
Welcome	to	EE381V/CS395T		
Unconven7onal	Compu7ng

David	Soloveichik

T,	Th	5:00-6:30pm
ECJ	1.308

Spring	2023

Welcome	to	EE381V/CS395T		
aka	“Things	David	Likes”

David	Soloveichik

T,	Th	5:00-6:30pm
ECJ	1.308

Spring	2023

Dr. David Soloveichik
david.soloveichik@utexas.edu

Originally from Ukraine

2002 BS in Computer Science (Harvard)
2008 PhD in Computation and Neural Systems (Caltech)
Spent time at UW and UCSF as postdoc

Faculty member at UT since 2015

[Solo-vey’-chick]

About me

I have a disability: stuttering

Image: cyh.com

My research
• Models of chemical kinetics and distributed computing

We use formal models to discover the potential and limits of
chemical information processing. Many of our results
generalize beyond chemistry to distributed computing with
computationally weak agents.

• Molecular programming: engineering smart molecules
Using DNA "strand displacement cascades" we build
molecular interactions for synthetic biology, nanotechnology,
and bioengineering in our wet-lab. We use chemistry as a
"programming language".

• Quantum and reversible computation
For low energy computation and for quantum computing,
computation must "look similar" both forward and backward
in time. We study such computation and develop tricks to
optimize it.

Teaching Assistant

amluchsinger@utexas.edu
Austin Luchsinger

• Experience with proofs (e.g., discrete math, algorithms)

• Helpful: automata theory (Turing machines), logic
circuits, probability, basic differential equations…

• No physics, biology, or chemistry background
needed

This is a theory course: we will spend some time studying
definitions, theorems and proofs

Prerequisites

unconventional computation inspires
different models of computing

For the models of unconventional computing,
we’ll ask questions like:

1. How do we do interesting things in the model?  

2. What are the limits to the computational ability of the
model (something the model can’t do at all)?
 
3. What is the appropriate notion of resources (Eg time:
what can we do “quickly” in the model?)

1. Analog/real-valued computation

2. Turing machines, cellular
automata, counter machines, etc

3. Reversible computing

4. Quantum computing

Major Topics

computation gets real

almost anything can
compute everything

computing without
using energy

*@#?
computing with

negative probabilities

1. Analog/real-valued computation

2. Turing machines, cellular
automata, counter machines, etc

3. Reversible computing

4. Quantum computing

Major Topics

computation gets real

almost anything can
compute everything

computing without
using energy

*@#?
computing with

negative probabilities

Analog Computers

Differential Analyser
“Mathematica of the 1920s”

Admiralty Fire Control Table
British Navy ships (WW2)

8 / 31

Differential analyzer
1920-40s

Navy fire control computer
used through 1980s

Analog computers: examples

image:BrainPOP

Biology
~3.7 billion years - present

Legno compiler: modern
electronic analog computation

example of HW problems:

Show how the GPAC analog computer can simulate the differential equation:

x’(t) = tanh(x(t)).

Homework 4

Dr. David Soloveichik
EE381V/CS395T - Unconventional Computing

Spring 2021

Handed out: Fri. Feb 12
Due: Fri. Feb 19 (5 PM)

Reminder: Homework must be typed and submitted to Gradescope. You may discuss homework

problems with other students, but the solutions turned in must be typed entirely by you. You must

write the names of all the students you collaborated with at the top of your homework.

Recall that a system of polynomial ODEs is defined as follows:

x0
1(t) = p1(x1(t), . . . , xn(t))

...

x0
n(t) = pn(x1(t), . . . , xn(t))

where the pi are (multivariate) polynomials.

Problem 1. Non-polynomial ODEs

(a) It may at first seem that many simple di↵erential equations cannot be represented as
polynomial ODEs. However, polynomial ODEs are more powerful than it may at first appear.
Show that the (non-polynomial) di↵erential equation x0(t) = tanh(x(t)) can be implemented
with polynomial ODEs. In other words, construct a polynomial ODE system in which the
time evolution of some variable x1(t) exactly obeys x0

1(t) = tanh(x1(t)) starting at initial
value x1(0).

Hint: if x0(t) = tanh(x(t)) then x00(t) = (1�(tanh(x(t)))2)x0(t). (No additional knowledge
of di↵erential equations is needed to solve this problem.)

Remark: By generalizing the above kind of argument, it is possible to show that we
can replace polynomials pi in the definition of polynomial ODEs with arbitrary elementary
functions without changing the class of behaviors generated.

(b) Show the GPAC implementation of part (a). Make sure to point out where the variable
x1(t) appears.

1

Come up with a system of coupled chemical reactions that computes the ReLU function, and can thus
be composed in ReLU neural networks…

(Value x is represented as a difference of the concentrations of two species X+ and X-)

1. Analog/real-valued computation

2. Turing machines, cellular
automata, counter machines, etc

3. Reversible computing

4. Quantum computing

Major Topics

computation gets real

almost anything can
compute everything

computing without
using energy

*@#?
computing with

negative probabilities

Consider a lonely ant that wonders around a quadrant of the infinite plane. It has a finite number of
internal states, and at each step it moves one square north, south, east, or west, or it halts never to move
again. It cannot write anything on the squares it touches, and it cannot see. All it knows about its
position is whether it is touching the southern or western edge of the plane. Show that the ant can be
computationally universal, with the input being encoded somehow in the initial position of the ant, and
the output being encoded in the final position of the ant where it halts.

example of HW problem:

Conway’s Game of LifeElementary Cellular Automata

Even the simplest “laws of physics” are capable of universal
computation

ZIG-ZAGa

tile attachment error rate: 0.063%± 0.002

Repeating pattern

PALINDROMEb

yes

yes

no

no

tile attachment error rate: 0.017%± 0.002

Is the input a palindrome?

RECOGNISE21c

yes

no

no

tile attachment error rate: 0.005%± 0.001

Is the binary input = 21?

COPYd

tile attachment error rate: 0.011%± 0.003

Copy input bits to the right

CYCLE63e

Pattern that repeats every 63 layers

0
0

DIAMONDSAREFOREVERf Create diamonds at random intervals

0

0

WAVESg

tile attachment error rate: 0.028%± 0.009

Create & crash waves at random intervals

0

RULE110RANDOMh Rule 110, with random bits on bottom row

i RULE30

j DRUMLINS

k 2EGGS

LAZYBUBBLESORTl

tile attachment error rate: 0.031%± 0.004

Sort 1’s to the top

0

0

0

0

0

LAZYPARITYm

yes

no

yes

no

tile attachment error rate: 0.011%± 0.004

Is the number of 1’s odd?

RANDOMWALKINGBITn

tile attachment error rate: 0.032%± 0.005

1s randomly walking forever

0

0

ABSORBINGRANDOMWALKINGBITo

tile attachment error rate: 0.041%± 0.003

Random walker absorbs to top/bottom

LEADERELECTIONp

tile attachment error rate: 0.010%± 0.003

Elect a single leader

Figure 4: Extensive testing of the complete 6-bit IBC tile set. Circuits (a–e) and (i–k) are deterministic, the remainder are randomised. In (e) the CYCLE63
circuit shows a pattern that repeats every 63 layers, the maximum achievable48 number of layers between repeats for a pattern in the model. For the randomized
circuits in (f) and (g), different seed barcodes correspond to different settings of gate probabilities. In (f) for the DIAMONDSAREFOREVER circuit, increasing
barcode number implies increasing probability of creating a diamond per circuit layer (p = 0.1 for seed 300, p = 0.3 for seed 301, p = 0.4 for seed 302), and
for circuit (g), WAVES, a wave is created with probability p = 0.1 (barcode 320) or p = 0.5 (barcode 321) per circuit layer, and crashed with probability p = 0.5
per layer. For circuits (h) and (l–p), randomised gate positions are uniformly random: each has a pair of gates with respective probabilities p = 1� p = 0.5 and
different seed barcodes represent different input bit strings. Further details on circuit design, data and analyses are given in Supplementary Notes S8.1– S8.21.
Scale bar: 100 nm.

mensions. If algorithmic tile sets can be scaled up to 104 tile433

types, as has been demonstrated for uniquely addressed finite434

structures17, then universal tile sets will soon be within reach435

for experimental demonstration.436

The principles that we have here demonstrated for algo-437

rithmic self-assembly of DNA tiles should also be generically438

applicable to programmable self-assembly of other types of439

molecules, including RNA and proteins. That is to say, it is rea-440

sonable to expect that starting with a sufficiently accurate bio-441

physical model of RNA, or of proteins, a compiler that makes442

use of a hierarchical stack of abstractions should be able to sys-443

tematically design sets of molecules that self-assemble to grow 444

different complex structures as a function of information con- 445

tained in a seed. Not only would this advance our ability to en- 446

gineer complex molecular behavior, but envisioning concrete 447

examples of molecular algorithms provides new insights into 448

the design space that biological systems explore. 449

To appreciate these implications in their broadest sense, it 450

is helpful to consider an alternative perspective on our work: 451

Uniquely-addressed single-stranded tile structures15–17 have 452

been described as a “molecular canvas” in the sense that a sin- 453

gle multipurpose tile set can be “carved” by the artist to create 454

7

W
oo

ds
, D

ot
y,

M
yh

rv
ol

d,
 H

ui
, Z

ho
u,

 Y
in

, W
in

fre
e

(N
at

ur
e

20
19

)

The Uncomputable (Limits of Computation)

A visualization of the longest-running five-rule Turing
machine currently known. Each column of pixels
represents one step in the computation, moving from left
to right. Black squares show where the machine has
printed a 1. The far right column shows the state of the
computation when the Turing machine halts.
—from quantamagazine.com

image: wired magazine

1. Analog/real-valued computation

2. Turing machines, cellular
automata, counter machines, etc

3. Reversible computing

4. Quantum computing

Major Topics

computation gets real

almost anything can
compute everything

computing without
using energy

*@#?
computing with

negative probabilities

Erasing 1 bit of information must consume
at least kT ln 2 of free-energy

k=Boltzmann constant (1.38x10-23J/K)
T=temperature (K)

Landauer principle

• This is 2.85 trillionths of a watt (at room temp)
• Currently computers consume millions of times more

power per computational step
• But with technology improving, we are expected to

reach this limit in several decades. What do we do
then?

Reversible computing

• Computing without erasing temporary information
• Hard part: not using much more memory than in

normal computation
• Then can in principle compute using arbitrarily little

energy per computational step

1. Analog/real-valued computation

2. Turing machines, cellular
automata, counter machines, etc

3. Reversible computing

4. Quantum computing

Major Topics

computation gets real

almost anything can
compute everything

computing without
using energy

*@#?
computing with

negative probabilities

“I think I can safely say that nobody understands
quantum mechanics”—Richard Feynman

Quantum Computing

• The only technology with the potential to
fundamentally change the landscape of computational
complexity—what is efficient (polynomial time).

• Most famous result: Peter Shor’s polynomial-
time quantum algorithm for factoring integers.

Is this class for you?

• There are limited practical applications of the
material we cover, at least in the short term.
(Limited industry interest)

• Do you like solving puzzles?

• This is a theory course: we will spend time
studying definitions, theorems and proofs

Grading Policy
Homework	(60%)	

Projects	(40%)

A"endance	at	all	classes	is	expected,	but	not	part	of	the	grade.	In	
borderline	cases,	extra	credit	will	also	be	given	for	regular	par;cipa;on	
in	class,	coming	to	office	hours,	and	par;cipa;on	on	Piazza.	

4	projects,	one	for	each	major	topic

every	1-2	weeks

Normal	grading	scale:	93–100	A	;	90–92	A-	;	87–89	B+;	etc	

Homework
(60%	of	grade)	

Homework	must	be	typed	and	submiPed	to	Gradescope

You	may	discuss	homework	problems	with	other	students	(indeed	it’s	
encouraged	and	expected!)	and	me/TA.	I	expect	engaged	office	hours	
aZer	class.	

The	solu[ons	turned	in	must	be	wriPen	en[rely	by	you.	You	must	
write	the	names	of	all	the	students	you	collaborated	with	at	the	top	
of	your	homework.

Homework
(60%	of	grade)	

Homework 2

Dr. David Soloveichik

EE381V/CS395T - Unconventional Computing

Spring 2021

Handed out: Fri. Jan 29

Due: Fri. Feb 5 (5 PM)

Reminder: Homework must be typeset and submitted to Gradescope. You may discuss homework

problems with other students, but the solutions turned in must be typed entirely by you. You must

write the names of all the students you collaborated with at the top of your homework.

Problem 1. Stable function computation
Come up with a CRN that stably computes the following function, and prove correctness:

f(x1, x2) =

⇢
x1 x1 > x2

0 otherwise.

Hint: The hard part will probably be ensuring that your CRN computes correctly in the

case x1 = x2.

Problem 2. Characterizing unstable configurations
In this problem we derive a useful characterization of stable and unstable configurations.

We use this characterization in class to show that stable computation is “linear”. We begin

with the following definitions:

Definition 1. A ⌧ -truncation of a configuration ~c is a configuration ~d such that 8 species S,
~d(S) = min(⌧,~c(S)). In other words, ~d is like ~c but all species’ counts above ⌧ are truncated.

Definition 2. Let S ✓ Nk
. We say ~m 2 S is a minimal element of S if 8~s 2 S, ~s  ~m

implies ~s = ~m. Phrased another way, ~m 2 S is minimal if we can’t get another element of S
by decreasing ~m in some dimensions.

In this problem we work toward proving the following lemma which characterizes output

stability by ⌧ -truncation:

1
Lemma 1. 8 CRNs, 9⌧ 2 N such that if ~o and ~o0 have the same ⌧ -truncation, then ~o is

output stable i↵ ~o0 is output stable.

To prove this, we’ll first prove a helpful lemma in part (a), then prove the main lemma in

part (b):

(a) Let ⌦ be the set of configurations that are not output stable. Prove that for any config-

uration ~c, we have ~c 2 ⌦ i↵ 9 a minimal element ~m of ⌦ such that ~m  ~c.

(b) Prove Lemma 1. (You will probably need to use part (a)).

Hint: Use Dickson’s lemma: Every set S ✓ Nk
has finitely many minimal elements. If S

is non-empty then it has at least one minimal element.

2

example from 2021
meant to scare you:

Projects
(40%	of	grade)	

Groups of 1-4 students (depending on class size)

• ~15-30 min in-class presentation
• “homework problem” with solution (similar in style to homework problems)

mechanical	linkages	
can	compute	arbitrary	

algebraic	curves

Typically: present a single paper or published idea which shows some example of
“unconventional computation”

Legno	compiler:	
modern	electronic	
analog	computa[onDNA	compu[ng

Academic presentations are a big part of graduate school and are a learning
objective of this class

There is no textbook for this course, but the following book does
a great job in covering the nature of computation inside and
outside of electronic computers:

Lecture notes will be uploaded to Canvas after each class

(Optional) suggested papers will also be posted for different
topics

Course Materials
on Canvas

1. Analog/real-valued computation

2. Turing machines, cellular
automata, counter machines, etc

3. Reversible computing

4. Quantum computing

Major Topics
approximate

number of lectures

4

7

6

7

