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 Models of chemical kinetics and distributed computing
We use formal models to discover the potential and limits of
chemical information processing. Many of our results
generalize beyond chemistry to distributed computing with
computationally weak agents.

 Molecular programming: engineering smart molecules
Using DNA "strand displacement cascades" we build
molecular interactions for synthetic biology, nanotechnology,
and bioengineering in our wet-lab. We use chemistry as a
"programming language”.

 Quantum and reversible computation
For low energy computation and for guantum computing,
computation must "look similar" both forward and backward
in time. We study such computation and develop tricks to
optimize it.
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e Experience with proofs (e.g., discrete math, algorithms)

This Is a theory course: we will spend some time studying
definitions, theorems and proofs

e Helpful: automata theory (Turing machines), logic
circuits, probabillity, basic ditferential equations...

 No physics, biology, or chemistry background
needed



unconventional computation inspires

different models of computing




For the models of unconventional computing,
we’ll ask questions like:

1. How do we do interesting things in the model?

2. What are the limits to the computational ability of the
model (something the model can’t do at all)?

3. What is the appropriate notion of resources (Eg time:
what can we do “quickly” in the model?)



Major Topics

Analog/real-valued computation computation gets real

Turing machines, cellular almost anything can
automata, counter machines, etc compute everything

computing without

Reversible computing using energy

Quantum computing *@#?
computing with
negative probabilities
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Analog computers: examples

Ditferential anélyzer Navy fire control computer
1920-40s used through 1980s

866

Constant Fanout Integrator

e a0

Nonlinear
Multiplier/VGA function Adder/Subtractor

Legno compiler: modern Biology
electronic analog computation ~3.7 billion years - present




example of HW problems:

Show how the GPAC analog computer can simulate the differential equation:

x’(t) = tanh(x(t)).

Hint: if 2/(t) = tanh(z(t)) then 2”(t) = (1—(tanh(z(t)))?)2’(t). (No additional knowledge
of differential equations is needed to solve this problem.)

RelLU(x)
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X, x>0
ReLU(x) = {0, x <0

Come up with a system of coupled chemical reactions that computes the ReLLU function, and can thus
be composed in ReLU neural networks...

(Value x 1s represented as a difference of the concentrations of two species X+ and X-)
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example of HW problem:

m EEEN

Consider a lonely ant that wonders around a quadrant of the infinite plane. It has a finite number of
internal states, and at each step it moves one square north, south, east, or west, or it halts never to move
again. It cannot write anything on the squares it touches, and it cannot see. All it knows about its
position 1s whether it is touching the southern or western edge of the plane. Show that the ant can be
computationally universal, with the input being encoded somehow in the initial position of the ant, and
the output being encoded in the final position of the ant where it halts.



Even the simplest “laws of physics” are capable of universal
computation
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Woods, Doty, Myhrvold, Hui, Zhou, Yin, Winfree (Nature 2019)
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The Uncomputable (Limits of Computation)

A visualization of the longest-running five-rule Turing
machine currently known. Each column of pixels
represents one step in the computation, moving from left
to right. Black squares show where the machine has
printed a 1. The far right column shows the state of the
computation when the Turing machine halts.

—from quantamagazine.com
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image: wired magazine
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Landauer principle

Erasing 1 bit of information must consume
at least kT In 2 of free-energy

* Thisis 2.85 trillionths of a watt (at room temp)

* Currently computers consume millions of times more
power per computational step

* But with technology improving, we are expected to

reach this limit in several decades. What do we do
then?

k=Boltzmann constant (1.38x10-23J/K)
T=temperature (K)



Reversible computing

Computing without erasing temporary information

Hard part: not using much more memory than in
normal computation

Then can in principle compute using arbitrarily little
energy per computational step
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‘| think | can safely say that nobody understands
guantum mechanics™—Richard Feynman




Quantum Computing

* [he only technology with the potential to

fundamentally change the landscape of computational
complexity—what is efficient (polynomial time).

 Most famous result: Peter Shor’s polynomial-
time quantum algorithm for factoring integers.






+ This is a theory course: we will spend time
studying definitions, theorems and proofs

- There are limited practical applications of the
material we cover, at least in the short term.
(Limited industry interest)

Do you like solving puzzles?



Homework (60%)

Projects (40%)

Normal grading scale: 93—100 A ; 90-92 A- ; 87-89 B+; etc

Attendance at all classes is expected, but not part of the grade. In
borderline cases, extra credit will also be given for reqular participation
in class, coming to office hours, and participation on Piazza.



Homework

(60% of grade)

You may discuss homework problems with other students (indeed it’s

encouraged and expected!) and me/TA. | expect engaged office hours
after class.

The solutions turned in must be written entirely by you. You must

write the names of all the students you collaborated with at the top
of your homework.

Homework must be typed and submitted to Gradescope



example from 2021
meant to scare you: (60% of grade)

Problem 2. Characterizing unstable configurations

In this problem we derive a useful characterization of stable and unstable configurations.
We use this characterization in class to show that stable computation is “linear”. We begin
with the following definitions:

Definition 1. A 7-truncation of a configuration ¢'is a configuration d such that V species S,
d(S) = min(7, (5)). In other words, d is like ¢ but all species’ counts above T are truncated.

Definition 2. Let S C N*. We say m € S is a minimal element of S if V5§ € S, 5§ < m
implies 5 = m. Phrased another way, m € S is minimal if we can’t get another element of S
by decreasing m in some dimensions.

In this problem we work toward proving the following lemma which characterizes output
stability by 7-truncation:

Lemma 1. V CRNs, d7 € N such that if 0 and o have the same T-truncation, then o is
output stable iff o/ is output stable.

To prove this, we’ll first prove a helpful lemma in part (a), then prove the main lemma in
part (b):

(a) Let € be the set of configurations that are not output stable. Prove that for any config-
uration ¢, we have ¢ € () iff 4 a minimal element m of 2 such that m <¢.

(b) Prove Lemma 1. (You will probably need to use part (a)).

Hint: Use Dickson’s lemma: Every set S C N* has finitely many minimal elements. If S
is non-empty then it has at least one minimal element.

T —— L



Projects

(40% of grade)

Groups of 1-4 students (depending on class size)

Typically: present a single paper or published idea which shows some example of
“unconventional computation”

~15-30 min in-class presentation
*homework problem” with solution (similar in style to homework problems)

Academic presentations are a big part of graduate school and are a learning
objective of this class

Legno compiler:

Arabidopsis plants perform _ modern electronic
DNA computing

mechanical linkages
can compute arbitrary

. arithmetic division to prevent
algebraic curves

starvation at night

analog computation

>

Integrator

e a

Nonlinear
Multiplier/VGA function Adder/Subtractor




There is no textbook for this course, but the following book does
a great job in covering the nature of computation inside and
outside of electronic computers:

THE NATURE of
COMPUTATION

Cristopher Moore & Stephan Mertens

Lecture notes will be uploaded to Canvas after each class

(Optional) suggested papers will also be posted for different
topics



Course Materials e
on Canvas canvas
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