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Abstract—Back-pressure based algorithms based on the al- design. The traditional back-pressure algorithms stabilhe
gorithm by Tassiulas and Ephremides have recently received network by exploiting all possible paths between source-
much attention for jointly routing and scheduling over multi- destination pairs (thus load balancing over the entire aetw

hop wireless networks. However a significant weakness of thiap- - . . . .
proach has been in routing, because the traditional back-pgssure While this might be needed in a heavily loaded network,

algorithm explores and exploits all feasible paths betweeeach this seems unnecessary in a light or moderate load regime.
source and destination. While this extensive explorationsiessen- Exploring all paths is in fact detrimental — it leads to paske
tial in order to maintain stability when the network is heavily  traversing excessively long paths between sources and dest
loaded, under light or moderate loads, packets may be sent nations leading to large end-to-end packet delays.

over unnecessarily long routes and the algorithm could be vg . . .

inefficient in terms of end-to-end delay and routing convergnce | hiS paper proposes a new routing/scheduling back-pressur

times. algorithm that minimizes the path-lengths between sowanés
This paper proposes new routing/scheduling back-pressure destinations while simultaneously being overall throughp

algorithms that not only guarantees network stability (through-  gptimal. The proposed algorithm results in much smallerend

put optimality), but also adaptively selects a set of optimh to-end packet delay as compared to the traditional back-

routes based onshortest-path information in order to minimize . . L .
average path-lengths between each source and destinatiomip ~Pressure algorithm. The main contributions of this paper ar

Our results indicate that under the traditional back-pressure summarized in the following subsection.
algorithm, the end-to-end packet delay first decreases andchén
increases as a function of the network load (arrival rate). his
surprising low-load behavior is explained due to the fact tlat the

traditional back-pressure algorithm exploits all paths (including . S A
very long ones) even when the traffic load is light. On the othre We define a fiow using its source and destination. Fet

hand, the proposed algorithm adaptively selects a set of raes denote a flow in network, andlf[t] denote the numbe;r of
according to the traffic load so that long paths are used only packets generated by floy at time t. We first consider
when necessary, thus resulting in much smaller end-to-endgeket the case where each flow associates with a hop constraint

delays as compared to the traditional back-pressure algotihm. H. The routing and scheduling algorithm needs to guarantee
l. INTRODUCTION that the packets from fIOV\f are dehve_zreo! no more than

) ) _ Hy hops. Note that this hop constraint is closely related
~ Due to the scarcity of wireless bandwidth resources, @"yhe end-to-end propagation delay. For this problem, we
is important to efficiently utilize resources to supportiitig qn6se 5 shortest-path-aided back-pressure algorithichwh
throughput, high-quality communications over multi-nopex o, 55its the shortest-path information to guarantee thg ho
less networks. In this context, good routing and schedW@lng gnstraint and is throughput optimal, i.e., if there exiats

gorithms are needed to dynamically allocate wireless messu routing/scheduling algorithm that can support the traffithw

to maximize the network throughput region. To address thig,, given hop constraints, then the shortest-path-aidek-ba

throughput-optimalrouting and scheduling, first developed irbressure can support the traffic as well.

the seminal work of [1], has been extensively studied [2], [3 We then consider a case where no per-flow hop constraint is
[‘11]0 [51’1[i]’ [71. [8l. [9]r; [12.]’ [13], [141/,VL1'I5]'H¥V8 re{ert;h imposed. The objective is to minimize the average number of
[10], [11] for a comprehensive survey. lle these aigon hops per packet delivery (or the average path-lengths lestwe

maximize the network throughput region, additional issues%urces and destinations). Mathematically, given a tréffd
need to be considered for practical deployment. {A;[f]}, the objective is '

With the significant increase of real-time traffic (an a#icl
by Ellacoya [16] published in 2007 suggests that video- min Z hA¢p,
streaming accounts for 36% of today’s HTTP traffic), end- FEF,N—12h>0

to-end delay becomes very important in network algor'thWhereAf_,h is the fraction of flowf transmitted over paths

1A routing/scheduling algorithm is throughput-optimal if dan stabilize With.h hOpS, a.-nth A.ﬂh = E[Af[t]]- This ObjeCtive has
any traffic that can be stabilized by any other routing/salird algorithm.  two Interpretations:

A. Main Contributions



o First, Zﬂh hAy, can be thought of as the number of
transmissions needed to support trafi¢] (transmitting (0.0 |
a packet over arh-hop path requires transmissions). ’ ’ i ’
Thus, minimizing}_, , hAs, can be regarded as min-
imizing the network resource used to support the traffic
demand;

« Second, note that the number of hops is closely related
to the end-to-end delay, sp’, hAy ) is related to the
average end-to-end delay of flot Thus minimizing
Zf,h hA;; can potentially be used as a surrogate for
minimizing the average end-to-end delay over all flows
in the network (the difference being that the MAC delays
is ignored in the hop-count metric).

To solve this problem, we propose a joint traffic-control
and shortest-path-aided back-pressure algorithm thabmigt
guarantees the network stability (throughput-optimalj,diso
adaptively selects the optimal routes according to thdidraf . _ _ _
demand. When the traffic is light, the algorithm only useSensider al x4 grid network as in shown Figure 1. Assume
shortest paths; when the traffic increases, more paths Hfat the channel capacity is one data unit per time slot for al
exploited to support the traffic. Our simulations show th&'@nnels. When one link is on, no adjacent link can be on
the joint traffic-control and shortest-path-aided baoksgure Simultaneously. We also impose half-duplex constraintso t
algorithm leads to a much smaller end-to-end delay compal%di‘c_)de_ cannot transmit and receive at the same time. At the
to the traditional back-pressure algorithBnus 1000 when the P€dinning of each time slot, each node generates a packet wit

traffic load is light and200 vs 400 when the traffic load is probability \. The destination of this packet is randomly and
high). uniformly selected from all nodes in the network. (A detdile

description of our simulation settings will be presented in
B. Related Work Section VI).

Throughput-optimal routing/scheduling was first proposed

Path 2

__________________________________________ 4.4

Fig. 1. A grid network example

in [1], and then have been studied for varied networks in- 1000 :

cluding cellular networks [17], cooperative relay netwsrk a00} ,
[12], [13], and multi-hop wireless networks [6], [4], [5]. g0} ]
Low-complexity implementations have been proposed in 700|

[18], [19], [20], [21], [22], [14], [23], [24]. Joint schedu
ing/routing/power control has been developed in [5], [9].
Throughput-optimal routing/scheduling for multicast flohas

600
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400 -

been considered in [25]. The idea of using the shortest path a0l

information to enhance the performance of back-pressure s00l .
algorithm has been studied in [26]. The difference is that ool /,//
the proposed algorithmrovably minimizes the average path- . —

lengths whereas the enhanced algorithm in [26] uses the
shortest path information in a heuristic manner. An alterna
algorithm that deals with minimizing the number of hops hasg. 2. Back-pressure via our joint traffic-splitting andosilest-path-aided
been recently independently obtained in [30]. The objectipack-pressure

function in [30] is the same as in this paper, however the

proposed algorithms are different. The end-to-end delay of a packet is defined to be the time

interval from when the packet enters the source to when the
Il. AN ILLUSTRATIVE EXAMPLE packet reaches the destination (this includes the MAC datlay
As we discussed in the introduction, the back-pressure algotermediate nodes). In Figure 2, we plot the average end-to
rithm exploits all feasible paths, which is critical to m@im end delay under the back-pressure algorithm and the prdpose
stability when the network is heavily loaded. However, whealgorithm with different values of. From Figure 2, we have
the traffic load is light, packets may be sent over unnecgssé/0 observations:
long paths and the algorithm could be very inefficient. (1) Under the back-pressure algorithm, surprisingly, the

In this section, we use an example to demonstrate the
weakness of the back-pressure algorithm, and the significan
end-to-end delay reduction that results under the proposed
algorithm (the algorithm will be described in Section V).

delay first decreases and then increases with arrival rate
A. The second part is easy to understand: the queues
build up when the traffic load increases, which increases
the queuing delays. The first part is because the back-



pressure algorithm uses all paths even when the traffinder hop-constraints. The algorithm is also a buildingblo
load is light. For example, with a very small using for the algorithm to be proposed in Section V, which smoothly
path1 only is sufficient to support the flow from node integrates the back-pressure and the shortest-path goutin

to nodeD. However, under the back-pressure algorithm, Next, we characterize the network throughput region under
long paths (e.g., path that hasl5 hops) and paths with hop-constraints.

loops are also used. Furthermore, the lighter is the traffic

load, more loops are involved in the route. Hence thd. Network Throughput Region under Hop-constraints

end-to-end delay is Iarge whenis small. Given traffic A[t] = {Af[t]} ;e and hop-constrainH =
(2) In the proposed algorithm, the set of routes used AP ) rer, we say that(At], H) € Ag if there exists

intelligently selected according to the traffic load so thz(él(n,d,h) > O} such that the following conditions hold:
long paths are used only when necessary. We can e

that under the proposed algorithm, not only is the delay(i) For any three-tuplen, d, h) such thatn # d and N —
significantly reduced 3 v.s 1000), but also the delay 1> h >0, we have
monotonically increases with the traffic load. . (m,d,h
ety . AL sy —mdp—a + D Ay
We would like to emphasize that under the proposed al- Hp=h me(mom)EL ’
gorithm, the delay improvement is achieved without losing

N . . ; — Z (n.d,h) 1)
the throughput-optimality. The proposed algorithm isl| stil A P,y
throughput-optimal, but yields much smaller end-to-erldyke i(n.1)€L
as compared to the traditional back-pressure algorithm. @iy If h—1< H™"  then

I11. BASIC MODEL ﬂﬁﬂjish) -0, )

Network model: Consider a network represented by a graph
G = (N, L), where\ is the set of nodes and is the set of
directed links. We assume thgt/| = N and || = L.
Denote by(m,n) the link from nodem to noden. Let (if)

where H™1, is the minimum number of hops required
from noden to noded.

1 = {ft(m,n)} denote a link-rate vector (over linkn, n), the {”(mv“)}(myn)eﬁ € CH(D), (3)
transmission rate i, »)). A link-rate vectoryu is said to be where

admissibleif the link-rates specified by. can be achieved R madih)
simultaneously Define T' to be the set of all admissible H(m,n) = Z B(min)

link-rate vectors. It is easy to see thBt depends on the {(m,d,h):d€D,N-1>h>0}

choice of interference model and might not be a convex set.
Furthermore[ is time-varying if channels are time-varying. We can regar@Em,d,)h) as the average transmission-rate over
m,n

To S|_mpI|fy our notations, we assume time-invariant Ch‘m.nqink (m,n) used to transmit those packets that are destined to
in this paper. However, our results can be extended to tlmﬁz-

varying channels in a straightforward manner. Furthermaeee oded and delivered with exactly more hops (including the
assume that there exisisux SUCh thali(m ) < fimas for all hop fromm ton). Then, the conditions above can be explained

e : : as follows:
(m,n) € £ and all admissiblg:. Next, we define a link vector o _ _ .
p to beobtainableif p € CH(T), whereCH(T') denotes the (a) Condition (i) is a flow conservation constraint, which
convex hull ofT'. Note that anadmissiblerate-vector is a set states that the number of incoming packets to node
of rates at which the links can transmit simultaneously;levhi with hop-constraink is equal to the number of outgoing

an obtainablerate-vector is a set of rates that can be achieved Packets from node with hop-constraint —1. Note that
including using time-sharing. the hop-constraintis reduced by one after a packet is sent

and D is the set of all destinations.

Traffic model: For network traffic, we letf denote a flow,
s(f) denote the source of the flow, ad(f) the destination of

the flow. We useF to denote the set of all flows in the network.

Assume that time is discretized, and k}[t] (f € F) denote
the number of packets injected by flghat timet. We assume

out by noden because it takes one hop to transmit the
packet from node: to one of its neighbors. We only
consider hop-constraints up f§ — 1 hops because the
longest loop-free route has no more th&n— 1 hops,
and considering only loop-free routes does not change

{A;[t]} are bounded random variables, and i.i.d. across time- _ the network throughput region.
slots and flows. We also defing; = E[A [t]]. (b) Condition (ii) states that a packet should not be trans-

mitted from nodemn to noden if noden cannot deliver
IV. THROUGHPUFOPTIMAL ROUTING/SCHEDULING WITH the packet within the required number of hops.
Hop CONSTRAINTS (c) Condition (iii) is the capacity constraint, which state

In this section, we consider the case where each flow is that the rate-vectoi should be obtainable.
associated with a hop constraift;. Packets of flowf need  We say traffic(A[t], H) can be stabilized ithere exists
to be delivered withinH; hops. We propose a shortest-pathsome routing/scheduling algorithm under which the mean of
aided back-pressure algorithm, which is throughput-oatimthe number of packets queued in the network is bounded.



From discussions (a)-(c), it is easy to see thgiift], H) can C. Queue Dynamics
be stabilized, then there must exigt satisfying conditions | gt Qm.an ] denote the queue length at time slot
(i)-(iii). Thus,Ag is named as the the throughput region Ognd Nz;m,dsh’}’[t] denote the service rate for quedien, d, h}

networkg. . over link (m, n) at timet. For packets transmitted over link
Next, we introduce our queue management scheme. .
(m,n), we require that the packets from que{ie, d, h} are
B. Queue Management transferred to queué¢n, d, h — 1}. For example, packets from

Recall H™" , is the minimum number of hops requiredlueue{2, 4,3} can be transferred to queys, 4,2}, but not

from nodem to noded (or the length of the shortest path fromfo queue{3, 4,.1}- _

nodem to noded). Note thatH™™ , can be computed in a The dynamics of queuén,d, h} (n # d) is as follows:

distributed fashion using algorithms such as the BellmardF _

algorithm. Thus, we assume that nagdeknows H™ , for all Qunamlt+ 1]{_ ?Jﬂi’h}[t] Ay [t]lséf);Z’}d(f):d’Hf:h

destinations! € D, and H™™, for n such that(m,n) € L. + Y Vimmy 1] = > Vinsy [t];
We assume noden maintains a separate queue, named m:(mn)eL i:(n,i)EL

queue{m,d, h}, for the packets required to be delivered to

{n,d,h} -
noded within h hops. For destinatiod, node m maintains Where Ving 1S the actual number of packets transferred

queues ol = H™" . N—1, whereN —1 is a universal from queue{n, d, h} to queue(s, d, h—1}, and is smaller than

m—d> - {n,d,n} - :
upper bound on the number of hops along loop-free paths (n,i) [? V‘;h}?}n there is no enough packet in qugued, h}.
"1I1t] to be the unused service, we have

As an example, consider the directed network shown [Defineu(m_n)
Figure 3, and assume th@ = {4} (i.e., there is only one '
destination). Each non-destination node maintains upreeth

gueues (because for this topology, there are no loop fréespa‘}\/e also defing) 41 = 0 for all h, i.e., packets delivered
longer than three hops). Node has queues correspondingare removed frof{ﬁ’?ﬁe}network T

to & = 1,2,3 respectively. Node two does not have a direct In the next subsection, we propose a shortest-path-aided

path to node 4 (i.e.Hgifg = 2), hence, it main-ta}ins only back-pressure algorithm that stabilizes the network gieyn
two queues corresponding to = 2,3 (and implicitly, we (A[f],H) € Ag

set Q2,413 = oo to ensure that no packets ent@rs 41}
from other nodes). Nod8 maintains three separate queueB. Shortest-path-aided Back-pressure Algorithm

corresponding té = 1,2, 3. This is in spite of the observation  Recall that we have per-hop queues for each destination,
that there is only one feasible route from ndti® noded. We  hich s different from the back-pressure algorithm in [1].
maintain these additional queues because the global rletweps we first define the back-pressure of liftk, n) under

topology is not known by individual nodes (in the algorithmg . queue management scheme. We deﬂé@"d)’h}[t] (the

we will later see that the “extra” queues will build up suféiot back-pressure of queden, d, 1} over link (m n)’) as follows:

back-pressure so that the rate of packet arrivals into these

m,d,h m,d,h m,d,h
plmdhd iy = imdhlyy g imdhly,

(m,n) (m,n) (m,n)

{m,d,h} . H min
queues goes to zero). Finally, all queues at the destinatiort * (m,n) 1] = Qnamlt] = Quuan-ny[t] if HiZy <
for packets meant to itself are set to zero (i@ 4., = 0). {m 3 h} IR,

In Figure 3, queues into which packets potentially arrive ar * Fim.ny  [t] = —o0 if HJ™; > h —1 (note that queue

marked in solid lines and the “virtual” queues which are fixed {7, d,h — 1} does not exist i}, > h —1).
at {0,00} are in dotted lines. The back-pressure of linkn, n) is defined to be

Fig. 3.

node 2 {342 = 2)
-~ Pl n)t] = max max P(glnf)’h}[t], 0y.
— 1 Qq2,4,33=5 ’ deD,N—-1>h>Hmin | ’
,,,,, Qq2,4,2y=9 L - . .
-l Q2,413= Considering the example shown in Figure 3, it can be veri-
fied thatP 0) = 0, P s) = Quasy —Qsa2)y =3, Py =
Q1,41 — Qpaa,0y =8, P23y = Qq2.4.2) — Q34,13 = 5, and
— 1 Qpuasy=4 —_1Qq3,4,3y=0 P, = — =4.
— guenze ey (3.4) = Qq3,41} — Q1a.4,0}
] Qq1,4,13=8 Q3,41 =4
node 1 (I, — 1) node 3 @24, — 1) S_hortest-path-aided Back-Pressure Algorithm: Consider
time slott.
T Quanas) =0 Step 0:The packets injected by floy are deposited into
P Qa,4,2y=0 queue{s(f),d(f), Hy} maintained at node(f).
gfjjﬁig Step 1:The network first computeg*[t] that solves the

lllustration of queue-management and computatioback-pressure

node 4 @MY, = 0)

following optimization problem:

wlt] = argmax > ) P 1], (4)
(m,n)eL



Step 2:Consider link(m,n). If p7,, . [t] > 0and P, ») > ((1+€)A[t], H) € Ag), and{y(,, ,[t]} = p*[t] is the optimal
0, nodem selects a queuém, d, h} such that solution of (4) givenQ]t].

We also can prove that
Qtm,d,n}[t] = Qn,dh—1}[t] = Prm,m[t], P

~{m,d,h} B
and transfers packets from quejse, d, h} to queue{n, d, h— Z Zﬂ(m,n) (Qem,a,n+131t] — Qnoa,ny[t])
1} at rateu’(*m ) [t]. (el dn

We again consider the example in Figure 3. Assume the (mn)eL

node exclusive interference model where adjacent links@anyhich implies that E[V[t + 1] — V[t]|Q[f]] < -0 if
be active at the same time. Furthermore, assume that '@lfndh}[t] > Qumax for some {n,d,h}. This part of the

capacity is equal to one for all links. Then, given the queugreorem follows from Foster's Criterion [28]. We skip the

states shown in the figure, we can easily verify gt [} =  proof details due to space constraints. Interested reawers
faz[t] = 1 and ufy 5)[t] = pfy 5[t] = pis 4)[t] = 0. Node  find the details in [29]. ]
1 transmits one packet from quedé, 4, 1} to its destination

(node4), and node transmits one packet from que{@ 4, 2} V. THROUGHPUFOPTIMAL AND HOP-OPTIMAL

to queue{3, 4,1} at node3. ROUTING/SCHEDULING

Remark 1: Note that the optimization problem defined by
equation (4) is a centralized problem. There has been a lot ofn the previous section, we proposed the shortest-path-
recent work on distributed solutions, e.g., [18], [19],][F@1], aided back-pressure algorithm that is throughput-optiamal
[22], which compute near optimal solutions with polynomiasupports per-flow hop-constraint.
or even constant complexity. These distributed algoriticars In this section, we consider the scenario where no hop
be used in step 2 of the proposed algorithm in this papennstraint is imposed. Recall thaf — 1 is an upper bound
Distributed implementation, however, is not the focus a$ thon the number of hops of loop-free paths. Defliesuch that
paper. H[f] = N —1 for all f € F. Then, we can assume that
Remark 2: From the definition of the back-pressure and flow is always associated with hop-constrakit i.e., all
the optimization (4), we can see that the packets in quelo®p-free paths are allowed. Note that considering onlyploo
{m,d, h} can be transmitted to its neighbeonly if H™", < free paths does not change the network throughput region.
h — 1. Also packets of flowf are first queued at queueThus we sayA[t] is within the network throughput region if

{s(f),d(f),Hy}. Based on the facts above, it can be easilA[t], H) € Ag, which is also written as\[t] € Ag.

verified that if a packet is received by its destinatiffif), then It is well-known that the back-pressure algorithm can sta-
0=Hyp _q < Hf—g, whereg is the number of hops the bilize any Af¢] that is in the network throughput region.

packet has been transmitted over. Thus, we can conclude tHatvever, the back-pressure algorithm exploits all feasibl
every delivered packet is delivered within the required ham paths, which leads to undesirable delay performance asrshow
of hops under the shortest-path-aided back-pressureitalgor in Section Il. Intuitively, we should only use short-pathsem

Theorem 1:Given traffic A[t] and hop constrainH such the traffic load is low, and start to exploit longer-paths fzes t
that ((1 + ¢)Aft], H) € Ag, the network is stochastically traffic load increases. We note that the number of hops used
stable under the shortest-path-aided back-pressureitalgor to deliver a packet is an important parameter in two senses:
and packets delivered are routed over paths that satisfg-co(i) the number of hops is related to the wireless resource used
sponding hop constraints. to deliver the packet(ii) the number of hops is also related

Proof: The second part of the theorem has been explaingdthe end-to-end delay. Motivated by these observatioes, w

in Remark 2. To prove the first part, we define a Lyapunawill design an algorithm that is not only throughput-optima

function ) but also minimizes the average number of hops used to deliver
V[t] = Z (Q{n,d,h} [t]) . a packet. The motivation is the hope ttgatch an algorithm
{n,d,h} will not only minimize the number of transmissions required
It can be shown that there exis@... > 0 such that if o support the traffic, but also reduce the average end-tb-en
Qn.am 1] > Qumax for some queugn, d, 1}, then tra_m_srr)i;sion delay(As we will later see frqm simulations,
minimizing hop-count does seem to result in smaller end-to-
EV[t+1] - V[HIQ[t]] < —0+ end delays).
+ Z Zﬂgss)h} (Qum.ans13[t] — Qqn,any[t]) o
(m.n)eLl dh A. Hop Minimization
- Z [ n) [ Pm,m) [ Given ftraffic Alt] € Ag, we let Sy denote the set
(m,n)EL of routing/scheduling policies that stabilize the netwote

(m.d.h} - o ~ further defineAy , p[oc] to be the fraction of flowf that
where{ﬂ(m;n; }:H is the rate-vector satisfying conditionjs delivered with exact: hops under policyP, which is
(i)-(iii) for given traffic ((1 + €)A[t], H) (i exists because well defined when the network is stochastically stable. Our



objective is to find a policyP* such that

Note that each stabilizing policf yields an obtainable rate

PIEDY

FEF N—1>h>0

(5)

P* = arg min

hA .
PR f.h,P[00]

and

Ain({n,d,h}) = Z Af,hls(f):n-,d(f):d
ferF

According to the Slater’'s condition [27], the strong dualit

R madu) holds. Thus, there exigi3*, u*, A*) such that(A*, pu*) is
VeCtOr fi = 1 fi(,, ) (- Thus, problem (5) is equivalent tothe optimal solution to problem (6), and
the following optimization problem: (A", ")
Ny
min KhAf_’h (6) o . *
J;N;bo T ars gt ; ; . (KhAfvh + BS(f),d(f),hAf’h)
eF,h>
t: Apnl apy—n + ﬂ(m (d,ht 1) . A )
J; ((J;)) =" WWZ;)@ (m.n) — arg,zé?%’fm { Xd:h} Br.d,h (Hout({n,d,h}) - Min({n,d,h+1})) .
~ (n,d,h) . e
Z ﬁﬂ(" i) ¥(n,d,h) such thatn # d;  (7) From the equality above, we can thus conclude that theré exis
H(ni)e . (B*, u*, A*) such that the following equations hold:
it =0, if h—1 < HP; ®
, {Af,h}N—12h>o €
> " cenr);, @ wemin > (KhAptBpagadi) (03
deED,N—1>h>0 (mmyes b N _1>h>0
ﬂ§’” d)h) >0 (10) subject tof11) — (12);
"z u" € arg max B an (Bin({n, — flout({n,
Z Af,h _ E[Af[t]],; (11) AECH(T) gh ,d,h in({n,d,h+1}) out({n,d, h}))
N-1>h>0 (14)
Apn 2 0. (12)  subject tof8) — (10);

Note thatK is a positive constant, and the optimal solution 'Sﬁ*

the same for allK” > 0.

To understand problem (6), we can think that we split flow

finto N —1 flows — s IN—1), allocateE[ f’[l ol fraction where equality (15) holds according to the definition of

of flow

(f1,---

f to flow f;,, and impose hop constraintto flow fj.

(,Uf;ut({n,d,h}) — Ain(fn.any) — MiT]({n,d,thl})) =0
(15)

Lagrange multipliers.

Then the average number of hops per packet delivery of flow

fis

hAfyh.

>

N—-1>h>0

C. Joint Traffic-Splitting And Shortest-Path-Aided Back-
Pressure Algorithm

Now motivated by (13) and (14), we propose a joint traffic-

Thus, problem (6) is to find a splitting that is supportabld arsplitting and shortest-path-aided back-pressure alguorit
also minimizes the number of hops used to support the traffic.First note that

B. Dual Decomposition

To solve optimization problem (6), we defirtg, 45, to be
the Lagrange multiplier associated with (7). Then we can

obtain

L(B) =

>

{n,d,h}

a partial Lagrange dual function as follows:

2.

fEF,N>h>0

min KhAjf+
{Afn},RECH(T) '

Brdh (Ain({n,a,n}) + fin({n,d,h41}) — Hout({n,d,h})) )

subject to: (8) - (12),

where

Hout({n,d,h}) = Z M&{:S "
i:(n,i)EL
~ ~{m,d,h+1
Hin({n,d,h+1}) = Z gm,n) i }’

m:(m,n)eL

Z B a.n (Bin({n.da,ny) — Fout({n,d,h}))
n,d,h

is linear in terms ofi. Thus, we have

max . i n — i n,d,
plnax ghﬁn,d,h (ftin({n,d,n}) — flout({n,d,h}))

= max

pel Z By an (Hin({n,d,ny) — Hout({n.d,h})) -

n,d,h

Note that the Lagrange multiplig¥.,, 4 ) is related to queue
length Q;,.q4,n3, and (7)-(10) are the same as conditions (i)-
(iii) defined in Section IV-A, so equality (14) motivates s t
use the shortest-path-aided back-pressure defined by (4).

Furthermore, equality (13) motivates us to propose a traffic
splitting scheme such that, at time siothe A,[t] arrivals of
flow f are deposited in queue that minimizes

Kh+ Qs(p),ach),niltl-




Joint Traffic-splitting and Shortest-path-aided Back-
Pressure Algorithm:

Traffic Splitting: At time ¢, external arrivals of flowf are
deposited into queugs(f),d(f), h};[t]}, wherehi[t] is the
smallest integer of the following set:

{il . h € arg N—I{lirfloo (Kh + Q{s(f),d(f),h}[t])} (16)

Routing/Scheduling:  The
pressure algorithm without step 0.

holds for anyt and K. Thus the theorem holds. We skip the
proof details due to space constraints. Interested readers
find the details in [29]. [ ]
Remark 3: According to Theorem 3, we should choose
a large K to minimize the average-number of hops per
packet delivery. However, we notice that with a largé
packets are assigned to qudu€¢f), d(f), h} only when queue
{s(f),d(f),h — 1} has a large backlog, which could lead to

shortest-path-aided  backy |arge queueing delay (i.e., large MAC delay). Thus, there

is a tradeoff choosing the value @€ (to trade-off between
reducing hop-count and queueing delay). In Section VI, we

We first show that the algorithm above is throughpuigil| study the impact ofK” on the packet delay performance

optimal.

Theorem 2:Given A[t] such that(1 + €)A[t] € Ag, the
network is stochastically stable under joint traffic-gpig and
shortest-path-aided back-pressure algorithm.

Proof: It can be easily verified th&tQ][t]}; is a Markov
chain. We define a Lyapunov function

Vit] = Z (Q{n,d,h}[t])2
{n.d;h}

and prove that there exist3nax such that ifQy, 4.53[t] >
Qmax for some{n,d, h}, then

E[V[t+1] — V[t]|Q[t]] < —0, a7)

using simulations.

VI. SIMULATIONS

In this section, we use simulations to compare the net-
work performance under the joint traffic-splitting and ghet-
path-aided back-pressure algorithm and the traditionak-ba
pressure algorithm. We use the tethre joint algorithmto
refer to the joint traffic-splitting and shortest-path-eddoack-
pressure algorithm.

A. Simulation Setup

We consider a x 4 grid network with16 nodes ands links
as shown in Figure 1. At the beginning of each time slot, each

which implies the positive recurrence of the Markov chaifode generates a packet with probability The destination
We skip the proof details due to space constraints. Intedespf the generated packet is randomly, uniformly chosen from

readers can find the details in [29]. [ ]
Now given A[t] such that(1 + ¢)AJt] € Ag, we define

Agpx[oo] = lim E[Ayp[t]

under the joint traffic control and shortest-path-aidedkbac

pressure algorithm with parameté&f. Note thatA; j x[x]

is well-defined because the network is stable according to

Theorem 2.

all the nodes in the network. Thus, there is a flow between
each pair of nodes, i.e., there dré x 15 = 240 flows in the
network. The mean arrival rate of each flowNgl15.

We assume each link can serve one packet at each time slot.
No two adjacent links can transmit at the same time, that is,
we impose the half-duplex constraint.

In the following simulations, we choose different values\of
(node traffic generation rate) arid (the parameter used in the

Next we prove that the algorithm asymptotically solves tH@int &lgorithm). For eachA, K), we execute the simulation

optimization problem (6) a&” — oc.

Theorem 3:Given A[t] such that(1 + €)A[{] € Ag,
under the joint traffic-allocation and shortest-path-didack-
pressure, we have

>

feEF,N—-1>h>0

fEF,N—1>h>0

lim
K—oo

hAf,}LK[OO] = hA},ha

(18)

where and{ A7} , } is the optimal solution to problem (6).

Proof: Based on Theorem 2, we can first show that there

exists M3 > 0 such that

Jm S0 Y-

fEF N—1>h>0

SZ Z hAG ), +

fEF N—1>h>0

RE[Af n K |[t]]

My

e (19)

Furthermore, it is easy to see that

Z Z hE[Af,h,K[t]]ZZ Z hA%

fEFN—1>h>0 fEFN—1>h>0

for 5000 iterations. We then compute the average end-to-end
delay and average number of hops per packet delivery.

B. Average number of hops per packet delivery

We first computed the average number of hops over all
flows. We considered the back-pressure algorithm, and the
joint algorithm with K = 0.01,0.1, 1, and 10.

From Figure 4, we have the following observations:

« When\ is small, the average number of hops per packet
delivery under the joint algorithm is much smaller than
the one under the back-pressure algorithm. This is be-
cause the back-pressure exploits all feasible paths even
when the traffic load is light.

« When ) is large (the network is critically loaded), the
average number of hops under the joint algorithm is
similar to the one under the back-pressure algorithm. This
is because the back-pressure algorithm is optimal when
the network is critically loaded.

Figure 5 is the “zoomed-in” picture of Figure 4, and shows
the average number of hops under the joint algorithm with
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different values of{. We can see that largéft yields smaller gges not result in smaller end-to-end delay, which is diffier
average number hops. This is because the average pathdengbm the behavior of the average number of hops shown in
are asymptotically minimized wheli — oo, which is proved Figure 5. Note that under the joint algorithm, the source of
in Theorem 3. flow f sends packets into quede(f),d(f),h + 1} only if
Qn.dh+1y > Qn,any+K, SOK is the barrier to prevent long
ths from being used before short paths are saturated, Thus
ge K implies that long paths are exploited only after the
eues for short paths build up, which leads to larger queuei

C. Average end-to-end delay

We also computed the average end-to-end delay over %ﬂ
flows. Similar to the average number of hops, in Figure 6,

can see that the back pressure performs very poorly withlsm lay. This observation indicates that should be properly

A. This can be attributed to the exces§ive looping in the rou fiosen in order to minimize both the average number of hops
of each packet and can roughly be interpreted as a ra”dSHb the average end-to-end delay. For the network studied in

walk on the two-d|_men3|onal netwqu. . our simulations, we found that” = 1 is a good value to use.
Furthermore, with large\, the simulation also shows a

significant improvement under the joint algorithm. This i$. End-to-end Delay Distribution
different fr_om _the behavior of the average r?umber of hops Figure 8 shows the end-to-end distribution of fldw 16).
observed in Figure 4, where the joint algorithm and baclw L :
. . . e can see that the joint algorithm has much steeper slopes
pressure algorithm have the similar performance wheis ; . o
. . compared to the back-pressure algorithm, which again in-
large. From the simulations, we observed that the reasonsse€’. . ;
. . . . dicates that the joint algorithm has a much better delay
to be that the joint algorithm has a smaller variance in thapa .
o . performance compared to the back-pressure algorithm.
lengths traversed by packets thus resulting in smaller gjugu
delays compared to the traditional back-pressure alguorith VII
(even though the average path-lengths are similar). . _ .
Figure 7 is the “zoomed-in” picture of Figure 6, which only™ Minimum-Weight-Aided Back-Pressure
shows the average end-to-end delay under the joint algorith In Section IV and V, the scheduling/routing algorithms
with different values of K. We can see that largek’ here we developed use the shortest-path-information in findireg t
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