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Abstract—This paper considers the problem of designing delay performance for the system under consideration. Afe th
scheduling algorithms for multi-channel (e.g., OFDM-basd) proposed an algorithm called SSG (Server-Side Greedy) that

wireless downlink systems. We show that the Server-Side Gedy ; e ; ANt ;
(SSG) rule introduced in earlier papers for ON-OFF channels in addition to being throughput-optimal, results in a veopd
per-user delay performance.

performs well even for more general channel models. The key
contribution in this paper is the development of new mathem# The proofs of the good small-queue performance of the

ical techniques for analyzing Markov chains that arise when gsSG algorithm crucially depended upon a sample-path dom-

studying general channel models. These techniques include . ; . P
way of calculating the distribution of the maximum of a multi- inance property of the algorithm: if there are two (multi

dimensional Markov chain (note that the maximum does not dUeU€) queuing systentd and & with queues{@;};-, and
have the Markov property on its own), and also a Markov chain {R;}}_;, with sample-path coupled arrivals and channels,
stochastic dominance result using coupling arguments. and Q(t — 1) < R;(t — 1) for all i and for somet, then
Index Terms—SgheduIing glgorithms, large deviations, small Qi(t) < Ri(t) for all 7. That is, if in a given timeslot the
buffer, Markov chain stochastic dominance queue-length vector of a queuing system dominates that of
the other queuing system element-by-element, and if both
) ~ the systems use the SSG scheduling rule, then the queue-
Scheduling for OFDM (Orthogonal Frequency Divisionegngth dominance continues to hold for all the future tiratss|
Multiplexing) wireless systems (e.g., WiMax [6] and LTEY1] This sample-path property fails to hold for the case when the
is an active area of research in both a_\cademla anq indusiiyannel service rates are more general than 1 packets per
These systems use an OFDM-based wireless downlink, Wheges|ot, rendering the earlier analysis techniques ssefier
the bandwidth available at the base-station is partitignés pe analysis of the more general systems. As a result, it was
hundreds or thousands of orthogonal frequency bands. hy evgnclear if the SSG algorithm provided good delay perforneanc
timeslot, a given frequency band can be allocated to one gffen more realistic channel models are considered. In this
only one user, but a given user can be served by multigigper, we present a new framework for analyzing the rate-
frequency bands simultaneously, and the allocation cangsha fynction performance of the SSG-like algorithms that do not
over time, depending upon the channel quality and the quesi§cessarily have the sample-path dominance property, and
backlogs, among other parameters. consequently establish that the SSG algorithm has good-larg

The challenge is to design scheduling algorithms for allgfeviations performance properties even for the generairea
cating the resources (frequency bands) to the users baseqd,Rfels.

the wireless channel quality and traffic requirements, aitkd w

performance guarantees for all users. We want the schedulin

rule to be throughput-optimal, and also result in a smalt per

user delay. Delay is a particularly important performanes-m A. Related Work

ric for real-time traffic such as voice or video, and is clgsel

related to maintaining small queue-lengths at the badieista This paper continues the line of work initiated in [2], [3].

where the incoming packets to a given user are temporariiie main difference between this paper and our prior work is

stored. that we now consider channels with multiple states, instéfad
Thus, our main objective is to investigate the small-quesdmple ON-OFF models. Related work on optimal scheduling

characteristics of the OFDM-based wireless downlink syste algorithms for multi-channel networks can be found in [7],

under the assumption that it has a large number of users arlab& the analysis there is only for the case of two users.

proportionally large bandwidth. The well-known MaxWeightApart from these references, to best of our knowledge, the

type algorithms [12] stabilize the system under a very ganewast prior literature on the performance of channel statera

class of arrival and channel processes if there is any ottseheduling in wireless networks seems to only address heavy

scheduling algorithm than can do so. However, we showédffic behavior or large-buffer asymptotics [14], [11],3]1

in [3] that the MaxWeight algorithm results in a very poof10], [9], [8].

I. INTRODUCTION



B. Main Contributions

The good delay (small-queue) performance results for ﬂ’fb(t)a_Xij_(t)aQi(t)sz('k) (t) take values in the set of non-
proposed algorithms in [2] and [3] were derived for a systefgative integers. For this system, we make the following
where each frequency band could serve dnby 1 packets per assumptions on the arrival and channel processes.
timeslot. These results crucially depended upon the Samp,l?ssumption 1 (Multi-level Channels and Arrivals)
path dominance property of the proposed algorithms as Mefke number of packet arrivals to que@e in timeslott is the

tioned in Section I. Even for a system where the frequeney,qom variableA;(t), where A;(t) = r with probability p,
bands can (each) serteor 2 packets per timeslot, the earliersy,. < - < 17 for some integed/ > 1.

analysis techniques fail and it is not clear if there exisig @et
alone “simple”) scheduling rule that guarantees the samp|5\a

is possible, we denoté; ;(t) by X;;(t). We assume that

In timeslot¢, the serverS; can potentially serveX,;(t)
ckets from);, where X;;(¢) are modeled as random vari-

path d_ominan_ce property. In this paper, we dgvelop neYles with X, (t) = ¢ with probability ¢, for 0 < ¢ < K
analysis techniques that make possible the analysis &mBgst {5 some integeri. We assume tha, € (0,1) for all 4, and

and scheduling rules that do not necessarily have the sam

¢ =1

path dominance property, but satisfy much milder condgion™ " \\e assume that all the random variables;(t) and
We believe that these Markov chain-based techniques are 9{%(5) are mutually independent for all possible values

only specific to the problem and are of independent interes§s’ the involved

Il. SYSTEM MODEL

X1a(t) @

Fig. 1.

System Model

er-

R arameters, thayﬁiM > 0 for all ¢ €
{0,1,...., M}, > opm=1,and> " mp, < K. o
For notational convenience, we defipe= ¢;. Our objec-

L2 I . : 'IR/e is to design a rule for allocating the servers to the gseu
servers, and operating in discrete-time, as shown in Fi

ure 1. Each servef; models a frequency band or a col
lection of OFDM subcarriers. We build on the model, p
formance metrics and notation described in [3], and th
section is provided here for completeness. Table | summsriz

fased on the current and past arrival and channel process
realizations, the past allocation decisions, and any aioun
of external randomness (if needed). In every timesglahis
Leheduling rule defines the random variab¥es(t) where
1 if S; is allocated to serve); in timeslott,
Yi;(t)

~ 10 otherwise

If no confusion is possible, we deno¥g ;(¢) by Y;;(¢). In
real systems, a given OFDM subcarrier can be allocated to
serve only one user in a given timeslot. We model this case
by imposing the following condition on the server allocaso
Sor Y,(t) < 1forall tandallje {1,2,...,n}. The
individual queues in the system evolve according to the
following equation: .

Qit) = (Qilt = 1)+ Ai(t) = ¥, Xy ()Y, (1))

As is clear from the above equation, the queues can store

the notation used throughout this paper. If no confusid@ny number of packets in the buffers, and the system does not

nod

. » (O

The entity, queue numbeér

The entity, server number

{Q1,Q2,...,Qn}

{317327- . -7Sn}

The number of packet arrivals @, at the beginning
of timeslott

The number of packets ip; that can potentially be
served bysS;, in timeslot¢

The length of@; at the end of timeslot

The length ofQ; after k > 1 rounds of service in
timeslot¢

Qi(t — 1) + A;(t), i.e. the length ofQ; after
immediately after arrivals, in timeslat

max(a, 0)

The set of real numbers

The set of nonnegative real numbers

The set of nonnegative integers

with probability

xlog% +(1 —x)logi:—z

The probability simplex ifit* for appropriatek

TABLE |
NOTATION

drop any packets.

We want to design a scheduling rule that results in small
per-user queues at the base-station, in a probabilistisesen
Mathematically, we want a scheduling rule that results i th
maximum possible value of the function

N |
1(b) := hnnilogf — log P (1I£1?J<Xn Q:(0) > b) .
Hereb > 0 is a given integer, and can be roughly interpreted
as the available per-user buffer-size. The probability snea
P(-) is the stationary measure of the queue-length process (i.e.
the queue length at timé&” when the system started at time
'—o0’). The function(-) is called the rate function [5], and
is a useful surrogate for the actual probability of the “€tro
event we are interested in (in this case, one of the queues
exceeding the given limit of). Maximizing the rate-function
is a surrogate for minimizing the probability of this “erfor
event, and is mathematically more tractable.

In principle, the scheduling algorithm can depend upon
the given buffer-limit,b. We are however interested in an



algorithm that does not explicitly use the valuebofand still that the rate-function is zero at a finite value bof(even at
results in a good small-queues performance. In Section &= 0). We therefore assume throughout the rest of this paper
we analyze such a schedul_lng rule cqlled the Server—S@@tngzlpm [EW < 1 whenever we mention Assumption 1.
Greedy rule (SSG, that we introduced in [3]), show that it

performs well (results in a positive value of the rate-fimrct IV. STOCHASTIC DOMINANCE OF MARKOV CHAINS

and therefore, small per-user queues at the base-stabon) f rhe next three technical theorems are instrumental in char-
the multi-user multi-channel system under consideration. acterizing the rate-function performance of the SSG allgori
Remark 1. The main objective of this paper is to develognd are interesting in their own right.
new techniques for analyzing the small-queue characteripeqrem 2. Consider a discrete-time, multi-dimensional
tics of different algorithms where the system has channql§,kov chain X(t) = [X1(t), Xa(t) X,(t)]. Let X(t)

- b 9 n .

that can potentially serve multiple packets per timesldtisT 5xe values on the countable state-spate, and let the
regime is interesting because the earlier sample—patredascorresponding state-transition probabilities be
techniques are no longer useful. We therefore do not conside

the throughput-optimality-related issues for the progbsd- p(X,y) :=P(X(t+1)=y]|X(t) =x), X, yeZ].

ithm, as th dd din [3]. . o
gorithm, as they are addressed in [3] Suppose that the Markov chaifi¢) has a stationary distri-

[1l. PRELIMINARIES bution o(x). Further, let
In this section, we present certain basic results regarding
the stability of the system under Assumption 1, and also Wi, = {[5017502,---,%] - pax X = k}
algorithm-independent upper bounds on the rate-function u T
der this assumption. Then a stationary distribution oK™*(¢) := maxj<;<, X;(t)

is given by a stationary distribution of the (one-dimensipn

. . M
Lemma 1. Under Assumption 1, ify;,,_,mpn > K. Markov chainY(t), taking values inZ., whose transition
then the system is unstable under any scheduling algor'thﬁ?obabilities are given by

If Z%Zlmpm < K, then there exists a constamiy =
no(p, M, K, q) such that for alln > ng, the system is stable P(Y (t+1) =y | Y (t) = z) = P(X(t+1) € W, | X(t) € Wy),
under some algorithm. . . .
Proof: This proof is similar to that of Theorem 2 in [2] where t[\]e con(.1|t|onaldprok.)gb|lllty term on the RHS is comgute
and has been omitted due to lack of space. Please see [15]%$Jer the stationary distri UUOE.T(')'
Proof: Please see Appendix C. |

a detailed proof. _ .
_ _ The above theorem gives us a way to calculate the stationary
Theorem 1. Under Assumption 1, for any scheduling rule, distribution of the maximum value of a multi-dimensional

L8040, a(l 8 ]+1) Markov chain (which on its own does not have the Markov
P (fg&gn Qi(0) > b) >ppr - (o)L property) by thinking of it as a one-dimensional Markov chai

T Note that we do not need the stationary distribution to be
Consequently, under any scheduling rule, unique for eitherX (t) or Y (¢), and also that the result holds

(with trivial modifications in the notation) for the Markov
n—soo N 1<i< )

1
log ¢ Cchains onZ". Note also that if the Markov chaiiX(t) is
irreducible and has a stationary distribution, then théstary
Proof: Please see Appendix A. m distribution is unique (Theorem 3.1, Chapter 3 in [4]). Befo
o ] stating the next result, we remind the reader of the stoithast
Lemma 2. Under Assumption 1, if5_ p; {i-‘ > 1, then dominance of random variables: we say that a random variable
i=1 K Y stochastically dominates a random variable and write

hmsup_—llogIP (m_ x Q;(0) > b> < (L%J +1

under any scheduling algorithm, X <. Y, if P(X >2) <P(Y > 2) forall z € R.
lim inf -1 log IP (m_aX Qi(0) > O> =0. Theorem 3. Consider two discrete-time Markov chaiigt)
noee 1sign and W (t) evolving on the same state-spaie . Let the

random variableZ;(i) denote the increment iY'(¢) when

u Y(t) = i. (Note thatZ;(i) can be negative.) Similarly, let
Remark 2. It is possible that under Assumption 1, for somé&:(j) denote the increment if () when W (t) = j. Let
constantb large enough, and under some algorithm, we havé:(i) <« Z:(j) for all i,j,t € Z, and Y/(0) <s W(0).
1 Then Y(t) <, W(t) for all ¢ > 0. In particular, if

lim inf — log IP ( max Q;(0) > b) > 0. Y (t) and W (t) are ergodic (aperiodic, irreducible, positive
noee lsisn recurrent) and have stationary distributions-(-) and juy(+)
However, since we are primarily concerned with thmall- respectively, and the random variablésWV are distributed

buffer overflow event, for the purpose of this paper, we are natcording toY ~ py () andW ~ uw (+), thenY <  W.

interested in the case where the system parameters are such Proof: Please see Appendix D. [ |

Proof: Please see Appendix B.



We now analyze the steady-state distribution of a spectal the queues in multiple rounds of allocation. In roupd
class of one-dimensional Markov chains from a rate-fumctiat allocates the servef; to the queue that maximizes the
point of view. The Markov chains in this class are similar tproduct of the queue-length and the corresponding channel
birth-death Markov chains, except that there can be maltiplate to the serve$, (i.e., the queue with the maximum value
(but a finite, bounded number of) “births” in a given timeslotof ng’l)(t)Xij (t)), updates the length of the served queue,
or at most one “death.” The probability of birth(s) is “snjall and proceeds to the next round. For the allocation decisions
and the probability of death is at least a constant. Hends, itin the subsequent rounds, the updated lengths of the served
reasonable to expect that the stationary distributionr@ngly queues are used. Note th@éjfl)(t) denotes the length of
concentrated around. We quantify this intuition in a large- the queue; after j — 1 rounds of server allocation.
deviations sense in the following theorem. We now analyze the rate-function performance of the SSG

Theorem 4. Consider a family of Markov chaing/ (") () ule under Assumption 1 by showing that:
on the setZ,, having the following transition probability 1) Inany given timeslot, and starting with any configuration

structure: there exists an integer, such that for alln > ng, of queue-lengths, the maximum queue-length increases
for all z € Z., for some fixed integeF’ and positive real (from its starting value, before the arrivals) with a very
numberse, n we have small probability (Lemma 4).
PW®™(t+1)=a+k | WM(t) =2) 2) In a constantt, number of timeslots, the maximum
ok gueue-length decreases with at least a constant proba-
e for1 <k <F bility (Lemma 5).
2 fork =1, We then use Theorems 2, 3 and 4 to conclude the positivity of
—\0 for k> Fork < -1, the rate-function and establish our main large deviatiesailt.
1 i ek for k= 0. We first present a technical lemma that demonstrates a trucia
S property of the SSG rule. Note that this is a deterministic

property of the SSG rule, and it does not require the number of
gueues or servers to be large in order to be true. This propert
establishes a stronger version of the following stateméwne
havem queuesgachconnected ton servers with a channel
lim inf —t log P (W(”)(O) > S) > (s + 1), of rate= K, then the maximum queue-length decreases by at
n—oo  n least K (or becomed)) at the end of service in that timeslot.

Then there exists an integer; such that for alln > ng,
the Markov chain¥ (™) (t) is positive recurrent, and for any
integers > 0, we have

whereP(-) denotes the stationary distribution &F (") (¢). Lemma 3. Under Assumption 1, let the set of gqueues
Proof: Omitted due to lack of space. Please see [15] fgy, Q = {Q1,Qs,...,Qm}, the set of servers bs —
a dgtaﬂed proof. . u {51, 52,...,S5,}. Fix a timeslott, and let the queue-lengths
Figure 2 shows an example of a Markov chain referred Ber arrivals in that timeslot bel,. Lo, ....L,,. Consider
in Theorem 4 Witht” = 2’_7? - 1, and where the “self_—loops_“ the bipartite graphG(Q U S, ) where £ denotes the set of
for the transition probabilities are not shown for simpjici edges, where an edge is present between a qaeuend a
Theorem 4 says that the stationary distribution of this Mark server’S- if the corresponding channel supports a rate
J

chain is given bym,, ~ moe”“"™, in a large deviations i, he fimesiots. Suppose further that every qued@ is
sense as — oo. In other words, the Markov chain is very. ,nected to at leastm servers for some integer > 1.

similar to the birth-death Markov chain in that the steathtes +an with the system implementing the SSG rule, for every
distribution is approximately geometric. ie{1,2,....,m}, we haveQ;(t) < maxi < j<m(L; — 2K)T.
V. ANALYSIS OF THE SSG SHEDULING RULE Proof: Please see Appendix E. u

The SSG (Server-Side Greedy) scheduling algorithm WPSLetthq(t)tr;: maﬁlgig??hi(t) (?jen]??a th; rtnaX|mum queue-
introduced in [3]. This scheduling rule is interesting hesa engthin the system at the end of imesio
of the following reasons: (1) It is throughput-optimal for.emma 4. Let Assumption 1 hold with= [M /K] for some
the system under very general arrival and channel procesggegerr > 1. Fix
(Theorem 5in [3]). (2) It yields a strictly positive raterfction
for the system under Assumption 1 witki = 1 (Theorem 7 1— fo:lpm [ﬂw
in [3]). (3) Its computational complexity(n?) computations € € | 0,min p_o’ K ,
per timeslot) is comparable to that of the MaxWeight rule M rM
(©2(n?) computations per timeslot), but the MaxWeight rule
yields a zero rate-function for all integers> 0 for the system ., 1t B, .= {[w1, 22, .. war ) CRMI gy <€ Vi)
under Assumption 1 with’ = 1 (Theorems 3 and 8 in [3]).

For a formal definition of the rule, please check [3], Def- M
inition 3. Here is a description of the SSG rule in words;,, ; _ inf Z 2ilog
in every timeslot, the SSG algorithm allocates the servers 2eMi(E\{[po.p1s--par]+Be} £—) Di

Zq



Fig. 2. A candidate Markov chain for the rate-function cédton in Theorem 4

Then for a system under the SSG rule, for any fixed 0, for 0 < ¢ < M — 1. Let n := Zﬁf:lpm T we
for n large enough, and for any timeslotwe have consider systems with progressively higher values, ofin the

) i B . )
PCH)>C(t—1) < e ™10 4 Mn(1 - q)™ simulations forl x 10° timeslots, and plot the empirical packet

delay probabilities. The results are summarized in Figure 3
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Proof: Please see Appendix F. |

H
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T

Lemma 5. Let Assumption 1 hold. Fix any timeslat and
let ¢(t) = k for some integel. Then for a system using the
SSG rule, there exists a constant integgrsuch that for all
n large enough, we have

N
)

P(Packet delay = D)
5

-

A~

¥
¥* o
o*‘ .
*

N =
*

P (C(t+ ko) <k | C(t) =k, k> 0) > . =

15 20 25 30 35
Delay D (timeslots)

Proof: This proof is on the same lines as that of Lemma .
in [3], and has been omitted to avoid repetition. [ |
Now we are in a position to quantify the rate-function
performance of the SSG algorithm.

Fig. 3. SSG v/s MaxWeight: Packet delay profiles

We see that there is a significant difference between the
performance of the two algorithms, with SSG being the
clear winner in this case. Similar results hold for the buffe
integerr > 1. Let ¢,7 be as specified in the statement obverflow probabilities under the two algorithms. Due to spac
Lemma 4. Then for a system using the SSG rule, for any integehstraints, and also because this is mainly a theoretiqgp

Theorem 5. Let Assumption 1 hold with = % for some

b >0, we have we have not reported more extensive simulation results, but
1 the SSG algorithm continues to outperform the MaxWeight
hlgmf — logP (m_aX Qi(0) > b> algorithm under a variety of channel and arrival processes.
n—oo n 1<i<n

b+1 1 26H (%]q) VII. CONCLUSIONS
> ——min | 7,dlog , 2 > 0. . . .
M 1—g¢q q We considered the problem of designing scheduling algo-

rithms for multi-user multi-channel wireless downlink net
Proof: Please see Appendix G. m Wworks. The main result is that the iterative resource atiooa
An immediate strengthening of the above result is obtainédle (the SSG rule) provides a very good delay performance to
by maximizing the RHS over the appropriate rangesrfand the users, in addition to network stability. These systernere
8. We have thus established that under the SSG algorithm, the channels serve multiple packets per timeslot are intigre
small-buffer overflow event has a strictly positive ratedtion more complex than the ones considered in the earlier works
for all integersb > 0. ([2] and [3]). Due to space constraints, we considered alsimp
arrival and channel process that captures the essence of the
multi-rate channel allocation problem, and developed Mark
We compare the performance of the proposed SSG ahain-based analysis techniques that are applicable toch mu
gorithm with the classic MaxWeight algorithm in [12]. Wewider class of systems and scheduling rules. Indeed, a numbe
choose the MaxWeight algorithm as a benchmark becaus®fitnatural extensions of this work are possible, including t
is the best-known throughput-optimal algorithm. We coasidcases where the number of queues and the servers is unequal,
a system withn = 50 queues and servers. The channalhere the frequency bands are time or frequency-correlated
parameters are set 6 = 2 andg = 0.5. We parameterize the or when the scheduling rule is more complex (for example,
arrival process as follows: s@f = 3 as the maximum number the matching-based iLQF-class scheduling rules introduce
of arrivals. Vary the parameten,, and setp; = (1—pup;)/M in [2]), among other possibilities.

VI. SIMULATION RESULTS
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A stationary distribution ofX*(¢) is given by

P(X*(t) =) = P(X(t) e Wi) = Y of(a).
APPENDIXA 2EW,
PROOF OFTHEOREM 1

Consider the following event which implieé0; (0) > b} We show that this is a stationary distribution of the Markov

chainY (t). By the detailed flow-balance for the Markov chain

under any scheduling rule: fon := i + 12 consecu- X(t), for every non-negative integer, we have

tive timeslots before (and including) timeslot there areM

arrivals per timeslot taQ, and all the channels connecting Z Z Z a(2)p(z,v) = Z Z Z o\

Q1 to the servers are OFF (i.eX;;(t) = 0) in each of these V= Zig vEW, 2EWs jﬁg vEW,
timeslots. The probability of this event j& (¢o)™™, and the ‘ ‘ (1)
result follows. In order thatP (Y (t) = z) = P(X*(t) = ) = >y, 0(2),

it is necessary and sufficient that the proposed stationary
distribution satisfies the detailed flow-balance equatifoms
the Markov chainY (¢), is non-negative and adds tb In

_ 1 X I
If possible, letlim inf — log P (121&2( Q,(0) > O> —5>0 other words, for every non-negative integerwe want
n—oo N <i1<n

under some scheduling algorithm. Then fodarge enough, Z ( Z 0(2)> P(Y(t+1)=y]|Y(t) =)

APPENDIXB
PROOF OFLEMMA 2

P ( max Qi(0)>0) < e /2 implying that the long- v20 \zEW:
SISN Y+x
term average number of timeslots for which we have
maxi<i<, Qi(t) = 0 is at leastl — e~"%/2 or greater than _ Z Z o(2) | PY(t+1) =2 | Y(t) = ).
0.8 for n large enough. y>0 \zeW.
Suppose at the end of some timesldt we have yFa !

maxi<;<n Qi(T) = 0. Fix € > 0 such that _ _ o
T We now verify that the proposed stationary distribution

[Po:P1s Py = [po + Mespr—epo—€ospm =€l P(Y (1) = 2) = P(X*(t) = ) = 3,y 0(2) satisfies this
is a probability vector with strictly positive componengd Ccondition, as follows:
Sy P/ K > 1.

Letn,, denote the number of queues that receivpackets Z <
in timeslot7"+ 1. By Sanov’s theorem ([5], Theorem 2.1.10), .=}
we know that there exists > 0 such that fom large enough,  v#=

= Y P(X(t+1) € Wy, X(t) € W)

> a(z)> PY(t+1)=y|Y(t)=z)

2EW,

IP(%n >, Vm€{1,2,...,M}) >1—e ",

y>0
For a queue with length= m, any algorithm must allocate vr
at least[m/K| servers to serve all packets from it. But if = Z Z Z oz
the algorithm tries to allocate this way, then (even assgmin Z;ﬁgzewx vEWy
that each of the servers has a channel with at&” to serve @)
any one of the queues, i.€X;;(T + 1) = K for all 4, 5), the = Z Z Z o(v
number of servers necessary to drain all the packets is y;ﬁoZeWI vEWy
M m M m yZ]P X(t+1) € Wy, X(t) € W)
/ - 6 ) S
an [E—‘ Zanm [E—‘ - ¥>0 !
m=1 m=1 y#x
Hence, if at the end of timesl|@t we havemax;<;<, Q;(T) =
0, then at the end of timesldt + 1, with probability at least - Z Z o(z) | PY(t+1) =2 |Y(t)=y),
1 — e~ "¢, we havemaxi<;<, Q;(T + 1) > 1 for some¢ > 70 \zom,
0. Elementary calculations imply that the long-term fraction yFa
of timeslots for which i<n Qi = iS no more
1 2 {maxi<icn Qi(t) 0} where the stega) follows from Equatlon (). Note also that
thanﬁ , for n large enough. This contradicts thez e, 02 > 0and o3 L, 0. = 1, since the sets

earlier claim that the long-term fraction of timeslots fohish W, form a partition of the state-space of the original Markov
maxi<i<n, Q;(t) = 0 is at least0.8, completing the proof. chainX(t). Hence, the proof is complete.
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The proof proceeds by induction. Let the claim hold for Fix @nyic {1,2,...,m}. Let the set of servers connected

somet=k—1>0,ie,Y(k—1) <4 W(k—1). We have
Y(k—=1)+ Zp-1(Y(k - 1)),
Wk —=1)+ Z_1(W(k —1)).

By a standard result in stochastic ordering, there exisioan
variablesY (k — 1) and W (k — 1) such that

Y (k)
W (k)

Vk-1)2Yk-1), Wk-1)2LWk-1),

YV(k—1) < W(k-1),

and a.s.
Define YV(k) = Y(k—=1)+Z1(Y(k-1)),
W(k) = Wk—-1)+Zy 1 (W(k-1)).
Now,
P(W(k)=j) = ZP(z‘ + Zpa (i) = HP(W (k- 1) = i),
and
=1i).

P(W (k) = j) = D _P(i+ Zua(i) = HP(W (k= 1)

ButP(W(k—1) = i) = P(W(k—1) = i), soW (k) < W (k),
and ~simiIarIyY(k:) 4 Y (k). By our assumption ofZ;_1(-)
and Zy,_1(-), for all i, 5, ¢,

P(W(k)—i> 0| W(k—1)=14,Y(k-1)=j)
SPY(k)—j> 0| Wk—1)=i,V(k—1) =),

implying

PW(k) >+ | Wk—-1)=i,V(k—1)=7)
>PY(R)> 40| Wh=1)=i,V(k—1) =)

for all (i,j) such thati > j. (Note that{Y (k) > ¢+ i} =
{Y (k) > £+j} fori > j.) Multiplying both sides byP (W (k—
1) = i,Y(k — 1) = j) and summing over all,j such that
i > j, and noting thatP (W (k — 1) > Y (k — 1)) = 1, we get

P(W(k) > () >P(Y(k) > () Yl eZy, ie,Y(k)<q W(k).

d

Since V(k) LY (k) and W(k) < W(k),

we getY (k) <, W(k), completing the proof of stochastic
dominance by induction. Since the limiting distributions o

Y (¢t) and W (t) are the stationary distributiongy (-) and

to Q; be S* = {54,555, ...,
server-indices.
Casel: The queud); is allocatedx or more servers.

In this case, because each server draingackets, we have
Qi(t) < (L; — zK)™T, implying

Qi(t) < (L; —2K)" < max (L; —zK)*,
1<jsm

Si 1}, in the increasing order of

and the claim holds.
Case?2: The queud); is allocated at most — 1 servers.

In this case, by the pigeonhole principle, at least one of the
queuesRy; # Q; is allocatedz + 1 (or more) servers from
the setS*. Consider the roung of SSG when thex + 1)
server from the sef* is allocated ta);. Since the SSG rule
allocates a server to a longest queue among the queues it can
serve, we have)\’ (1) < Q" V(t) < (L; — 2K)*, and
the result follows since); (t) < Q1Y " (¢).
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Let {(t — 1) = ¢. By the choice ofe,

[pé)aplla .. 1p/ILI] = [pO - Meapl +61p2 +€7" s PM +€]

is a probability vector with strictly positive components,
and SV pi[i/K] < 1. Further, since the seM;(X) \
{[po,p1, - - -, par] + B} is compact and the functiog(z) :=
fo:o zilogﬁ is lower semicontinuous ([5], Chapter 2,

Pi
Exercise 2.1.22), the infimum @f{z) (in the definition ofr) is

achieved and is strictly positive, singé[po, p1,...,pnm]) =0
andg(z) > 0 for all other values of, and
[p07p17 cee 7PM] ¢ MI(E) \ {[p07p17 cee 7PM] + Bs}

After arrivals in timeslott, let F,, be the set of queues
whose length is at least+ m, and definef,, := |F,|/n.
Consider the event

From Sanov’s theorem, we know that far large enough,
P(E®) < e~ ""(1=0) for any fixedp > 0. We condition the
rest of this proof on the everit.

M

E = {fmgzp; vm e {1,2,...,M}

1=m

Claim 1. Conditioned on the everft, fix any integern > 1,
and any constant

LS <07q<1—§;p2 {%D /(M(2—q))>-

. : . ~ 2
pw (+) respectively (the convergence to the stationary distithen after n ( 3.2, fintjx + (M —m +1)0 g— - 12

i q
bution follows from [4], Chapter 4, Theorem 2.1), for randomy, ,nds of server allocation under the SSG ru e, with prob-

variablesY, W which are distributed according 6 ~ puy (+)
andW ~ uw(-), we haveY <, W. Hence the proof of the
theorem is complete.

ability at least

1—Mn(l—q)™ — MnéeiiqéH(%'q),



Note that only a finite number of terms in the above infinite
summation are nonzero.
Proof: Let }'7(7? denote the updated s&t,, afteri rounds where the inequalitfa) holds from Sanov’s theorem (event
of server allocation, that is, the set of queues at leagthn ~ E as defined above) with probability at ledst- ¢ —"7(1=7),
or more, afteri rounds of server allocation. First we considefnd the last inequality holds by the choicesoHence, by the
the casen = M. union bound, we have (for large enough)

Casel: |Ful| = |}'I(\([’>| ~ né. s y
' . P(¢Et)>¢t—1) < P+ Mn(l—
For 1 <i < mjg := |F\| — nd, consider the event (€@ >ct-1) < e n(l—q)
2no q
4+ Mnéexp| ——H (_ |q) ,
q 2

. M
there remain no queues of (updated) length m or more. _ Z o [%W Y MS (2 B 1> <1
=1

W, = {X,:(t) < K vQ, e Fi, "y

By the independence of channel allocation decision and tB@mpleting the proof.

channel realizations for the higher-indexed servers,
APPENDIXG

P (Wi | W, WS, .. -,W{il) = (1_q)(|f§»3)lfi+l) < (1_q)n6, PROOF OFTHEOREMb5
If the serverS; is connected to any of the queues in the set 1 NiS Proof proceeds in three steps, where we use Theo-
761 then (because the i~1) is the set of the “current” "€MS 2, 3 and 4 to arrive at the desired conclusion.
M ’ % .
longest queues) the servgyis allocated to a queue iﬁ]ﬂ}’l), Step 1: We have
and the served queue is removed from theﬁ(éfl) to obtain
the set}‘](t}). Therefore, using the union bound, with probabil-
ity at leastl — (| 7\ | = nd)(1—q)™ > 1 —n(1—q)", at the
end of|}‘$)| —nd rounds of service, we ha\4é?§}”“)| < né.
Consider the set of servers

max Q:(0) > b) = k;ﬂ P (1%1?5(” Q:(0) = k) .
Our aim is to calculate an upper-bound on the RHS of the
above inequality. To this end, we know from Theorem 2
that P (maxi<;<, Q:(0) = k) is the same a® (Y (¢t) = k),

S* = {Smo+1,Smo+2; - -» Smo+2n8/q}- where the (one-dimensional) Markov chain has the following

By the Chernoff bound, the probability that a given queutéanSItlon probability structure:

Qi € }—1(\2”0) is connected PY(t+1)=y|Y(t) =)
« with a channel of rate= K _p 1 — B
« to at leastnd of the servers in the set* Bl e Qilt+1) =y 122, Qi) == ).

| ()
s atleastl —c > Therefore, by Lemma 3, at the endStep 2: As a result of Lemma 5, we know that there exists a

of 2n6/_q$gr(1glr )rounds of_serwce, with proba_l:nhty at IeaStt:onstant integek, such that ovek, consecutive timeslots and
L—nde” "« 7121, the maximum queue-length in the systeng, , |arge enough, the probability that the maximum queue-
is no more thar:+7m — 1, completing the proof for this case|gngih in the system makes a transition from a higher value
by the union boun?lo.) to a lower valuej (providedk > 0) is at leasto.5.

Case2: [Fu| = [Fy | < nd. Fix any constanp > 0. From Lemma 4, for. large enough,

Following the analysis for casg, it is clear that the claim i, 5 given timeslot, the probability that the maximum queue-
holds in this case, completing the proof of the claim for th%ngth increases is at most

casem = M.

The proof of the claim now follows by repeatedly applying,-nr(1-p) Mn(1 - q)™ + Mndexp (_Q_MH (g | q)) _
the above procedure to the cases= M — 1, M —2,...,1,0, q 2
using the union bound, and noting that if a quéueof length | ot
¢ is served by a served;, then its length decreases by exactly
K (or becomes zero), so that it continues to belong to the sets ¢:=min [ 7(1 = p),log 1 25H(%|Q) .
FI FI) | and so on. | ’ 1—q’ q

Applying the result of the claim to the case = 1, we get

Fix any ¢’ € (0,¢) and let¢’ = ¢ — €/. For any givene > 0

= 2 there existsyg large enough such that for all > we have
Z.f1+jK+M6 (__1> 0 g g _nOa
=0 q efnr(lfp) +Mn(1 _ q)mi +Mn58—2%;5H(%|q) < efnc/.
2
= fitfrat A+ feongp + Mo i 1 Define L, (t) := Qi(kot) and consider a Markov chain
(a) L(t) = [L1(t), La(t), . .., L, (1)].
< WL H+py A+ pk) 200k o phg) (1) = [La0), Lo(0), - (D)

, , Vs 2 ] The Markov chainL(t) is a time-sampled version of the
+ (P rn o P) F 7 Markov chain[Q (t), Q2(), . .., Q. (t)], and the two Markov



chains have the same stationary distribution. LL&{t)
maxi<;<n Ll(t) Define

p(k,j) :=P(L*(t+1) =j | L*(t) = k).

Then for any integer and for any integek > 0, we have - b+1

Sk plk,j) > 0.5.
Further, the probability that over a period &f consec-

-1
lim inf — log IP

n—oo

implying

<1rg_a<x Q:(0) > b>
1 26H (%]q)

, —¢| >0,
1—g¢q q ) ]

n

min <T(1 —p),0log

utive timeslots the maximum queue-length increases in &ftd completing the proof since the last inequality holdsator
leasta < ko timeslots is at mos{**)e~"" by the union ¢ € (0,¢) for somec > 0, and for every constant > 0.

bound. More precisely, fot < i < kg, consider the events
E; == {C(z) > ¢(i — 1)}. We know from Lemma 4 that
regardless of the queue-lengths at the beginning of tirhesl&!
i, and any other events in any other timesI@®$F;) < e~ " [2]

for n large enough. Hence,
P <ﬂ E) =[P & | B Es,... Eiy) <em
i=1 i=1
and the claimed bound follows from the union bound sincg‘]
there are(**) ways to “choose” the candidate timeslots wherefs]
the maximum queue-length increases.
) . . 6]
In a given timeslot, the length of any queue can mcreas&e
by at mostM, so that for any timeslot if {(t) = k, then [7]
C(t+1) = s wheres < k+ M. It follows that for1 < a < ko,
we have

(3]

(8]
aM k , ,
Z p(k,k+j) < < 0) e—anc < 2koefanc ) [9]
j=(a—1)M+1 a
We now apply Theorem 3 with the random variabigk) (10
and Z, (k) with the following distributions:
P(Zi(k) = j) = plk,k+J), j€LZ, 1y
for integersl < a < kg : [12]
P(Z(k) = j) = 2Me~ % (a—1)M +1<j < aM,
and P(Z(k) = —1) = 0.5. (23]
By the foregoing analysis, we havg, (i) <. Zt(j) for all
i,j € Zy and allt € Z, implying L*(t) <, W(t). Further, (14]

the Markov chairl¥ (¢) has a stationary distribution farlarge
enough (follows from Theorem 4), and the Markov chéif)

has a stationary distribution by the stability of the Markot®!
chainQ(t) (follows from Theorem 5 in [3]). Both the Markov
chainsW (t) and L(t) are clearly aperiodic and irreducible,
so is the (hypothetical) Markov chain whose transition prob
abilities are defined by the transition probabilities /of(¢).
Hence, by Theorem 2.1, Chapter 4 in [4], the distributions
of L*(t) and W(t) converge to their respective stationary
distributions, implying that the stationary distributioh L* (¢)

is stochastically dominated by the stationary distrilbutaf
W(t).

Step 3: We apply Theorem 4 withy = 2% and F' = koM to
conclude that

lim inf ! log P (W(0) > b)

n— oo n

R | - d(b+1)
— liminf —1 PW(O0)=k) | >

iminf — 0g<k_z:b+1 (W(0) )>_ T
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