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Abstract

Dynamically tracking the flow of data within a microprocessor

creates many new opportunities to detect and track malicious or

erroneous behavior, but these schemes all rely on the ability to

associate tags with all of virtual or physical memory. If one wishes

to store large 32-bit tags, multiple tags per data element, or tags

at the granularity of bytes rather than words, then directly storing

one tag on chip to cover one byte or word (in a cache or otherwise)

can be an expensive proposition. We show that dataflow tags in

fact naturally exhibit a very high degree of spatial-value locality,

an observation we can exploit by storing metadata on ranges of

addresses (which cover a non-aligned contiguous span of memory)

rather than on individual elements. In fact, a small 128 entry on-

chip range cache (with area equivalent to 4KB of SRAM) hits more

than 98% of the time on average. The key to this approach is our

proposed method by which ranges of tags are kept in cache in an

optimally RLE-compressed form, queried at high speed, swapped

in and out with secondary memory storage, and (most important

for dataflow tracking) rapidly stitched together into the largest

possible ranges as new tags are written on every store, all the while

correctly handling the cases of unaligned and overlapping ranges.

We examine the effectiveness of this approach by simulating its use

in definedness tracking (covering both the stack and the heap), in

tracking network-derived dataflow through a multi-language web

application, and through a synthesizable prototype implementation.

1. Introduction

The ability to tag and track data as it pumps through high perfor-

mance microprocessors opens the door to a host of new dynamic

analyses. Recent research has shown that dataflow tracking enables

run-time checks for malicious code-injection [5,17], that it can help

uncover cross-site scripting attacks [7,12], that it makes privacy

easier to manage [18], that memory errors can be more effectively

uncovered and tracked [20,16], and that full systems can be sliced

and examined in novel ways [11]. All of these techniques rely on

ISA-level extensions – shadowing all architecturally visible state

with tags; creating dataflow rules that ensure tags are effectively

tracked during execution; and forming policies around these tags

that solve problems that face modern software developers.

Most dataflow tracking schemes require that all architecturally

visible storage locations (including the registers, cache, and main

memory) are extended with tag bits. These bits store a form of

metadata, for example they can be used to indicate whether a

particular piece of data is “trusted” or “untrusted”. Bits are ini-

tialized and propagated according to some specific policy created

and enforced to solve a specific problem. For example a simple

code-injection prevention policy might be (1) mark all data from

the network as untrusted, (2) ensure that all operations using one

or more untrusted operands have their produced data marked as

untrusted, and (3) prevent jumps to code in untrusted memory.

Of course this is an over simplification, real policies have to

deal with many exceptions to these rules, and there are many

past works that have explored how tag tracking can be efficiently

integrated into various stages of the pipeline to meet various

security or analysis goals [2,5,11,12,17,18,19,20,21]. In this paper

we concentrate specifically on the problem of how large multi-

bit tags can be stored and queried efficiently and we present

an approach that could serve as a drop-in replacement for more

straightforward, but less space efficient, tag storage schemes.

Specifically, the goals of the system we present here are to sup-

port: fine-grain tracking to allow tags to be tracked not just with

each word, but even each byte; flexible tracking granularities to

allow dataflow tags to be tracked per-byte or per-word as required

by the systems; and efficient on-chip storage of large multi-bit

tags to enable the next generation of dynamic analysis techniques

that require 32-bit tags or larger. The key idea behind our approach

is to store tags not with individual addresses, but for ranges of

address. We show that tag bits naturally demonstrate a very high

degree of spatial-value locality, and that by storing and operating

on the tags directly as ranges we can very efficiently store attributes

over arbitrary regions of memory (in fact we show in Section 5

that keeping even 4 ranges provides better coverage than a cache

that can store 1000 individual elements). Once we have a way of

querying these ranges to see which addresses map to them, we

can then associate arbitrarily “big” tags on each of these ranges,

effectively compressing the tag storage to a very large degree. The

challenge is that those ranges need to be rapidly stitched together

on the fly because addresses that share a common tag are created

piecemeal through a series of writes (as stores write those tags

to arbitrary locations) rather than as a bulk allocation (such as

malloc). This means that the underlying ranges could potentially

grow, shrink, split, or merge with any store operation.



In this paper we show that many dataflow tracking applications

exhibit very significant range locality, where long blocks of

memory addresses all store the same tag value, a fact we discuss

and explore in Section 2. This range locality is helpful even in

schemes that mark a few individual memory addresses because

even then the gaps between these addresses can be stored as a

single range. Furthermore, we show that a range cache (a cache

where arbitrary ranges of tags are dynamically swapped in and out

as requested), can effectively exploit this locality.

Implementing the range cache required a novel method for

storing and querying non-power-of-two aligned memory ranges

so that it works will work with unconstrained reads and updates.

Using the techniques described in Section 4, it is possible to keep

the resulting set of stored ranges optimally minimized at all times

regardless of how range updates overlap (overlaps occur when a

range to be inserted is not disjoint with the set of existing ranges).

While complex overlaps between ranges are possible, we show

that they occur quite infrequently and need not slow down the

operation of the most frequently occurring range queries. The

resulting system is effective and of relatively low complexity as

evidenced by our experiments over a variety of workloads (from

user level SPEC and JDK executions, to a full OS-level server

running a Ruby-on-Rails application) and though our analysis of

a fully synthesizable hardware implementation.

2. Background and Requirements

2.1. Currently Proposed DIFT Architectures

DIFT [17], Minos [5], Taintcheck [12], Raksha [7], LIFT [13]

and a host of other proposals use dataflow tracking to track the

flow of untrusted network, file and user inputs through memory.

These tools assign a 1-bit tag with every word of physical memory

to indicate whether the word stores “untrusted” data; whenever

an untrusted memory word is used for a sensitive operation like

a jump address condition or a system call, the tool generates a

warning for the user. Analogous to these tools, Memtracker [20]

uses a tag bit with every word in virtual memory to detect memory

errors, where an uninitialized address is used dangerously. The

wide applicability of this technique has given rise to generic taint

tracking frameworks that allow configurable tag initiation and

tracking ability. Dytan [4], GIFT [9], Taint-Enhanced Policy En-

forcement [23], Raksha [7] and Flexitaint [19] are some examples

of such schemes. While some rely on source code or compiler

support to insert dataflow tracking logic into programs [23], others

work at the program binary level [12,13]. Some binary level

schemes even propose hardware support to lower the performance

impact of dataflow tracking [5,7,18,19,20]. Operating at the binary

level allows these schemes to provide an end-to-end system that

can be useful in production environments, is compatible with

existing code and can work with dynamically loaded third-party

libraries and robust dataflow tracking tools have been demonstrated

to detect both zero-day exploits and memory corruption errors. In

this paper, we address an emerging concern for such hardware-

assisted binary-level dataflow tracking tools.

Logically, these tools store the memory tags in a tag-table

and propagate them through the table according to tool specified

rules. In actual implementations, this tag storage functionality

can be broken down into three components, each corresponding to

a level in the memory hierarchy. The first component interacts

with the processor pipeline and includes tag-bit extensions for

all registers and extensions to the processor pipeline with logic

(either integrated or as an in-order pre-commit stage) to check

and propagate these tags [7,19]. To enable flexible propagation

rules, Memtracker [20], FlexiTaint [19] and Raksha [7] introduced

the notion of a programmable table to store the tag propagation

rules, and a low overhead software handler to be called in case a

tag-usage policy is violated. The second component is a software

data structure that stores the tags for the entire address space.

In case of 1 or 2 bit tags, this is usually a bitmap (i.e a packed

array), while for tools that require 32-bit tags, this structure can be

a forward-mapped page table (Mondriaan Memory Protection[22],

Origin Tracking[15]) to reduce space requirement. This component

usually resides in a protected part of the program’s virtual memory

itself. The third, and the performance critical component is an

on-chip tag cache, where tags are kept either with the words in

the cache or in a separate but analogous hardware component.

This is then used to cache the tags for recently used addresses,

and has been shown to work with very low miss rates and

performance overheads given a 1, 2 or even 4 bit tag per word in

certain scenarios like file input tracking [19,20]. The software data

structure (the second component) then acts as secondary storage for

tags. In [19] and [20], this tag cache stores cache lines containing

chunks of packed arrays and derives great advantage from being

able to pack tags for a larger set of addresses than an equal

sized data cache line. Consequently, a tag cache can have very

low missrates, and combined with a bitmapped secondary store, a

4KB tag cache has been shown to have a performance hit of only

1.8% [19] for a file input tracking tool running SPEC benchmarks.

While one and two bit tags are no doubt useful, many analysis

methods are enabled by the use of both larger 32bit tags and finer

granularity tracking (at the byte level).

2.2. Analysis Techniques using Large Tags

Depending on the granularity of tracking, a tag could be required

for every word or even every byte of memory in the system

(at all levels of the memory hierarchy). Most prior schemes are

hardwired to support a single level of granularity because tags are

kept uncompressed in a structure very similar to a standard cache.

If only one bit of tag is required per word in the system a simple

one-to-one storage method (where each word has its own instance

of a tag) may be an acceptable expense. However, while past

hardware techniques have considered primarily binary tags (e.g

private and not-private, or trusted and untrusted), many security

policies make a finer distinction between levels (e.g. unclassified,

classified, secret, and top-secret or adversary, neutral, ally, and

fully-privileged), and many dataflow analysis techniques make

use of larger tags to store relevant semantic information (PCs,

address, stack pointers, or bitmaps). Often, the 1 or 2 bit tag

scheme is good enough to “detect” an anomaly, but it may not be

sufficient to reveal information about the source of the anomaly.

For instance, recent dynamic taint tracking tools [6,3,21,24] work

by assigning all sensitive or untrusted information in the system



a unique tag, where each tag is a 32-bit pointer to a structure

that stores the execution context when the untrusted information

had entered the system. These tags are assigned to all memory

locations that contain the untrusted information and are propagated

dynamically. Such schemes are then able to precisely identify the

sensitive information that is being leaked or expose the untrusted

input that has led to a security policy violation.

A similar scheme has also been proposed to track null pointer

exceptions at a memory location back to the program counter

that stored the null value [2]. Whenever an instruction stores a

null value to a memory location, the tool records the program

counter as a 32-bit tag. Such a tool is considerably more powerful

than Valgrind-Memcheck [16] or Purify [14] because it indicates

the source of a null pointer exception accurately even when the

exception manifests at a much later point in program execution.

It is interesting to note that origin tracking tool suffers from

considerable loss in accuracy if the tag value is less than 32 bits.

The original tool was implemented with the tag size being equal

to the data it was tracking, and suffered upto 78% loss in accuracy

by encoding a PC in 8 or 16 bits, but with a 32 bit tag it has been

shown to work with very high precision [15].

In addition to security and debugging, 32 bit tags have been used

for understanding complex software systems involving multiple

runtime environments distributed across a network. This technique,

termed full system tomography [11], attributes a unique tag to each

byte of an incoming network packet and tracks these tags across

language runtimes and operating system boundaries and over the

network through the entire distributed system. This has been used

to extract and visualize dynamic interactions between various

components of a full featured web application. For instance,

tomography can be used to find out all the pieces of software that

“touch” some information, to extract application level semantics at

the hardware level and even to identify data transfer points across

functions, processes and machines [11].

2.3. The Gap Between Current Architectures and
Applications

The Need for Fine-Grain Tag Tracking: In addition to using

32bit tags, all the tools mentioned in the previous subsection

use tags at byte granularity. The dynamic taint tracking tools

track where every byte of sensitive information flows, the origin

tracking tool tracks memory errors at byte granularity and the

tomography tool assigns a unique tag to every incoming network

byte. Performing this at word level would result in a trade-off

between conservative propagation of tags (with the resultant false

positives) and a loss in tracking accuracy. In their “Minos” work

for instance, Crandall et al [5] found that Sun Java SDK uses

8 and 16 bit immediates to generate control data. Consequently,

a word granularity tagging scheme gave a large number of false

positives for even a simple Hello World program. They proposed

either changing the JIT to use 32-bit immediates or adding a

compatibility mode in the dataflow tool that marks all sub-word

immediates as “safe”. In our tests, we observed a considerable

difference in the frequency of sub-word level accesses – though

on an average a sub-word access is performed once in every

1904 x86 instructions for SPEC benchmarks, bzip and parser
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Figure 1: As dataflow tracking tools move from using ”1 bit tag per word”
to ”32 bit tags per byte”, the tag cache will incur an increasing number of
misses. Each tag cache miss is then serviced by a handler that retrieves
tags from memory and adds runtime overhead to the tracked program.
We run two dataflow tracking tools, a memory-definedness tracker and a
network taint tracker, and show the average (in boxes) and the maximum
recorded miss rate (vertical bar) for a benchmark suite. The average miss
rate increases by 7X for the definedness tracking tool and by 24X for
the network taint tracking tool.

have a considerably high frequency of sub-word accesses (once in

every 8 and 18 x86 instructions, respectively). Some other popular

programs (especially those that work on strings) like JDK and

Firefox show similar trends (sub-word accesses once in every 10

and 16 x86 instructions, respectively). Our approach, because it no

longer maintains a direct one-to-one mapping between individual

addresses and tags, can easily assign and track tags at whatever

granularity the program exhibits.

Efficient Storage of Large Tags: To enable these increasingly

rich dataflow tracking techniques, we need an efficient way of

keeping large tags with the data. One way of performing this is

to simply scale the size of the tag cache. A 4KB cache at 1-bit

per word would obviously have the same miss rate as a 512KB

cache operating on 32-bit tags per byte. Another way to view

this same problem is to keep the cache size constant (in this case

4KB), and adjust the granularity accordingly. In Section 5, we

present two classes of dataflow tracking tools to drive our tests, one

tracks network dataflow while the other tracks the set of memory

addresses that are “defined” (written before read). Both these tools

assign a 1,2 or 32 bit tag with each tagged location (words or

bytes). Figure 1 shows, for a tool using 1 bit tag per word, the tag

cache has an average miss rate of 1.26% for the tomography tool

and 2.97% for the memory error detector and matches up with

previous findings [20,19]. As the tag sizes grow from 1 to 32 bits

(and hence the number of slots in the cache decreases), the average

miss rate increases to 12% and 10% for both the tools. At 32b tags

per byte, the average miss rate for the tomography tool is 30%,

while the memory error tool has a miss rate of 20%. Considering

that every tag cache miss has to be serviced by a secondary tag

store access (that walks a trie to locate the appropriate tags) this

miss rate corresponds directly to a very large performance hit. By

storing the tags as a cache of tagged address ranges, our approach

takes up no more space than a 4KB cache yet can store 32-bit tags

per byte with miss rates on the order of 1 or 2%.



2.4. The Opportunities and Challenges of Range-Based
Tag Caching

While conventional (bit-mapped) tag caches have the advantage

that they are intuitively understandable and reasonably straightfor-

ward to implement, they possess neither the degree of flexibility

nor the compressed representation that we would prefer to have.

However, as pointed out in prior work (such as Mondriaan Memory

Protection (MMP) [22] and iWatcher [25]), another option for

associating metadata (permission or watchpoints respectively) with

the address space is to divide the addresses into a set of distinct

ranges, and to associate metadata with the ranges instead.

The main idea from MMP is that address spaces can be parti-

tioned into a series of nested aligned power-of-two sized ranges

(MMP uses a multi-bit trie with 10, 10, 6, and 6 bits at levels

1 through 4 respectively). Any arbitrary (aligned or unaligned)

range can then be decomposed into an equivalent set of aligned

power-of-two ranges and memory attributes can be stored with

those ranges instead of on each and every byte in the machine.

MMP was originally proposed for defining and enforcing many

fine-grain protection domains, going so far as to provide byte

level granularity. Since the protection domains MMP seeks to

enforce tended to be defined directly in terms of ranges (for

example through “malloc” and “free” or at page boundaries),

range-based storage offers dramatic compression over a full bit-

mapped representation. Moreover, it achieves good performance

by caching power-of-2 aligned sub-ranges and handling reads fast

using network processing techniques. Since the trie is updated

infrequently (e.g. when new memory ranges are allocated) and

searched often, (e.g. by every load and store) the runtime overheads

are very low (12% for tracking mallocs/frees).

However, the problem is that dataflow tracking does not conform

to this kind of operation because ranges are not declared as long

ranges, rather they are built up one by one from a series of smaller

accesses. Initially, during a function call for example, two word-

sized ranges representing the return address and the stack frame

pointer are tagged. Later, as the function initializes some of its

variables one-by-one (not particularly in order by address), more

word-sized ranges become tagged (again one-by-one). An aligned

trie-based scheme will have difficulty discovering that tagged

stores to the address 9, 11, 8, and 10 could in fact be represented

by a contiguous range [8,11]. In addition to wasting space, range

fragmentation also leads to many unnecessary operations. If a

range changes in size, say from size 16 to size 15, an MMP-

style cache will break down an original range [0, 15] into power-

of-2 aligned sub-ranges [0, 7], [8, 11], [12, 13], [14, 14]. Likewise, if

a range of size 15 is extended to size 16, then the prior set of 4

ranges need to be merged into a single range [0, 15]. Thus for every

update, a trie based scheme has the time cost of determining and

inserting the power-of-2 aligned sub-ranges for the new range, and

the space cost of storing multiple entries for one unaligned range.

Table 1 attempts to quantify the problem of highly frequent

updates in dataflow tracking as compared to the stress test for

MMP (updating permissions at mallocs and frees). Dataflow track-

ing has one update every 4-6 x86 instructions on average, which

means trapping to a software handler would be very expensive. In

comparison, if we were to update tags at only mallocs and frees,

there is one update per 4.8 Million x86 instructions. Our solution

to this problem is to create a range cache that does not require

a power-of-two alignment so that ranges can be split and merged

quickly as needed without worrying about alignment (in fact in

the common case we can update a range as required with zero or

two cycle stalls).

3. Our Software Test Environment

In an attempt to quantify the conditions driving our design, we

need to discuss the applications that we target and the methods

used throughout this paper. The first tool we examine monitors

the flow of tainted data as it arrives over the network and records

a 1-bit “taint” tag for all addresses that store a value that is

directly tainted or has been indirectly generated from tainted

values [5,7,12] . This taint tracking infrastructure is built within

QEMU [1], an x86 virtual machine, running an online bookstore

application developed on the Ruby-on-Rails framework, using a

Mongrel web server, with features for customers to view the

store page, add to shopping cart and checkout books, along

with administration features. For this first tool, we use a simple

1-bit tag that indicates whether the address content is tainted

or not. The second tool is a memory error detector similar to

Valgrind-Memcheck that attributes a 2-bit tag to all memory that

is “allocated” and “initialized” by SPEC benchmarks. We also

include a Java program that parses XML documents to consider

the effect of a workload that is both important and quite different

than traditional SPEC programs.

For our third and final tool, used to stress the effectiveness

of our range-based design, we use the dataflow tomography tool

considered in [11] that attributes a 32-bit tag to each byte of an

incoming network packet. This tool is used to correlate usage of

individual network data bytes, and so each time an address is

attributed a tag, the tag propagation logic creates a new tag that

encodes the overall range of tags that the address has stored for

the entire execution. This tool is tested with network applications

like ssh, scp, lynx and traceroute, in addition to the Ruby-on-Rails

based online bookstore application discussed above.

4. Range Management for Tag Tracking

As described in the previous section, tags naturally group into

contiguous address ranges, but they do so incrementally through a

barrage of stores (as opposed to a single allocation). Table 2 shows

that, in fact, the total number of ranges that are created range

from a few tens to a few thousands. While the least number of

ranges across benchmarks is surprisingly small, the largest number

precludes storing all the ranges on-chip. This means we still have

to use Range Cache as a cache for tags and deal with ‘misses’

on tag reads and evictions when new tag ranges are created.

In this section we describe a novel Range Cache architecture

that captures the vast majority of dataflow tags accesses while

gracefully handling this incremental range aggregation problem.

Storing ranges of tags in a range cache improves the efficiency

of dataflow tracking tools to a great extent (as will be shown in

Section 5), but not before we address the following challenges -



Program Instrns/update Refs/update

bzip 7.43 1.75

crafty 6.97 1.94

gcc 5.03 1.34

gzip 6.38 1.14

mcf 13.84 3.56

parser 5.28 1.49

Program Instrns/update Refs/update

vpr 5.38 1.74

ammp 9.69 1.7

applu 5.82 2.09

swim 10.79 3.05

wupwise 6.33 1.43

average 6.54 2.07

Program Instrns/update Refs/update

admin login 3.38 1.34

book add 4.43 1.42

checkout 3.41 1.31

store view 6.08 1.29

average 4.33 1.34

Table 1: Frequency of tag updates in dataflow tracking: Updates to the tag store are very frequent, and are problematic for existing trie-based tag
stores. A range based tag store will require handling updates with very high throughput.

Storing point values in a cache is simple, but how do we store

ranges in a cache (Section 4.1)? With the cache storing arbitrary

ranges, what are the ramifications of fetching or evicting a range

(Section 4.2)? How do we handle cases where ranges overlap

(Sections 4.3, 4.4)? This section discusses how the Range Cache

architecture tackles each of the above questions.

4.1. Storing Arbitrary Ranges

The Range Cache stores a set of ranges (on the order of 128

ranges, each having a start and end address), each of which has an

associated metadata (which in our prototype is 32-bits). Requests,

either reads or updates, are handled by the Range Cache in a very

similar manner to a normal cache, except that each and every

request is a range and has both a start (called newstart) and end

(called newend) of its own. All of these ranges (both stored ranges

and requests) can be of arbitrary size and of arbitrary alignment. A

read request should return the tags of the ranges it overlaps. The

most common case (quantified later in Section 5.0.1) is that reads

only overlap a single stored range, but more complicated overlaps

are certainly allowed and their handling is discussed more below.

An update request sets the new tag value to be now associated

with new range of addresses. The tag values previously associated

with those address are overwritten ( i.e. each individual address

has one and only one tag associated with it ). This new range can

overlap with existing ranges in complex ways that may require the

existing ranges to be split up (again discussed more fully below).

The set of ranges in the Range Cache could be stored in many

different ways, but fundamental to the performance of the system

is the ability to search them very quickly. The lowest complexity

way to do this is to store ranges directly as a set of memory cells

for start and end with a separate comparator on each memory

address. Deciding whether a given address overlaps with a range

in the set then translates into a simple parallel comparison of the

query address over the set of stored start and end values. Figure 2

shows the basic 2-stage pipeline at the core of our approach.

The first stage of the pipeline interfaces to an input controller

(not shown) which decodes the incoming range instructions. An

address is queried across the set of comparators and only the

containing range is returned. The first stage compares the point

input (either newstart or newend) with all the stored start and

end registers in parallel and stores the matching start and end

indices for use by the second stage. It also records if the match

was an exact match (which hits flush on the edge of an existing

range), so that the second stage can decide the number of new

ranges to be inserted and if the new range can be aggregated

with any existing range. Note that the comparison need not be

a full subtraction operation, it only has to be able to identify the

greater of two numbers, a task for which a variety of small and fast

circuits apply [8]. The state machine in the second stage acts as the

controller and handles all of the overlapping ranges that can occur

(explained in detail in Section 4.3). Two pipelined accesses are

only dependent on one another if they access the same ranges, but

by speculating that all access are independent, and squashing those

that are not, we can reduce the stall cycles by 32% on average.

While we had to omit a more detailed analysis of this effect, the

range cache policies had a far larger effect on performance.

4.2. Managing a Cache of Ranges

Cache Updates: As we have already seen, updates account for

roughly 35% of the tag requests in the dataflow tracking tools we

have tested and to provide any reasonable amount performance

most updates need to be handled in the range cache only. This

will rely on the range cache’s ability to detect all overlaps to

dynamically stitch the new range into the existing ranges if

possible. This updating, similar in mission to a write-back policy,

can be used even if the address range is not found or only partially

found in the cache; the range cache simply updates the cache to

include the given range entry. Thus updates should not ever directly

result in a range cache miss. However, there is a complication:

changing the tag of a stored range or entering a new range may

increase the number of stored ranges, and if this number overflows

the available range entries in the cache, an entry has to be evicted

to the secondary store (all ranges are assumed to be dirty). Here we

use a simple LRU based policy to decide the range to be evicted

and written back to the memory hierarchy.

Cache Reads: Once update misses are handled, the next natural

question then is what happens on a cache read miss? A read access

is considered a miss if any of the addresses between newstart

or newend are not present in the range cache, in which case

the memory hierarchy needs to be accessed to find the matching

tag. However, because this is a cache, it also means that we

need to bring a range in from memory and replace some entry

in the cache. The complication arises when we go to fetch that

range from memory and pull it into the range cache. Unlike a

normal cache where a fetched cache line will not overlap an

existing line in the cache, the fetched range entry being brought

in from the memory hierarchy might possibly overlap multiple

cached ranges which have been written to, and inserting this range

entry into the cache directly will overwrite the most up-to-date

tag information. However, because we know the size of the gap

we are attempting to fill, and because this case occurs infre-

quently, this case is handled by inserting only the truncated range

[max(newstart, gapstart), min(newend, gapend)]. In order to



Program Tagged Memory Ranges

bzip 15.10MB 21

crafty 2.60MB 8236

gcc 3.46MB 3513

gzip 7.43MB 16

mcf 97.22MB 7053

parser 32.25MB 183

Program Tagged Memory Ranges

vpr 0.74MB 3597

ammp 7.47MB 39596

applu 199.31MB 54

swim 200.17MB 42

wupwise 184.84MB 38

defined-avg 57.94MB 4861

Program Tagged Memory Ranges

admin login 70771B 7558

book add 151582B 16958

checkout 29908B 2740

store view 44039B 4053

taint avg 74075B 7827

Table 2: Compression potential of storing ranges: The maximum number of tagged ranges over a program’s run is much lower than the tagged memory
footprint for both dataflow tracking tools tracking SPEC Int, FP and Ruby-on-Rails server programs.
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if read: 
    if fast-hit: provide matching tag 
    elif slow-hit: iterate through tags 
    else: access memory 
If update: 
    if fast-hit and tags match: silent 
    elif fast-hit: resegment 
    else: access memory miss? 

Figure 2: Range Cache Architecture: The first pipeline stage matches the start and end points of the new range, while the second stage is a state
machine that performs tag lookup and decides on the aggregated range entry to be written back.

minimize the cost of fetching back the missed range, we limit the

size of the fetched range to a maximum of 64B. Further, similar

to a cache update, fetching in a new range into the cache might

also require evicting a stored range in case the cache overflows.

Both these cases require a write back to the secondary tag store.

Behind the Cache: Central to the notion of any cache is that it

stores a subset of the complete set of information, and the range

cache is no different. Prior tag cache approaches read from a full

set of tags stored in protected memory when there is a miss, and for

the purposes of a fair comparison we assume that both a tag cache

and our range cache are served by the same non-range based tag

storage. Specifically, we assume a two level bitmap with the first

level containing tags for 64B aligned address ranges, and the leaf

nodes containing byte level information if the first level is partially

tagged. When a range read misses in the cache, the miss handler

walks the trie and fetches a range from a 64B size chunk back

into the cache. In case of a write, we use similar trie semantics to

store the tags in base and leaf nodes.

4.3. Handling Range Overlaps

As is (hopefully) clear, the key to building a range cache based

dataflow tracking scheme is handling all of the different range-

overlap cases correctly. When a new read or update range request

comes in (with start address newstart and end address newend),

the first step is to find all of the stored ranges that it overlaps with.

Because stored ranges do not overlap with one another, finding the

overlaps between the new range and the stored ranges can be done

quite quickly.

The second stage of the pipeline in Figure 2 sketches how a state

machine start and end match indices, looks at the incoming tag and

the tag of the overlapped ranges, and inserts new range(s) with

their corresponding tags into the stored array. For both read and

update operations, the newstart and newend of the new range are

injected into the two stage pipeline over two consecutive cycles to

find the containing ranges. There are thus four possible scenarios:

both newstart and newend are found in the range cache and both

are contained by the same stored range (in which case we know

we need only care about the interaction between these two ranges),

both newstart and newend are found in the range cache but are

contained by different stored ranges (in which case we overlap 2

or more stored ranges), only one of them is found in a stored range

(while the other one misses in the cache) and finally, neither of

them is found to lie in any of the ranges in the cache. Once the

overlap is classified into one of these scenarios, the request type

(read or update) and the tag of the new range must be considered.

Reads Overlaps: If the read request is fully contained within a

single range that is present in the range cache, the operation is

quite simple: simply return the tag of the containing range. If one

of the end points of the read range is not present in the cache,

then the appropriate range needs to be fetched from the memory

hierarchy and inserted into the range cache (identical to the update

case described below). If the read range overlaps multiple stored

ranges then there are several ways of handling this depending on



Update 

(a) Same found (b) Diff found (c) One found (d) None found 

Same tag Diff tag 

Silent update Split (Fast) Access memory 

Aggregate overlapped ranges. 
Handled in cache, but slower 

overflow ? overflow ? 

Figure 3: Different types of range overlaps possible for a Range Update
Request. Silent updates are ones that write back the same tag to an existing
range (Common and handled very fast). Writing a different tag to an
existing range could split it into (possibly) three new ranges (Common,
and handled fast). Other update types may overlap multiple existing
ranges or may not even be found in the cache.

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Figure 4: Along with the base cases described in Figure3, there are many
specific subcases that all require handling. This figure shows a subset of
those. 1) Silent hits; 2) Updates directly into the middle of an existing
range require 3 ranges to be touched; 3-4) Updates to the edge only
require one new range to be created; 5) A fully covering range requires
only a change in the tag; 6-7) are special cases of 3 and 4 above where
either the neighboring range is extended or not. All these cases can be
handled in one or two cycles by our controller

the policy being enforced or analysis being performed. The tags

can be prioritized (for example, returning the most “conservative”

tag value), they could be joined through a reduce operation (similar

to the method considered in Rifle [18]), a programmable rule

table could be used (similar to Flexitaint or Rakha), or all of

the results could be returned to a software handler through an

user-level interrupt. As demonstrated by these past works, the

“correct” behavior here is really tied to the intended semantics

of the dataflow policy, and because this case is so infrequent

(in Section 5.0.1 we show that it accounts for less than 0.001%

of accesses across several different tools and tracked programs)

we believe this matter to be orthogonal to the method by which

tags are associated with addresses. However, for the purposes of

evaluation we assume that all the tags need to be read and joined

into a single conservative estimate.

Updates Overlaps: An update request starts, like read, by deter-

mining the overlap scenario. However, unlike read, the updates can

require modification to many different ranges in the cache all at

once. To make this more clear, Figure 3 enumerates the different

overlaps that can occur during a range operation.

Case (a): The first case is when the new range to be written lies

completely inside an existing range. This is both the simplest and

most common case, and has two further sub-cases: In the first

subcase, the tag of the new range is identical to that of the stored

range it is contained within. In this case the update has no effect on

the stored ranges, and we refer to it as a silent update. This case

is surprisingly common1, as tagged variables are often updated,

reassigning the same tag back to the same address, an observation

also noted in [19] to reduce tag-updates induced by inter-processor

communication. The other sub-case is also very common, and

involves an incoming range completely contained within a stored

range, but with a different tag. This will cause the stored range

to fragment into a set of new ranges as shown. This could result

in up to two new ranges, the original range broken into the new

smaller range and two “leftovers” on the either side of the inserted

range. However, if the newstart = start or newend = end less

than two new ranges will result from the update.

Case (b) happens when the start and end addresses of the given

range are found to be present in two separate address ranges, with

possibly multiple ranges existing between them. (When the start

and end hit in adjacent ranges then there exists none). In this

case, our architecture will need to remove the entries for these

intermediate ranges, and create a new ‘aggregated’ range.

Case (c) represent situations when the input range extends one

of the existing ranges in either direction. Here, our architecture

performs a search for start and end of range, and the existing

range is found. It will then extend this existing range entry to new

boundary and remove other ranges that are overlapped by the input

range.

Case (d) show situations where none of the end-points of the given

range exist within any range in the Range Cache. In theory, this

case is not that bad because it is an update, and as an update, we

know the values that need to be written into the Range Cache. The

problem is that we don’t know where to put the range relative to

the other ranges. In practice this means searching through the range

cache to find the elements between which it should be inserted.

The order of the elements in important for Case (c) above so that

ranges that lie between two ranges can be quickly discarded when

required. Once we find the proper place for insertion, a new range

is inserted as appropriate.

Handling simple queries like inserting into single stored ranges

requires only minimal intelligence on the part of the Range Cache,

but managing the remaining overlap types without ever fragment-

ing or inserting redundant ranges requires some modifications to

the design.

1. Silent Stores [10] are stores that write the same value back into memory
that was already there, and thus can be safely ignored. In the case of dataflow
tracking, silent operations (inserts and deletes) are even more common because a
store instruction is very likely to have the same tag over time, and very likely to
write back to the same memory addresses. Consider definedness tracking where we
store the set of all valid address ranges. Here, initialization of a data-structure would
result in a new range being created, while every subsequent update to the initialized
data-structure will produce an insert request where the range is already marked
defined. For taint tracking, addresses are very commonly marked “untainted” when
the addresses were never marked tainted to begin with.



4.4. Complex Overlaps

Range Updates Covering Multiple Existing Ranges: Consider Case

(b) in Figure 3. Here the input range overlaps multiple stored

ranges, and the desired result is a single entry that represents the

entire tagged region. We would like to delete entries for all ranges

that are overlapped by the inserted range, but the problem here

is that we are processing only the end-points of the input range.

As a result, we will know which two existing ranges the start

and the end of the input range intersected with, but we will not

know which other existing ranges were overlapped by the input

range. To find all the overlapped ranges, we need a sorted index

table (analogous to a linked list in software terms). For example, in

order to insert [7, 30] in the range-set [5, 11], [29, 31], [21, 27], the

Range Cache would have to know that the order of existing ranges

was [5, 11], [21, 27], [29, 31]. 7 would hit [5, 11] and 30 would hit

[29, 31], and by traversing the list of ranges the Range Cache can

invalidate all existing ranges and insert a combined range [5, 31].
The sorted index table allows us to quickly find the indices that lie

between the two ranges containing the end points. Such a situation

can also arise when only the start of an input range intersects an

existing range while the end overlaps multiple existing ranges, or

vice versa. Cases (c) and (d) in Figure 3 shows such overlaps, and

eliminating redundant entries requires traversing either forward or

backward through the index table with a state machine. It thus

takes as many cycles as there are ranges to be invalidated.

Handling Missing Endpoint Information: Cases (c) and (d) men-

tioned above present a further challenge. One or both of newstart

and newend points of the new range many not fall in a range

in our range cache. For instance, consider inserting range [4, 28]
in the same set ([5, 11], [29, 31], [21, 27]). Since neither 4 nor 28
would intersect [5, 11], [21, 27] or [29, 31], it would be impossible

to detect that the [5, 11] and [21, 27] entries have to be invalidated

when [4, 28] is inserted. In these cases the state machine must

traverse through the index table to find the location at which those

ranges should be inserted into the cache (i.e. find the ranges r1

and r2 such that r1.end <= newstart, r2.start >= newend

and that no other range lies between r1 and r2. Once these are

found, then r1.next and r2.prev are both set to newentry. Clearly

this operation is not going to be very fast, but it also occurs very

infrequently. In our prototype RTL design this is handled by a

simple but slow state machine.

We have found that when such overlaps and misses occur they

usually span only a few ranges, and our tests (Figure 5) show that

while such updates are very uncommon in definedness tracking,

these comprise almost 10% of accesses in network taint tracking

in the Ruby-on-Rails application. So handling these cases using

a state machine, while being slower than the simple case where

both ends are found in the same range, is still much faster than

invoking a software interrupt to invalidate overlapped entries.

5. Evaluation

In the architectural descriptions of our range cache design, we

built around the fundamental assumptions that the most complex

types of ranges overlaps are also the most infrequently occurring.

Here we provide data across all of the benchmarks used to show

that this is indeed the case, and we evaluate the miss-rate and

estimate the performance impact across several dataflow tracking

tools (1-bit Taint Tracking, 2-bit Definedness Tracking, and 32-bit

Dataflow Tomography).

5.0.1. A Breakdown of Range Access Types. Figure 5 shows the

relative breakdown of the different types of range accesses for 2

different dataflow tracking tools. The update requests are broken

down into silent updates, fast updates (updates that only operate on

a single existing range), other updates (that span multiple ranges),

and update misses (where the endpoints were not found in any

stored range and requires a variable length number of cycles to

perform the insert). The read requests are broken down into read

hits (where access is confined to a single cached range), others

(where the read spans successive ranges) and read misses (when

some part of the requested range is not found in the cache). Both

definedness tracking and taint tools show a very distinct request

mix, but the common cases are read hits and silent or fast updates

for both tools and are handled fast in the cache. Tag read requests

are predominant across all benchmarks and all tools. 62% of the

definedness tracking tool’s requests are reads, while 56% requests

by the taint tracking tool are reads. Of the SPEC integer programs

we evaluated, 0.007% reads miss, while floating point programs

(owing primarily to ammp) miss 1.43% on average. The taint

tracking tool run on the ruby bookstore applications performs well

too and average miss rate is only 0.15%.

While read behavior is fairly similar between the definedness

and taint tracking tools and benchmarks, the updates are quite

different. Definedness tracking has fairly even mix of silent and

non-silent updates, while taint tracking has a more significant

proportion of silent updates. In the former, silencing the super-

fluous inserts removes almost 20% of the requests on average,

and leaves about 15% of the requests actually modify state. Most

updates overwrite the tag for part of a single stored range, which as

mentioned before, are handled fast in the range cache. This leaves

only 0.85% of SPEC integer programs and about 2% of floating

point tag requests that require a small 2 or 3 cycle pipeline stall.

The taint tracking tool is very different. Since it tracks network

data, more memory addresses remain untagged as compared to the

definedness tracking tool, where hundreds of MBs of the address

space gets tagged. Since a lot of memory is untagged, silent

updates to untagged memory comprise a significant proportion

of its accesses, and eliminating these removes about 32% of

the tag requests. Non-silent taint updates are about 10.75%, of

which 10.6% are accounted for by updates where neither of the

new endpoints are found in the cache and the remaining 0.15%

comprise mainly of effective simple updates. This behavior is

explained by the bursty nature of tagged data usage in network

programs. These programs create on the order of 10, 000 ranges

in the secondary store, and many of these are very small in size.

These ranges sometimes fill up the range cache and cause incoming

inserts to not overlap any range; thus taint tracking benchmarks

are a good complement to the more range-intensive definedness

tools. However, even though many accesses are to small ranges

(the tiny islands of data that are marked as tainted), the range cache

still performs well since a lot of the untainted address space then
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Figure 5: The relative proportion of various range queries for Dataflow Tracking. The SPEC applications (bzip through wupwise) are run
with the definedness tracking tool, while the Ruby applications (admin login through store view) and network applications (lynx through
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clusters into ranges and forms the target of a majority of accesses.

Later we will examine the performance of this approach on a burst

of network traffic and show that, even though the number of misses

is high, the fact is that the tag data is still compressed enough to

allow you to to get far lower miss rates than a more conventional

tag caching method. This effect is only further magnified as we

move to larger and larger tags.

5.1. Evaluation of the Architecture

One concern in creating an architecture, such as our proposed

range cache, that address a very specific set of problems is the

tradeoff between the complexity of the design and the benefit that

it provides. Given all of the complex types of overlaps that need

to be handled on read misses and updates that overlap multiple

ranges, it might seem a dauntingly complex task to implement

in hardware. Fortunately, as we have seen in section 5.0.1, the

most commonly occurring cases in practice are actually quite

straight forward (silent updates, direct range splits, simple reads,

etc.). The real complexity occurs in the uncommon cases, but

these can be handled slowly through either a state machine or

even a more general tiny hardwired controller. To ensure that we

have not missed anything in our design, we have implemented a

synthesizable RTL model (in verilog) and tested it across a variety

of input and output data. We also use this RTL model to count

the exact number of cycles required in those cases where complex

operations are required (such as deleting multiple range entries

for example) so that we can accurately reflect those counts in our

performance estimation. This hardware design also allowed us to

estimate the area of our approach. The controller itself is just under

3000 logic gates (which does not include the memory for the actual

tag storage itself), and when combined with the required memory,

a 128-entry range cache storing 32-bit tags is approximately the

same size as 4KB of memory.

Typical range sizes: We have shown in the motivation section

that a small number of ranges are sufficient to store the tag

information for a large set of addresses, which makes storing the

tags as simpler page-aligned ranges a potential option. However,

a snapshot of a 128 entry range cache for definedness tracking

on gcc reveals that over 100 out of 122 stored ranges (82%)

are below 64B in size, whereas a page size is 4096B. For the

same snapshot, the largest range is almost 2MB in size. Thus, even

though the maximum number of tagged ranges is small, there is

great variation in the sizes of the ranges and this makes using a

fixed page-sized range cache entry an expensive proposition.

Performance evaluation model: There are two primary sources

of performance overhead for a hardware assisted dataflow tracking

scheme. There is no performance penalty as long as the tag read

or updates hit a single range in the cache. However, each time a

tag read misses in the tag cache, a software or firmware handler

must be invoked to access the memory hierarchy to fetch the

tag cache line. This need to fetch this data from the memory

hierarchy is common to all of these approaches, and can be handled

in the same way. Range caching does not affect this at all. In

the work on Raksha [7], a light-weight exception handler that

runs in protected mode and costs only as much as a function

call in userspace is proposed, but there is still a cost in terms

of instructions executed and pollution of the memory hierarchy

(fetching those tags from memory may displace regular program
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Figure 7: Extra memory references in tools with 1/2-bit tag per byte to
32-bit tags per byte: A tag cache miss triggers a secondary store access
and adds extra memory references to the native program execution. This
graph compares the increase in memory references while using 1-bit taint,
2-bit definedness and 32-bit tag tracking tools. The taint tool runs Ruby-
on-Rails server apps while the definedness tool runs SPEC-Int,FP and a
JDK program. The 32-bit tools runs the Ruby-on-Rails server apps and
some other network apps. A range cache has better cache performance
and will result in fewer calls to the backing store handler. So it has a
smaller impact on the number of loads and stores.

data from the cache). We quantify both of these effects through

memory hierarchy simulation.

To accurately characterize the effect of range caching – which

relies directly on the amount of range locality in complex full

systems across all of memory – we use trace driven simulation

(to capture the full OS stack) and estimate performance with a

relatively simple and conservative model (as done in other full-

system evaluations such as MMP [22], Minos [5]). We assume a

processor executing one x86 instruction per cycle, with a 16KB

L1 Data cache and 4MB L2 cache, and we report the number of

extra instructions executed, the increase in the number of additional

L2 stalls (caused both by extra traffic from the tag and range

caches, but also from the interference due to those accesses),

and a rough estimate of the resulting performance. Stalls are

tabulated by extracting those additional memory accesses required

to service the tag storage in main memory and inserting them

through the memory hierarchy simulator to measure the increase

in the number of L2 misses (each causing a stall of 200 cycles), the

extra instructions required, and the impact of extra L2 accesses.

For these simulations, we have assumed a 4KB tag cache and a

128 entry range cache.

Cache Hit Rates Versus Number of Ranges: We test the

range cache by using it with the three dataflow tracking tools

under test, and measuring the miss rate while varying the number

of range entries in the cache. Figure 6 shows the results of this

experiment. With 128 range entries, the 1-bit taint tracking tool

has a miss rate of 0.54% (even with only 4 ranges, it’s miss rate

is just 7%). The average miss rate for 2-bit definedness tracking

on spec benchmarks is 1.57%, starting from 18% at 4 ranges.

Among the Spec programs, ammp has the worst miss rate (18%)
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Figure 8: L2 misses per 1000 instructions in tools with 1/2-bit tag per
byte to 32-bit tags per byte: The extra memory references shown before
not only add extra instructions to be executed, but affect the memory
hierarchy performance of the native program. This graph shows L2 misses
per 1000 native x86 instructions for both the tag cache and range cache
based dataflow tracking tools that use a 1-bit taint, 2-bit definedness or
a 32-bit tomography tag.

and contributes greatly to the average; sans ammp the overall

average drops from 1.57 to 0.07%. While a range cache averages

0.54% for taint tracking, a 4KB tag cache averages 2.5%. For the

definedness tracking tool, the averages for range and tag cache are

1.5% and 5.7% respectively. We observed that the miss rates begin

to plateau out at 32 range entries, and the improvement thereafter

is very small. While these tag cache miss-rates are arguably small

enough, the real difference comes in when we have large 32-bit

tags to store. For such tags, range cache miss rates of 0.5% contrast

with those for a simple tag cache in Figure 1, which misses 10%

when tracking per word and 30% when tracking per byte. It is

interesting to note that the miss rate of the range cache is lower for

the 32-bit tool than for the 1-bit tool for smaller cache sizes, while

they settle down to similar values for 32 ranges and beyond. This

is because, ideally, being independent of the tagging granularity,

a range cache should give similar miss rates for both 1 and 32-

bit tools that run the bookstore application. However, since the

bookstore application is interactive, slight changes in the execution

trace for different runs are expected and these show up as different

miss rates, especially for small range cache sizes.

Extra Memory Accesses: Figure 7 shows the extra memory

accesses that have to be performed by the program in order to

access the secondary tag store for both tag-cache and range-

cache. We measured this by implementing a software tag loader

and then making calls to it when the tag cache requires service

(on misses or evicts). This in turn will inject new accesses into

the memory hierarchy which increase the load on the memory

system. These experiments quantify the extra number of memory

accesses generated by this loader for the different applications. A

conventional tag-cache has a low miss rate for most programs as

long as the tag sizes are just 1-bit (e.g. 1b Taint tracking tool in

Figure 7) because there is so much data packed into the cache.

However, as the tag size increases, so do the miss rates and thus



so do the extra memory references that arise from handling these

misses (e.g. 2-bit tags in SPEC-Int, SPEC-FP and JDK in Figure

7). Figure 7 also shows the results for the 32-bit tools. Here we

compare our range cache approach to a simple tag cache approach

where both of the caches occupy approximately 4KB worth of

space (we give the benefit of the doubt to the tag cache approach

and assume that all of the area required goes directly to storing

tags). The key difference here is that we now are storing full 32-

bit tags which of course severely handcuffs the direct tag storage

methods because of all the space required to store redundant tags.

However, even in this small amount of space, the range cache can

store enough entries to keep the inflation on the number of memory

accesses to about 1.5X for a 32-bit tool as compared to 1.2X for

the 1 and 2 bit tools. This is obviously a non-negligible amount

of extra memory accesses, but remember it is also allowing full

32-bit tags to be kept on every physical address (at the byte level)

in the entire system.

Extra L2 Misses: While data on the extra memory accesses

helps us understand the extra load placed on the memory hierarchy,

an equally important characteristic is the number of additional L2

cache misses encountered. There are two ways the number of L2

misses could be impacted, either a) directly through access to tags

that are not stored in the L2 or b) indirectly by accessing tags

and pulling them into the L2 that displaces other data that was

needed later. Figure 8 shows the additional L2 misses incurred by

the program due to accessing the secondary tag storage (mapped

into the memory hierarchy) for both tag-cache and range-cache.

The figure, as the others before it, shows the 1-bit taint tracking

on Ruby applications and 2-bit definedness tracking on SPEC

benchmarks. Figure 8 also shows L2 misses for the 32-bit case as

above. All results are reported in number of L2-misses per 1,000

x86 instructions. For all of the schemes the range cache results

in less misses than the standard tag cache, but for most of the

1-bit and 2-bit tools the results are comparable (at least within a

factor of 2). The exception to this is JDK, which has more than

a factor of 10 less L2 misses even for the 2-bit tool. Again, the

biggest difference is with the 32-bit tools (Figure 8), where our

range cache results in lesser cache misses on average.

Performance Slowdown: Putting the number of memory ac-

cesses and misses together with the stall cycles incurred by

complex range operations we can draw an approximate picture

of the performance of the system. Again we show the 1, 2, and 32

bit tracking tools in Figure 9. While some past schemes tracked

only the heap [20], some others stored the secondary tag store

as a flat bitmap so that tag cache misses can be handled in

hardware [20,19,7]. In our evaluation, we are tracking all tags

through all of physical or virtual memory (both stack and heap)

and (like MMP) handle tag cache misses using a software handler

(this allows the secondary store with 32b tags per byte to be

compressed). Hence some performance estimates appear slower

than prior estimates.

For 1 and 2 bit tags, we see the trend that both tag cache

and range cache have low performance overhead. The tag cache,

however, performs poorly on mcf, ammp, applu, and JDK. Some

of these values are truncated off of the top of the graph. A
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Figure 9: Comparison of execution time of dataflow tracking tools using
a Range Cache compared to Tag Cache.

range cache of equal size will miss a great deal less and will

have few extra stalls (due to infrequent complex accesses as we

discussed previously). While the range cache runs quite a bit

slower than native on ammp (7.4X), it still improves over a tag

cache (10.1X). mcf, applu, and JDK, on the other hand, all see

large improvements. Further, while there are moderate gains when

tracking 1 and 2 bit tags, the gains are far more visible with 32-bit

tags, with the average slowdown coming down from around 9X

to 1.52X. In handling large dataflow tags (or any memory tags

that are frequently written) a range cache can provide a significant

benefit.

6. Conclusions

As dynamic dataflow tracking evolves as a technique, we are

likely to continue discovering surprising and powerful software

analysis uses – each requiring specialized, and sometimes large,

data tags. Caching these large tags on-chip in the conventional

manner leads to a substantial performance hit (average 9X for a



4KB cache). Rather than store these tags as a large flat array, we

show how by associating attributes with arbitrary ranges we can

keep a very compressed representation of memory tags, and that

by caching these ranges we can make very effective use of a very

small amount of on-chip memory. Dataflow tags naturally exhibit

a high degree of spatial-value locality, and storing memory tags as

ranges (which cover a non-aligned contiguous span of memory),

we can perform both reads and updates efficiently without ever

taking the tag data out of its highly compressed form. Even in cases

where tags are not likely to naturally fall into contiguous regions,

for example when we tag every byte of network input with a unique

identifier, there is still a large degree of range behavior between

those identifiers. If you cache the tags directly, even elements that

have uninteresting tags will occupy space in the tag store (you still

need to check if those addresses have tags), where as in our range

based scheme all of those elements can be efficiently summarized

with a single entry.

Through our novel dynamic range caching techniques, a small

range cache of only 128 entries (requiring 2KB of storage and

about an equal amount of additional hardware) results in an

average miss rate of around 1.5%. This miss rate is comparable

with a 4K entry tag cache, which if storing 32-bits tags per byte

would require at least 128KB of memory (just for the metadata

tags). Of course storing this metadata as ranges comes at the

cost of some added complexity, but in practice we have found

the most complex overlapping cases are exceedingly rare and

as such can be handled through a simple but slow controller.

Across the applications we examined such cases occurred only

0.5% of the time. As such, achieving good performance comes

down to handling the simple overlap cases quickly where a range

is inserted into the middle of a single pre-existing range. As the

devil is always in the details, we have demonstrated that it is

indeed feasible to implement such a scheme by designing one for

ourselves. Our synthesized device, while not highly optimized, is

fully functional and the controller requires less than 3000 gates. In

the end, we expect these techniques will be useful in associating

any large and highly dynamic metadata with the bytes spanning

the entire memory system, an ability which may turn out to be

useful in many other contexts as well.
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