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ABSTRACT
We consider the problem of designing scheduling algorithms
for the downlink of cellular wireless networks where band-
width is partitioned into tens to hundreds of parallel chan-
nels, each of which can be allocated to a possibly differ-
ent user in each time slot. We prove that a class of al-
gorithms called Iterated Longest Queues First (iLQF) algo-
rithms achieves the smallest buffer overflow probability in an
appropriate large deviations sense. The class of iLQF algo-
rithms is quite different from the class of max-weight policies
which have been studied extensively in the literature, and it
achieves much better performance in the regimes studied in
this paper.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication

General Terms
Algorithms, Performance

Keywords
Scheduling algorithm, large deviations, delay optimality

1. INTRODUCTION
Designing scheduling algorithms is a central problem in

wireless networks. In multi-hop wireless networks and the
uplink of a cellular network, scheduling is used to resolve
contention among competing links while, in the downlink of
cellular networks, scheduling is used to achieve maximum
throughput subject to Quality of Service (QoS) and fairness
constraints. Much of the prior work, with the exception of
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a few recent papers, has concentrated on achieving 100%
throughput without the knowledge of arrival and channel
statistics. In this paper, we present scheduling algorithms
which achieve the best possible QoS (buffer overflow proba-
bility) in the downlink of emerging cellular networks.

We are motivated by the anticipated deployment of 4G
systems such as WiMax [6] and LTE [1]. These future sys-
tems supporting several tens of users at each base-station
employ an OFDM (Orthogonal Frequency Division Multi-
plexing) based slotted-time air-interface at the base-station.
The OFDM air-interface partitions the wireless bandwidth
available at the base-station into several hundreds of par-
allel channels, each of which can be allocated to a (possi-
bly different) user in each timeslot (typically of the order of
a few milliseconds). From a network perspective, this sys-
tem translates into a multi-channel system (with potentially
several hundreds of channels), with each channel supporting
a user-dependent and time-varying data rate (user depen-
dence due to the location of the mobile user/handset, and
time-variation due to fading and the nature of the wireless
channel).

An approach to scheduling over such a system would be
to use the MaxWeight algorithm [19]. In each timeslot, the
MaxWeight algorithm allocates a single user to each chan-
nel based on the product of its queue-length at the base-
station (backlog of data that is destined to the mobile user)
and the corresponding channel rate. This algorithm has
received intense attention [2], and has been shown to be
throughput-optimal (i.e., makes the queues stable), along
with several performance properties in the large-queue [13,
21, 17, 20] or heavily loaded [16, 14, 10] regimes. However,
in a multi-carrier regime with large bandwidth (a scenario
that is typically anticipated in 4G systems), one is inter-
ested in developing algorithms that ensure small queues at
the base-station.

While it is known that the MaxWeight algorithm provides
good performance when the queues are large, it is not clear
that it provides good small-buffer performance in a multi-
carrier setting. For instance, consider a system with 100
channels, each of which can drain one packet per timeslot.
Suppose that there are 3 users in the system, with user 1
having 100 packets in its queue and the other two users
having 99 packets. It is easy to show that the MaxWeight
algorithm will allocate all the available channel resources to
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user 1. This would result in user 1’s queue length decreasing
to zero, but the other two queue lengths remaining large.
Thus, it intuitively seems better to share the channel re-
sources among all users in order to reduce the peak queue
length at the end of the timeslot.

A key observation is that for small-buffer multi-channel
systems, scheduling needs to be iterative in each timeslot –
as resources (channels) get allocated to users, the effect of
this allocation (i.e., that the queue lengths of these users
would decrease) needs to factored in when making alloca-
tion decisions for the remaining channels. Using this idea,
we develop such a class of iterative algorithms (iLQF – iter-
ated Longest Queues First) for scheduling over large multi-
carrier systems. We show that for symmetric arrival rates,
iLQF algorithms (with certain additional properties) are
rate-function optimal in the many-channels regime. Roughly
speaking, this means that for a system with a large num-
ber of channels (such as a multi-carrier OFDM system),
the proposed algorithms “minimize” the probability of the
maximum queue length (across users) exceeding any posi-
tive queue-length threshold b, and where this threshold b does
not scale with system size. Further, for asymmetric arrival
rates (i.e., the arrival rate of each user could be different),
a sample-path dominance property established in the paper
ensures that the overflow probability under iLQF is upper
bounded by a symmetric system whose arrival rate is the
same as the largest arrival rate among all the users (please
see Section 10).

The main contributions of the paper, along with a sum-
mary of the organization of the paper, are provided below:

• In Section 4, we introduce the mathematical abstrac-
tion of an OFDM system with many channels, and
formally define the problem.

• In Section 5, we present an algorithm-independent lower
bound on the probability of a buffer overflow event de-
fined in Section 4.

• In Section 6, we prove certain basic properties of match-
ings in large bipartite graphs, and exhibit a service rule
that is optimal for the problem under consideration in
the sense that it achieves the above lower bound in a
large deviations sense. However, this service rule re-
sults in poor performance when the arrival model is
changed even slightly, thus demonstrating the need to
carefully design optimal scheduling policies.

• Section 7 presents a class of algorithms called iLQF
algorithms and shows that algorithms within this class
which possess certain properties are optimal.

• Section 8 describes an algorithm that satisfies the prop-
erties required for optimality (described in Section 7)
and further, is robust to changes in the arrival model,
unlike the algorithm in Section 6.

• In Section 9, we compare the performance of the pro-
posed iLQF class algorithm with the standard MaxWeight
algorithm using simulations, and show that the iLQF
algorithm yields a much smaller buffer overflow prob-
ability than the standard MaxWeight algorithm.

• We conclude with a summary and directions for future
work in Section 10.

2. RELATED WORK
Multi-user scheduling in wireless networks has received a

lot of interest over the past few years [18, 19, 2, 15, 12, 5,
7]. Recent progress in studying the performance of schedul-
ing algorithms includes the characterizations of the queue-
performance in heavy-traffic limits [16, 14, 10], and com-
putations of the tail probability of queue-lengths using the
large-deviations analysis [13, 21, 17, 20]. While these results
provide very useful insights into the QoS of scheduling algo-
rithms, theoretically, they are valid only when the queue-
lengths increase to infinity, i.e., in a large-queue regime.
Order-optimality in the number of flows under the MaxWeight
algorithm has been explored in [11]. A model similar to the
one in this paper has been considered in [8], where the au-
thors use scheduling algorithms based on graph matchings
(similar in spirit to the iLQF class of algorithms in this pa-
per) and show delay-optimality in the case of two users, and
provide heuristics when more users are present.

To the best of our knowledge, the finite buffer analysis
in our paper, for the first time, characterizes the asymptotic
buffer overflow performance of OFDM scheduling algorithms
in a many-users/servers, small-queue regime.

3. MOTIVATION
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Q1

A2(t) X22(t)
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Figure 1: System Model

We consider a discrete time queuing system with n queues
and n servers as shown in Figure 1. The following notation
is used throughout this paper:

Qi = The entity, queue number i
Si = The entity, server number i

Qi(t) = The length of Qi at the end of timeslot t
Q = {Q1, Q2, . . . , Qn}
S = {S1, S2, . . . , Sn}

Ai(t) = The number of arrivals to Qi at the begin-
ning of timeslot t

Xij(t) = The number of packets in Qi that can be
served by Sj , in timeslot t

a+ = max(a, 0)

This system model can be used to study an OFDM down-
link system (such as WiMax) where each channel (sub-band),
consisting of a fixed number of sub-carriers, is a server in
Figure 1. There are a fixed number of mobile users, each
represented by a queue that corresponds to the backlogged
data at the base-station that is destined to the correspond-
ing mobile user. The scheduler operates once every timeslot.
During each timeslot, a channel can be assigned to one and
at most one user (queue). The state of the channel (Xij(t))
to a specific user depends on the location of the user.
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Some typical rates (for a 20 MHz WiMax-like system) are
as follows: the air-interface is based on OFDM with 50 chan-
nels (sub-bands), each of which consists of 25 sub-carriers.
Each channel can support 400 kbps and the scheduler op-
erates once every 5 milliseconds. Thus, each good (ON)
channel offers 2 kb per timeslot.

Now, the challenge is to develop a high-performance schedul-
ing algorithm for this system. At a first glance, by treating
each server as a separate downlink server, the problem is not
very different from the scheduling for a traditional downlink
network. We can then use the following max-weight schedul-
ing algorithm, which is throughput-optimal.
Max-weight Scheduling: At time slot t, server j serves
Q∗

i such that

Q∗
i ∈ arg max

Qi

Xij(t)Qi(t). �

While the max-weight scheduling is throughput-optimal,
it causes large delays (due to large queues at the base-
station). As an example, assume Q1(t) = 100, Q2(t) =
Q3(t) = 95, Q4(t) = Q5(t) . . . = Q100(t) = 10. Then, all
servers Sj such that X1j(t) = 1 will serve Q1. Assume that
Xij(t) = 1 with probability 0.9, and Xij(t) are mutually
independent. Then, roughly 90% of the servers (channels)
will be allocated to user ‘1’, and the remaining 10% to users
2 and 3, which will result in large queues for users 2 and 3
at the end of the timeslot.

It can be argued that the MaxWeight algorithm “drives
up” all queue lengths to large enough values to ensure the
maximum scheduling flexibility. This in turn results in large
per-user queue lengths, which can result in large delays. In a
multi-carrier system supporting large rates, this problem is
further exacerbated because the (mean) queue-lengths under
the MaxWeight algorithms grow with the system capacity.

Thus, to have small queues, the first-cut at an algorithm
would be to design it in such a way as to serve as many
users as possible during each time slot. In Lemma 1, we
prove that in a large, balanced, random bipartite graph, a
perfect matching (a matching including all queues) exists
with high probability. A naive algorithm then is to allocate
the channels according to the perfect matching, which we
call the perfect-matching scheduling algorithm.
Perfect-matching scheduling: In each time slot, if there
exists a perfect matching between the queues and the chan-
nels, then serve all queues according to the perfect matching;
otherwise, no queue is served. �

In Lemma 2, we prove that this perfect-matching schedul-
ing maximizes

lim inf
n→∞

−1

n
log P

(
max

1≤i≤n
Qi(0) > b

)

for Ai(t) ∈ {0, 1}. However, when Ai(t) ∈ {0, 2} (Lemma 3),

lim inf
n→∞

−1

n
log P

(
max

1≤i≤n
Qi(0) > b

)
= 0.

Hence, the perfect-matching scheduling rule is sensitive to
the arrival distribution. This is because the perfect-matching
scheduling does not consider queue-length information, and
allocates at most one server to a queue.

Thus, a good scheduling algorithm should exploit queue-
length information, and allocate an appropriate number of
servers to each queue.

In the context of ON-OFF channels, we propose the iLQF
(iterated Longest Queues First) class of algorithms. In each

timeslot, an algorithm in this class first considers the set
of longest queues, and allocates a server to each of them.
Then these (used) servers are removed from consideration,
and the lengths of the longest-queues are reduced by the
amount served. (Note: we have not served any queues at this
point, we are simply updating the queue-lengths as though
they have been served.) Next, we find the set of the longest
queues in the updated system, and allocate one server to
each of them. This progresses until we are unable to find a
matching between the longest queues and the remaining (un-
allocated) servers. When formally defining this algorithm,
an important issue arises: for a given set of queues, there
are many ways to find matching servers (i.e. the matching
between the longest queues and available servers may not
be unique). Then, which set of matching servers should we
choose during each iteration? Should we explore all possible
sets of matching servers?
Main result: In Section 7, we describe a class of itera-
tive algorithms (iLQF – iterated Longest Queues First) for
scheduling over large multi-carrier systems. We show in
Theorem 3 that under certain mild conditions, the iLQF
algorithms are rate-function optimal in the many-channels
regime, i.e. they maximize

lim inf
n→∞

−1

n
log P

(
max

1≤i≤n
Qi(0) > b

)

for any finite threshold b ≥ 0.
In Section 8, we propose a specific iLQF algorithm that

exploits the PullUp technique (to be defined) to efficiently
find a good matching. The overall computational complexity
of the proposed algorithm is O(n4).

Finally, we discuss extensions to more general arrival mod-
els.

4. SYSTEM MODEL
We consider a multi-channel wireless network as shown in

Figure 1. The systems are indexed by the number of servers
(and queues), n, and are denoted by Υn. For concreteness,
in a given timeslot, we assume that arrivals to the queues
occur first and then there is the chance for service. The
arrivals to each queue are i.i.d. Bernoulli(p), independent
across queues and time. In particular,

Ai(t) =

{
1 with probability p,

0 with probability 1 − p,
(1)

and

Xij(t) =

{
1 with probability q,

0 with probability 1 − q.
(2)

All the random variables Ai(t) and Xij(s) are mutually
independent. Each queue maintains a buffer of infinite size,
so that no packets are ever dropped. If Xij(t) = 1, then the
server j can potentially serve queue i in timeslot t, reducing
the length of queue i by one (unless it is empty). We define
the random variables

Yij(t) =

{
1 if Sj is allocated to serve Qi in timeslot t,

0 otherwise.

The random variables Yij(t) are defined by the policy (ser-
vice rule) that allocates servers to queues. As in an OFDM
system, a server can serve at most one queue, but a queue
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may be served by multiple servers. That is, for all t and all
j ∈ {1, 2, . . . , n}, we require

n∑
i=1

Yij(t) ≤ 1.

The queue-lengths at the end of a timeslot are defined by
the following equation:

Qi(t) =

(
Qi(t − 1) + Ai(t) −

n∑
j=1

Xij(t)Yij(t)

)+

.

A finite integer b ≥ 0 is fixed. The queueing system is
started at time −∞. Our objective is to design a service
rule that maximizes

lim inf
n→∞

−1

n
log P

(
max

1≤i≤n
Qi(0) > b

)
. (3)

The above expression is called a rate-function in large de-
viations theory, and thus our design goal is to find a ser-
vice rule that is rate-function optimal. We refer to the
event {maxi Qi(t) > b} as the overflow event. We consider
only ergodic service policies that make all the queues in the
system positive recurrent, so that the probability in (3) is
well defined, and equals the fraction of timeslots for which
{maxi Qi(t) > b}. Roughly, for large values of n and any
fixed b, (3) is equivalent to designing a scheduling policy
that results in the largest value of α(b) where

P

(
max

1≤i≤n
Qi(0) > b

)
≈ e−nα(b)

This means that (for large systems) the algorithm with such
a property will result in the smallest buffer overflow proba-
bility, for any buffer size b.

5. ALGORITHM-INDEPENDENT LOWER
BOUND ON OVERFLOW PROBABILITY

In this section, we present a lower bound on the over-
flow probability (3). This is an algorithm-independent lower
bound, so it holds for any scheduling algorithm. In Section
7, we develop a class of iterative algorithms (iLQF) that
achieve this bound.

Theorem 1. For the system Υn, under any rule for al-
locating servers to queues, and for all possible values of the
parameters n > 0, 0 < p, q < 1, b ≥ 0,

P

(
max

1≤i≤n
Qi(0) > b

)
≥ pb+1(1 − q)n(b+1).

Consequently, for any p > 0,

lim sup
n→∞

−1

n
log P

(
max

1≤i≤n
Qi(0) > b

)
≤ (b+1) log

1

1 − q
. (4)

Proof. Consider the following event which implies that
{Q1(0) > b} : for b + 1 consecutive timeslots before (and
including) timeslot 0, there are arrivals to Q1, and all the
channels connecting Q1 to the servers are OFF in each of
the b + 1 timeslots. The probability of this event is equal to
pb+1((1 − q)n)b+1 and the result follows.

6. STABILITY AND PERFECT MATCHINGS
In this section, we first present a stability condition. Then,

we study a service rule that is optimal for the problem under
consideration but not robust to even small changes in the
model.

Theorem 2. For given values of p, q ∈ (0, 1), there exists
n0 = n0(p, q) such that for all n ≥ n0, the queuing system
Υn can be stabilized by some service rule.

Proof. Consider a service rule where each server uni-
formly and randomly picks a queue to which it has an ON
channel, and serves it. If that particular chosen queue is
empty, then that server does not serve any queue in that
timeslot. (Multiple servers can serve the same queue, but
there is no co-ordination between the servers.)

Then, the probability that the first server offers its service
to the first queue in a particular time slot is

P(S1 offers service to Q1 in timeslot t)

= P(S1 offers service to Q1 in timeslot t|X11(t) = 1)

·P(X11(t) = 1).

Now, for the service rule under consideration,

P(S1 offers service to Q1 in timeslot t|X11(t) = 1)

=

n−1∑
j=0

P(S1 offers service to Q1 in timeslot t|X11(t) = 1,

Exactly j of the rest n − 1 channels from S1 are ON)

·P(Exactly j of the rest n − 1 channels from S1 are ON)

=

n−1∑
j=0

1

j + 1

(
n − 1

j

)
qj(1 − q)n−1−j

=

n−1∑
j=0

1

j + 1
· (n − 1)!

j!(n − 1 − j)!
qj(1 − q)n−1−j

=
1

n

n−1∑
j=0

n!

(j + 1)!(n − 1 − j)!
qj(1 − q)n−1−j

=
1

qn

n−1∑
j=0

(
n

j + 1

)
qj+1(1 − q)n−1−j

=
1 − (1 − q)n

qn
.

Hence, P(S1 offers service to Q1 in timeslot t) = 1−(1−q)n

n
,

implying that the total service offered to the first queue (or
to any other queue, by symmetry) in timeslot t is 1−(1−q)n.
If p < 1 and q > 0 are fixed, then 1 − (1 − q)n > p for large
enough n ≥ n0(p, q), where

n0(p, q) :=

⌈
log(1 − p)

log(1 − q)

⌉
,

implying that all the queues are stable (positive recurrent)
under the specified policy.

The above stability result can be generalized easily, as-
suming supi pi < 1 : (a) arrival rates to different queues can
be different, (b) the arrival processes can be generalized to
allow the number of arrivals to take on values in a finite,
non-negative integer set, and (c) the service processes can
also be similarly generalized.
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We now prove a result regarding perfect matchings in bi-
partite graphs that is useful for the analysis of the proposed
algorithm later in the paper.

Lemma 1. Consider an undirected bipartite graph G(U ∪
V, E), where U ∪ V is the set of vertices with |U| = |V| = n,
and E is the set of edges. Every edge e ∈ E has one of its
endpoints in U and the other in V. For every node u ∈ U
and v ∈ V, the edge (u, v) is present in E with probability q,
independently of all other edges. Then, for large n,

(1 − q)n ≤ P(G has no perfect matching) ≤ 3n(1 − q)n,

where a perfect matching is defined as a matching of cardi-
nality n.

Proof. For A ⊆ U , let Γ(A) denote the neighborhood
A, i.e.

Γ(A) := {b ∈ V : (a, b) ∈ E for some a ∈ A}.

We know from Hall’s theorem ([9], Thm. 7.40) that if a
bipartite graph G(U∪V, E) does not have a perfect matching,
then there exists a subset A ⊆ U such that |Γ(A)| < |A|.
Fix a nonempty subset A ⊆ U and a subset B ⊆ V. Let
|A| = a. Then, we have

P(Γ(A) ⊆ B)

= P(No node in A connects to any node in S\B)

= (1 − q)(n−|B|)a.

If the graph has no perfect matching, then by Hall’s the-
orem, there must exist sets A and B such that

1. A ⊆ U , B ⊆ V,

2. |B| = |A| − 1,

3. Γ(A) ⊆ B.

Hence, by union bound over all possible subsets A ⊆ U and
all possible corresponding subsets B ⊆ V, we have

P(G has no perfect matching)

≤
n∑

a=1

(
n

a

)
·
(

n

a − 1

)
· (1 − q)a(n−a+1)

≤ 2

�n/2�∑
a=1

(
n

a

)
·
(

n

a − 1

)
· (1 − q)a(n−a+1), (5)

where the last inequality holds with equality if n is even.
We consider the case when n is large, in particular n > 2.

Now, for n > 2 and 1 < a ≤ 
n/2�, a−1 ≥ a/2, n−a ≥ n/3,
and we have

(n
a)(

n
a−1)(1−q)a(n−a+1)

n(1−q)n

≤ na · na−1 · (1 − q)a(n−a+1)

n(1 − q)n

≤ n2a(1 − q)(n−a)(a−1)

≤ n2a(1 − q)na/6

= exp

(
2a log n − na

6
log

1

1 − q

)

= exp

[
−a

6

{
n log

1

1 − q
− 12 log n

}]

≤ exp

{
−a

6
· n

2
· log

1

1 − q

}
, for n large enough

≤ exp

{
−n · 1

12
log

1

1 − q

}
, since a > 1.

Hence, from (5), we have for any fixed ε > 0,

P(G has no perfect matching)

≤ 2n(1 − q)n ·
(

1 + (
⌈n

2

⌉
− 1) exp

{
−n · 1

12
log

1

1 − q

})
≤ 2n(1 − q)n · (1 + ε), for n large enough. (6)

Now, fix a node ui ∈ U . Let Ei denote the event that ui

is an isolated node. Then, P(Ei) = (1 − q)n. It follows that

P(G has no perfect matching) ≥ (1 − q)n.

Thus, putting ε = 0.5 in (6), we have (for large enough n)

(1−q)n ≤ P(G has no perfect matching) ≤ 3n(1−q)n. (7)

This completes the proof.

Next we consider the perfect-matching scheduling.

Definition 1. Perfect-matching scheduling: In a times-
lot t, let E := {Xij(t) : Xij(t) = 1}. If there exists a perfect
matching in the bipartite graph G(Q ∪ S, E), then allocate
the servers to serve the respective queues as determined by
the perfect matching, else do not allocate any server to the
queues. �

Lemma 2. For the system Υn, the perfect-matching schedul-
ing yields

lim inf
n→∞

−1

n
log P

(
max

1≤i≤n
Qi(0) > b

)
≥ (b + 1) log

1

1 − q
.

Thus, in conjunction with (4), the perfect matching schedul-
ing rule maximizes (3), and is rate-function optimal.

Proof. Fix the number of queues (and servers), n, large
enough for Theorem 1 to hold, and consider the evolution
of Q1 under the above service rule. Q1(t) evolves accord-
ing to a Markov chain with the following state-transition
probabilities:

p0 = P(Q1(t + 1) = Q1(t) + 1) ≤ p · 3n(1 − q)n,

q0 = P(Q1(t + 1) = Q1(t) − 1 ≥ 0) ≥ (1 − p)(1 − 3n(1 − q)n),

P(Q1(t + 1) = Q1(t) + m) = 0, (8)

for all m /∈ {0, 1,−1}. Further, the evolution of Q1 is inde-
pendent of the states of, and arrivals to, all the other queues.
Figure 2 shows the transition probabilities for Q1(t).
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0 1 2 3

1 − p0 − q0 1 − p0 − q0 1 − p0 − q01 − p0

p0 p0 p0 p0

q0 q0q0 q0

Figure 2: Markov chain for the evolution of the first
queue

For ρ := p0/q0 < 1, the steady-state distribution of the
Markov chain in Figure 2 is given by

P(Q1(t) = b) = (1 − ρ)ρb, ∀ b ≥ 0,

implying P(Q1(t) > b) = ρb+1. Using (8), we get

P(Q1(t) > b) ≤
(

3pn(1 − q)n

(1 − p)(1 − 3n(1 − q)n)

)b+1

≤
(

6pn(1 − q)n

1 − p

)b+1

,

for n large enough. The same calculation applies to each one
of the queues from Q2 to Qn, since the number of packets
served from a queue Qi is independent of all other queues
and their respective arrivals; it is a function of the random
variables Xjk(t), Qi(t − 1) and Ai(t). Therefore, for the
service rule under consideration,

P

(
max

1≤i≤n
Qi(0) > b

)
≤

n∑
i=1

P(Qi(0) > b)

= nP(Q1(0) > b)

≤ n

(
6pn(1 − q)n

1 − p

)b+1

.

Hence,

lim inf
n→∞

−1

n
log P

(
max

1≤i≤n
Qi(0) > b

)
≥ (b + 1) log

1

1 − q
,

which, combined with (4), proves that the service rule under
consideration maximizes (3).

While the perfect-matching scheduling is rate-function op-
timal for Ai(t) ∈ {0, 1}, this algorithm is sensitive to the
arrival processes.

Definition 2. The arrival process to a queuing system is
said to be L×Bernoulli(p) if it satisfies

A
(n)
i (t) =

{
L with probability p,

0 with probability 1 − p,

with pL < 1. If L = 1, then the process is said to be
Bernoulli(p). �

Lemma 3. If the arrival process to the system Υn is changed
from Bernoulli(p) to 2×Bernoulli(r) for any r ∈ (0, 0.5),
then the perfect matching scheduling rule results in the over-
flow event having at least a constant probability, implying
that the expression (3) equals 0.

Proof. Consider the evolution of Q1, starting from any
state Q1(t). The following event leads to {Q1(t+b+1) > b},
irrespective of the channel realizations: for b+1 consecutive
timeslots (t+1, . . . , t+ b+1), there are arrivals to Q1. This

event leads to Q1(t + b + 1) > b, since in a given timeslot,
at most 1 packet can be served from any given queue. The
probability of this event is rb+1. Therefore, under the perfect
matching scheduling rule,

lim sup
n→∞

−1

n
log P

(
max

1≤i≤n
Qi(0) > b

)
= 0,

taking steps similar to that in the proof of Theorem 1.

This motivates us to study (in the rest of this paper) a
queue-length based scheduling policy which provides rate-
function optimality (in Equation (3)) for the Bernoulli(p)
arrival process, and also achieves a nonzero rate function for
more general arrival processes (see Corollary 2, Section 8.2).

7. CHARACTERISTICS OF OPTIMAL SER-
VICE RULES

In this section, we consider a special class of service rules -
iLQF (iterated Longest Queues First), and present sufficient
conditions for an iLQF scheduling policy to be rate-function
optimal. In the next section, we present an algorithm in this
class that maximizes (3), and also is robust to the arrival
processes.

Definition 3. Iterated Longest Queues First (iLQF):
A service rule is said to belong to the class iLQF if, in every
timeslot, it allocates servers to queues in multiple rounds as
follows:

1. In a given round, the service rule finds a largest car-
dinality matching in the bipartite graph whose node-
sets are the set of longest queues and set of available
servers, and the edges are defined by the channel real-
izations (an edge from Qi to Sj is present if Xij = 1),
and allocates the servers to the (longest) queues as de-
termined by the matching. If the cardinality of the
matching thus found equals the cardinality of the set
of the longest queues, then the algorithm is required to
serve all the (longest) queues. If, in the given round,
none of the longest queues are connected to any of the
servers, then the set of the next longest queues may be
considered for server allocation, but it is not required
to be considered.

2. The service rule updates the lengths of all the queues
(to take into account the service received by a subset of
the longest queues in the particular round) and the set
of available servers (to take into account the servers
allocated to some of the queues) and proceeds to the
next round. �

Note that the class iLQF contains more than one schedul-
ing algorithm, since the following parameters are unspeci-
fied:

1. The number of rounds to be performed, i.e., the ter-
mination condition.

2. The tie-breaking rule if there exist multiple largest car-
dinality matchings among the longest queues.

This class of algorithms is interesting because it gives pri-
ority to the longer queues, thereby trying to minimize the
probability of the overflow event.
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Lemma 4. For any algorithm in the iLQF class, and for
n large enough,

P

(
max

1≤i≤n
Qi(t + 1) > max

1≤i≤n
Qi(t)

)
≤ 3n(1 − q)n.

Proof. Consider the bipartite graph G(Q∪S, E), where
E := {Xij(t) : Xij(t) = 1}. If G has a perfect matching
(i.e., a matching of cardinality n), then for an algorithm
in the iLQF class, max1≤i≤n Qi(t + 1) ≤ max1≤i≤n Qi(t).
Further, by Theorem 1, the graph G has a perfect matching
with probability at least 1 − 3n(1 − q)n for large n.

Definition 4. Dominance property of an iLQF rule
Λ: Consider the queuing system with Q = {Qi}n

i=1 as the
queues, and S = {Si}n

i=1 as the servers. Let Ai(t) and
Xij(t) be the arrival process and channel processes respec-
tively (see (1), (2)). Now, a new queueing system with
queues R = {Ri}n

i=1 and servers S = {Si}n
i=1 is obtained

as follows: at each time t, the queues Ri, i = 1, 2, . . . , n see
the same arrivals as those incoming to Qi, i = 1, 2, . . . , n and
the channel states of the servers are identical to those of sys-
tem Q (i.e. the arrival processes and channel states in the
system R are sample-path coupled with the system Q). In
addition, there are extra packet arrivals (an arbitrary, finite
number) that occur to system R immediately after service,
and at arbitrary timeslots T1, T2, . . . (see Figure 3). The ser-
vice policy used in the queuing system R is the same iLQF
policy (Λ) that is used in the system Q (also the process R
is defined over the same probability space as Q).

Arrival, Ai(t)

Timeslot t

Service,
∑

j Xij(t)Yij(t)

Time

Ri(t − 1) Ri(t)

Extra Arrivals

Figure 3: Service model for the queuing system R

A rule Λ in the iLQF class is said to have the dominance
property if the following holds: for all timeslots t, all b ≥ 0,
and over all possible choices of extra arrivals, we have that

P

(
max

1≤i≤n
Ri(t) > b

)
≥ P

(
max

1≤i≤n
Qi(t) > b

)
. �

Intuitively, the dominance property requires that adding
extra packets to the queueing system driven by the iLQF
policy Λ does not decrease the maximum queue length. This
property is extremely useful, because this property allows
us to “carefully” add packets so that the resulting queuing
system can be explicitly analyzed and whose rate function
can be computed in closed-form. The dominance property
ensures that the rate function so obtained provides a lower-
bound on the rate-function of the original system.

Definition 5. Drain property of a scheduling rule
Λ: A scheduling rule Λ (not necessarily from the iLQF-class)
is said to have the drain property if there exists a constant

k0 independent of n such that, for all n large enough and all
integers t,

P

(
max

1≤i≤n
Qi(t + k0) < max

1≤i≤n
Qi(t)

∣∣∣∣ max
1≤i≤n

Qi(t) > 0

)
≥ 1

2
. �

Theorem 3. Suppose a service rule in the iLQF class has
the drain and dominance properties. Then, this iLQF service
rule results in

lim inf
n→∞

−1

n
log P

(
max

1≤i≤n
Qi(0) > b

)
= (b + 1) log

1

1 − q
.

Further, by Theorem 1, no other service rule can give a
larger value for the left hand side of the above expression.

Proof. The proof of the theorem proceeds according the
following steps:

1. By adding dummy packets and using the drain prop-
erty, we construct a Markov chain B̃(t) such that for
some k0 > 0,

P(B̃�(t + 1) = m − 1|B̃�(t) = m) =
1

2

P(B̃�(t + 1) = m + r|B̃�(t) = m) =

(
k0

r

)
(3n(1 − q)n)r

for r = 1, . . . , k0

P(B̃�(t + 1) > m + k0|B̃�(t) = m) = 0.

2. We then compute the bounds on the stationary distri-
bution of the new Markov chain, and show that

lim inf
n→∞

−1

n
log P(B̃�(0) > b) ≥ (b + 1) log

1

1 − q
.

Under the dominance property, this is also a lower
bound on the rate function of the original Markov
chain. Finally, according to Theorem 1, we can con-
clude that this is the rate-function for iLQF algorithms
with the drain and stochastic dominance properties.

The details of the proof are provided in [3].

8. A SPECIFIC ALGORITHM
We now focus on constructing an algorithm in the iLQF

class that satisfies the requirements in the statement of The-
orem 3. The algorithm employs a particular tie-breaking
rule (PullUp) when there exist multiple largest-cardinality
matchings in the bipartite graph between the set of queues
and servers, where the edges are defined by the ON links.

Before we explain the intuition behind this tie-breaking
rule, consider two queuing systems denoted by Q and R
with both these systems operating under the same iLQF
rule. Further, suppose that at some timeslot along a fixed
sample-path, the set of longest-queues under Q is a subset
of the set of longest queues under R and the set of available
channels in system Q is“larger”than that in system R (more
precisely, the bipartite graph connecting the queues to the
servers in system Q has more servers and edges than in the
system R, where ordering is defined by set inclusion). This
is a scenario where system R is less “flexible” than system
Q (in terms of scheduling flexibility) in the sense that any
allocation of servers in the system R can be mimicked by
system Q.
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Now, the intuition behind PullUp can be explained as
follows. Consider two multichannel queueing systems with
identical initial conditions and suppose we add packets at ar-
bitrary times to one of them (say, the second system). Then,
we would like the first system to have more “flexibility” at
each time slot under iLQF in the sense of the previous para-
graph. (We will see that such a property is key to showing
the stochastic dominance in Theorem 3.) The PullUp-based
iLQF algorithm described below ensures that such a prop-
erty holds.

Definition 6. PullUp: Consider a bipartite graph G(U∪
V, E), where the sets of nodes, not necessarily of the same
cardinality, are U = {u1, u2, . . . , um} and V = {v1, v2, . . . , vn}.
Given a matching M in G, M′ := PullUp(G,M,V) is a
new matching obtained by the following steps, which we call
PullUp:

1. Mark all the edges in M as forward edges (i.e. from U
to V), and all the other edges in E as backward edges,
to get a directed graph G1. Define M1 := M.

2. Obtain Mk+1 from Mk as follows: If the node vk has
an incoming edge, then define Mk+1 := Mk, Gk+1 :=
Gk. Otherwise, in the directed graph Gk, find the set
Nk of all nodes reachable from vk. Let Γ(Gk, vk) :=
Nk ∩ U and Δ(Gk, vk) := Nk ∩ V. Find the smallest
index l > k such that vl ∈ Δ(Gk, vk). If no such l
exists, then define Mk+1 := Mk and Gk+1 := Gk.
If such an l exists, then reverse the directions of all
the edges on a path from vk to vl, to obtain a graph
Gk+1. Define Mk+1 to be the set of all forward edges
in Gk+1.

3. Return the matching M′ := Mn+1. �

An example of the PullUp operation is shown in Figure 4.

Lemma 5. The output M′ of PullUp(G,M,V) is a match-
ing, and |M| = |M′|.

Proof. Please see [3].

The objective of the PullUp operation is to efficiently find
a good matching. Based on the PullUp technique, we can
construct an iLQF algorithm that is rate-function optimal.

Definition 7. iLQF with PullUp:
Input:

1. The queue lengths, Q1(t− 1), Q2(t− 1), . . . , Qn(t− 1).

2. The channel realizations, Xij(t) for 1 ≤ i, j ≤ n.

3. The arrivals to the queues, Ai(t) for 1 ≤ i ≤ n.

Steps:

1. Update the queue-lengths Qi(t − 1) to account for ar-
rivals, that is, the new length of Qi is defined to be
Qi(t − 1) + Ai(t). Hereafter, the length of a queue
always refers to its most current updated length, ac-
counting for arrivals and service. Find the length of
the longest queue, Q̂. Define L = Q̂. To begin with,
all servers are unallocated.

2. Let QL denote the set of queues whose length is exactly
L. Let GL denote the (undirected) bipartite graph with
nodes QL ∪S, and the edges as defined by the channel
realizations. Here, S denotes the set of unallocated
servers. More specifically, an edge (Qi, Sj) is present
in GL if Qi ∈ QL, Sj ∈ S and Xij = 1. Find a largest
cardinality matching ML in GL.

(a) If |ML| = |QL|, define M′ := PullUp(GL,ML,S).

(b) If |ML| < |QL|, define M1 := PullUp(GL,ML,S).
Obtain Mk+1 from Mk as follows: if k is odd,
then define T := QL; otherwise T := S, and
Mk+1 := PullUp(GL,Mk, T ). Continue obtain-
ing Mk+1 from Mk until Mi+1 = Mi for some
i. Define M′ := Mi.

Finally, as defined by the matching M′, allocate the
servers to queues. For example, if (Qx, Sy) ∈ M′, then
allocate Sy to serve Qx, remove Sy from S, decrease
the length Qx by 1.

3. If at the end of step 2, we have |ML| < |QL|, then
stop. If |S| = 0 or L = 1, then stop. Else, decrease
the value of L by 1, go to step 2. �

The above description of the algorithm may be a bit dif-
ficult to follow. So, we provide a brief description in words
here: the algorithm first finds a largest cardinality matching
in the bipartite graph consisting of the longest queues and
all servers connected to these queues. Then, it performs the
PullUp operation on this matching. If the number of links
in the resultant matching is less than the number of longest
queues, the algorithm terminates after using this matching
in the schedule. Else, it removes packets from the longest
queues as dictated by the matching and repeats the process
by finding a largest cardinality matching among the new set
of longest queues. We note that for implementing the iLQF
with PullUp algorithm, the base station does not need to
know (nor learn) the arrival or channel process statistics.

Let every execution of step 2 be called a round. If in step
2 we have |ML| = |QL|, then that round is called a perfect
matching round, else a maximal matching round.

Theorem 4. The iLQF with PullUp is rate-function op-
timal, i.e., it gives

lim inf
n→∞

− 1

n
P

(
max

1≤i≤n
Qi(0) > b

)
= (b + 1) log

1

1 − q
.

Furthermore, the algorithm can be implemented in O(n4)
computations per timeslot.

Proof. We prove that the iLQF with PullUp satisfies
the drain property (Theorem 6) and the dominance property
(Theorem 5). The first part of the theorem holds according
to Theorem 3. The computational complexity result follows
from Lemma 6.

8.1 Computational complexity
We first analyze the computational complexity of the iLQF

with PullUp.

Lemma 6. The proposed algorithm can be implemented in
O(n4) computations per timeslot.

Proof. Please see [3].
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Path to reverse: v1 → u3 → v3

Path to reverse: v2 → u3 → v1 → u4 → v4

u1 u1 v1

v2

v3

v4

u2

u3

u4

v1

v2

v3

v4

u1

u2

u3

u4

v1

v2

v3

v4

u2

u3

u4

M = {(u3, v3), (u4, v4)} M′ = {(u3, v2), (u4, v1)}

Figure 4: An example of the PullUp operation

8.2 Rate-function optimality
We establish the rate-function optimality of the iLQF with

PullUp by proving that the algorithm has the drain property
and the dominance property as required by Theorem 3. The
following is a technical lemma that will be used in the proof
of Theorem 5.

Lemma 7. In the graph Gn+1, if a node va has no incom-
ing edge, then there does not exist a (directed) path from va

to any node vb with b > a. Consequently, if PullUp(G,M,V) =
M′, then PullUp(G,M′,V) = M′.

Proof. Please see [3].

Theorem 5. (Sample-path-wise Dominance) Consider two
queuing systems Q and R with queues Q = {Q1, Q2, . . . , Qn}
and R = {R1, R2, . . . , Rn} respectively, with the property
that Qi(t − 1) ≤ Ri(t − 1) for all i, for some t. Let the
two systems have identical channel realizations, Xij(t) and
identical arrivals, Ai(t) for 1 ≤ i, j ≤ n. Both the queuing
systems implement the algorithm described in Section 8, i.e.
iLQF with PullUp. Then, Qi(t) ≤ Ri(t) for all i.

Note that this theorem immediately implies that the iLQF
with PullUp algorithm has the dominance property as re-
quired by Theorem 3.

Proof. The following notation will be used throughout
this proof:

Mr = The set of queues served in the rth round, in
the system R

Yr = The set of servers allocated in the rth round,
in the system R

R
(r)
i = The length of Ri after r rounds of service
Nr = The set of queues served in the rth round, in

the system Q

Zr = The set of servers allocated in the rth round,
in the system Q

Q
(r)
i = The length of Qi after r rounds of service

By definition, R
(0)
i := Ri(t − 1) + Ai(t) and Q

(0)
i :=

Qi(t − 1) + Ai(t). Let R̂ := maxi R
(0)
i , Q̂ := maxi Q

(0)
i and

w := R̂ − Q̂. Let there exist nR and nQ rounds of perfect
matchings in the system R and Q respectively.
Case 1: nR < w.
If a queue Ri was served even once in the nR rounds, then

at the end of nR rounds, R
(nR)
i = R̂ − nR > R̂ − w = Q̂.

Since there are exactly nR rounds of perfect matching in the
system R,

Ri(t) ≥ R
(nR)
i − 1 ≥ Q̂ ≥ Qi(t).

If Ri was not served even once in the first nR rounds of per-
fect matching, but was served in the last round of maximal
matching, then

Ri(t) = R̂ − (nR + 1) ≥ R̂ − w = Q̂ ≥ Qi(t).

Finally, if the queue Ri was not served at all, then

Ri(t) = Ri(t − 1) + Ai(t) ≥ Qi(t − 1) + Ai(t) ≥ Qi(t),

and the claim is true in this case.
Case 2: nR = w.
We have R

(nR)
i ≥ R̂ − nR = Q̂, with equality holding if and

only if R
(0)
i ≥ Q̂. Let Rlast = {Ri1 , Ri2 , . . . , Ria} denote

the set of longest (i.e. of length Q̂) queues at the beginning
of the maximal matching round for the system R, with i1 <
i2 < · · · < ia. Let Qfirst = {Qj1 , Qj2 , . . . , Qjb} denote the
set of longest queues in the system Q, at the beginning of the
first round, with j1 < j2 < · · · < jb. Then, {j1, j2, . . . , jb} ⊆
{i1, i2, . . . , ia}. If the first round in the system Q is a perfect
matching round (i.e. nQ > 0), then all of the queues in
Qfirst are served, and only some of Rlast, and the claim is
true because the queues in the system R are not served for
more than nR + 1 rounds.

Now, let nQ = 0. Let a queue Ric be served by a server
Sa in the (nR + 1)th round, but Qic is not served in the
1st (largest matching) round. Then, Sa must serve a queue
Qid with d < c, otherwise the size of the largest matching
can be strictly increased (∵ Xica = 1), or there exists a
directed path Qic → Sa → Qid , contradicting Lemma 7.
The queue Rid must be served by a server Se, otherwise there
exists a directed path Rid → Sd → Ric , again contradicting
Lemma 7. The server Se must serve a queue Qif with f < c,
otherwise the size of the largest matching in Q can be strictly
increased (by allocating Se to Qid , Sa to Qic), or there exists
a directed path Qic → Sa → Qid → Se → Qif and f >
c, contradicting the specifications of the algorithm and in
particular, Lemma 7. This process of finding newer servers
and queues in the two systems can be continued indefinitely,
contradicting the finiteness of the number of queues and
servers in the system. Therefore, if a queue Ric is served in
the largest matching round of the system R, then so is Qic

in the system Q, and the claim holds in this case.
Case 3: nR > w.

We prove the following statement f(r), for 0 ≤ r ≤ nR−w,
by induction:

f(r) : Nr ⊆
r+w⋃
j=1

Mj ,Zr ⊆
r+w⋃
j=1

Yj , and Q
(r)
i ≤ R

(r+w)
i ∀i.

Base case: We need to prove that f(0) is true. Since

N0 = ∅ and Z0 = ∅, we only need to prove that Q
(0)
i ≤ R

(w)
i .
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Now, if Ri was not served during the first w rounds, then

R
(w)
i = R

(0)
i ≥ R

(0)
i . If Ri was served in at least one of the

first w rounds of service, then R
(w)
i ≥ R̂ − w = Q̂ ≥ Q

(0)
i .

Hence, f(0) is true.
Induction step: Suppose f(0), . . . , f(r − 1) are true for

some r ≥ 1. We need to prove f(r). Let Ri ∈ Mr+w.

We prove that if R
(r−1+w)
i = Q

(r−1)
i , then Qi ∈ Nr. Since

Ri ∈ Mr+w, it was, at the beginning of that round, a longest
queue.

Let Ri ∈ Mr+w be allocated a server Sa in the (r + w)th

round. Therefore, Xia = 1. Since (by induction hypothesis)

r−1⋃
i=1

Zi ⊆
r−1+w⋃

i=1

Yi, and Sa /∈
r−1+w⋃

i=1

Yi,

we have Sa /∈
⋃r−1

i=1 Zi, so the server Sa is available to serve

Qi in the rth round. Therefore, if there exists a perfect
matching in the system R in the (r+w)th round, then there
exists a perfect matching in the rth round in the system Q,

and Qi ∈ Nr, implying that Q
(r)
i ≤ R

(r+w)
i .

Now, for the purpose of obtaining a contradiction, let Sc ∈
Zr, and Sc /∈ Y1 ∪ · · · ∪Yr+w. Let Qi be served by Sc in the
rth round, while Ri was served by Sd in (r + w)th round.
Hence, d < c. Sd must serve some queue Qe in the system
Q in rth round, because otherwise it can replace Sc to serve
Qi and the server Sd was unused (in the system Q) until the

beginning of the rth round by induction hypothesis. Re, in
turn, must be served by a server Sf in the (r + w)th round
in the system R. We must have f < c, otherwise there
exists a connecting path Sc → Ri → Sd → Re → Sf and Sc

cannot remain unused in the system R, according to Lemma
7. This process can be continued indefinitely, contradicting
the fact that the number of queues and servers is finite.
Hence, Zr ⊆ Y1 ∪ Y2 ∪ · · · ∪ Yr+w, and the induction is
complete.

Hence, if we compare the state of the system R after nR

rounds of perfect matching (i.e. at the beginning of the
maximal matching round) and Q at the end of nQ−w rounds
of perfect matching, we have the following:

1. The set of unallocated servers available in the system Q
is a superset of the set of unallocated servers available
in the system R.

2. The set of longest queues in the system Q is a subset
of the set of longest queues in the system R.

As before, let Rlast = {Ri1 , Ri2 , . . . , Ria} denote the set
of longest queues at the beginning of the maximal match-
ing round for the system R, with i1 < i2 < · · · < ia.
Let Qfirst = {Qj1 , Qj2 , . . . , Qjb} denote the set of longest
queues in the system Q, at the beginning of the (nR−w+1)th

round, with j1 < j2 < · · · < jb. Then, {j1, j2, . . . , jb} ⊆
{i1, i2, . . . , ia}. If the (nR − w + 1)th round in the system
Q is a perfect matching round (i.e. nQ > nR − w), then all
of the queues in Qfirst are served, and only some of Rlast,
and the claim is true because the queues in the system R
are not served for more than nR + 1 rounds.

Now, let nQ = nR−w. We need to prove that if a queue Ri

is served in the largest matching round of the system R, then
so is Qi in the system Q. The proof is almost identical to
that of the case nR = w, and is skipped to avoid repetition.
Therefore, the proof of the theorem is complete.

Corollary 1. The iLQF with PullUp algorithm has the
dominance property defined in Section 7.

The corollary follows by repeated applications of Theorem
5. The queuing system is started at time −∞, and we are
interested in the probability that the length of the longest
queue exceeds a constant b at a finite time t. By applying the
result of Theorem 5 to timeslots T1, T2, . . . (in the definition
of the Dominance property), it follows that the packet-added
system has sample-path wise longer queues than the origi-
nal system. The probabilistic dominance is an immediate
consequence of this sample-path dominance.

We now demonstrate a property of the PullUp operation
which is useful in proving that the proposed algorithm has
the Drain property as required by Theorem 3.

Lemma 8. Let a bipartite graph G(U∪V, E) and a match-
ing M be given, with

U = {u1, u2, . . . , un},V = {v1, v2, . . . , vn}.
Suppose there exists a matching M� in G with the following
properties:

1. |M| = |M�|.

2. If u ∈ U is an endpoint of some edge e ∈ M, then u is
an endpoint of some edge e′ ∈ M�.

3. Mark all the edges in M� as forward edges (i.e. from
U to V), and all the edges in E\M� as backward edges,
to get a directed graph G‡(U∪V, E). Then, in the graph
G‡, if a node vi ∈ V has no incoming edge, then there
does not exist a directed path from vi to any vj, j > i.

4. For some a ≤ n, no node vb ∈ V, b > a is an endpoint
of any edge in M�.

Let M′ = PullUp(G,M,V). Then, M′ does not have, as
an endpoint of some edge, any node in V with index larger
than a.

Proof. Please see [3].

Let �T denote the length of the longest queue at the end
of the timeslot T . We next prove that the iLQF with PullUp
satisfies the drain property.

Theorem 6. (The Drain property) For the proposed al-

gorithm, there exists a constant k = k(p) =
⌈

3
1−p

⌉
such that,

for all n large enough, all m > 0 and all T ,

P(�T+k < m|�T = m) ≥ 1

2
.

Proof. We provide a sketch of the proof here. WLG
let T = 0 and �0 = m in a queuing system Q. Consider

a queuing system Q′ where Q′
i(0) = m for all i, implying

Q′
i(0) ≥ Qi(0) for all i, and this property continues to hold

for all further timeslots if the arrivals and the channel real-
izations are identical for the two systems (Theorem 5). We
analyze the system Q′.

Fix p̃ ∈ (p, 1). The probability that there are np̃ or
more arrivals to the system in a given timeslot is very small
(Sanov’s Theorem, Thm. 2.10 in [4]). By union bound, the
same is true for k timeslots for any constant k independent of
n. We condition the rest of the argument on this (high prob-
ability) event. Further, if necessary, we add dummy packets
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to the system to ensure that in each of the k timeslots, the
number of queues that see arrivals is exactly np̃.

Let the queue-length distribution at the beginning of a
timeslot be:

Queue-length Number of queues
m x

m − 1 n − x

Then, at the end of the timeslot, w.h.p., either all queues
are shorter than m, or the queue-length distribution is

Queue-length Number of queues
m x′

m − 1 n − x′

where x − x′ ≥ nδ for some δ. This is because of the fol-
lowing: after arrivals in the timeslot, once the queues of
length m + 1 (if any) are served in the first round, at most
x servers are consumed, and there are at least n− x servers
available to serve the queues of length m. By Lemma 8,
these n − x servers and the remaining queues of length m
exhibit a matching independently of the allocations in the
first round of service. As a result, if the length of the longest
queue equals m at the end of the timeslot, then (w.h.p.) the
difference between the number of packet arrivals and pack-
ets served is at least a constant fraction of n, providing the
negative drift. For a detailed proof, please see [3].

Recall that the arrival model used in the proofs are i.i.d.
Bernoulli ON-OFF processes. If the arrival process is gen-
eralized to any ON-OFF bursty i.i.d. process (i.e., taking
values on {0, L} for any fixed positive integer L and with
ON probability equal to p) and subject to stability (i.e.,
pL < 1), the proofs presented in this paper can be gener-
alized to show that there is a strictly positive rate-function
for any b ≥ 0, as summarized below.

Corollary 2. For ON-OFF bursty i.i.d. (across time
and users) arrival processes with pL < 1, the iLQF with
PullUp algorithm results in a strictly positive value for (3).
In other words, for any b ≥ 0,

lim inf
n→∞

−1

n
log P

(
max

1≤i≤n
Qi(0) > b

)
> 0.

We refer to [3] for the proof details.

9. SIMULATION RESULTS
We have compared the performance of the proposed iLQF-

class algorithms with the standard MaxWeight (MW) algo-
rithm [19] under a number of conditions. We have considered
a system with n = 20 queues and 20 servers, with the chan-
nel between a queue and a server being ON with probability
q = 0.4. We have run the simulations for 500000 timeslots,
based on which the empirical probabilities that the maxi-
mum queue-length exceeds a constant b are computed.

In the first set of simulations (Figure 5), we have run
the algorithms for a system Υn described in Section 4, with
{0, 1} i.i.d. arrivals.

In the second set of simulations (Figure 6), we study
bursty arrivals – in a given timeslot, every queue sees ei-
ther 0 or 4 arrivals. The reason the iLQF algorithm results
in a small probability of buffer overflow from b = 2 onwards
is that the rate function for bursty arrivals is smaller than
that for the {0, 1} arrivals.
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Figure 5: Arrivals as per the system model, Υn
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Figure 6: Bursty arrivals

In the third set of simulations (Figure 7), we have consid-
ered time-correlated {0, 1} arrivals to the queues. We con-
sidered an arrival process that formed a Markov chain, with
the following transition probabilities (for different values of
the parameter p0):

P(Ai(t) = 1|Ai(t − 1) = 0) = p0

P(Ai(t) = 1|Ai(t − 1) = 1) = 0.8
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Figure 7: Correlated arrivals

The results are summarized in the accompanying plots.
As can be seen, the iLQF algorithm performs much better
than the MaxWeight algorithm as far as the finite buffer
overflow probabilities are concerned. The intuition for this
is that iLQF balances the servers among the long-queues,
whereas the traditional MaxWeight focuses on a single longest-
queue. When the buffers are large, this does not affect sta-
bility. However, for small buffer performance, there is a
marked improvement as seen from the plots.
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10. DISCUSSION AND CONCLUSIONS
We considered the problem of designing scheduling algo-

rithms for the downlink of cellular networks where the num-
ber of available channels is large. Our goal was to mini-
mize the buffer overflow probability in an appropriate large-
deviations sense. We showed that a class of algorithms called
iLQF minimizes the buffer overflow probability if the algo-
rithm satisfies certain properties. We identified one iLQF
algorithm that possesses the desired properties.

In some special cases, the set of algorithms which mini-
mize the probability of overflow may not be singleton. How-
ever, we provided an example to show that not all optimal
algorithms have the following key robustness property: the
algorithm should continue to perform well even when the
system model is changed slightly. Interestingly, our pro-
posed iLQF with PullUp algorithm has this key robustness
property.

In this paper, we derived rate function optimality results
for symmetric ON-OFF arrival processes and stated results
(strictly positive rate function, Corollary 2) when the ar-
rival process are i.i.d., bursty. Further, we have limited ex-
tensions for this case where the arrival processes are asym-
metric where the arrival rate of each user could be different
(please see [3]). Suppose that the arrival probability to user

i when n users are in the system is given by p
(n)
i , and fur-

ther, lim supn→∞ max1≤i≤n p
(n)
i = β ∈ (0, 1). Then, we can

use the sample-path dominance property established in this
paper to ensure that the overflow probability under iLQF is
upper bounded by a symmetric system whose arrival rate is
β. This enables us to establish rate-function optimality prop-
erties for such an asymmetric case. However, this technique
does not permit generalizations to the case where there are
“large differences” in the arrival rates to users (where some
users could have an arrival rate exceeding ‘1’ and other with
less than ‘1’ such that the overall system is still stabilizable).
Future work will focus on this and other related issues.
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