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Abstract—This paper considers the problem of designing
scheduling algorithms for multi-channel (e.g., OFDM-based)
wireless downlink systems. We show that the Server-Side Greedy
(SSG) rule introduced in earlier papers for ON-OFF channels
performs well even for more general channel models. The key
contribution in this paper is the development of new mathemat-
ical techniques for analyzing Markov chains that arise when
studying general channel models. These techniques includea
way of calculating the distribution of the maximum of a multi -
dimensional Markov chain (note that the maximum does not
have the Markov property on its own), and also a Markov chain
stochastic dominance result using coupling arguments.

Index Terms—Scheduling algorithms, large deviations, small
buffer, Markov chain stochastic dominance

I. I NTRODUCTION

Scheduling for OFDM (Orthogonal Frequency Division
Multiplexing) wireless systems (e.g., WiMax [6] and LTE [1])
is an active area of research in both academia and industry.
These systems use an OFDM-based wireless downlink, where
the bandwidth available at the base-station is partitionedinto
hundreds or thousands of orthogonal frequency bands. In every
timeslot, a given frequency band can be allocated to one and
only one user, but a given user can be served by multiple
frequency bands simultaneously, and the allocation can change
over time, depending upon the channel quality and the queue
backlogs, among other parameters.

The challenge is to design scheduling algorithms for allo-
cating the resources (frequency bands) to the users based on
the wireless channel quality and traffic requirements, and with
performance guarantees for all users. We want the scheduling
rule to be throughput-optimal, and also result in a small per-
user delay. Delay is a particularly important performance met-
ric for real-time traffic such as voice or video, and is closely
related to maintaining small queue-lengths at the base-station
where the incoming packets to a given user are temporarily
stored.

Thus, our main objective is to investigate the small-queue
characteristics of the OFDM-based wireless downlink system,
under the assumption that it has a large number of users and a
proportionally large bandwidth. The well-known MaxWeight-
type algorithms [12] stabilize the system under a very general
class of arrival and channel processes if there is any other
scheduling algorithm than can do so. However, we showed
in [3] that the MaxWeight algorithm results in a very poor

delay performance for the system under consideration. We then
proposed an algorithm called SSG (Server-Side Greedy) that,
in addition to being throughput-optimal, results in a very good
per-user delay performance.

The proofs of the good small-queue performance of the
SSG algorithm crucially depended upon a sample-path dom-
inance property of the algorithm: if there are two (multi-
queue) queuing systemsQ andR with queues{Qi}

n
i=1 and

{Ri}
n
i=1, with sample-path coupled arrivals and channels,

and Qi(t − 1) ≤ Ri(t − 1) for all i and for somet, then
Qi(t) ≤ Ri(t) for all i. That is, if in a given timeslot the
queue-length vector of a queuing system dominates that of
the other queuing system element-by-element, and if both
the systems use the SSG scheduling rule, then the queue-
length dominance continues to hold for all the future timeslots.
This sample-path property fails to hold for the case when the
channel service rates are more general than0 or 1 packets per
timeslot, rendering the earlier analysis techniques useless for
the analysis of the more general systems. As a result, it was
unclear if the SSG algorithm provided good delay performance
when more realistic channel models are considered. In this
paper, we present a new framework for analyzing the rate-
function performance of the SSG-like algorithms that do not
necessarily have the sample-path dominance property, and
consequently establish that the SSG algorithm has good large-
deviations performance properties even for the general channel
models.

A. Related Work

This paper continues the line of work initiated in [2], [3].
The main difference between this paper and our prior work is
that we now consider channels with multiple states, insteadof
simple ON-OFF models. Related work on optimal scheduling
algorithms for multi-channel networks can be found in [7],
but the analysis there is only for the case of two users.
Apart from these references, to best of our knowledge, the
vast prior literature on the performance of channel state-aware
scheduling in wireless networks seems to only address heavy
traffic behavior or large-buffer asymptotics [14], [11], [13],
[10], [9], [8].



B. Main Contributions

The good delay (small-queue) performance results for the
proposed algorithms in [2] and [3] were derived for a system
where each frequency band could serve only0 or 1 packets per
timeslot. These results crucially depended upon the sample-
path dominance property of the proposed algorithms as men-
tioned in Section I. Even for a system where the frequency
bands can (each) serve0 or 2 packets per timeslot, the earlier
analysis techniques fail and it is not clear if there exists any (let
alone “simple”) scheduling rule that guarantees the sample-
path dominance property. In this paper, we develop new
analysis techniques that make possible the analysis of systems
and scheduling rules that do not necessarily have the sample-
path dominance property, but satisfy much milder conditions.
We believe that these Markov chain-based techniques are not
only specific to the problem and are of independent interest.

II. SYSTEM MODEL

We study a queuing system with multiple queues and
servers, and operating in discrete-time, as shown in Fig-
ure 1. Each serverSk models a frequency band or a col-
lection of OFDM subcarriers. We build on the model, per-
formance metrics and notation described in [3], and this
section is provided here for completeness. Table I summarizes
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Fig. 1. System Model

the notation used throughout this paper. If no confusion

Qi = The entity, queue numberi
Si = The entity, server numberi
Q = {Q1, Q2, . . . , Qn}
S = {S1, S2, . . . , Sn}

Ai(t) = The number of packet arrivals toQi at the beginning
of timeslot t

Xi,j(t) = The number of packets inQi that can potentially be
served bySj , in timeslot t

Qi(t) = The length ofQi at the end of timeslott

Q
(k)
i (t) = The length ofQi after k ≥ 1 rounds of service in

timeslot t

Q
(0)
i (t) = Qi(t − 1) + Ai(t), i.e. the length ofQi after

immediately after arrivals, in timeslott
a+ = max(a, 0)
< = The set of real numbers
<+ = The set of nonnegative real numbers
Z+ = The set of nonnegative integers
w.p. = with probability

H(x|y) = x log x
y
+ (1 − x) log 1−x

1−y

M1(Σ) = The probability simplex in<k for appropriatek

TABLE I
NOTATION

is possible, we denoteXi,j(t) by Xij(t). We assume that
Ai(t), Xij(t), Qi(t), Q

(k)
i (t) take values in the set of non-

negative integers. For this system, we make the following
assumptions on the arrival and channel processes.

Assumption 1 (Multi-level Channels and Arrivals).
The number of packet arrivals to queueQi in timeslott is the
random variableAi(t), whereAi(t) = r with probability pr
for 0 ≤ r ≤ M for some integerM ≥ 1.

In timeslot t, the serverSj can potentially serveXij(t)
packets fromQi, whereXij(t) are modeled as random vari-
ables withXij(t) = ` with probability q` for 0 ≤ ` ≤ K
for some integerK. We assume thatq` ∈ (0, 1) for all i, and
∑

i qi = 1.
We assume that all the random variablesAi(t) and

Xjk(s) are mutually independent for all possible values
of the involved parameters, thatpi > 0 for all i ∈
{0, 1, . . . ,M},

∑M
m=0 pm = 1, and

∑M
m=1 mpm < K. �

For notational convenience, we defineq := qk. Our objec-
tive is to design a rule for allocating the servers to the queues,
based on the current and past arrival and channel process
realizations, the past allocation decisions, and any amount
of external randomness (if needed). In every timeslott, this
scheduling rule defines the random variablesYi,j(t) where

Yi,j(t) =

{

1 if Sj is allocated to serveQi in timeslot t,

0 otherwise.
If no confusion is possible, we denoteYi,j(t) by Yij(t). In

real systems, a given OFDM subcarrier can be allocated to
serve only one user in a given timeslot. We model this case
by imposing the following condition on the server allocations:
∑n

i=1 Yij(t) ≤ 1 for all t and all j ∈ {1, 2, . . . , n}. The
individual queues in the system evolve according to the
following equation:

Qi(t) =
(

Qi(t− 1) +Ai(t)−
∑n

j=1 Xij(t)Yij(t)
)+

.

As is clear from the above equation, the queues can store
any number of packets in the buffers, and the system does not
drop any packets.

We want to design a scheduling rule that results in small
per-user queues at the base-station, in a probabilistic sense.
Mathematically, we want a scheduling rule that results in the
maximum possible value of the function

I(b) := lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Qi(0) > b

)

.

Hereb ≥ 0 is a given integer, and can be roughly interpreted
as the available per-user buffer-size. The probability measure
P(·) is the stationary measure of the queue-length process (i.e.,
the queue length at time ’0’ when the system started at time
’−∞’). The functionI(·) is called the rate function [5], and
is a useful surrogate for the actual probability of the “error”
event we are interested in (in this case, one of the queues
exceeding the given limit ofb). Maximizing the rate-function
is a surrogate for minimizing the probability of this “error”
event, and is mathematically more tractable.

In principle, the scheduling algorithm can depend upon
the given buffer-limit, b. We are however interested in an



algorithm that does not explicitly use the value ofb, and still
results in a good small-queues performance. In Section V,
we analyze such a scheduling rule called the Server-Side
Greedy rule (SSG, that we introduced in [3]), show that it
performs well (results in a positive value of the rate-function
and therefore, small per-user queues at the base-station) for
the multi-user multi-channel system under consideration.

Remark 1. The main objective of this paper is to develop
new techniques for analyzing the small-queue characteris-
tics of different algorithms where the system has channels
that can potentially serve multiple packets per timeslot. This
regime is interesting because the earlier sample-path-based
techniques are no longer useful. We therefore do not consider
the throughput-optimality-related issues for the proposed al-
gorithm, as they are addressed in [3].

III. PRELIMINARIES

In this section, we present certain basic results regarding
the stability of the system under Assumption 1, and also
algorithm-independent upper bounds on the rate-function un-
der this assumption.

Lemma 1. Under Assumption 1, if
∑M

m=1 mpm > K,
then the system is unstable under any scheduling algorithm.
If
∑M

m=1 mpm < K, then there exists a constantn0 =
n0(p,M,K, q) such that for alln ≥ n0, the system is stable
under some algorithm.

Proof: This proof is similar to that of Theorem 2 in [2]
and has been omitted due to lack of space. Please see [15] for
a detailed proof.

Theorem 1. Under Assumption 1, for any scheduling rule,

P

(

max
1≤i≤n

Qi(0) > b

)

≥ p
b b

M c+1

M (q0)
n(b b

M c+1).

Consequently, under any scheduling rule,

lim sup
n→∞

−1

n
logP

(

max
1≤i≤n

Qi(0) > b

)

≤

(⌊

b

M

⌋

+ 1

)

log
1

q0
.

Proof: Please see Appendix A.

Lemma 2. Under Assumption 1, if
M
∑

i=1

pi

⌈

i

K

⌉

> 1, then

under any scheduling algorithm,

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Qi(0) > 0

)

= 0.

Proof: Please see Appendix B.

Remark 2. It is possible that under Assumption 1, for some
constantb large enough, and under some algorithm, we have

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Qi(0) > b

)

> 0.

However, since we are primarily concerned with thesmall-
buffer overflow event, for the purpose of this paper, we are not
interested in the case where the system parameters are such

that the rate-function is zero at a finite value ofb (even at
b = 0). We therefore assume throughout the rest of this paper
that

∑M
m=1 pm

⌈m

K

⌉

< 1 whenever we mention Assumption 1.

IV. STOCHASTIC DOMINANCE OF MARKOV CHAINS

The next three technical theorems are instrumental in char-
acterizing the rate-function performance of the SSG algorithm
and are interesting in their own right.

Theorem 2. Consider a discrete-time, multi-dimensional
Markov chain X(t) = [X1(t), X2(t), . . . , Xn(t)]. Let X(t)
take values on the countable state-spaceZ

n
+, and let the

corresponding state-transition probabilities be

p(x, y) := P(X(t+ 1) = y | X(t) = x), x, y ∈ Z
n
+.

Suppose that the Markov chainX(t) has a stationary distri-
butionσ(x). Further, let

Wk :=

{

[x1, x2, . . . , xn] : max
1≤i≤n

xi = k

}

.

Then a stationary distribution ofX?(t) := max1≤i≤n Xi(t)
is given by a stationary distribution of the (one-dimensional)
Markov chainY (t), taking values inZ+, whose transition
probabilities are given by

P(Y (t+1) = y | Y (t) = x) = P(X(t+1) ∈ Wy | X(t) ∈ Wx),

where the conditional probability term on the RHS is computed
under the stationary distributionσ(·).

Proof: Please see Appendix C.
The above theorem gives us a way to calculate the stationary

distribution of the maximum value of a multi-dimensional
Markov chain (which on its own does not have the Markov
property) by thinking of it as a one-dimensional Markov chain.
Note that we do not need the stationary distribution to be
unique for eitherX(t) or Y (t), and also that the result holds
(with trivial modifications in the notation) for the Markov
chains onZn. Note also that if the Markov chainX(t) is
irreducible and has a stationary distribution, then the stationary
distribution is unique (Theorem 3.1, Chapter 3 in [4]). Before
stating the next result, we remind the reader of the stochastic
dominance of random variables: we say that a random variable
Y stochastically dominates a random variableX, and write
X ≤st Y, if P(X > z) ≤ P(Y > z) for all z ∈ <.

Theorem 3. Consider two discrete-time Markov chainsY (t)
and W (t) evolving on the same state-spaceZ+. Let the
random variableZt(i) denote the increment inY (t) when
Y (t) = i. (Note thatZt(i) can be negative.) Similarly, let
Z̃t(j) denote the increment inW (t) when W (t) = j. Let
Zt(i) ≤st Z̃t(j) for all i, j, t ∈ Z+, and Y (0) ≤st W (0).
Then Y (t) ≤st W (t) for all t ≥ 0. In particular, if
Y (t) and W (t) are ergodic (aperiodic, irreducible, positive
recurrent) and have stationary distributionsµY (·) andµW (·)
respectively, and the random variablesY,W are distributed
according toY ∼ µY (·) andW ∼ µW (·), thenY ≤st W.

Proof: Please see Appendix D.



We now analyze the steady-state distribution of a special
class of one-dimensional Markov chains from a rate-function
point of view. The Markov chains in this class are similar to
birth-death Markov chains, except that there can be multiple
(but a finite, bounded number of) “births” in a given timeslot,
or at most one “death.” The probability of birth(s) is “small,”
and the probability of death is at least a constant. Hence, itis
reasonable to expect that the stationary distribution is strongly
concentrated around0. We quantify this intuition in a large-
deviations sense in the following theorem.

Theorem 4. Consider a family of Markov chainsW (n)(t)
on the setZ+, having the following transition probability
structure: there exists an integern0 such that for alln ≥ n0,
for all x ∈ Z+, for some fixed integerF and positive real
numbersc, η we have
P(W (n)(t+ 1) = x+ k | W (n)(t) = x)

=



























ηe−cnk for 1 ≤ k ≤ F,
1
2 for k = −1,

0 for k > F or k < −1,

1
2 −

F
∑

k=1

e−cnk for k = 0.

Then there exists an integern1 such that for alln ≥ n1,
the Markov chainW (n)(t) is positive recurrent, and for any
integers ≥ 0, we have

lim inf
n→∞

−1

n
logP

(

W (n)(0) > s
)

≥ c(s+ 1),

whereP(·) denotes the stationary distribution ofW (n)(t).
Proof: Omitted due to lack of space. Please see [15] for

a detailed proof.
Figure 2 shows an example of a Markov chain referred to

in Theorem 4, withF = 2, η = 1, and where the “self-loops”
for the transition probabilities are not shown for simplicity.
Theorem 4 says that the stationary distribution of this Markov
chain is given byπm ≈ π0e

−cnm, in a large deviations
sense asn → ∞. In other words, the Markov chain is very
similar to the birth-death Markov chain in that the steady-state
distribution is approximately geometric.

V. A NALYSIS OF THE SSG SCHEDULING RULE

The SSG (Server-Side Greedy) scheduling algorithm was
introduced in [3]. This scheduling rule is interesting because
of the following reasons: (1) It is throughput-optimal for
the system under very general arrival and channel processes
(Theorem 5 in [3]). (2) It yields a strictly positive rate-function
for the system under Assumption 1 withK = 1 (Theorem 7
in [3]). (3) Its computational complexity (O(n2) computations
per timeslot) is comparable to that of the MaxWeight rule
(Ω(n2) computations per timeslot), but the MaxWeight rule
yields a zero rate-function for all integersb ≥ 0 for the system
under Assumption 1 withK = 1 (Theorems 3 and 8 in [3]).

For a formal definition of the rule, please check [3], Def-
inition 3. Here is a description of the SSG rule in words:
in every timeslot, the SSG algorithm allocates the servers

to the queues in multiple rounds of allocation. In roundj,
it allocates the serverSj to the queue that maximizes the
product of the queue-length and the corresponding channel
rate to the serverSk (i.e., the queue with the maximum value
of Q(j−1)

i (t)Xij(t)), updates the length of the served queue,
and proceeds to the next round. For the allocation decisions
in the subsequent rounds, the updated lengths of the served
queues are used. Note thatQ

(j−1)
i (t) denotes the length of

the queueQi after j − 1 rounds of server allocation.
We now analyze the rate-function performance of the SSG

rule under Assumption 1 by showing that:

1) In any given timeslot, and starting with any configuration
of queue-lengths, the maximum queue-length increases
(from its starting value, before the arrivals) with a very
small probability (Lemma 4).

2) In a constantk0 number of timeslots, the maximum
queue-length decreases with at least a constant proba-
bility (Lemma 5).

We then use Theorems 2, 3 and 4 to conclude the positivity of
the rate-function and establish our main large deviations result.
We first present a technical lemma that demonstrates a crucial
property of the SSG rule. Note that this is a deterministic
property of the SSG rule, and it does not require the number of
queues or servers to be large in order to be true. This property
establishes a stronger version of the following statement:if we
havem queues,eachconnected tom servers with a channel
of rate= K, then the maximum queue-length decreases by at
leastK (or becomes0) at the end of service in that timeslot.

Lemma 3. Under Assumption 1, let the set of queues
be Q = {Q1, Q2, . . . , Qm}, the set of servers beS =
{S1, S2, . . . , Sw}. Fix a timeslott, and let the queue-lengths
after arrivals in that timeslot beL1, L2, . . . , Lm. Consider
the bipartite graphG(Q ∪ S, E) whereE denotes the set of
edges, where an edge is present between a queueQi and a
serverSj if the corresponding channel supports a rate= K
in the timeslott. Suppose further that every queueQi is
connected to at leastxm servers for some integerx ≥ 1.
Then with the system implementing the SSG rule, for every
i ∈ {1, 2, . . . ,m}, we haveQi(t) ≤ max1≤j≤m(Lj −xK)+.

Proof: Please see Appendix E.
Let ζ(t) := max1≤i≤n Qi(t) denote the maximum queue-

length in the system at the end of timeslott.

Lemma 4. Let Assumption 1 hold withr = dM/Ke for some
integerr ≥ 1. Fix

ε ∈



0,min





p0
M

,
1−

∑M
m=1 pm

⌈m

K

⌉

rM







 ,

and let Bε :=
{

[x1, x2, . . . , xM+1] ⊆ <M+1 : |xi| < ε ∀i
}

and τ := inf
z∈M1(Σ)\{[p0,p1,...,pM ]+Bε}

M
∑

m=0

zi log
zi
pi
.
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Fig. 2. A candidate Markov chain for the rate-function calculation in Theorem 4

Then for a system under the SSG rule, for any fixedρ > 0,
for n large enough, and for any timeslott, we have

P (ζ(t) > ζ(t− 1)) ≤ e−nτ(1−ρ) +Mn(1− q)nδ

+ Mnδ exp

(

−
2nδ

q
H
(q

2
| q
)

)

.

Proof: Please see Appendix F.

Lemma 5. Let Assumption 1 hold. Fix any timeslott, and
let ζ(t) = k for some integerk. Then for a system using the
SSG rule, there exists a constant integerk0 such that for all
n large enough, we have

P (ζ(t + k0) < k | ζ(t) = k, k > 0) ≥
1

2
.

Proof: This proof is on the same lines as that of Lemma 7
in [3], and has been omitted to avoid repetition.

Now we are in a position to quantify the rate-function
performance of the SSG algorithm.

Theorem 5. Let Assumption 1 hold withr =

⌈

M

K

⌉

for some

integer r ≥ 1. Let ε, τ be as specified in the statement of
Lemma 4. Then for a system using the SSG rule, for any integer
b ≥ 0, we have

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Qi(0) > b

)

≥
b+ 1

M
min

(

τ, δ log
1

1− q
,
2δH

(

q
2 |q
)

q

)

> 0.

Proof: Please see Appendix G.
An immediate strengthening of the above result is obtained

by maximizing the RHS over the appropriate ranges forτ and
δ. We have thus established that under the SSG algorithm, the
small-buffer overflow event has a strictly positive rate-function
for all integersb ≥ 0.

VI. SIMULATION RESULTS

We compare the performance of the proposed SSG al-
gorithm with the classic MaxWeight algorithm in [12]. We
choose the MaxWeight algorithm as a benchmark because it
is the best-known throughput-optimal algorithm. We consider
a system withn = 50 queues and servers. The channel
parameters are set toK = 2 andq = 0.5. We parameterize the
arrival process as follows: setM = 3 as the maximum number
of arrivals. Vary the parameterpM , and setpi = (1−pM )/M

for 0 ≤ i ≤ M − 1. Let η :=
∑M

m=1 pm

⌈m

K

⌉

. We
consider systems with progressively higher values ofη, run the
simulations for1×105 timeslots, and plot the empirical packet-
delay probabilities. The results are summarized in Figure 3.
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Fig. 3. SSG v/s MaxWeight: Packet delay profiles

We see that there is a significant difference between the
performance of the two algorithms, with SSG being the
clear winner in this case. Similar results hold for the buffer
overflow probabilities under the two algorithms. Due to space
constraints, and also because this is mainly a theoretical paper,
we have not reported more extensive simulation results, but
the SSG algorithm continues to outperform the MaxWeight
algorithm under a variety of channel and arrival processes.

VII. C ONCLUSIONS

We considered the problem of designing scheduling algo-
rithms for multi-user multi-channel wireless downlink net-
works. The main result is that the iterative resource allocation
rule (the SSG rule) provides a very good delay performance to
the users, in addition to network stability. These systems where
the channels serve multiple packets per timeslot are inherently
more complex than the ones considered in the earlier works
([2] and [3]). Due to space constraints, we considered a simple
arrival and channel process that captures the essence of the
multi-rate channel allocation problem, and developed Markov
chain-based analysis techniques that are applicable to a much
wider class of systems and scheduling rules. Indeed, a number
of natural extensions of this work are possible, including the
cases where the number of queues and the servers is unequal,
where the frequency bands are time or frequency-correlated,
or when the scheduling rule is more complex (for example,
the matching-based iLQF-class scheduling rules introduced
in [2]), among other possibilities.
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APPENDIX A
PROOF OFTHEOREM 1

Consider the following event which implies{Q1(0) > b}

under any scheduling rule: form :=

(⌊

b

M

⌋

+ 1

)

consecu-

tive timeslots before (and including) timeslot0, there areM
arrivals per timeslot toQ1, and all the channels connecting
Q1 to the servers are OFF (i.e.,X1j(t) = 0) in each of these
timeslots. The probability of this event ispmM (q0)

nm, and the
result follows.

APPENDIX B
PROOF OFLEMMA 2

If possible, let lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Qi(0) > 0

)

= δ > 0

under some scheduling algorithm. Then forn large enough,

P

(

max
1≤i≤n

Qi(0) > 0

)

≤ e−nδ/2, implying that the long-

term average number of timeslots for which we have
max1≤i≤n Qi(t) = 0 is at least1 − e−nδ/2, or greater than
0.8 for n large enough.

Suppose at the end of some timeslotT, we have
max1≤i≤n Qi(T ) = 0. Fix ε > 0 such that

[p′0, p
′
1, . . . , p

′
M ] = [p0 +Mε, p1 − ε, p2 − ε, . . . , pM − ε]

is a probability vector with strictly positive components,and
∑M

i=1 p
′
idi/Ke > 1.

Let nm denote the number of queues that receivem packets
in timeslotT +1. By Sanov’s theorem ([5], Theorem 2.1.10),
we know that there existsζ > 0 such that forn large enough,

P

(nm

n
≥ p′m ∀m ∈ {1, 2, . . . ,M}

)

≥ 1− e−nζ .

For a queue with length= m, any algorithm must allocate
at leastdm/Ke servers to serve all packets from it. But if
the algorithm tries to allocate this way, then (even assuming
that each of the servers has a channel with rate= K to serve
any one of the queues, i.e.,Xij(T + 1) = K for all i, j), the
number of servers necessary to drain all the packets is

M
∑

m=1

nm

⌈m

K

⌉

≥ n

M
∑

m=1

p′m

⌈m

K

⌉

> n.

Hence, if at the end of timeslotT we havemax1≤i≤n Qi(T ) =
0, then at the end of timeslotT + 1, with probability at least
1 − e−nζ , we havemax1≤i≤n Qi(T + 1) ≥ 1 for someζ >
0. Elementary calculations imply that the long-term fraction
of timeslots for which{max1≤i≤n Qi(t) = 0} is no more

than
1

2 + e−nζ
<

2

3
, for n large enough. This contradicts the

earlier claim that the long-term fraction of timeslots for which
max1≤i≤n Qi(t) = 0 is at least0.8, completing the proof.

APPENDIX C
PROOF OFTHEOREM 2

A stationary distribution ofX?(t) is given by

P(X?(t) = x) = P(X(t) ∈ Wx) =
∑

z∈Wx

σ(z).

We show that this is a stationary distribution of the Markov
chainY (t). By the detailed flow-balance for the Markov chain
X(t), for every non-negative integerx, we have

∑

z∈Wx

∑

y≥0
y 6=x

∑

v∈Wy

σ(z)p(z, v) =
∑

z∈Wx

∑

y≥0
y 6=x

∑

v∈Wy

σ(v)p(v, z).

(1)
In order thatP(Y (t) = x) = P(X?(t) = x) =

∑

z∈Wx
σ(z),

it is necessary and sufficient that the proposed stationary
distribution satisfies the detailed flow-balance equationsfor
the Markov chainY (t), is non-negative and adds to1. In
other words, for every non-negative integerx, we want

∑

y≥0
y 6=x

(

∑

z∈Wx

σ(z)

)

P(Y (t+ 1) = y | Y (t) = x)

=
∑

y≥0
y 6=x





∑

z∈Wy

σ(z)



P(Y (t+ 1) = x | Y (t) = y).

We now verify that the proposed stationary distribution
P(Y (t) = x) = P(X?(t) = x) =

∑

z∈Wx
σ(z) satisfies this

condition, as follows:

∑

y≥0
y 6=x

(

∑

z∈Wx

σ(z)

)

P(Y (t+ 1) = y | Y (t) = x)

=
∑

y≥0
y 6=x

P(X(t+ 1) ∈ Wy,X(t) ∈ Wx)

=
∑

y≥0
y 6=x

∑

z∈Wx

∑

v∈Wy

σ(z)p(z, v)

(a)
=

∑

y≥0
y 6=x

∑

z∈Wx

∑

v∈Wy

σ(v)p(v, z)

=
∑

y≥0
y 6=x

P(X(t+ 1) ∈ Wx,X(t) ∈ Wy)

=
∑

y≥0
y 6=x





∑

z∈Wy

σ(z)



P(Y (t+ 1) = x | Y (t) = y),

where the step(a) follows from Equation (1). Note also that
∑

z∈Wx
σz ≥ 0 and

∑

x≥0

∑

z∈Wx
σz = 1, since the sets

Wx form a partition of the state-space of the original Markov
chainX(t). Hence, the proof is complete.
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The proof proceeds by induction. Let the claim hold for
somet = k − 1 ≥ 0, i.e., Y (k − 1) ≤st W (k − 1). We have

Y (k) = Y (k − 1) + Zk−1(Y (k − 1)),

W (k) = W (k − 1) + Z̃k−1(W (k − 1)).

By a standard result in stochastic ordering, there exist random
variablesŶ (k − 1) andŴ (k − 1) such that

Ŷ (k − 1)
d
= Y (k − 1), Ŵ (k − 1)

d
= W (k − 1),

and Ŷ (k−1) ≤ Ŵ (k−1), a.s.

Define Ŷ (k) := Ŷ (k − 1) + Zk−1(Ŷ (k − 1)),

Ŵ (k) := Ŵ (k − 1) + Z̃k−1(Ŵ (k − 1)).

Now,

P(W (k) = j) =
∑

i

P(i+ Z̃k−1(i) = j)P(W (k − 1) = i),

and

P(Ŵ (k) = j) =
∑

i

P(i+ Z̃k−1(i) = j)P(Ŵ (k − 1) = i).

But P(Ŵ (k−1) = i) = P(W (k−1) = i), soŴ (k)
d
= W (k),

and similarly Ŷ (k)
d
= Y (k). By our assumption ofZk−1(·)

and Z̃k−1(·), for all i, j, `,

P(Ŵ (k)− i > ` | Ŵ (k − 1) = i, Ŷ (k − 1) = j)

≥ P(Ŷ (k)− j > ` | Ŵ (k − 1) = i, Ŷ (k − 1) = j),

implying

P(Ŵ (k) > `+ i | Ŵ (k − 1) = i, Ŷ (k − 1) = j)

≥ P(Ŷ (k) > `+ i | Ŵ (k − 1) = i, Ŷ (k − 1) = j)

for all (i, j) such thati ≥ j. (Note that{Ŷ (k) > ` + i} ⇒
{Ŷ (k) > `+j} for i ≥ j.) Multiplying both sides byP(Ŵ (k−
1) = i, Ŷ (k − 1) = j) and summing over alli, j such that
i ≥ j, and noting thatP(Ŵ (k − 1) ≥ Ŷ (k − 1)) = 1, we get

P(Ŵ (k) > `) ≥ P(Ŷ (k) > `) ∀` ∈ Z+, i.e., Ŷ (k) ≤st Ŵ (k).

Since Ŷ (k)
d
= Y (k) and Ŵ (k)

d
= W (k),

we getY (k) ≤st W (k), completing the proof of stochastic
dominance by induction. Since the limiting distributions of
Y (t) and W (t) are the stationary distributionsµY (·) and
µW (·) respectively (the convergence to the stationary distri-
bution follows from [4], Chapter 4, Theorem 2.1), for random
variablesY,W which are distributed according toY ∼ µY (·)
andW ∼ µW (·), we haveY ≤st W. Hence the proof of the
theorem is complete.

APPENDIX E
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Fix any i ∈ {1, 2, . . . ,m}. Let the set of servers connected
to Qi be S? = {Si

1, S
i
2, . . . , S

i
xm}, in the increasing order of

server-indices.
Case1: The queueQi is allocatedx or more servers.

In this case, because each server drainsK packets, we have
Qi(t) ≤ (Li − xK)+, implying

Qi(t) ≤ (Li − xK)+ ≤ max
1≤j≤m

(Lj − xK)+,

and the claim holds.
Case2: The queueQi is allocated at mostx− 1 servers.

In this case, by the pigeonhole principle, at least one of the
queuesQj 6= Qi is allocatedx + 1 (or more) servers from
the setS?. Consider the roundy of SSG when the(x+ 1)th

server from the setS? is allocated toQj . Since the SSG rule
allocates a server to a longest queue among the queues it can
serve, we haveQ(y−1)

i (t) ≤ Q
(y−1)
j (t) ≤ (Lj − xK)+, and

the result follows sinceQi(t) ≤ Q
(y−1)
i (t).

APPENDIX F
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Let ζ(t− 1) = c. By the choice ofε,

[p′0, p
′
1, . . . , p

′
M ] = [p0 −Mε, p1 + ε, p2 + ε, . . . , pM + ε]

is a probability vector with strictly positive components,
and

∑M
i=1 p

′
idi/Ke < 1. Further, since the setM1(Σ) \

{[p0, p1, . . . , pM ] + Bε} is compact and the functiong(z) :=
∑M

m=0 zi log
zi
pi

is lower semicontinuous ([5], Chapter 2,

Exercise 2.1.22), the infimum ofg(z) (in the definition ofτ ) is
achieved and is strictly positive, sinceg([p0, p1, . . . , pM ]) = 0
andg(z) > 0 for all other values ofz, and

[p0, p1, . . . , pM ] /∈ M1(Σ) \ {[p0, p1, . . . , pM ] + Bε.}

After arrivals in timeslott, let Fm be the set of queues
whose length is at leastc + m, and definefm := |Fm|/n.
Consider the event

E :=

{

fm ≤

M
∑

i=m

p′i ∀m ∈ {1, 2, . . . ,M}

}

.

From Sanov’s theorem, we know that forn large enough,
P(Ec) ≤ e−nτ(1−ρ) for any fixedρ > 0. We condition the
rest of this proof on the eventE.

Claim 1. Conditioned on the eventE, fix any integerm ≥ 1,
and any constant

δ ∈

(

0, q

(

1−

M
∑

i=1

p′i

⌈

i

K

⌉

)

/(M(2− q))

)

.

Then after n

(

∑∞
j=0 fm+jK + (M −m+ 1)δ

(

2

q
− 1

))

rounds of server allocation under the SSG rule, with prob-
ability at least

1−Mn(1− q)nδ −Mnδe−
2nδ
q

H( q
2 |q),



there remain no queues of (updated) lengthc+m or more.
Note that only a finite number of terms in the above infinite

summation are nonzero.
Proof: Let F (i)

m denote the updated setFm after i rounds
of server allocation, that is, the set of queues at lengthc+m
or more, afteri rounds of server allocation. First we consider
the casem = M.
Case1: |FM | = |F

(0)
M | > nδ.

For 1 ≤ i ≤ m0 := |F
(0)
M | − nδ, consider the event

Wi = {Xri(t) < K ∀Qr ∈ F
(i−1)
M }.

By the independence of channel allocation decision and the
channel realizations for the higher-indexed servers,

P
(

Wi | W
c
1 ,W

c
2 , . . . ,W

c
i−1

)

= (1−q)(|F
(0)
M |−i+1) ≤ (1−q)nδ.

If the serverSi is connected to any of the queues in the set
F

(i−1)
M , then (because the setF (i−1)

M is the set of the “current”
longest queues) the serverSi is allocated to a queue inF (i−1)

M ,

and the served queue is removed from the setF
(i−1)
M to obtain

the setF (i)
M . Therefore, using the union bound, with probabil-

ity at least1− (|F
(0)
M |−nδ)(1− q)nδ ≥ 1−n(1− q)nδ, at the

end of |F (0)
M | − nδ rounds of service, we have|F (m0)

M | ≤ nδ.
Consider the set of servers

S? = {Sm0+1, Sm0+2, . . . , Sm0+2nδ/q}.

By the Chernoff bound, the probability that a given queue
Qi ∈ F

(m0)
M is connected

• with a channel of rate= K
• to at leastnδ of the servers in the setS?

is at least1−e−
2nδ
q

H( q
2 |q). Therefore, by Lemma 3, at the end

of 2nδ/q further rounds of service, with probability at least
1−nδe−

2nδ
q

H( q
2 |q), the maximum queue-length in the system

is no more thanc+m− 1, completing the proof for this case
by the union bound.
Case2: |FM | = |F

(0)
M | ≤ nδ.

Following the analysis for case1, it is clear that the claim
holds in this case, completing the proof of the claim for the
casem = M.

The proof of the claim now follows by repeatedly applying
the above procedure to the casesm = M − 1,M − 2, ..., 1, 0,
using the union bound, and noting that if a queueQi of length
` is served by a serverSj , then its length decreases by exactly
K (or becomes zero), so that it continues to belong to the sets
F

(j)
`−K ,F

(j)
`−K−1, and so on.

Applying the result of the claim to the casem = 1, we get
∞
∑

j=0

f1+jK +Mδ

(

2

q
− 1

)

= f1 + fK+1 + · · ·+ f(r−1)K+1 +Mδ

(

2

q
− 1

)

(a)

≤ (p′1 + p′2 + · · · p′K) + 2(p′K+1 + · · ·+ p′2K) + · · ·

+ r(p′(r−1)K+1 + · · · p′M ) +Mδ

(

2

q
− 1

)

=

M
∑

m=1

p′m

⌈m

K

⌉

+Mδ

(

2

q
− 1

)

< 1

where the inequality(a) holds from Sanov’s theorem (event
E as defined above) with probability at least1 − e−nτ(1−ρ),
and the last inequality holds by the choice ofδ. Hence, by the
union bound, we have (forn large enough)

P (ζ(t) > ζ(t− 1)) ≤ e−nτ(1−ρ) +Mn(1− q)nδ

+ Mnδ exp

(

−
2nδ

q
H
(q

2
| q
)

)

,

completing the proof.

APPENDIX G
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This proof proceeds in three steps, where we use Theo-
rems 2, 3 and 4 to arrive at the desired conclusion.
Step 1: We have

P

(

max
1≤i≤n

Qi(0) > b

)

=

∞
∑

k=b+1

P

(

max
1≤i≤n

Qi(0) = k

)

.

Our aim is to calculate an upper-bound on the RHS of the
above inequality. To this end, we know from Theorem 2
that P (max1≤i≤n Qi(0) = k) is the same asP(Y (t) = k),
where the (one-dimensional) Markov chain has the following
transition probability structure:

P(Y (t+ 1) = y | Y (t) = x)

= P

(

max
1≤i≤n

Qi(t+ 1) = y

∣

∣

∣

∣

max
1≤i≤n

Qi(t) = x

)

.

Step 2: As a result of Lemma 5, we know that there exists a
constant integerk0 such that overk0 consecutive timeslots and
for n large enough, the probability that the maximum queue-
length in the system makes a transition from a higher valuek
to a lower valuej (providedk > 0) is at least0.5.

Fix any constantρ > 0. From Lemma 4, forn large enough,
in a given timeslot, the probability that the maximum queue-
length increases is at most

e−nτ(1−ρ) +Mn(1− q)nδ +Mnδ exp

(

−
2nδ

q
H
(q

2
| q
)

)

.

Let

c := min

(

τ(1 − ρ), δ log
1

1− q
,
2δH

(

q
2 |q
)

q

)

.

Fix any ε′ ∈ (0, c) and letc′ = c − ε′. For any givenε > 0
there existsn0 large enough such that for alln ≥ n0, we have

e−nτ(1−ρ) +Mn(1− q)nδ +Mnδe−
2nδ
q

H( q
2 |q) ≤ e−nc′.

DefineLi(t) := Qi(k0t) and consider a Markov chain

L(t) = [L1(t), L2(t), . . . , Ln(t)].

The Markov chainL(t) is a time-sampled version of the
Markov chain[Q1(t), Q2(t), . . . , Qn(t)], and the two Markov



chains have the same stationary distribution. LetL?(t) =
max1≤i≤n Li(t). Define

p(k, j) := P(L?(t+ 1) = j | L?(t) = k).

Then for any integert and for any integerk > 0, we have
∑k−1

j=0 p(k, j) ≥ 0.5.
Further, the probability that over a period ofk0 consec-

utive timeslots the maximum queue-length increases in at
least a ≤ k0 timeslots is at most

(

k0

a

)

e−anc′ by the union
bound. More precisely, for1 ≤ i ≤ k0, consider the events
Ei := {ζ(i) > ζ(i − 1)}. We know from Lemma 4 that
regardless of the queue-lengths at the beginning of timeslot
i, and any other events in any other timeslots,P(Ei) ≤ e−nc′

for n large enough. Hence,

P

(

a
⋂

i=1

Ei

)

=

a
∏

i=1

P (Ei | E1, E2, . . . , Ei−1) ≤ e−anc′ ,

and the claimed bound follows from the union bound since
there are

(

k0

a

)

ways to “choose” the candidate timeslots where
the maximum queue-length increases.

In a given timeslot, the length of any queue can increase
by at mostM, so that for any timeslott if ζ(t) = k, then
ζ(t+1) = s wheres ≤ k+M. It follows that for1 ≤ a ≤ k0,
we have

aM
∑

j=(a−1)M+1

p(k, k + j) ≤

(

k0
a

)

e−anc′ ≤ 2k0e−anc′ .

We now apply Theorem 3 with the random variablesZt(k)
and Z̃t(k) with the following distributions:

P(Zt(k) = j) = p(k, k + j), j ∈ Z,

for integers1 ≤ a ≤ k0 :

P(Z̃t(k) = j) = 2k0e−anc′ , (a− 1)M + 1 ≤ j ≤ aM,

and P(Z̃t(k) = −1) = 0.5.

By the foregoing analysis, we haveZt(i) ≤st Z̃t(j) for all
i, j ∈ Z+ and all t ∈ Z, implying L?(t) ≤st W (t). Further,
the Markov chainW (t) has a stationary distribution forn large
enough (follows from Theorem 4), and the Markov chainL(t)
has a stationary distribution by the stability of the Markov
chainQ(t) (follows from Theorem 5 in [3]). Both the Markov
chainsW (t) and L(t) are clearly aperiodic and irreducible,
so is the (hypothetical) Markov chain whose transition prob-
abilities are defined by the transition probabilities ofL?(t).
Hence, by Theorem 2.1, Chapter 4 in [4], the distributions
of L?(t) and W (t) converge to their respective stationary
distributions, implying that the stationary distributionof L?(t)
is stochastically dominated by the stationary distribution of
W (t).
Step 3: We apply Theorem 4 withη = 2k0 andF = k0M to
conclude that

lim inf
n→∞

−1

n
logP (W (0) > b)

= lim inf
n→∞

−1

n
log

(

∞
∑

k=b+1

P(W (0) = k)

)

≥
c′(b+ 1)

M
,

implying

lim inf
n→∞

−1

n
logP

(

max
1≤i≤n

Qi(0) > b

)

≥
b+ 1

M

[

min

(

τ(1 − ρ), δ log
1

1− q
,
2δH

(

q
2 |q
)

q

)

− ε′

]

> 0,

and completing the proof since the last inequality holds forall
ε′ ∈ (0, c) for somec > 0, and for every constantρ > 0.
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