are difficult to analyze or simulate on a large scale, i.e., when
there are large numbers of nodes, links and sources in a
network. The reasons for this include the complexity of the actual
implementation of the algorithm and the randomness introduced
in the packet arrival and service processes due to many factors
such as arrivals and departures of sources and uncontrollable
short flows in the network. To make the analysis or simulation
tractable, often deterministic fluid approximations of these algo-
rithms are used. These approximations are in the form of either
deterministic delay differential equations, or more generally,
deterministic functional differential equations (FDEs). In this
paper, we ignore the complexity introduced by the window-based
implementation of such algorithms and focus on the randomness
in the network. We justify the use of deterministic models for
proportionally-fair congestion controllers under a limit ing regime
where the number of flows in a network is large.

Index Terms— Delay-differential equations, fluid model, In-
ternet congestion control, many-flows asymptotics, proportional
fairness

I. I NTRODUCTION

There has been a lot of recent work on decentralized end-
to-end congestion control algorithms for the Internet. These
are based on ECN marking with the goal of building a low-
loss, low-queueing-delay network. The control algorithmsare
designed on the premise that each user has a utility function,
which the user is trying to maximize, while the network
is simultaneously trying to maintain some sort of fairness
amongst various users. In the algorithms proposed, the network
tries to achieve it’s goal bymarkingpackets during congestion
(see [1], [2]). The notion of fairness (from the network’s
point of view) which has been used is weightedproportional
fairness(see [3]). Through appropriate choice of the weights,
other fairness criteria such as minimum potential delay fairness
can be realized. If we interpret the utility function of the user
as the users’ willingness to pay for bandwidth, and suppose
that the price paid by the user is proportional to the number of
marks received, then, a weighted proportionally fair scheme
leads to same price per unit bandwidthpaid by any user
for utilizing some resource in the network. The algorithms
proposed have adecentralizedimplementation to achieve the
network and user objectives simultaneously. In this paper,
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we focus on the case where all users have the same utility
function of

��� �� �, leading to a proportionally fair sharing of
the bandwidth. It is easy to extend the results to the case of
weighted proportional fairness as we outline in Section IV-D.

There have been various delay differential equation models
for Internet congestion control. The generic model of such a
system consists of a flow, which sends data at rate� ���, a
router which signal congestion to flows by marking packets,
and a receiver which detects the marks and informs the flow
to increase or decrease it’s transmission rate. Associatedwith
the router is a marking function, which marks the a fraction
of the flow as a function of the total arrival rate. The larger
the fraction is, the more aggressively the flow “backs off”.
Such scenarios have been studied ([3], [4], [2], [5]), and in
the absence of delays, differential equation models of such
systems have been shown to converge. With delays, bounds
have been derived on the behavior of the flow ([6]). However,
in a realistic scenario, we have short flows which do not
adapt, thus causing “noise” at the router. Further, the marking
function could base its decision on more than the instantaneous
arrival rate. A formal justification of how delay differential
equations models correspond to “real” systems does not seem
to exist in current literature.

In this paper, we study “noisy” congestion control algo-
rithms and show that the deterministic differential equations
that have been studied earlier in the literature are appropriate
limits in a many flows regime.

Related work includes that of [7], where a stochastic ap-
proximations (see [8]) based model is considered. The authors
study the rate process for additive increase, multiplicative
decrease (AIMD) algorithms. Under the assumption of small
gains (� and � defined in Section II-A are small), they
show that an asynchronous implementation of a generic AIMD
converges to an ordinary differential equation. However, the
small gain assumption is not valid in practice. Further, this
approach leads to a fluid limit which does not capture the
oscillations due to delayed feedback. In fact, it is known
that the rate control algorithms do not always converge when
delays are present (see [9], [10], [6], [11], [12]). We believe
that a justification of the delay-differential equation model
arises from a many-flows approximation, where we scale the
capacity of the system along with the number of flows. We will
show that in this regime, the delay-differential equationsare
suitable limits of such a system. Our approach can be thought
of as a functional-differential equation analog of “averaging”
used for ordinary differential equations [13], [14].
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A. Organization of the Paper and Summary of the Main
Results

The rest of paper is organized as follows:
� In Section II, we present two basic models of congestion

control. The models differ in the way that congestion
information is generated by routers in the Internet. In
one model, congestion is measured in terms of the arrival
rate at the router and in the other model, congestion is
measured based on the queue length at the router.� In Section III, we present a set of sufficient conditions
for a sequence of stochastic delay-difference equations to
converge to a deterministic functional differential equa-
tion.� In Section IV, the result in Section III is shown to be
applicable directly to the average rate per flow in a single-
link network accessed by many flows with identical
delays, subject to feedback provided by a rate-based
marking scheme. The randomness in this scheme can be
viewed as arising due to implementation dynamics that
cannot be precisely modeled in the equations describ-
ing the rate-control algorithm and due to the presence
of uncontrollable or unresponsive flows in the system.
However, a caveat in applying this result is that we have
to assume that the rate transmitted by each flow is not
constrained to be non-negative. We then show that, under
reasonable initial conditions for the rate of each flow
and when the number of flows is large, the rate of each
source remains positive, thus showing that the constraint
is redundant. We also show that, after a rate allocated
to each individual flow, converges to the average rate
per user, thus showing fairness to each individual user.
In Section IV-C, these results are extended to

�� � � � �
Again, the crucial part of the proof is in establishing
that non-negativity constraint on each flow’s rate is not
violated for reasonable initial conditions. We make the
assumption that the limiting delay differential equation
is exponentially stable. While local stability has been
established recently [11], whether the system is globally,
exponentially stable is an open question.� In prior sections, we had assumed that the router had the
ability to mark a specified fraction of the arriving flow.
In Section V, we relax this assumption to include random
marking where the fraction of the flow that is marked is
random. We also point out the difficulties in extending
the results of this section to the time interval

�� � � � �
� In Section VI, we prove convergence results over a finite

time interval where the marking is done based on the
dynamics of queue whose buffer is of the order of the
round-trip feedback delay. Again, we establish the fact
that non-negativity constraints of the arrival rates of each
flow and the queue are not violated for suitable, yet
practical, initial conditions, thus allowing us to apply the
results of Section III.� In Section VII, we show how the results of Section III
can be applied to networks with adaptive marking [2]
and to networks with multiple delay classes and arbitrary
topologies. However, in the case of adaptive marking, we

have not been able to establish that the rates of individual
flows will remain non-negative for reasonable initial
conditions. In the case of a network with multiple delay
classes and/or a general topology, the non-negativity of
each flow’s rate can be established for reasonable initial
conditions only if the number of delay classes is small and
the number of nodes in the network is small. Obtaining
more general results is an open problem.� In Sections IV through VII, we only consider congestion
control algorithms derived from a penalty function form
of a resource allocation convex program introduced in
[15]. In Section VIII, we discuss the extension of these
results to congestion controllers derived from a dual
formulation of the convex program [16], [17].

II. M ODELS OFCONGESTIONCONTROL

In this section, we describe two widely-used models of
congestion control. We will use these models, and variants
of these basic models, throughout the rest of the paper.

A. Rate-Based Marking with Arrival Noise

We consider a sequence of systems (indexed by�),
where the first system is the following. A single congestion-
controlled flow accesses a single link of capacity� � and the
system is assumed to evolve in discrete time-steps. At each
time � 	 � � 
� � � � � � , the user adapts its transmission rate� � depending on the feedback it receives from the router.
The router marks some amount of the flow it receives, and
this amount is proportional to the user transmission rate. In
practice, for a packet-based system, such marking could be
implemented using ECN marks (see [1]). For a fluid model
such as ours, we assume that some volume of the fluid is
marked (see [3], [4], [2]). The fraction of fluid marked is
determined by means of a marking function, about which we
will discuss more later. We assume that there is a round trip
delay between the flow and router of
 � � . Thus, the rate
at time � � 


depends on the amount marked at the router
half a round trip back, which in-turn, depends on the user
transmission rate a further half round-trip time back. Thus,
we can describe the evolution of the user transmission rate by

� �� � 	 �� � � � � �� ���� �� ��� � ����� ���

where� � � are positive constants which determine the rate at
which flow increases or decreases it’s transmission rate;� ���
is the marking function, and��� is a “noise” process. We can
interpret the above equation as though two flows are accessing
the router: the first is the congestion-controlled flow, whose
data transmission rate is represented by�� � � and the other
is an uncontrolled flow, possibly generated by some other
short-duration flows, popularly known as web-mice, passing
through the link, which is represented by the sequence� ��� �.
The sequence� ��� � is assumed to be a stochastic process,
with � ���� � 	 � � �

. Let ��� 	 ��� � �. We assume that the
“noise” process��� is a bounded, stationary-ergodic zero-mean
stochastic process for� � �

; and for �  �
, ��� 	 ��! . The

mean initial conditions (i.e., for
�  �

) is given by sampling" ��� � ��  �  �
, where

" ��� is a non-negative, bounded,
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Lipschitz continuous trajectory. Thus, the initial conditions for
above system are given��� 	 " ���� � ��! .

Finally, we comment on the marking function itself. This
function is based on the total data rate accessing the router
and determines the fraction of flow to be marked, and satisfies
satisfies the following criteria:

Assumption 2.1:We assume that� ��� satisfies
(i)

�  � �� �  

(ii) � �� � 	 �

for � � � � Further, there exists a� satisfying�  � � � such that��� �� � � � � �� for � � � �
(iii) � �� � is an increasing function.
(iv) � �� � is Lipschitz continuous.

The first property is obvious, as the marking function repre-
sents the fraction of flow marked. To understand the second
property, we first note that� � the mean arrival rate of the
uncontrolled flows, is typically less than��� of the link
capacity. Thus, condition (ii) expresses the intuitive reasoning
that, if the total arrival rate (i.e., sum of arrival rates of
uncontrolled and controlled rates) at a link is less than��� �
very little congestion indication should be provided. The third
property is again clear: the larger the arrival rate is, the greater
is the fraction marked. Finally, the last condition is a technical
condition, which says that the function is “smooth”. As an
example, a possible rate-based marking function is of the form

� �� � 	
�� � �����

In a deterministic fluid model, this has the interpretation of
the fraction of fluid lost when the arrival rate exceeds a
certain level, called the “virtual” capacity,� �� [2]. In the
absence of delays and noise (i.e., there is no fluctuation in the
uncontrolled flows), the flow rate� � is assumed to converge
to

�� � � � for some� � � � Thus,� �	� satisfies

� 	 � �� � � �� ���
Our goal in this study is to determine when the above stochas-
tic system can be approximated by the following deterministic
system: 


� 	 � � �� �� � 
�� �� �� � 
� � � � (1)

with initial conditions given by
" ��� � ��  �  � � The con-

gestion control algorithm corresponds to a resource allocation
problem where all flows have

��� ��� utility functions [15]. As
an aside, we note that the local stability of this equation (i.e.,
whether� ��� � � �� for a linearized system) has been studied
in [9], [10], while global boundedness has been studied in [6].

We have so far described the system model when a single
flow accesses the link. We now describe how the model scales
in �. First, there are� flows, and for every time step in the
first model, we assume that there are� time-steps in the�th
model. This represents the fact that we need to increase the
time resolution to study� processes. In practice, we can view
each time slot at a measurement interval over which rates are
measured in the system and control actions by the routers
and flows are updated. Typically, this measurement interval
is measured in terms of the number of packets that can be

processed by a typical router. For example, the time-step could
be “100 packets long.” By scaling both the time-step and
the capacity, we maintain a constant time-step, as measured
in packets. The flows are now represented by�� 
� � � � 	
� � � � � � � � where the subscript� � �� � 
� � � � � �� � represents
the time-index, and the superscript

�
represents the flow index.

As the delay seen by a user does not change with� but the time
resolution increases in�, it follows that the delay (measured in
index steps) scales in�. Thus, each flow� 
� evolves according
to the following stochastic delay-difference equation

� 
�� � 	
� � 
� � ���� � �� � 
����� � �� � ��� � ������� � ������� � ��� �� (2)

with initial conditions given by
" ��� � ��
! for �  �

. Thus, the
initial conditions of each user could be possibly different. As
in the single flow case, the above equations represent� flows,
each which has an additive increase factor of and the backoff
for each flow is proportional to the delayed transmission
rate, which the fraction marked being a function of thetotal
arrival rate to the router. We remark that the above system
can be interpreted as a decentralized means of achieving a
proportionally fair allocation (see [3]) of bandwidth among
the � users.

We note three features in the above equation. First, the gain
constants� and � are scaled by�. This is because the time
step in now

�� of the first system. Thus, the gains are also
scaled to maintain the same gain for each flow over the original
time-step.

Second, there are now� uncontrolled flows (i.e.,��
� � � � 	
� � � � � � � �, � � �
) accessing the system. We assume that each

uncontrolled flow has a bounded rate, i.e., there is a� � �
such that ���
� � � � . We assume that these flows are i.i.d.
(across flows, although these could be correlated in time), and
are stationary and ergodic. For� � �

, we assume a random
perturbation about a nominal initial condition

" ���, i.e., the
initial condition is

" ��� � ��
� with ��
� 	 ��
! . Then, we have for
any � � �

,�� � !"#��$ % �%�$ &&&&&&


�
�'�� � ���� &&&&&&

� �()
 ��� � 
��� � &&&&&&



�
�'�� � ���! &&&&&&

� �()
 ��� � 
����*

for some� 	 � ��� � �
. The first step follows from the union

bound, and the fact that the flows are stationary. The second
step (i.e., existence of� � �

) follows from Chernoff’s bound
(it trivially follows that the MGF exists, as the process is
bounded). Thus, it follows that�� � !"#��$ % �%�$ &&&&&&



�
�'�� � ���� &&&&&&

� �() �+,�� �
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exponentially fast. Now, applying Borel-Cantelli Lemma, it
follows that !"#��$ % �%�$ &&&&&&



�
�'�� � ���� &&&&&&

� � � �! � (3)

We remark that the above model allows each “noise” process
to be long-range dependent. We only need the flows to be
bounded and iid.

Third, the marking function is seen to scale its argument
by � (the marking function acts on theaveragearrival rate as
opposed to thetotal arrival rate), i.e., if the marking function
for the �th system were to be represented by� � �� �, then, we
would have

� � ��� � 	 � �� �
This is done so that for each�, if the centered error processes
� ��
� � � � 	 
� � � � � � were identically zero, the delay-difference
equations (if they converge) would have a steady state value
of

��� 
+, � 
� 	 � � �. We remark thatadaptivemarking
functions have been proposed (see [5]) which automatically
scale in � as described above, without explicitly having
knowledge of� .

Now, let ��� represent the average rate at time�, and ���
represent the average (centered) noise at time�, i.e., i.e.,

��� 	


�
�'
� � � 
�

��� 	


�
�'
� � ��
�

Then, (by adding the various equations for� 
� and ignoring
non-negativity constraints on� 
� � which will be justified later),
we have that�� satisfies the following stochastic delay-
difference equation:

���� � 	 ��� � �
� � �

� ������ � ������� � � � �������
Now, we embed the above equation in “continuous-time”, i.e.,
we study the above process over an interval of time

�� � � �
(without loss of generality, assume that

� 	 � 
, for some� � 

). For � � � � � we let

�� ��� 	 ���� � �� ��� 	 ���� �
and use a straight line approximation to interpolate between
the times

� 	 �� . Thus, we see that the above equation can be
represented by the equation


�� ��� 	 � � � ��� � �� �� � 
�	
� � (4)

� 
�� � �� �� � 
 �	
� � � � � �� � �� �� � 
 �	

� ��
Further, assume that the initial condition is given by

�� ��� 	 " ��� � �� ��� � �  �  � � � � � �
and a straight line interpolation is used for� � �� � . This
means that each flow�� 
 � � � 	 
� � � � � � � � could have a
different initial condition, but the nominal initial condition

is given by
" ���. Also, note that from (3), it follows that�� ��� � �
uniformly in

��� � � �
. We note that the above

differential equation is to be interpreted as a shorthand notation
to represent the process�� ��� given by the unique trajectory
solving the integral equation

�� ��� 	 �� ��� � � �
� ! � � ��� � �� �� � 
 �	
� �

� 
�� � �� �� � 
 �	
� � � � � �� � �� �� � 
�	

� �� 
�
In this paper, unless otherwise stated, any differential equation
is to be interpreted as a representation of the corresponding
integral equation.

Our objective is to show that the trajectory generated by (4)
and that in (1) are “close” in some suitable sense.

B. Queue-Based Marking

We will now study systems where the marking function
could be based on queue lengths. Examples of a such system
are RED [18] which is a popular queue-based marking scheme,
REM, a resource-pricing-based algorithm which can also be
interpreted as a queue-based marking scheme [19] and a
scheme closely-related to REM, based on feedback control
ideas [20].

We assume� flows access the router. However, unlike
before, where the marking depended on the instantaneous
rates, here, we consider marking functions based on queue-
lengths. As before let�� ��� be the aggregate average data
rate at the router, with capacity�� . We have the uncontrolled
“noise” process given by� � �� ���, where� � �

, �� ��� is a
zero-mean process satisfying suitable assumptions as before.
We let � 	 � � �. Then, the evolution of the aggregate rate
can be described by the following SFDE:


�� ��� 	 � � � �� � �� �� � 
�	
� �


� 
�� � �� �� � 
 �	
� �� � � � � �� �� � 
 �	

� �� (5)

where�� ��� is the scaled queue length. The marking function
acts on the scaled (by

�� ) queue length, whose evolution is
given by
�� ��� 	 � �� ��� � �� ��� � � �� �� ��� � �

��� ��� � �� ��� � ��� �� �� ��� 	 � (6)

We have not explicitly shown the non-negativity constraints on� ���. We will later show that for reasonable initial conditions
and sufficiently large� � the trajectories will remain positive
for all time. The marking function� �	� is assumed to satisfy
conditions (i), (iii) and (iv) of Assumption 2.1. We assume
that the initial for�� ��� is given by

�� ��� 	 " ��� � �� �� � � �  �  � � � � � �
and a straight line interpolation is used for� � �� � . The queue
length is initially assumed to be zero over

��� � � � � i.e.,�� ��� 	 � � �  �  �
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Now, consider a deterministic system consisting of a single
flow � ��� driving a queue with capacity�, and whose evolution
is given by


� ��� 	 � � �� �� � 
 �� �� �� � 
 �� (7)
� ��� 	 � � ��� � � �� � ��� � �
�� ��� � ��� �� � ��� 	 � (8)

and� ��� is a queue-basedmarking function. The equilibrium
point is given by� ��� 	 �! , � ��� 	 �, and they are related
as � 	 � �� ��! � � The initial conditions are given by

" ��� for� � �� � �
 � which is Lipschitz continuous and
�  " ��� �

�, and � ��� 	 �
for

�  �
. Our objective is to show that

the trajectories described by (5) and (6) are “close” to those
described by (7)-(8) for large� �

In the next section, we will prove a general convergence
result for functional differential equations. We will thenshow
that the models we have described fit into this framework, and
the desired results can be proved.

III. C ONVERGENCE OFFUNCTIONAL DIFFERENTIAL

EQUATIONS

Let � � be endowed with the� � norm, and� � �� � � � �� � �
be the space of continuous,� � valued functions on

�� � � �
with

the supremum norm. We denote any element of� � �� � � � �� � �
by the tuple

� �� � �� �, and ��� �� � �� � �� 	 !"# ���! �$ 	 � �� ��� �� �� ��� ��.
Let us consider a sequence of functionals
� �� ��� � � � �� � � �� � , such that�
� � are Lipschitz continuous

and bounded with parameters
 and� respectively, i.e.,
Assumption 3.1:�
� � �� � �� � �  ��
� � �� � � �� � � � 
� � ��� � ��� � �  
 ��� �� � � �� � � � � ��

�
� ��
� � ��

	 
 !"#���! �$ 	 �� � ��� � �
�
��� �

� �� � ��� � �
�
��� �

Let � � �� � � � �� � be the space of continuous, real-valued
functions on

�� � � �
, and endowed with the!"# topology. Next,

we define�� � to be the trajectory of� �	� � in the time interval���� � �� �Note that a time-shifted version of�� � is an element of� ��� � � � �� � �However, to avoid notational complexity, we will
avoid defining a shift operator and simply abuse the notation
and refer to �� � as being an element of� ��� � � � �� � � Fix
� � 
 � �

and let �� �� � � �* �� �� 	 � ��$ � � ��� � � � �� � � ��$
is Lipschitz continuous with parameter�, � ��� � �� and� ���  
�� As an aside, it can be shown that�� �� � � �* �� ��
is a compact subset of� ��� � � � �� �.

Now, we consider the following stochastic functional differ-
ential equations (SFDEs). Let�� ��� be the unique, continuous
solution of the following FDE. By the conditions imposed
on 
� , there exists such a solution [21] (the Caratheodory
conditions). For

� � �� � � �
, consider


�� ��� 	 
� ������ ��� � ��� (9)

where ���� �	 ��� ��� � � � �� � � � ��� � � � �� � � � �� � � and
��

is a
process identically equal to zero in

��� � � � � In (9), we need

to truncate this zero trajectory to
�� � � �

and use this truncated
trajectory. To avoid unnecessary notation, we slightly abuse
notation and use the same symbol. The initial condition is
given by

�� ��� 	 " ��� � �  �  � � � � � �
and a straight line interpolation is used for� � �� � . The above
differential equation is to be interpreted as a shorthand notation
to represent the process�� ��� given by the unique trajectory
solving the integral equation

�� ��� 	 � �
�! 
� ������ ��� � ��� 
� � �� ���
In this paper, unless otherwise stated, any differential equation
is to be interpreted as a representation of the corresponding
integral equation.

Assume �" ��� � � � , and that
" ��� is Lipschitz continuous

with parameter� . Then, it follows� ��� is Lipschitz contin-
uous with Lipschitz constant� and bounded (with bounds� �� � � � �).

Next, consider for
� � �� � � �

, the SFDE

�� ��� 	 
� ������ ��� � ����� ��� �

here ���� � � ��� � � � �� �, is given by ���� 	 ��� ��� � � � �� �� � ���
, ���� � � � �� � � � �� � is given by ���� 	 ��� ��� � � � �� �� � ���
, and the initial condition is given by

�� ��� 	 " ��� � �� ��� � �  �  � � � � � �
and a straight line interpolation is used for� � �� � .��� ��� � ��  �  � �

is a zero mean “error” process,
satisfying the following condition.

Assumption 3.2:Assume that�� � �
such that��� ��� � �� uniformly in �, and satisfying the following condition:!"#����$ �$ 	 ��� ��� � �+,�� � � �! �

Now, let 
 � � � �� � � � �� � � �� � satisfy the following
condition.

Assumption 3.3:Assume that
 ��� �� is a Lipschitz continu-
ous and bounded function with parameters
 �� respectively
(without loss of generality, assume
 � 


), satisfying!"#��
�
� �� �! �$ 	 !"# $ !%&"# $ ' �
� ��� � � ��� � 
 ��� � � ��� � �+,�� �

Finally, for
� � �� � � �

, consider the FDE

� ��� 	 
 ��� � � �� �

where�� � �	 �� ��� � � � �� �� � ��� � � � �� � � � �� �, and the initial
condition is given by

� ��� 	 " ��� � �  �  �
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For � large, it seems reasonable to believe that the trajectories
of � ���, �� ��� and �� ��� are “close”. We will show that this
is indeed true. Formally, we will show that!"#����$ �$ 	 �� ��� � �� ��� � � � � �! �
We prove the desired result in two steps. We first show
that ��� � �� ��� ��! �$ 	 ��� � �

. Next, we show that���� ��� ��� � �! �$ 	 �� � � �
almost surely, and the required result will

follow.
Lemma 3.1:For the framework we have discussed, given

any � � �
, �� � �

such that�� � � ,!"#���! �$ 	 �� ��� � �� ��� �  
� 
��� � �� ��$
Thus, !"#���! �$ 	 �� ��� � �� ��� � �+,�� �
Proof. Fix any � � 


. Let� ��� 	 
 ��� � � �� �� � ��� 	 
 ����� � �� ��� ��� 	 
� ����� � ���
Then, we have 


�� ��� 	 �� 
 �� �	
� �


� ��� 	 � ���
Fix any

� � �
. We have�� ��� � �� ��� � 	 &&&&&

� �! �� ��� � � � � ��
�� � �
�
�� ��� � �� ��� &&&&& � �

! �� ��� � �� 
 �� �	
� � �
� � �� ��� � �� ��� �

 � �
! �� ��� � �� ��� �
�
� � �

! ��� ��� � �� 
 �� �	
� � �
� � �� ��� � �� ��� �

 � �
! �� ��� � � � ��� �
�
� � �

! �� � ��� � �� ��� �
�
� � �

! ��� ��� � �� 
 �� �	
� � �
�

� !"#����$ �! 	 �� �	 � � �� �	 � � (10)

Let us define


 � ��� 	 ���� � � ���� ��� �! �$ 	
	 !"#�����$ ��	 �� �	 � � �� �	 � �

Consider a time� � ��� � � �. If �� � � , we have� �� � 	�� �� �. For �� �� � , as � �� � and �� �� � � � 	 
� � � � � � are

uniformly Lipschitz continuous (i.e., the same� works for
all the trajectories), we have


 � ��� 	 !"#����$ �!	 �� �� � � �� �� � �
 �

�
We consider different terms in the (10). First, as
 ��� �� is
Lipschitz with constant
 , and

� � �� � ��,�� ��� � � � ��� � 	 �
 ��� 
 � ��� � 
 ����
 � �� � �
 
 ����� 
 � �� � � ����
 � ��� ��
 

 � ���

Next, as�� ��� and � ��� are Lipschitz with constant� and
bounded with

� �� � � � �, for all � large enough, by the
uniform convergence of
� ��� �� �, we have�� � ��� � �� ��� � 	 �
 ����
 � ��� � 
� ����
 � ��� �

 
 ��
Finally, from Lipschitz continuity of
 ��� �� and �� ���,

&&&&�
� ��� � �� 
 �� �	

� � &&&& 	 �
 ����
 � ��� � 
 ��������� � �� � �
 
 !"#���
�$ �
	 ��� �	 � � �� 
 ��		

� � �
 
�

�
Thus, we have�� ��� � �� ��� �  
 � �

! 
 � ���
�
� 

�� � 
 �� � � 
 � ���

Next, for any
�  
  �

, as
 � ��� � �
, we have�� �
 � � �� �
 � �  
 � �

! 
 � ���
�
� 

�� � 
 �� 
 � 
 � ���

 
 � �
! 
 � ���
� � 
�

�
� � 
 � ���

For any
  �
, we have�� �
 � � �� �
 � �  
 � ���

 �
�

Thus, it follows that


 � ���  
 � �
! 
 � ���
� � 

�� � 
 �� � � 
 � ���

 
 � �
! 
 � ���
� � 

�� � 
 �� � � �

�
 
 � �

! 
 � ���
� � 

�� � 
 �� � � �
�

 
 � �
! 
 � ���
� � 
� 
��� � ��
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where we used the fact that
� � 

. Using Gronwall’s

inequality, it now follows that


 � ���  
� 
��� � �� �� �
Thus,

��� !"#�+, !"#���! �$ 	 �� ��� � �� ��� �  
� ���$
As � is arbitrary, we have the desired result.

Lemma 3.2:For the framework we have discussed, we have!"#���! �$ 	 ��� ��� � �� ��� �  �
� �� �� ���$
where,

�� �� � 	 !"#����$ �$ 	 ��� �	 � �
Thus, we have!"#���! �$ 	 ��� ��� � �� ��� � �+,�� � � �! �
Proof. The proof of this result follows a similar approach to
Lemma 3.1. As before, let us fix any� � 


, and let�� ��� 	 
� ����� � ���
�� ��� 	 
� ����� � ���� �

Thus, we have 

�� ��� 	 �� 
 �� �	

� �

�� ��� 	 �� 
 �� �	

� �
Let1

�� ��� 	 !"#������$ ��	 ��� �	 � �� � ��� 	 !"#�����$ ��	 ��� �	 � � �� �	 � �
For

� � ��� � ��, ��� ��� � �� ��� �  � � ���
For

� � �
, we have��� ��� � �� ��� � 	

	 &&&&&
� �! ��� � ��
�� � � �� � ��
�� � �
�
��� ��� � �� ��� &&&&& 
� �! ���� � ��
�� � � �� � ��
�� � � �
�
� ��� ��� � �� ��� �� �� �%�� �! �

As 
� ��� �� is Lipschitz with constant
 , and
� � �� � ��,

&&&&
�� 
 �� �	

� � � � � 
 �� �	
� � &&&&1All processes are defined to be zero for� 	 
 .

 
 �������� ��� � ����� ��� � � ��������� � �� � ��
 
 !"#���
�$ �
	 � �� � ����� � � �� � ����� � �

� ��� � ����� � � ()
 
 !"#���
�$ �
	 �� 
 ��		

� � � �� 
 ��		
� � �

�
 !"#
���
�$ �
	 ��� 
 ��		

� � �
 
� � ��� � 
� � ���

Thus, using the fact that for any
� � ��� � � �

,
�� ���  � � �� �

we have,��� ��� � �� ��� �  
 � �
! � ���
� � 
 �� � �� � � �� ���

 
 � �
! � ���
� � �
 � � 
�� � �� �

Next, for any
�  
  �

, as� � ��� � �
, we have��� �
 � � �� �
 � �  
 � �

! 
 � ���
� � �
 
 � 
�� � �� �

 
 � �
! 
 � ���
� � �
 � � 
�� � �� �

For any
  �
, we have��� �
 � � �� �
 � �  �� �� �

Thus, it follows that for any
� � �

,

� � ���  
 � �
! � � ���
� � �
 � � 
�� � �� �

From Gronwall’s inequality, it follows that

� � ���  �
� �� �� ��� �
As � � �

, we have
�� �� � � �

a.s., and the result follows.

Theorem 3.1:!"#���! �$ 	 �� ��� � �� ��� � �+,�� � � �! �
Proof. We have from Lemmas 3.1 and 3.2,!"#���! �$ 	 �� ��� � �� ��� �

 !"#���! �$ 	 �� ��� � �� ��� �
� !"#���! �$ 	 ��� ��� � �� ��� ��+,�� �

Thus, we have the desired result.

Remark 3.1:We note that this result can be easily extended
to the case where�� ��� and �� ��� are finite-dimensional
(say � ) vectors. In such a case, we assume that
� �
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� ��� � � � �� �� � �� � � satisfies the following: for each

  

�  � and� � 
� 
� �� � where
� �� is the ��� component of
� �
is Lipschitz continuous and bounded with parameters
 and
� respectively. In other words,�
� �� � �� � �� � �  ��
� �� � �� � � �� � � � 
� �� � ��� � ��� � �  
 ��� �� � � �� � � � � ��

�
� ��
� � ��

	 
 !"#���! �$ 	 ����%� %� 
 �� � �� ��� � �
� �� ��� �� �� � �� ��� � �
� �� ��� � � �

Further, we assume that
� converges to a functional
 ��� ��
uniformly (analogous to Assumption 3.3), and that each com-
ponent of the vector noise process goes to zero uniformly over�� � � �

as� � �
. Under these assumptions, we can show that

as� � �
, almost surely, we have!"#���! �$ 	 ����%�%� ���� ��� � � � ��� � � � �

where ��� ��� and � � ��� are the��� component of�� ��� and�� ��� respectively.

We note that the above result is the functional differential
equation analog of the result in [13] (see also [22, pages
219-222]). However, due to the Lipschitz and boundedness
assumption on
� � we are able to show almost sure conver-
gence. In this sense, ours is a sample-path proof that extends
the deterministic averaging results for differential equations
in [14] to functional differential equations. Specifically, by
defining the function
 � �	�, we were able to apply the
Gronwall inequality to functional differential equations.

A. Extensions to Infinite Time

In the previous section, we showed that under suitable
conditions, over any bounded interval of time, the SFDE
converges to the mean FDE. However, the rate of convergence
depends on the length of the time interval. Thus, given any� � � � � � �

, we could find a� large enough such that for
all

� � �� � � �
, �� ��� � �� ��� � � �. However, for a fixed� � �

,
as
�

increases,� will correspondingly increase. This is not
very surprising, as we made no assumptions on the stability
of the mean FDE. In this section, under stricter conditions,
and assuming that the mean FDE is stable, we will derive a
uniform bound over arbitrarily large intervals of time.

We consider a sequence of systems as in the previous
section. However, unlike the previous section, where we
considered all systems over the time interval

�� � � �
, here, the

�th system is defined over the interval of time
�� � �� �

. For� � �� � �� �
, we consider the the SFDE


�� ��� 	 
� ������ ��� � ����� ��� � (11)

here ���� � � � �� � � � �� �, is given by ���� 	 ��� ��� � � � �� �� � ���
, ���� � � ��� � � � �� � is given by ���� 	 ��� ��� � � � �� �� � ���
, and the initial condition is given by

�� ��� 	 " ��� � �� ��� � �  �  � � � � � �
and a straight line interpolation is used for� � �� � .

For
� � �� � � �, consider the FDE


� ��� 	 
 ��� � � �� � (12)

where �� � � � ��� � � � �� �, i.e., �� � 	 �� ��� � � � �� � � � ���, and
the initial condition is given by

� ��� 	 " ��� � �  �  �
To the framework described in the previous section, we

make the following additional assumptions. The first assump-
tion deals with the stability of the mean FDE. Suppose that
(12) converges to 0 exponentially fast, i.e.,

Assumption 3.4:The mean FDE described by (12) isexpo-
nentially stable, i.e., there exists some� � �

, � � �
such that

for all
� � �

, �� ��� �  � ����! ������
Secondly, we strengthen the noise process assumption.

Assumption 3.5:Let
��� ��� � ��  �  �� �

be a zero mean
“error” process. Assume that�� � �

such that��� ��� � � �
uniformly in �, and satisfying the following condition:!"#����$ ��$ 	 ��� ��� � �+,�� � � �! �
Finally, we strengthen the convergence assumption on the
functionals�
� ����.

Assumption 3.6:In the previous section, we assumed that
these functionals converged uniformly over a compact set to
a functional 
 ���. We now assume that the convergence is
uniform over the entire state-space, i.e.,!"#��

�
�� ��! �$ 	 ��� �
� ��� � � ��� � 
 ��� � � ��� � �+,�� �

We remark that if for all� , 
� 	 
, then, the above assumption
is trivially satisfied.

Next, we present the following result has been proved in
[23, Section 7.4, vol. II & Section 3.8, vol. I], [24, Theorem
II.12].

Theorem 3.2:Consider aperturbationof the functional dif-
ferential equation described in (12). For

� � �� � � �, consider
the FDE 
� ��� 	 
 ��� � � �� � � � ��� � � (13)

where �� � � � � �� � � � �� �, i.e., �� � 	 �� ��� � � � �� � � � ���, and
the initial condition is given by� ��� 	 �" ��� � �  �  �
Assume that (12) satisfies Assumption 3.4. Fix any� � �

.
Then, there exists� � 	 � � ��� � � � �� 	 �� ��� � �

such that if��" ��� � � �� � � ��� � � ��� ��� � � � � �� � � �
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then, for any
� � �

, we have�� ��� � � �
This result says that if the unperturbed system is exponentially
stable, and the initial condition and perturbation terms are
small enough, then the trajectory of (12) and (13) will be
“close” for all

� � �
. Using this result, along with the result

in the previous section, we relax the requirement on the initial
conditions and next show that!"# ����$ ��$ 	 �� ������ ��� � � �.

Theorem 3.3:Consider the systems described in (11) and
(12). Suppose that (12) satisfies Assumptions 3.4, 3.5 and 3.6.
Fix any � � �

and � � �
. Then, there exists� � �

such
that for all � � � , for all initial trajectories

" ��� satisfying��"! �� � � , we have!"#����$ ��$ 	 �� ��� � �� ��� � � �
Proof. We can rewrite (11) as the the SFDE

�� ��� 	 
� ������ ��� � ����� ��� �	 
 ����� � ��� � �
� ������ ��� � ����� ��� � � 
 ����� � �� ��

	 
 ����� � ��� � � ����� � ���� ��� � (14)

where

� ����� � ���� ��� � 	 �
� ������ ��� � ����� ��� � � 
 ����� � ����
Note that � ��� �� is a function of only ���� and ����� ��� need

not be included as an argument because knowledge of����
implicitly gives the trajectory����� ��� (appropriate straight line

extrapolation).
Now fix any � � �

. As (12) is assumed to be exponentially
stable, from Theorem 3.2, it follows that there exists a�� � �

,�� � �
such that for any

�! � �
, if������� �� � � ��� ����� � ���� ��� � � � �� � � � �!

then, we have for all
� � �! ,��� ��� � � ��

Let us denote� 	 �
�� ��� ��� ���

� . Now, consider the mean FDE
described in (12). For any initial condition satisfying���� � �� �
� , from Assumption 3.4, it follows that there exists

�! such
that for all

� � �! , ���� � �� � �. From Theorem 3.1, it follows
that there exists� � such that�� � � �,!"#����$ ��� 	 ��� ��� � � ��� � � �
Thus, it follows from the triangle inequality that for� � � �,������� �� � ��. Next, we show that for all

� � �! , �� ����� � ���� ��� � �

�� . We have

� ����� � ���� ��� � 	 �
� ������ ��� � ����� ��� � � 
 ����� � ����
	 �
� ������ ��� � ����� ��� � � 
� ������ ��� � ����

� �
� ������ ��� � ��� � 
� ����� � �� ��
� �
� ����� � �� � � 
 ����� � �� ��

Now, 
� is Lipschitz continuous and bounded (with parame-
ters 
 �� respectively). Thus,�� ��� is Lipschitz continuous
with parameter� . Further, choosing� � large enough, from
Assumption 3.6 and 3.5, it follows that for all� � � � ,

�
� ����� � ��� � 
 ����� � �� �� � �	
!"#����$ ��$ 	 ��� ��� � � �	
Thus,�� � � �,

� ����� � ���� ��� � � 
 ����� �� � 
 ������ � ����� ��� �� � �	
 ��	 � 
 ������ � ����� ��� ��
 ��	 � 
�

�
Thus, choosing� large enough, for all

� � �! , �� ��� �� � � �,
and thus,��� ��� � � �

� . The result then follows by the triangle
inequality.

IV. RATE-BASED MARKING AND THE MANY-FLOWS

L IMIT

In this section, we show that in the many-flows regime,
the trajectories for the stochastic difference and deterministic
differential equations introduced earlier are “close.”

A. Convergence to the Fluid Limit: The Unconstrained Case

We recall from the model description in Section II-A that
there is a non-negativity constraint on each of the flows. We
ignore this constraint in this subsection. This issue will be
handled in the next subsection, where we will show that for
“reasonable” initial conditions, the trajectories remainnon-
negative.

Formally, we consider the delay-differential equations

�� ��� 	 � � � �� � �� �� � 
�	

� � (15)

� 
�� � �� �� � 
�	
� � � � � �� � �� �� � 
 �	

� ��
with initial conditions given by

�� ��� 	 " ��� � �� �� � � �  �  � � � � � �
and a straight line interpolation is used for� � �� � . The
candidate limiting system is described by


� ��� 	 � � �� �� � 
 �� �� �� � 
� � � �
with initial conditions given by

" ���. Using Theorem 3.1, we
show the following result.
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Theorem 4.1:For the systems described above, we have!"#���! �$ 	 ��� ��� � � ��� � � � � �! �
as� � �

.
Proof. We prove some properties of (15). First, we note that
as ���� � � � , we have that if� � �� � �� ������� � � �� ,� ��� � �� ������� � � � � �� � �� ������� �� 	 �

(as � �	 � 	 �
for	 � �

). Thus, we have that

� �� � � �  �� � �� �� � 
 �	
� �

� 
�� � �� �� � 
�	
� � � � � �� � �� �� � 
 �	

� ��
and 


�� ���  � � � �� � � �
As we are studying the process over the interval

�� � � �
, and��� �� � � � � � " ��� �	 � , we can uniformly upper bound (in

�) �� ��� by � � �� � � �� � � ��� . Next, we lower bound�� ���. As � �	 �  

, and using our upper bound, we have


�� ��� � �� �� � �� � � �� � � ��� �
Thus, we have

�� ��� � " ��� � � � � � �� � �� � � �� � � ��� �
Next, we define

�� 	 ��� � �" ��� � �
�� � �� � �� � � �� � � ��� � ��� � �� � � �� � � ��� ()


� 	 ��� �� �� � �� � � �� � � ��� � �� � � �� � � ��
we observe that��� ��� �  �� and is Lipschitz continuous
with parameter
� . Let � 	 ��� �� ��� �. For any

	 � � ,
define

�	 � 	 ��� � � �	 � � �. Define


 �� � � �� � 	 � � � �� �� � 
 �� � ��� �� � 
 �� � �� �� � 
 �� � � �
As we note that in (4),��� ��� �  � and ��� ��� �  � , we
can rewrite it as

�� ��� 	 � � � ��� � �� �� � 
 �	

� �� (16)

� 
��� � �� �� � 
 �	
� �� � � � ��� � �� �� � 
 �	

� ���
	 
 ����� ��� � ���� ��� � (17)

Now, we show that
 ��� �� is bounded and Lipschitz continuous.
First, as

�  � ���  

, we have�
 �� � � �� � � 	 &&&&

� � � �� �� � 
 ��� ��� �� � 
 �� � �� �� � 
 �� � � � &&&& � � ��
Next, we have �
 �� � � �� � � 
 �� � � � � � �

	 �� �� �� � 
 �� � ��� �� � 
�� � �� �� � 
�� � � �
�� �� �� � 
 �� � � �� �� � 
 �� � �� �� � 
 �� � � � �

 � ��� �� � 
 �� � ��� �� � 
�� � �� �� � 
�� � � �
� �� �� � 
 �� � ��� �� � 
 �� � �� �� � 
�� � ��
� �� �� � 
 �� � ��� �� � 
 �� � �� �� � 
�� � ��
� �� �� � 
 �� � ��� �� � 
 �� � �� �� � 
 �� � � � �

As � ��� is Lipschitz continuous with parameter� , and
�� �  

� , we have�
 �� � � �� � � 
 �� � � �� � �  � ��� �� � 
 �� � �� �� � 
 �� �
�� � � � ��� �� � 
�� � �� �� � 
�� �
� ��� �� � 
 �� � �� �� � 
 �� ��

 � �
 � � � � �� �� � 
 � � � �� � 
� �
�� � � �� �� � 
� � � �� � 
� �

 � �
 � � � � ���� � � �� � � �� � � �� � ��
Thus, the conditions for Theorem 3.1 are satisfied, and we
have the desired result, i.e., as� � �

, we have!"#���! �$ 	 ��� ��� � � ��� � � � � �! �
Next, we study a similar limit foreach flowas opposed to

the aggregate flow. Recall that the rate of flow� (when there
are� flows in the system) adapts according to (2), which can
be represented by
� � �� ��� 	 � � � � � �� � �� �� � 
�	

� � (18)

� 
�� � �� �� � 
�	
� � � � � �� � �� �� � 
 �	

� ��
with the initial conditions given by

" ��� � ���! , sampled appro-
priately and interpolated. It can be shown using an analysis
similar to that carried out for the aggregate flow that, as
� � �

, the flow trajectory approaches the trajectory of the
following delay-differential equation
� � ��� 	 � � � � � �� � 
 �� �� �� � 
 � � �� (19)

and with random initial conditions given by
" ��� � ���! , with����! � � � .

In the following section, we will address the issue of non-
negativity of the trajectories of� � �� ���, �� ��� and � ���. We
will show that under reasonable initial conditions, for� large
enough, the trajectories will remain non-negative.

B. Behavior of the Trajectories: Non-negativity and Conver-
gence

We now study the pair of delay differential equations given
by 


� ��� 	 � � �� �� � 
 �� �� �� � 
� � � � (20)
� ��� 	 � � � � �� � 
�� �� �� � 
� � � � (21)

with initial conditions over
��� � � � given by

" ��� and
" ���� �! �

respectively, for some��! � � � ; and the marking function
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� �� � is chosen such that in the absence of delays,� ��� � ���,
i.e.,� 	 � ������ ��� � Equation (20) corresponds to the “fluid-
limit” of the aggregate flow derived in the previous section,
and (21) corresponds to a sample path of the “fluid-limit” of
an individual flow. We first show the following result.

Lemma 4.1:If
�  " ���  � � � � � �  � �

then
�  � ���  � � � � � � �

where

� 	 � ��� ��
 and
� 	 � �� �
 ��� � �� � � ���� �

Proof: Let
�� 	 � � �, where � was defined in As-

sumption 2.1. We now observe that



� ���  �� . To see this,

suppose� �� � 
�  �
, then we have from Assumption 2.1

that �� � �� �� � 
�� �� �� � 
 � � � � �  �� . On the other-
hand, if � �� � 
� � �

, as � ��� � �
, we have



� ��� 	

� � �� �� � 
 � � �� � � �� � 
�� � �� . Let � � 	 � � � � �� 
 � �
for some � � � � Suppose that� ��� 	 � � for some

� � � �
Then, since



� ���  �� , we have that� �� � 
� � � � �. Thus,


� ��� 	 � � �� �� � 
 �� ��� � � � � �� � � �� ��� 	 � �
In other words, if� ��� reaches� � � it decreases. Thus, if the
initial trajectory

" ���  � � �, we see that� ���  � � � � ��

for all

� � �
.

Next, let
�� 	 � � � for some� � �

and suppose that for
some

� � �
, � ��� 	 �� � Then, as� ���  � , it follows that

� �� � 
�  �� � 
 ��� � �� � � � � �� 	 � � � � �
Thus, 


� ��� 	 � � �� �� � 
 �� �� �� � 
 ��
� � � � �� � � � ��� �� � � � ��

Since��� ���� �� ��� 	 � �


� ��� � � �

and the result follows.

We note that, since� � � � �
by our assumptions, it follows

that � � � � From now, we will also assume that
� � � � We

justify this through a numerical example at the end of this
section. In fact, for most parameters of interest in the Internet� � � � where we recall that noise process is bounded by
� � � � For more discussion on this, see [6].

For the rest of this section, we also assume

� �	 �� �� � ��
 � 
� (22)

To understand what this means, we note that it has been shown
in [6] that, for reasonable values of network parameters,� �
� � � � Further, we note that� 	 � �� � � �� ��� � Thus,

�� �� � � �
 � � 

� � � �

For self-clocked congestion controllers (see [2])� 
 � 

and

since the bandwidth-per-user,� � � � is typically large,� � 

is satisfied.

Theorem 4.2:Suppose� � � � 
 satisfy (22) and
� � � �

(i) For all
� � �

, �� ��� � � ��� �  �� ��� � � ��� �.
(ii) If the initial condition � �� � is non-negative, i.e.,

" ��� ��! � � �
then � ��� � � �

(iii) For any � � �
, there is a
 � �

such that for all
� � 
 ,�� ��� � � ��� � � �.

Proof. Define
� ��� 	 � ��� � � ���. Then, the evolution of this

is described by

� ��� 	 �� � �� � 
 �� �� � � �� � 
 ��

with
� ��� 	 �! for

�  �
. If

�! 	 �
, clearly,

� ��� 	 �
for all� � �

. Thus, we can assume
�! �	 �

.
We first observe that if for all

� � �� � 
 � ��, � ���  �
, then

we have 

� ��� 	 �� � �� � 
�� �� � � �� � 
 ��

	 � ��� �� � 
 ��� �� � � �� � 
��
� �

On the other-hand, if for all
� � �� � 
 � ��, we have

� ��� � �
,

then



� ���  �

.
Let us now assume that

�! � �
, and let

�� the first time such
that

� ��� � 	 �
. Then, for all

� � ��
 � �� �, � ��� � �
. Thus, from

the observation in the previous paragraph, it follows that over� � ��
 � �� �,


� ��� � �

. Thus, from the facts that
�! � �

and� ��� is increasing, it follows that� �  ��, �� ��� � � ��! �.
Now, for any

� � ��� � �� � 
�, as�� �� � 
 � � �
, we have


� ��� 	 � ��� �� � 
 ��� �� �� � 
� � � �
� �

Thus, it follows that
� ��� is increasing over

��� � �� � 
 �. Next,
as� ��� is increasing in it’s argument and� ���  � , we have


� ��� 	 � ��� �� � 
 ��� �� �� � 
� � � �
 � ��� �� � 
 ��� �� � � �

Now, for any
� � ��� � �� � 
 �, we have

�  �� �� � 
 �  ��! �.
Thus, 


� ���  � ��� �� � 
 ��� �� � ��
 �� �� � � � ��! �

with
� ��� � 	 �

. Thus, integrating the above expression, we
have for any

� � ��� � �� � 
�,
�  � ���  �� �� � � � ��! ��� � �� �

 �� �� � � � ��! �

	 � ��! �� ��! �

where the last step follows from (22), where we have assumed
that � � 


.
Next, let

�
� be the first time after

�� � 
 such that
� ��� 	 �

.
As we have

� ��� � �
for

� � ��� � ��
�
, it follows that �� ��� � �

� ��! � for all
� � ��� � ��

�
. This follows because,� ��! � � � ��� ��

in
��� � �� � 
 �, and for

� � ��� � 
 � ��
�
,



� ���  �

, because� �� � 
 � � �
over this interval. Thus,

� ��� � � ��! � for all� � ��� � ��
�
.

Now, repeat the above argument for the negative cycle (i.e.,
for

� � ��
�
� �� �

, where
��

is the first time
� ��� hits zero after�

� � 
) and lower bound
� ��� by �� � ��! � � � ��! �. Continuing

this argument proves (i) and (ii).
Now noting that��! � � � and by choosing� � �

such that
��� � �, eventually we can upper bound�� ��� � by ��� � �
provided that� zero crossings of

� ��� occur in finite time.
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However, if the derivative were to be equal to zero, it is
possible that sufficient number of zero crossings will not
occur in finite time. This will happen if� �� � � ���� 	 �

for
all

�
. However, noting that



� ��� � �

if � �� �� � 
� � � � 	 � �
it can be easily shown that there exists� � � � � � � � 

and a time �� � �

such that overany interval of time �� ,� �� ��� � � � � � for at-least an amount of time� �� . Using
this, it can be shown that zero crossings will occur in finite
time intervals, and

� ��� will eventually go to zero.

We now briefly discuss the implications of the above
theorem. Recall from the previous section that as� � �

, the
rate process of an individual flow� � �� ��� converges uniformly
over

�� � � �
to a fluid-limit process� ��� with random initial

conditions which are bounded by� , and similarly for the
aggregate flow. Thus, from the results above, for any finite� � �

, it follows that for � large enough, the trajectories
of � � �� ��� and �� ��� will remain non-negative. Further, by
choosing

� 	 
 (defined in (iii)), and choosing� large
enough, it follows that��� �� � � � � �� �� � � � ��.

Remark 4.1:The results of this section can be extended to
the case where the arrival rate at a router is estimated based
on averaging over a finite window. In other words, consider
a system where the marking at the router is a function of
the average arrival rate over some interval of time, and bases
the marking decision on this average. Consider the congestion
control equation

�� ��� 	 � � ��� � �� �� � 
 �	

� � (23)

�
� �� � � %��
� ! � �� � �� ���
����� � � �

��� � �� ���
����� � � 
��
We observe that in the above system, the rate is integrated over
an interval of time�� , not

�
. Recall that each time-step (for

the �th system) is of length
�� . Thus, in an interval of time�� , we are averaging over

�
steps. This would correspond

to averaging over somevolume of data, so that instantaneous
effects from a small fraction of the data does not affect the
system dynamics. As the number of flows increase, the volume
of data over any interval of time linearly increases. We see that
to have the same reliability in the estimates, we need to keep
the volume fixed for all�. Hence, the interval of time shrinks
inversely in�. We can see that a reasonable limit to expect as
� � �

is given by (1), i.e.,

� ��� 	 � � �� �� � 
 �� �� �� � 
 � � �� (24)

with initial conditions given by
" ��� � � � � � �� .

Example 4.1:We consider a network with� flows. The
target arrival rate due to controlled flows is assumed to be
� � 
�� kbytes/sec, and the mean arrival rate of uncontrolled
flows is assumed to be� � 	�

kbytes/sec. We let the round trip
delay be�� msec. To translate these numbers into our model,
we need to map time in msec into time units of the model. We
normalize with respect to one-way propagation delay. Thus,
we have
 	 �, � 	 	��� and � 	 ���. Further let the gain
parameters be� 	 � ���, and� 	 � �	�. Now, we assume that

the marking function is of the form

� �� � 	
�� � �����

Thus, as� ��� satisfies� 	 � �� � � �� ���, we have�� 	 	�
� ��.
Computing the bounds� � �

from the last section, we have
� 	 	��� �� and

� 	 ���� ��, while the nominal rate per
source�� 	 � � � 	 	���

. Further, checking the condition
in (22), we have�� �� � � �
 	 �

��!! � 

. Thus, the

condition � � 

is satisfied. Recall that� is defined such

that the “noise” rate is� � � . If � satisfies
� � � � �

,
i.e., � � ���� ��, and the initial conditions are non-negative,
from the results in the previous section, the rates remain
non-negative, and from (iii) in Section IV-B, all users
eventually get a fair share of the bandwidth.

C. Rate Based Marking: Extensions to Infinite Time

So far, we have studied convergence of rate processes over
a finite time interval

�� � � �
. We now extend this framework to

infinite time. As in Section III-A, we consider fix some
� � �

and consider a sequence of systems over progressively larger
intervals of time. We study (15), but over the time interval��� � �� �

, i.e., for
� � �� � �� �

, consider

�� ��� 	 � � � �� � �� �� � 
�	

� � (25)

� 
�� � �� �� � 
�	
� � � � � �� � �� �� � 
 �	

� ��
with initial conditions given by

�� ��� 	 " ��� � �� �� � � �  �  � � � � � �
and a straight line interpolation is used for� � �� � . For

� ��� � � �, the candidate limiting system is described by

� ��� 	 � � �� �� � 
 �� �� �� � 
� � � � (26)

with initial conditions given by
" ���. As before, the equilib-

rium point of the above equation is� 
 	 � � �. We make the
following stability assumption.

Assumption 4.1:Consider the fluid limit process described
by (26). We assume that this process is exponentially stable,
i.e., �� � � � � � �

such that for all
� � �

,�� ��� � � 
 � � � ���"! ������
where �"! 	 !"# ����$ �!	 �" ��� � � 
 �.

Similar to that in the finite time case, there are now
� uncontrolled flows (i.e.,��
� � � � 	 
� � � � � � � �, � � �

)
accessing the system, with each flow having a bounded rate,
i.e., ���
� � � � . We assume that these flows are iid, and are
stationary and ergodic. For� � �

, we assume a constant
(random) initial condition, i.e.,�
�� 	 �
! . In the finite time
case, we were interested in the interval of time

��� � � �
. In

this interval, we had��� � 

discrete-time steps, and thus,�

ranged from��� to �� . Here, we are studying the system
over the time-interval

��� � �� �
. As each discrete time-step

corresponds to a “continuous time” interval of length
�� , it
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follows that that� ranges from��� to � �� . Then, we have
for any � � �

,�� � !"#��$ % �%��$ &&&&&&


�
�'�� � ���� &&&&&&

� �()
 �� �� � 
��� � &&&&&&



�
�'�� � ���! &&&&&&

� �()
 �� �� � 
����*

for some� 	 � ��� � �
. The first step follows from the union

bound, and the fact that the flows are stationary. The second
step (i.e., existence of� � �

) follows from Chernoff’s bound
(it trivially follows that the MGF exists, as the process is
bounded). Thus, it follows that�� � !"#��$ %�%�� $ &&&&&&



�
�'�� � ���� &&&&&&

� �() �+,�� �

exponentially fast. Now, applying Borel-Cantelli Lemma, it
follows that !"#��$ % �%��$ &&&&&&



�
�'�� � ���� &&&&&&

� � � �! � (27)

As before, we remark that the above model allows each
“noise” process to be long-range dependent. We only need
the flows to be bounded and iid. Thus, we have that!"#����$ ��$ 	 ��� ��� � � � � �! �
The main result in this section is the following.

Theorem 4.3:For the systems described above, we have!"#���! ��$ 	 ��� ��� � � ��� � � � � �! �
as� � �

.
Proof: Define

	 � ��� 	 �� ��� � � 
 and
	 ��� 	 � ��� �� 
. These are the “centered” rate processes, and satisfy the

following equations. For
� � �� � �� �

,
	 � ��� satisfies


	 � ��� 	 � � � �	� � �� �� � 
�	
� � � � 
 � (28)

� 
	 � � �� �� � 
 �	
� � � � � �� � �� �� � 
 �	

� ��
with initial conditions given by

	� ��� 	 " ��� � �� ��� � � 
 � �  �  � � � � � �
and a straight line interpolation is used for� � �� � . For

� ��� � � �, 	 ��� satisfies

	 ��� 	 � � � 	 �� � 
 �� �	 �� � 
 � � �� (29)

with initial conditions given by
" ��� � � 
. As before, assume�" ��� � � � is a Lipschitz continuous initial trajectory. We can

show as in Lemma 4.1 that there exists� � �
such that for

all � � �
, !"#����$ ��$ 	 �	� ��� � � � (30)!"#����$ �, � �	 ��� � � � (31)

The rest of the proof consists of showing that the assump-
tions in Theorem 3.3 are satisfied for the delay-differential
equations described in (28) and (29). Let us define
 	
� � � �� 
 � � � � We observe that

&&&&&
� � � �	� � �� ������� � � � 
 �
� �	 � � �� ������� � � � � �� � �� ������� �� &&&&&

 


Thus, it follows that� 
	 � ��� �  
 , and similarly for
	 ���, and

hence, the trajectories of
	 � ��� are Lipschitz continuous with

parameter
 .
As in Lemma 4.1, for any

	 � � , define
�	 � 	��� � � �	 � � �. Define


 �	� � �� � 	 � � ���	 �� � 
 �� � � 
 � � ��� �� � 
�� � �� �� � 
�� � ��
Then, we can rewrite (28) and (29) as

	 � ��� 	 � � � ��	� � �� �� � 
 �	

� �� � � 
 � (32)

� 
�	 � � �� �� � 
�	
� �� � � � ��� � �� �� � 
�	

� ���
	 
 �	 ��� ��� � ���� ��� � (33)


	 ��� 	 � � � ��	 �� � 
 �� � � 
 � � ��	 �� � 
 �� � ��
	 
 �	� � ��� (34)

Now, we show that
 ��� �� is bounded and Lipschitz continuous.
First, as

�  � ���  

, we have�
 �	� � �� � � 	 &&&&

� � � ��	 �� � 
 �� � � 
 �
� ��	 �� � 
 �� � �� �� � 
 �� � �� &&&& � � ��

The proof of the Lipschitz property of
 ��� �� is identical to
that in Lemma 4.1.

Next, we have, by Assumption 4.1, that the fluid-limit is
exponentially stable. Finally, as discussed earlier, the “noise”
process satisfies !"#����$ ��$ 	 ��� ��� � �+,�� �

Thus, the conditions for Theorem 3.3 are satisfied, and we
have the desired result, i.e., as� � �

, we have!"#���! ��$ 	 ��� ��� � � ��� � � � � �! �
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D. Weighted Proportional Fairness

In the previous sections, we considered the case where
all users share the same utility function

��� �� �. We now
generalize this to the case where the utility function of Flow
� is � � ��� �� � � (leading toweighted proportional fairness[3])
where� � � �

are possibly different for different flows. From
a resource allocation point of view, the resource allocation
achieved under any concave, increasing utility functions can be
achieved by a weighted proportionally-fair allocation through
appropriate choice of weights�� � � [3]. To implement this in a
truly decentralized fashion, the weights themselves have to be
adapted by the individual users; however, we do not address
this case here.

Suppose there are� flows, and user� uses the utility
function � �� ��� �� �� �. Let us define

� � 	


�
�'
�� � ���

Continuing the same notation and framework as in the previous
sections, the evolution of the user’s rate follows the delay-
differential equation
� � �� ��� 	 � �� � � � � �� � �� �� � 
�	

� � (35)

� 
�� � �� �� � 
�	
� � � � � �� � �� �� � 
 �	

� �� �
with initial conditions given by� � �� ��� 	 � ��

�
" ��� � ���� �� � � �  �  � � � � � �

and a straight line interpolation is used for� � �� � . We can
then describe the evolution of the mean rate analogous to (15)
by 


�� ��� 	 � � � ��� � �� �� � 
�	
� � (36)

� 
�� � �� �� � 
 �	
� � � � � �� � �� �� � 
 �	

� ��
with initial conditions given by

�� ��� 	 � �
�
" ��� � �� �� � � �  �  � � � � � �

and a straight line interpolation is used for� � �� � . This means
that each flow�� 
 �� � 	 
� � � � � � � � could have a different
initial condition, but the nominal initial condition is given by��� " ���.

Suppose we assume that� � � � as � � �
. Using

methods identical to those in Section IV-A, we can show that
the trajectory of (36) is close to that described by


� ��� 	 � � �� �� � 
 �� �� �� � 
 � � �� (37)

with initial conditions given by
" ���. Formally,

Lemma 4.2:As � � �
, we have!"#���! �$ 	 ��� ��� � � ��� � � �

Analogous to the study in Section IV-A, we can study a
limit for each flowas opposed to the aggregate flow. It can be
shown that the trajectory of (35) approaches the trajectoryof
the following delay-differential equation
� � ��� 	 � � � � � � �� � 
 �� �� �� � 
 � � � � (38)

and withrandominitial conditions given by� �� " ���� ���! , with����! � � � .
Non-negativity of the trajectories follows the analysis in

Section IV-B, once we realize that we need to study ascaled
trajectory of � � ���. Let us define� ��� 	 �� � ���

� � �
Then, we have
� ��� 	 � � � � �� � 
�� �� �� � 
� � � �
with initial conditions over

��� � �� given by
" ���� � �! � respec-

tively, for some �� �! � � � �
, where� � 	 ��� �

. The results in
Section IV-B then follow for these scaled system, and thus,
non-negativity is ensured under suitable initial conditions.

V. RANDOM MARKING

In this section, we consider random marking functions,
and show that in the many-flows limit, this random function
behaves like a deterministic function operating on the average
rate as in the previous sections.

We begin with motivating why we should study random
marking. Consider a packet-based model operating in discrete-
time. In a particular time-slot, suppose


�
packets arrive,

and the marking function� ���, takes the value
� ��. Then,

every packet needs to marked with the value
� ��. However,

in practice, a packet is either marked or not marked. Thus, a
possible solution is to mark each packet independently with
probability

� ��. Thus, we can see that the marking function is
random with mean� ���.

Now, we go back to our stochastic fluid model. Suppose
there are� flows � � �� ��� � � 	 
� � � � � � � � with

�
such that

� � � � and
�  �  �

. Ideally, a fraction� � �� ���� ��� of the
�th flow should be marked. However, due to randomness in
marking, the fraction marked will be� � �� ��� �� ��� � � � �� ����,
where � � �� ��� � � 	 
� � � � � � � � are iid random variables with
zero mean, and�� � �� ��� �  


. Further, we have that� � �� ���
is independent of� � �� ���. This follows because� � �� ��� de-
pends on the noise and marking up to time�� ������� , and
the randomness in the marking process is assumed to be
independent of past marking decisions (i.e., at each time, a
flow is marked independently of the past, and with mean� ���).
Thus, analogous to (2), the congestion control model for each
flow will be given by
� � �� ��� 	 � � � � � �� � �� �� � 
 �	

� �� � ��� � �� ������� � � � � �� � �� ������� ��
�� � �� � �� ������� � �
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with suitable non-negative initial conditions. Also, as before
in (4), let

�� ��� 	


�
�'
�� � � � ���

We first state the following lemma that the states that the indi-
vidual sources rates and the average source rate are bounded.
We omit the proof since it is similar to earlier proofs.

Lemma 5.1:There exists� � �
such that for

� � �� � � �
,

for all �, �� � �� ��� �  ���� ��� �  �

Next, from the definition of�� ���, we can see that is
satisfies the following delay-differential equation. For any� � �� � � �

, we have

�� ��� 	 � � ��� � �� �� � 
 �	

� �

� 
�� � �� �� � 
 �	
� � � � � �� � �� �� � 
�	

� ��
�� � � � �� �� � 
 �	

� � (39)

where

� � ��� 	


�
�'
�� � � � �� ���� � �� ��� (40)

We now show that� � ��� � �
almost surely, uniformly over� � �� � � �

as� � �
.

Lemma 5.2:As � � �
,!"#���! �$ 	 �� � ��� � � � � �! �

Proof. To show this, it is sufficient to show that�� � !"#
�
��� !$ ����� �� � ��� � � �() �+,�� �

fast enough, so that we can use the Borel-Cantelli lemma to
show almost sure convergence. From the union bound, we have�� � !"#

�
��� !$ �� ��� �� � ��� � � �()  

�$'
��! �� 
�� � � �� � � � ��

We consider any term of this summation and show that it goes
to zero at least as fast as

��� . Thus, as there are only� terms in
the summation, we have convergence at rate

��� . From Borel-
Cantelli Lemma, the result then follows. We have� � �
� 	�� ���� � � � �� �
�� � �� �
�. Thus, from Chebyshev’s inequality, we
have we have�� �� 
� �'

�� � � � �� �
�� � �� �
� � � ��
 



� � �� � �

� �'
�� � � � �� �
�� � �� �
����

and �� � �� �
� � � � , �� � �� �
� �  

. Thus, expanding and using

the fact the� � �� �
� and �� �
� are independent, zero mean
random variables (and thus, many product-terms cancel), we
have �� �� 
� �'

�� � � � �� �
�� � �� �
� � � ��  



� � �� � ��

�
�
�
� 
���� � �� � �� �
�� � �� �
���
�
� � �

!�� ��� �� � �� �
�� � �� �
��	 ��� �
��� �
���
��� � �

!�� ��� �� � �� �
�� � �� �
��� ��� �
��� �
���
� � �

!� !�� ��� ��
 �� � �� �
�� � �� �
������ �
��� �
��� ��
 �
��
 �
���
(







)

Now, using the boundedness of� � �� �
� and � � �� �
�, we have�� �� 
� �'
�� � � � �� �
�� � �� �
� � � ��
 



� � �� �� � 
�� � � ��� � � � � �� �

 
	�� ���� �

and the result follows. Thus, we have!"# ���! �$ 	 �� � ��� � � �
almost surely as� � �

.

Now, we can show that the appropriate limit to study even
with random marking is the same as that of rate-based marking
without noise in the marking process, i.e.,


� 	 � � � � �� � 
 �� �� �� � 
 � � � � (41)

with initial conditions given by
" ��� � � � � � �� . We state

the following result without proof since the proof is similar to
the proof of Theorem 4.1, with minor modifications that use
Lemma 5.2.

Lemma 5.3:For the systems described in (39) and (41), we
have !"#���! �$ 	 ��� ��� � � ��� � � � � �! �
as� � �

.

A. Non-negativity of the Trajectories

In the previous section, we studied a relaxed problem,
where the user rates were not constrained to be non-negative.
Similar to Section IV-B, we will now show that under suitable
assumptions, the user rates will remain non-negative.

First, we observe that as the limit of theaggregate flow�� ��� is the same as that in Section IV-B, it follows that under
reasonable initial conditions, the limiting process� ��� is non-
negative, and bounded away from 0 for all

� � �� � � �
. As

we have shown in the previous section that the aggregate rate�� ��� converges to� ��� uniformly over
�� � � �

, it follows that
for � large enough, the aggregate rate defined in (39) will
remain non-negative.
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We now study each individual user’s rate, i.e., for� large
enough, for

� � �� � � �
, we study
� � �� ��� 	 � � � � � �� � �� �� � 
�	

� � (42)� � ��� � �� ������� � � � � �� � �� ������� ��
�� � �� � �� ������� � �

Consider the randomness in marking for each flow, i.e.,� � �� ���. Suppose that the variability in the marking is small,
i.e., �� � �� ��� � � � for some small� � �

. This assumption can
be justified by the following reasoning. We consider for the
moment, the packet model we had used to motivate random
marking. Suppose that at some time, each is to be marked
with probability � . For a user with only one packet in the
queue, the variance in the number of marks received will be� �
 � � �. However, it the user has a large number of packets
(� packets) in the queue, then the variance in the average
number of marks received will be� � �� �. The analog in the
rate based model is the large rate regime. If each user has a
large enough data rate, then a law of large numbers result will
ensure that the variability in marking per user at any time is
small. In the following Lemma, we will assume that the user
data rates are large enough for this regime to operate.

Lemma 5.4:There exists some� � �
such that!"# ���! �$ 	 �� � �� ��� � � � , then, for all� large enough, for all� � �� � � �

, � � �� ��� � �
.

Proof. Fix any � and define
	� ��� 	 �� ��� � � � �� ���, where�� ��� is defined in (39). Then,

	� ��� satisfies

	� ��� 	 �� 	 � � �� �� � 
 �	

� �

� 
�� � �� �� � 
�	
� � � � � �� � �� �� � 
 �	

� ��
�� � � �� � �� �� � 
�	

� �� � � �� �� � 
�	
� �

�� � � � �� �� � 
�	
� ��� � �� �� � 
�	

� � (43)

Now, recall from Section IV-B that under reasonable initial
conditions, there is some� � � � � and

� � �
such that (41)

satisfies
� � !"# ���! �$ 	 � ��� � � (in fact, the bound is valid

for all
� � �

). Assume that (22) is satisfied, i.e., we assume
that � � � � 
 satisfy

� �	 �� �� � � �
 � 

A discussion of this condition is provided in Section IV-B.
Next, as the above inequality is strict, and� ��� is continuous
and increasing, there exists some� � �

such that for all
�  �  �, �� �� � � � � �
 � 


. Now, we choose� large enough
such that !"#����$ �$ 	 ��� ��� � � ��!"#����$ �$ 	 ��� ��� � � ��� � � ��
Thus, it follows that for all

� � �� � � �
,

�� 
�� � �� �� � 
�	
� � � � � �� � �� �� � 
 �	

� �� 
 � 

(44)

We now consider (43), but without any random perturbation
of the marking process, i.e., for

� � �� � � �
, we consider the

delay-differential equation

�� ��� 	 �� �� � �� �� � 
 �	

� �

� 
�� � �� �� � 
 �	
� � � � � �� � �� �� � 
�	

� ��
Using (44), an analysis of this delay-differential equation in a
manner identical to that in Lemma 4.2 yields that��� ��� �  ��� ��� �. In fact, even though we will not use this here, the
analysis will yield that

�� ��� converges to zero exponentially
fast (recall that we have a geometrically decreasing bound on
the trajectory).
Now, consider the “marking perturbation” terms in (43), i.e.,

�
� � � �� � �� ������� �� � � �� ������� �
�� � � �� ������� ��� � �� ������� � �

From the discussion above, we have that�� � �� ������� � is
bounded by� � �

� . Further, from Lemma 5.2, we know that
as � � �

, � � � �� ������� � goes to zero uniformly over
�� � � �

.
Thus, it follows that!"#���! �$ 	 �� � � �� �� � 
�	

� ��� � �� �� � 
�	
� � � �+,�� � � �! �

Using ideas similar to that in Lemmas 3.1 and 3.2, where
Gronwall’s inequality on the sup-norm is used to give a bound
on differences between the trajectories of systems with small
perturbations, we can show that�� � �

small enough such
that if �� � �� ��� � � � , then, !"# ���! �$ 	 ��� ��� � 	 � ��� � is small.
Thus, it will follow that over

�� � � �
, by choosing� small

enough, we can ensure that� � �� ��� remains non-negative.

For the marking schemes described in this section, the
difficulty in extending the convergence result to arbitrarily
large intervals of time lies in proving uniform boundedness
of the trajectories with random perturbations, i.e., the analog
of (30)-(31). If the existence of a uniform finite bound can be
proved, the extension to infinite time will easily follow. This
is an interesting problem for future research.

VI. QUEUE-BASED MARKING

We will now study systems where the marking function
could be based on queue lengths as described in Section II-
B. As in th previous section, we will first consider the case
where the trajectories can be negative or positive, and prove
convergence in the many flows regime over a finite interval of
time. Then, we show that the trajectories are non-negative for
suitable initial conditions.

A. Convergence to the Fluid Limit: The Unconstrained Case

Like systems considered earlier, we assume� flows ac-
cess the router. However, unlike before, where the marking
depended on the instantaneous rates (or average rate over a
time-window), here, we consider marking functions based on
queue-lengths.
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As described in Section II-B, let�� ��� be the aggregate
average data rate at the router, with capacity�� . We have the
uncontrolled “noise” process given by� � �� ���, where� � �

,�� ��� is zero-mean process satisfying suitable assumptions as
before. We let� 	 � � �. Then, for

� � �� � � �
, the evolution

of the aggregate rate can be described by the following SFDE:

�� ��� 	 � � ��� � �� �� � 
 �	

� � 
� 
�� � �� �� � 
 �	
� ���(45)

where�� ��� is the scaled queue-length. We assume as before
that the marking function� ��� is chosen so that for each�,
the fixed point is

�� ��� � � ���� 	 �� � �! �. Thus, the marking
function acts on the scaled (by

�� ) queue-length, and whose
evolution is given by
�� ��� 	 � �� ��� � �� ��� � � �� �� ��� � �

��� ��� � �� ��� � ��� �� �� ��� 	 � (46)

As before, assume that the initial condition is given by

�� ��� 	 " ��� � �� ��� � �  �  � � � � � �
and a straight line interpolation is used for� � �� � , and the�� ��� satisfies �� ��� 	 � � � ��� � ��
Also consider a deterministic system consisting of a single
flow � ��� driving a queue with capacity�, and whose evolution
is given by


� ��� 	 � � �� �� � 
 �� �� �� � 
 �� (47)
� ��� 	 � � ��� � � �� � ��� � �
�� ��� � ��� �� � ��� 	 � (48)

and� ��� 	 �
for

� � ��� � ��. We assume� ��� is aqueue-based
marking function. The marking function is chosen such that
in equilibrium,



� 	 �

,


� 	 �
, � ��� 	 �! , � ��� 	 �, and

� 	 � �� ��! �
Lemma 6.1:For the system described above, as� � �

,
we have !"#���! �$ 	 ��� ��� � � ��� � � � � �! �
Proof. We first show boundedness of the trajectories, i.e.,
�� � �

such that for all�,!"#���! �$ 	 ��� ��� � � �

To see this, from the fact that� �� �  

, we have


�� ���  � � � ��� � �� �� � 
�	
� � �

The trajectory of�� ��� can thus seen to be upper bounded
by the trajectory of

	 ��� (with non-negative initial conditions)
satisfying 


	 ��� 	 � � � 	 � �� �� � 
�	
� �

 � � � 	 ���

The second step follows as
	 ��� is increasing in

�
. Thus,

clearly, over
� � �� � � �

, the trajectory of�� ��� is uniformly

bounded. Similarly, a lower bound can be derived, and we
can show that there exists� � � �

such that��� ��� � � � �
for

� � �� � � �
.

Recall that�� ��� 	 �
for all

�  �
. Thus, for any

� ��� � � �
, the queue-length�� ��� depends only on the trajectory

of �� ��� in the interval
�� � �� � ���� � ��. Thus, we can interpret�� ��� as a functional mapping of the trajectory of�� ��� to a

non-negative number. We will now show that this mapping is
Lipschitz continuous, so that we can apply Theorem 3.1.

Formally, we define�� 	 � � � � and let
�	 � 	���� � �

�	 � �� �. We let � � � ��� � � � �� � � � �� � � � �� �
to be defined as follows. With�� 	 �� �� � � �  �  � �, a
continuous trajectory of length

�
, we define

� ��� � �� 	 � �� �� � 
� � � �
 � � �
� � � �� � 
 �

where �� �� � 
� is the queue-length at time
� � 
 (with

� � 
)
of a queueing system with zero initial conditions, and driven
by the trajectory� �� �� � � � � �� � �  �  � � 
�. This is a
“sliced” and bounded segment of the trajectory of�� over the
interval

�� � � � � � 
�, which is of length
� � 
. Formally, we

define �� ��� by the following differential equation:

�� �� � 	 � �� �� � � � � �� � � �� �� �� � � �

��� �� � � � � �� � ��� �� �� �� � 	 �
and �� �� � 	 �

for
�  �

. From the above definition, the
following properties of� ��� � �� follow:�� ��� � �� � � ��� � �� �  ��� � �� �� � � ��� ��� � �� � � ��� � �� �  � ���� � �� ��
Finally, we note that for the rate trajectories�� ��� and � ���,
we have

� ����� ��� � �� �	
� � 	 � � �� �� � 
�	

� �
� �� � � �� 	 � �� � 
 �

It can also be easily shown that� ��� � �� is bounded over�� � � �� � � �
and

� � �� � � �
. Let us denote the bound by

� �
. Defining � 	 ��� ���

�� � � and redefining
�	 � 	��� � � �	 � � �, we define


 �� � � �� � �� 	 � � � ��� �� � 
 ��� � � �� �� � � ����
It can easily be shown that
 ��� �� �� is a Lipschitz continu-
ous, bounded functional using techniques identical to thatin
Lemma 4.1. Equations (45) and (47) can be written in terms
of 
 ��� �� as 


�� ��� 	 
 ����� ��� � ���� ��� � �� �	
� �


� ��� 	 
 �� � � �� � ��
We can easily generalize Theorem 3.1 to include conver-
gence of finite-dimensional vector processes, i.e., we can
let �� ��� � �� ��� to be vector processes of dimension� , and
let 
� ��� �� � 
 ��� �� map vector processes to� � . With similar
assumptions as before (i.e., the functions are bounded and
Lipschitz continuous), we can derive Theorem 3.1 in this more
general setting.



18

t2 t3t0 t1

c

M

q
0

q(t)

x(t)

Fig. 1. Typical trajectories for the rate process� ��� and the queue length
process� ���.

In this case, we have� 	 �. We treat
�� ��� � �� to be the

vector process. Using the fact the
�

is Lipschitz continuous
(with parameter 1) and bounded (by

�
), from a vector version

of Theorem 3.1, it follows that!"#���! �$ 	 ��� ��� � � ��� � � � � �! �
as� � �

.

Next, as in Section IV-A, we study a similar limit foreach
flow as opposed to the aggregate flow. Recall that the rate of
flow � (when there are� flows in the system) adapts according
to (2), which can be represented by
� � �� ��� 	 � � � � � �� � �� �� � 
�	

� � � 
�� � �� �� � 
 �	
� ��

with the initial conditions given by
" ��� � ���!, sampled appro-

priately and interpolated. It can be shown using an analysis
similar to that carried out for the aggregate flow that as
� � �

, the flow trajectory approaches the trajectory of the
following delay-differential equation
� � ��� 	 � � � � � �� � 
 �� �� �� � 
�� (49)

and with random initial conditions given by
" ��� � ���! , with����! � � � .

In the following section, we will address the issue of non-
negativity of the trajectories of� � �� ���, �� ��� and � ���. We
will show that under reasonable initial conditions, for� large
enough, the trajectories will remain non-negative.

B. The Fluid Limit: Bounds for Queue Based Marking

We study the pair of delay differential equations given by
(47) and (49), with the queue-length process driven by (48).
We first show the following result.

Lemma 6.2:Define� � �� *� � � to be

� 	 � �� � � 
 �� 
 �� � � 
 � ����� �
�� *� 	 �� �

�� �!
� �! � �� � �� � ��

� �	 ����
� �� �
 ���� �� ��� � �

� 	 � �
 � � 
� ��� *� �� � ��� ��� *� ���� 

�� ��� *� �

t~1t0

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
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� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

x(t)

M

c

Fig. 2. Trajectory of the rate process� ���. The shaded area corresponds to
the queue length at time�� �.

If
�  " ��� � � for all

�  �
, and

� � �
, then,�  �  � ���  � � � � � � �

�  � ���  �� *� � � � � � �
Proof. Let us first define the following epochs. Let

�! be the
first time after 0 such that� ��� crosses�, �� be the first time
after

�! such that� ��� is decreasing,
�
� be the first time after�� for � ��� to cross� and

��
be the first time after

�
� for � ���

to increase. These times are illustrated in Figure 1. Formally,
we can define these epochs by

�! 	 �� � �� � � � � ��� � ���� 	 �� � �� � �! �


� ��� � ��

�
� 	 �� � �� � �� � � ��� � ���� 	 �� � �� � �

� �


� ��� � ��

�
	 	 �� � �� � �� � � ��� � ��

Finally, let ��� 	 �� � 
. We observe that as� ��� 	 �
up to�! , � ��� is increasing over

�� � �! � and will continue to increase
up to

��. Further,� ��� � is the maximum� ��� will grow to in�� � �
	
�
. We will hereafter refer to the interval

�� � �
	
�

as a cycle.
In this cycle, the minimum will be� ��� �. Further, over this
cycle, the queue-length process will be increasing on

��! � ��
�

(i.e., when ever� ��� � �) will achieve its maximum at
�
�.

We will derive upper bounds for� ��� � and � ��� � and we will
derive a lower bound for� ��� �. Then, using induction, we can
“propagate” the bounds for all times.

We first derive a bound on� ��� �, i..e, we want to find a
� � � such that if� ��� � 	 � , we must have



� ��� �  �

. Now,
as � ��� � �

on
��
 � �� �, we have over this interval



� ���  � .

Thus, at��� 	 �� � 
, we have

� � �
  � ���� �  � (50)

As



� ���  � , � ��! � 	 �, and� ���� � � � � �
, we have

��� � �! � � � � 
 � �
� (51)

Finally, from Figure 2, we see that� ���� � (given by the area of
the shaded region) can be lower-bounded by the area of the
triangle given by the dotted line, i.e.,� ���� � �


� ���� � �! � �� � � 
 � ��

�
�� � � 
 � ����� (52)
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� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
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� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

−
2

t1
t 2 t

Bounding Trajectory

t’ + dt’
c

M

x(t)

Fig. 3. Trajectory of the rate process� ��� and the upper-bounding process.
The shaded area, along with the growth in the interval��� � � �� corresponds to
���� .

where the last step follows from (51). Thus, from (50) and
(52), it follows that



� ��� �  �

if � is chosen to satisfy

�  � �� � � 
�� 
 �� � �
 � ����� � (53)

Thus, we have over this cycle,� ���  � . We next derive
an upper-bound on� ��� � (and will implicitly derive an upper
bound on

�
� �

��).
As a trivial bound (see Figure 3), we assume that� ��� does

not decrease for some time (say up to
� �

) after
��. As a result,� ��� will continue to increase (at rate� � �). Say

� �
is chosen

such that� �� � � 	 �� � �! for some� � � �
. Then, from

� � � 
,� ��� will decrease till it hits�, at leastas fast as� �� ��! � �� ��
� , and will hit � eventually. An upper bound to this hitting
time, denoted by

��
� is given by

��
� �

� � � 
 	 	 ��� �
 ���� �� ��� .
During this interval, an upper bound to the additional amount
the queue will grow is given by

�� � ��
 � � �� ���� � � � �

� �� � �� (the area of a triangle with side� � � and base��
� �

� � �
), i.e.,
�� ���
 � �	 ����

� �� �
 ���� �� ��� � . As �� is arbitrary,
we have the upper-bound�� *� given by

�� *�  �� � �� �! � �! � � � � �� � ��

� �	 ����
� �� �
 ���� �� ��� � � (54)

This procedure is illustrated in Figure 3.
Finally, we derive a lower-bound on� ��� �. Suppose� ��� � 	�

. We want to choose
�

such that



� ��� � � �

. Now, from (53)
and (54), we have that

� ��� � 
 �  � � 
 ��� � ��� *� � � ��� ��� � 
 �  �� *�
Thus, we have


� ��� � � � � � �� � 
 ��� � ��� *� � � ���� ��� *� �
Thus, choosing

�
such that

� 	 � �
 � � 
� ��� *� �� � ��� ��� *� ���� 

�� ��� *� � (55)

we have the required lower bound. Now, by assumption,
� � �

(this will be the case for typical marking functions). Then,
over this cycle (i.e.,

�� � �
	
�
), we have� ��� � �

. Thus, a similar
analysis can be carried out over the next cycle for deriving

the upper and lower bounds. Note that� � �
derived over this

cycle will work over the next cycle too as we assumed a
“worst-case” behavior for the first cycle analysis. Formally,
we can now setup an induction (over cycles) and prove that
� � �

are suitable upper and lower bounds for� ���. As this
step is straightforward, we shall skip the details in this paper.

Analogous to Section IV-B, we now assume that

�� ��� *� �
 � 

(56)

We now state the following result without proof since it is
identical to that of Theorem 4.2.

Theorem 6.1:Suppose� � � � 
 satisfy (56 and
� � � .

Then,
(i) For all

� � �
, �� ��� � � � ��� �  �� �� � � � ��� �.

(ii) If the initial condition � � �� � is non-negative, then� ��� �� �
(iii) For any � � �

, there is a
 � �
such that for all

� � 
 ,�� ��� � � � ��� � � �.
As in Section IV-B, the implication of this theorem is that
for � large enough, the trajectories of� � �� ��� and �� ��� will
remain non-negative. Further, by choosing

� 	 
 (defined in
(iii)), and choosing� large enough, it follows that��� �� � �� � �� �� � � � ��.

We comment that in the queue-based marking scheme, an
extension to infinite time seems difficult. This difficulty arises
from the fact that the queue-length process is not a Lipschitz
continuous functional (in the sup topology) of the arrival
process over an unbounded interval of time. Under weaker
topologies on the space of trajectories, where the queue-length
process is a Lipschitz continuous map, it is not clear that
we can prove convergence results for functional differential
equations.

VII. A DAPTIVE MARKING , MULTIPLE DELAYS AND

GENERAL NETWORK TOPOLOGY

So far, we have considered a single link case where all
the flows share the same round trip delay. We now generalize
the above framework to include the more than one round trip
delay, and more general network topologies.

A. Adaptive Marking

Using the vector framework from the previous section, we
now consider adaptive marking functions. Marking functions
we considered so far were designed so that for each�, the
equilibrium point was� � � per flow. Recall that for this to
happen, we assumed that for the�th system (see Section IV-
A), the marking function� � ��� satisfied

� � ���� 	 � �� � (57)

For example, if we consider a marking function of the form

� �� � 	
�� � �����

Then, for the� th system, we need to choose� � �	� to be

� � �	 � 	
�	 � �� � ��	
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with �� � 	 � ��, which we denote as thevirtual capacity of
the link. Thus, we explicitly need to know� to design the
marking function, which is hard to implement in practice.
In [5], the authors have proposedadaptive marking functions
where they have shown that even without the knowledge of�,
marking functions can be designed to satisfy (57). We will
illustrate this with the example considered above. Suppose
we let �� � adapt based on the total arrival rate� � ��� 	
��� ��� � �� � ��� ���, which consists of the sum of the
controlled and the uncontrolled arrival rates over all flows,
and the total link capacity� � 	 �� in the following manner.
Fix some� � �

, and let

�� � ��� 	 � �� � � � � ����
� � �	� 	

�	 � �� � ��	

The equilibrium state of this is then� � ��� � � � . Thus,
in the absence of noise variations (i.e.,�� ��� 	 �

), we have�� ��� � � �� which is the desired equilibrium point. As in the
previous sections, we consider the aggregate flow�� ��� and
the scaled virtual capacity��� ���. With delays and “noise”, the
evolution of this pair can be given by


�� ��� 	 � � ��� � �� �� � 
 �	
� �

�
� �� � �� ������� � � � � �� � �� ������� � �
��� � �� ������� � �


��� ��� 	 � 
� � 
�� � �� �	� � � � � �� � �� �	� ���
where � �� � ��� 	 ��� ���#� . We can show using the vector
framework used in the past section (treating

��� ��� � ��� ���� as
a vector process) that the above pair of equations converge as
� � �

to 

� ��� 	 � � � �� �� � 
 �� �� �� � 
 � � � � �� �� � 
��

�� ��� 	 � �� � � � � ���� (58)

As before, we have studied a relaxed problem where the
non-negativity constraints on the trajectories were ignored. To
prove that the trajectories are indeed non-negative, we need to
study the limiting process (58) and show that the trajectories
of this system is non-negative. A study of this system is hard
even without delays (see [5]). With delays, we do not know if
the trajectories will remain non-negative. We conjecture that
for initial conditions close enough to the equilibrium point, and
small enough delays, the trajectories will remain non-negative.
Thus, the results for adaptive marking hold only for the relaxed
problem, where we do not constrain the rate processes to be
non-negative.

B. Multiple Round-Trip Delays

Let � 	 �
� � 
�
� � � � � 
� � be a set non-negative integers,

and � be the set of possibleone-waypropagation delays
that any flow can have. We say that a collection of flows
are of the samedelay-classif they all share the same one-
way propagation delay. In this section, we will study the case

where there are� flows of each delay class, and derive the
appropriate limit as� � �

.
Consider�� �� �� ��� � 
  �  � � 
  �  � � with

� � ��� � � �
,

where� �� �� ��� be the transmission rate of the�th flow of the� th
class at time

�
. We assume that associated with each data flow� �� �� ���, there is a bounded, stationary ergodic “noise” process

� � ��� �� ���, with � ���� �� ���� 	 �
. Analogous to the previous

sections, the system evolves in discrete time steps of size
�� ,

and a straight line interpolation is used in-between these time
steps to embed the process in continuous time. The source
rate at time

�
(with � � � �� �� ) depends on the amount of

flow marked half a round-trip time back. This amount in-turn,
depends on the the amount of data sent by each flow, a further
half a round-trip time back. Thus, the evolution of the rates
�� �� �� ��� � 
  �  � � 
  �  � � can be described by
� �� �� ��� 	 � � � � ��� �� � �� �� � �
� �	

� � (59)

�
� 

�

�'
� �
�'
�� � � ��� �
 � �� ����� ��� ��� �

���� �
 � �� ����� ��� ��� �� � � ��
with suitable initial conditions. Here,� � is the additive
increase factor, which could be different for each delay-class.
Now, let

��� ��� 	


�
�'
�� � � �� �� ���

��� ��� 	


�
�'
�� � ��� �� ���

Then, it follows from (59) that the evolution of the aggregate
rate of eachdelay-classcan be described by


��� ��� 	 � � � � ��� � �� �� � �
� �	
� � (60)

�
�

�'
� �
� ��
 � �� ����� ��� ��� �
���
 � �� ����� ��� ��� � � � � ��

for each� 	 
� � � � � � � � , and with initial conditions given by"� ���� ��� ���, for � � � � and linearly interpolated in-between.
Note that in this framework, each class has a possibly different
mean initial trajectory.

We can easily generalize Theorem 3.1 to include con-
vergence of finite-dimensional vector processes, i.e., we can
let �� ��� � �� ��� to be vector processes of dimension� , and
let 
� ��� �� � 
 ��� �� map vector processes to� � . With similar
assumptions as before (i.e., the functions are bounded and
Lipschitz continuous), we can derive Theorem 3.1 in this more
general setting. We define

�� ��� 	 ���� ��� � � � � � ��
�
���� �

�� ��� 	 ���� ��� � � � � � ��
�
���� �

As in Section IV-A, we can show that the trajectories of (60)
are bounded, and we can rewrite (60) as

�� ��� 	 
 ��� ��� � �� ����
where 
 ��� �� � � � �� � � � �� �� � �� � � , is a bounded, Lips-
chitz continuous functional. The details of it’s construction is
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analogous to that in Section IV-A, where the scalar case was
considered. Thus, it can be shown that the appropriate limitto
consider in the multiple delay case is given by the following
coupled delay-differential equations

�� ��� 	 � � � ��� �� � �
� �� �

�'
� � � 
 �� � 
� � 

 � � � �� � 	 
� � � � � �
with initial conditions �"� ��� � ��  �  � � � 	 
� � � � � � � � �.
Analogous to Sections V and VI, we can generalize the results
of this section to include random marking and queue-based
marking.

We finally comment that non-negativity of the trajectories
can be established when the number of delay classes are
small. To show this, as a worst case, we can assume that
the congestion is caused due to a single class. Then we
can derive an upper bound on how large each class can
grow using methods identical to that in Section IV-B. Using
these upper bounds, we can construct lower bounds on the
trajectories. This procedure is very similar to the� �� � �
bounds constructed in [6]. In this case, we can show that
bounds are� � �� ��. Thus, as we increase�� �, the lower bound
will become negative.

C. Arbitrary Network Topology

So far, we have studied the congestion control problem
with a single router. We now study the case where we have
a more general network topology. We assume that there are�� � routers (resources) in the network, and they are indexed
by � 	 �
� � � � � � �� �. We assume that there are�� � classes
of traffic flows, and they are indexed by� 	 �
� � � � � � �
 �.
Each class consists of a collection of flows sharing the same
path through the network.

For example, consider the UIUC domain. We will model the
interior of the domain as a network with unlimited resources,
and thus, no congestion occurs there. The only place where
congestion could occur is at the edge router, which connects
this domain to the Internet. Similarly, we consider various
domains, and assume that their interiors are well-provisioned,
and cause no congestion. The model we study would cor-
respond to such a scenario, with many flows between each
domain.

Let us denote
� �� � � � to be the forward-path delay from a
source of class

�
to the resource (router)

�
. Let 
�

�� � � � be the
reverse-path delay from resource

�
to the source of class

�
, with


� �� � � � � 
�
�� � � � being integers, and� � 	 
� �� � � � � 
�

�� � � �
being the round-trip delay of any flow of class

�
. Further, let

� � be the collection of resources along the path of any flow
of class

�
, and � � be the collection of flow-classes passing

through resource
�
.

We assume that there are� flows in each class, and the
system evolves in discrete time-steps of

�� . As before, we have
a collection of uncontrolled flows, iid, stationary and ergodic.
We denote the source transmission rate for the�th flow of
class

�
, when there are� flows in each class by� �� �� ��� for� � ��� � � �

, with � � � � . The source additively increases
its rate and backs off proportional to the aggregate amount of
marks it receives due to congestion at resources on its path.

We assume router (resource)
�

uses a congestion cost function� � �	�. If � � �	� is interpreted as a marking function, then it is
often assumed that the network operates in the rare negative
feedback regime (see [7], [9]) and thus, the end-to-end fraction
of marked packets is approximated by the sum of the fraction
marked at each link along the path of the flow. However,
this approximation is not necessary if we interpret� � �	� as
a congestion cost. For notational ease, we will assume that
the marking functions are rate based, deterministic functions.
We could easily generalize to random marking or/and queue-
based marking also, but for ease of exposition, we will avoid
that setup in this paper. Then, we can describe the evolution
of ��� �� ��� by
� �� �� ��� 	 � � � � ��� �� � �� �� � � � �	

� �

'
�� �
� 
 �� �� � � ����%�%� ��� �� � �� ����� �� �
���� �� �
���� �

���� �� � �� ����� �� �
���� �� �
���� �
� �� 
 �� (
)

with suitable initial conditions. As in the previous section, we
can study the evolution of the aggregate rate of each class,
and this process is described by


��� ��� 	 � � � � ��� � �� �� � � � �	
� �

'
�� �
� 
 �� �� �� � � ��� � �� ����� �� �
���� �� �
 ���� �

���� � �� ����� �� �
���� �� �
���� � �
� �� 
 �� (
)

for each
� 	 
� � � � � � �
, and with initial conditions given by" � ���� ��� ���, for � � � � and linearly interpolated in-between.

We can show that the appropriate fluid limit to study in this
framework is described by

� � ��� 	 � � � � � � �� � � � �� (61)'
�� �

� 
 
 �� �� � �� �� � 
� �� � � � � 
� �� � � ��� �� 
 �� �
for each

� 	 
� � � � � � �
, and with initial conditions given by" � ���. The proof follows a vector formulation of Theorem 3.1
(see Section VII-B and Remark 3.1 for a description of this).
The assumptions of Lipschitz continuity and boundedness of
the trajectories over any finite interval of time follows from
the fact that for any� � � � , we have'
�� �

� 
 ���  �

Thus, a proof analogous to that in Theorem 4.1 can be used
to establish the required result.

As in the previous section, we would like to establish
the non-negativity of the trajectories. However, the bounds
used to establish non-negativity become less tight as the
number of classes and the number of links increase. Thus,
establishing non-negativity of the trajectories for a general
topology network is still an open issue.
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VIII. D UAL ALGORITHMS: CONVERGENCE WITHDELAYS

So far, we have have studied primal algorithms based on the
framework developed in [3]. We next study differential equa-
tion models derived from a dual approach to the congestion
control problem [25]. As in the primal case, we restrict our
study to the

���
utility function.

Analogous to the primal problem with an arbitrary network
topology (Section VII-C), we study a system consisting of�� � routers (resources) in the network, which are indexed by
� 	 �
� � � � � � �� �. We assume that there are�� � classesof
traffic flows, and they are indexed by� 	 �
� � � � � � �
 �. Each
class consists of a collection of flows sharing the same path
through the network.

As before, let us denote
� �� � � � to be the forward-path delay
from a source of class

�
to the resource (router)

�
. Let 
�

�� � � �
be the reverse-path delay from resource

�
to the source of class�

, with 
� �� � � � � 
�
�� � � � being integers, and� � �� 	 
� �� � � � �


�
�� � � � being the round-trip delay of any flow of class

�
to

resource
�
. Further, let� � be the collection of resources along

the path of any flow of class
�
, and� � be the collection of

flow-classes passing through resource
�
.

We assume that there are� flows in each class, and
the system evolves in discrete time. As before, we have a
collection of uncontrolled flows, iid, stationary and ergodic
and with mean� �� � ��. We denote this collection by�� �
���� �� �� ��� 
  �  � � � � � , where ���� �� �� � are zero mean. We
assume that the resource capacity is scaled as� �� � ���� � ��.
We denote the source transmission rate for the�th flow of
class

�
, when there are� flows in each class. Now, from the

dual formulation, we have that the each resource updates its
link cost (marking function) based on the total arrival rateto
it, and each user is fed back the sum of the link costs along
its path. We study the system in discrete time, the time index
being

� � �� � 
 � � � � �� �. We denote the link cost (marking
function) at discrete time

�
at resource

�
by � � �� �, and the

date rate of user� of class
�

at time
�

by � �� �� �� �. Then, for
any

� � � , the update algorithms can be written as

� �� �� � 
� 	 � �� �� � � � �� �� �� � ���
�� �� � �� �� �'

��� �
�'
�� � �� �� �� �� � � � � ���� �� �� �� �� � �� � ����

� �� �� �� � 	 � �� ��� � � �� �� � �� � �� �

  �  � � � � �

where � �� �
is the update “gain” for the�th system. We

will later see that this is of the order
�� after embedding

in continuous time. For technical reasons, we assume that
there is a large enough� such that if the total input rate
exceeds� � �� � �, then the link will react as though the rate is
� � �� � �. Further, if the total rate goes below

�
, then the link

will react as though the rate is
�
. As before, we will denote�	 � 	 � � �	 � � �.

Now, let �� �� �� � be theprice per userat link
�
, and��� �� �

be the average rate at time
�

over flows of class
�
, i.e.,

�� �� �� � 	



� �� � �� �� �� � � � �
��� �� � 	



�
�'
�� � � �� �� �� � � � �

��� �� � 	


� ��
�� �� �� � � � �

Thus, for
� � �� � � � � � �� � and each

� � � � the evolution of
the average cost at each resource follows

�� �� �� � 
� 	 �� �� �� � � � �� � ��� � � �
�� �� � �

�� 

�� �

�� '�����% �%� � �� �� �� � � � � ��� �� �� �(
)
�
��

	 �� �� �� � � � �� � ��� � � �
�� �� � � 
�� � � �'��� � ��� �� � � '

��� � �
�� ���� � ��

and

��� �� � 	 � �� ��� � �� �� �� � �� � �� �
� � � �

Thus, we have for any
� � � ,

�� �� �� � 
� 	 �� �� �� � � � �� � ��� � ��

�� �� � � 
�� � � �'��� � � �� ��� � �� �� �� � �� � �� � �
'
��� � �

�� �� �� � ��
Embedding this equation in in continuous time (each discrete
time-step corresponds to an interval to time of length of

�� ),
we see that as the step size is order

�� , the gain� �� �
should

be scaled as well, i.e., for some� � �
, � �� � 	 � ��. Thus,

in a differential equation form (as in the primal algorithms
considered earlier), we have for

� � �� � � �
, for any

� � � ,

�� �� ��� 	 �� ��� � �� (62)

�� � 
�� � � �'��� � � �� ��� � �� �� �� � � � �� � �
'
��� � �

�� ���� � ��
Finally, as �� ��� is Lipschitz continuous (as the derivative is
bounded by
 	 � �� � � � � �, where� 	 ��� ��� ��) and
�� ��� is bounded over

�� � � �
(the bound being
� ), we have

that as� � �
, from a vector formulation of Theorem 3.1,!"# ���! �$ 	 ��� ��� ��� �� ���� �� � ��� � � �

, where�� � ��� is defined
by

�� � ��� 	 � � � ��� � � �� ��� � 	 �
��� � �
 � ���� � !� � � � �


� ��� � � � �
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A. Non-negativity of the Trajectory: A Fluid Limit Analysis

So far, we have neglected the constraint that� � ��� should be
non-negative. We will now consider a special case of the above
system, where we have only one router and a single delay-
class. We will show that for� small enough, the trajectory
will remain non-negative.

We consider the delay-differential equation

�� ��� 	 � 
 � �

�� �� � 
 � � �� � �� � ��� (63)

with suitable non-negative initial conditions.
Lemma 8.1:There exists some� � �

such that�� � �  �,
the trajectory of (63) remains non-negative for all

� � �� � � �.
Proof. It is sufficient to show that� � � �

such that if at any
time

� � 
, �� ��� � �
,



�� ��� � �

. Thus, if the initial condition
is “reasonable”, the trajectory will remain non-negative over�� � 
 � and we will be done.

Suppose for some
� � �

, �� ��� � �
. From (63), it follows

that �� �� � 
 � � � � � �� � ��
. Thus, we have

�� ��� 	 � 
 � �

�� �� � 
 � � �� � �� � � ��
� � 
 � �� � � �� � � �
 � �� � �� � � ��

Now, recall that
�	 � 	 � � �	 � � �. By choosing� arbitrarily

large (but finite), we can ensure that

� �� � � �� � � �
 � �� 	 �� � � �� � ��
 � �
Thus, we have that


�� ��� � �� � � �� � � �
 � � � �� � � �
	 �� � � �� � � �
 � �

Thus, to ensure



�� ��� � �

, we must have

�� � � �� � � �
 � � (64)

Also, note that the equilibrium point� 
 of (63) satisfies (again
� is chosen large enough so that the ceiling does not matter)

� 
 	 �
�

Thus, from (64), it follows that choosing any
�

satisfying

� � � 
 � � �� � � �

ensures that



�� ��� � �

. Now, choosing� � �
small enough, we

can ensure that we can choose
� � �

. Thus, we are done.
Finally, for � , the number of flows large enough, it now
follows from the uniform convergence result in the last section
that the trajectory of the stochastic system (for a single class
case) will be non-negative as well.
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