
Hardware Assistance for Trustworthy Systems
through 3-D Integration

Jonathan Valamehr†, Mohit Tiwari‡, and Timothy Sherwood‡
†Department of Electrical and Computer Engineering

‡Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA 93106
{valamehr@ece,tiwari@cs,sherwood@cs}.ucsb.edu

Ryan Kastner
Dept. of Computer Science and Engineering

Univ. of California, San Diego
La Jolla, CA 92093

kastner@cs.ucsd.edu

Ted Huffmire, Cynthia Irvine, and Timothy Levin
Dept. of Computer Science
Naval Postgraduate School

Monterey, CA 93943
{tdhuffmi,irvine,levin}@nps.edu

Abstract

Hardware resources are abundant; state-of-the-art proces-
sors have over one billion transistors. Yet for a variety of
reasons, specialized hardware functions for high assurance
processing are seldom (i.e., a couple of features per vendor
over twenty years) integrated into these commodity proces-
sors, despite a small flurry of late (e.g., ARM TrustZone, In-
tel VT-x/VT-d and AMD-V/AMD-Vi, Intel TXT and AMD
SVM, and Intel AES-NI). Furthermore, as chips increase in
complexity, trustworthy processing of sensitive information
can become increasingly difficult to achieve due to extensive
on-chip resource sharing and the lack of corresponding pro-
tection mechanisms. In this paper, we introduce a method
to enhance the security of commodity integrated circuits,
using minor modifications, in conjunction with a separate
integrated circuit that can provide monitoring, access con-
trol, and other useful security functions. We introduce a new
architecture using a separate control plane, stacked using 3-
D integration, that allows for the function and economics
of specialized security mechanisms, not available from a co-
processor alone, to be integrated with the underlying com-
modity computing hardware. We first describe a general
methodology to modify the host computation plane by at-
taching an optional control plane using 3-D integration. In a
developed example we show how this approach can increase

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

system trustworthiness, through mitigating the cache-based
side channel problem by routing signals from the computa-
tion plane through a cache monitor in the 3-D control plane.
We show that the overhead of our example application, in
terms of area, delay and performance impact, is negligible.

1. INTRODUCTION
The development effort required to build a system is di-

rectly proportional to the cost of its failure; hence critical
systems used in space shuttles and banks undergo much
more rigorous development cycles than systems for home
users. High assurance systems, which are designed to with-
stand attacks by professional, well-funded adversaries, re-
quire a tremendous investment of time, effort, and money
by their small user base. In comparison to commodity sys-
tems, these systems generally lag far behind in performance
and programmability. Unfortunately, for commodity proces-
sors, security threats are often not considered at the rapidly
changing ISA [8] or micro-architecture levels. Clearly, a
method that allows commodity parts to be retrofitted with
protection mechanisms without increasing the cost for ordi-
nary users and without decreasing the performance of the
commodity processor will offer a significant advantage for
high assurance system development.

Economics of Hardware Trust: The economics of trust-
worthy system development puts designers under constraints
not faced by low assurance, commodity systems. For exam-
ple, the expense of special-purpose hardware can make it
costlier to provide both high performance and strong secu-
rity. Even when hardware vendors incorporate security en-
hancements, integrating these mechanisms into a complex
system design may present many practical and theoretical
problems, driving up the costs and driving out the release
schedule. In addition to the fact that such system devel-

1

opment costs per unit are very high, users requiring such
functionality make up a small portion of the market. So-
phisticated security mechanisms at the hardware level are
typically targeted at a relatively small market sector and
add unacceptable costs to commodity products.
Performance Ramifications: The design cycle of trust-

worthy systems also places constraints on the performance
that can be realized in the final version of these systems.
Due to the high non-recurring engineering (NRE) cost of
manufacturing custom hardware and the small amortization
base of low volume products, manufacturers are often forced
to choose less costly alternatives, such as an older, cheaper
process (e.g., 0.5um vs. 45nm).
As a result of these economic factors, designers of trust-

worthy systems requiring high performance need some way
to incorporate commercial hardware components without
compromising security. To address this challenge, a method
of bridging the gap between cutting-edge technology and
trustworthy systems is of paramount necessity.
3-D Integration for High Assurance: The primary

goal of this paper is to introduce a new method by which se-
curity functionality can be added to a processor as a foundry-
level configuration option. Specifically, we propose a new
and modular way to add security mechanisms to current and
next-generation processors through the use of 3-D integra-
tion. We advocate consolidating these security mechanisms
into a physical overlay, literally a separate plane of circuitry
stacked on top of a commodity integrated circuit. The secu-
rity mechanisms that reside in this overlay can then be con-
nected to the underlying chip with a variety of interconnect
technologies, yet can be completely omitted without change
to the commodity chip’s function and without affecting its
cost. Using 3-D hardware to alleviate this problem offers
many advantages over other hardware solutions as well as
software solutions. These advantages are fully explored in
Section 2.
Contributions: In this paper, we show that an active

layer1, which we call a 3-D control plane, specifically dedi-
cated to security, has the potential to implement a variety
of security functions in a cost-effective and computationally
efficient way. Specifically, this paper makes the following
contributions:

• We are the first to develop a method of using 3-D
integration for trustworthy system development, and
propose to combine an independently fabricated 3-D
control plane containing arbitrary security functions
(such as micro-architectural protection mechanisms)
along with a commodity integrated circuit, which we
refer to as the computation plane.

• Security functions can be broadly classified as either
active or passive monitors, depending upon whether
the 3-D control plane modifies signals on the compu-
tation plane. We describe precise circuit-level primi-
tives required to build both active and passive moni-
tors such that signals on the computation plane can be
arbitrarily tapped, disabled, re-routed, or even over-
ridden. We also outline how the 3-D control plane can

1The active layer is the silicon layer where transistors re-
side, and metal layers are fabricated above that connect the
transistors together. We define a “plane”as the combination
of the silicon and metal layers that compose a typical 2-D
integrated circuit.

be integrated in a purely optional and minimally in-
trusive manner with very minor modification to the
commodity computation plane.

• We demonstrate our circuit-level primitives using an
active monitor that implements a well-known micro-
architectural protection mechanism: a cache monitor
that can prevent access-driven cache side channel at-
tacks.

• Finally, we validate the functionality of our circuit-
level primitives using SPICE simulations, and build a
synthesizable prototype of our 3-D cache monitor to
evaluate the area-delay cost of its inclusion. We also
quantify the impact of our cache protection mechanism
on the performance of SPEC benchmark programs,
through detailed timing simulations on an out-of-order
CPU simulator.

Before describing the circuit-level modifications required
of the computation plane, we begin with a discussion of 3-D
integration and the opportunities it presents for trustworthy
system design.

2. MOTIVATION FOR 3-D SECURITY
In this section, we provide a short background on 3-D

integration and present our motivation for using 3-D hard-
ware to address the concerns raised in Section 1. Since 3-D
integration is an existing technology already used in indus-
try [24, 26], our work does not discuss the feasibility of 3-D
integration but rather focuses on the security ramifications
of a 3-D control plane.

2.1 3-D Integration
While the details of how we use this technology are more

fully described in Section 3, the main idea is that two pieces
of silicon are fused together to form a single chip. The
two active layers of the silicon (the commodity computation
plane and 3-D control plane) are connected through inter-
die vias2 (micron-width wires that are chemically “drilled-
and-filled” between the layers) which run vertically between
them. This ability to interconnect multiple active layers
enables the addition of an optional die that specifically im-
plements security functions to a commodity processor die.
This 3-D control plane would have access to the security-
dependent signals of the system. Such a system could be
sold to customers requiring application-specific security pol-
icy enforcement, information flow control, or other security-
specific support. Commodity systems, on the other hand,
are unlikely to include this additional, more costly function-
ality that only benefits a small number of customers.

Attaching multiple layers of silicon together in 3-D stacks
is a relatively new, yet already marketed technology [26],
which is being explored by most of the major microproces-
sor manufacturers [6]. As opposed to most current 2-D cir-
cuits, which use only one active layer for computation, 3-D
circuits contain multiple active layers, or planes, which are
then connected using techniques such as inter-die vias (or
“posts”). Several 3-D interconnect technologies are currently
being evaluated in industry as a means of stacking multi-
ple chips together. Some potential applications include the

2Vias are physical connections between two wires on differ-
ent metal layers.

2

Security Architecture Power Bandwidth Delay

Security Functions On-chip

Security Functions on a
Co-Processor

Security Functions on a
3-D Control Plane

Low power consumption, with
the only addition being the
power used by security logic and
interconnect

In addition to powering another
chip, driving long off-chip bus
wires consumes large amounts
of power

3-D security only slightly
increases power consumption,
and can use less power than
on-chip due to exploitation of
locality of security modules

Bus width is limited due to
contending traffic and
component congestion
throughout the chip (1-16
bytes) running at core clock
speed (>2 GHz)

Low data bus widths due to I/O
pin availability (1-8 bytes)
running at external clock speed
(~ 400 MHz)

3-D allows bus widths to be
increased significantly (up to
128 bytes) running at core clock
speed (>2 GHz)

On-chip delay is dictated by the
length of interconnect, which is
often very large between
components

Very large delay between off-
chip co-processor and CPU
(>200 cycles)

3-D exhibits low delay due
to the short length of inter-die
vias, as well as the locality that
can be exploited to shorten
critical paths

Figure 1: This table compares other hardware options for security against a 3-D control plane and shows the
advantages and disadvantages in terms of power, bandwidth, and delay [11, 20].

stacking of DRAM or bigger caches directly onto the pro-
cessor die to alleviate memory pressure [17] and designing
stacked chips of multiple processors [2].
Toshiba has applied 3-D integration to a CMOS image

sensor camera module for mobile phones, which they call
a Chip Scale Camera Module (CSCM), achieving a signif-
icant reduction in size while satisfying high-speed I/O re-
quirements [24]. The Toshiba work demonstrates that cost
savings are possible with 3-D integration because passive
components, which provide load matching between the chip
and the camera, can be integrated into the chip. This makes
the passive components cheaper, smaller, and faster than
board-level components; therefore, savings can be realized
in power, resistance, and capacitance, as driving lines be-
tween layers consumes much less power than between chips.
Furthermore, multiple layers, each optimized for its partic-
ular function, can be combined into a single stack.
Large microprocessor manufacturers are unlikely to inte-

grate support for highly specialized security mechanisms be-
cause the market for such features represents such a small
portion of their total customer base. This is an example of
Gresham’s Law: if a manufacturer incurs the cost of security
mechanisms deemed unnecessary by the general commod-
ity market, a competing, less costly product without such
mechanisms will dominate. By fabricating the optional 3-
D control plane with functions that are complementary to
(but separate from) those of the main processor, stacked in-
terconnect offers the potential to add security mechanisms
to a small subset of devices without impacting the overall
cost of the commodity processor.
Just to be clear, we are advocating the development of

a processor which is always fabricated with special connec-
tions built in for joining it with a control plane. The differ-
ence between the system sold for the cost-sensitive consumer
market and the one that is sold to the security-sensitive cus-
tomer is only whether a specialized security device is actually
stacked on top of the standard integrated circuit, utilizing
the special connections. Additional benefits to this approach
are that security mechanisms implemented in hardware are
faster than software-only approaches, and the security mech-
anisms can be specialized for particular sets of applications,
systems, and customers.

2.2 3-D vs. Other Hardware Solutions
This section discusses the advantages of using 3-D integra-

tion over other hardware methods such as on-chip and co-
processor implementation of security functions. In general,
implementing security functions in software is less costly
than in hardware, but software implementations have worse
performance and are more susceptible to tampering. Imple-
menting security functions in hardware is more expensive,
but the result has better performance and is more resilient
to manipulation.

Why not On-Chip?: Implementing security features
on-chip creates many issues and discrepancies. It would
force all users of the chip uninterested in system trustwor-
thiness to incur the possible negative effects of the added
security logic. As discussed previously, an unacceptable
consequence of on-chip security is the increase in cost for
all consumers. In addition, on-chip security functions have
the potential of decreasing the overall performance of the
chip, as security modules may need long interconnect wires
to data and control lines spanning the whole chip area; this
can be mitigated by the exploitation of locality in the 3-D
layer as well as short interconnect through inter-die vias as
explained in Figure 1. The large majority of microproces-
sor consumers are chiefly concerned with the performance of
the chip, and on-chip security could provide advantages to
competing chip manufacturers who do not incorporate these
security features. Because of market pressures, chip manu-
facturers are reluctant to pursue such a course. With 3-D
security, the small percentage of consumers who need the
added security logic have the option of including it in their
systems, while consumers who do not need this extra logic
can omit it.

Why not use a Co-processor?: A co-processor solu-
tion, much like 3-D security, allows the consumer to have the
option of including additional security logic. However, un-
like 3-D security, an off-chip co-processor can not safely ac-
cess internal micro-architectural control signals without pos-
sibly making them susceptible to outside tampering. This
makes 3-D security much more attractive and feasible, as
any resource or control signal can be accessed and modified
by the 3-D control plane. Also, co-processor solutions suf-

3

fer from the utilization of slow, power-hungry off-chip buses.
These off-chip buses operate at much slower frequencies than
can be realized with a 3-D solution (Figure 1), and they can
introduce large delays in processor speed. In addition, off-
chip buses have to interface with the main processor through
the main processor’s I/O pins, and they are limited in size
based on available pins. This equates to smaller bus widths
(Figure 1), which can further hinder performance. Choos-
ing which pins to interface between the processor and the
co-processor also creates inflexible co-processor designs, be-
cause we are limited to accessing or modifying those pins,
whereas with a 3-D solution we can create any number of
different co-processor designs and access any internal signal.
Aside from performance, a co-processor solution also entails
increased power usage, as driving long off-chip buses requires
much more power than driving short inter-die vias to a 3-D
control plane. A 3-D security scheme does not fall victim to
any of these issues.
Disadvantages of 3-D Security: 3-D security holds

much promise as a solution; however, it is not without trade-
offs. Chips fabricated using 3-D integration need greater
thermal management, and, without additional cooling, will
run at higher temperatures due to the proximity of com-
ponents [11]. While this is a known issue, it is not insur-
mountable and can be addressed with more expensive cool-
ing solutions. Another disadvantage of 3-D chips is their
expected manufacturing yield, as the functionality of the
complete chip is dependent on the individual yield of each
of the two dies.This can create lower overall yield than the
individual dies. However, the cost of this lower yield will
not be incurred by most consumers, as the decrease in yield
only applies to the systems that need the 3-D control plane
attached.
This section has compared 3-D security with other soft-

ware and hardware solutions for trustworthy systems. The
3-D control plane can include different types of security mon-
itors. In the next section, we will discuss both of these types
of monitors, and follow with our novel circuit architecture
to allow the use of an optional 3-D control plane.

3. 3-D SECURITY ARCHITECTURE
The 3-D control plane can include several security func-

tions on one die, implemented as either passive or active
monitors. While passive monitoring in 3-D for system pro-
filing has been explored previously [12], a novel contribution
of this work is providing active monitoring in a 3-D con-
trol plane. In the following section we explain the uses of
these two types of monitors, and describe a novel circuit-
level architecture that allows us to make the functions of
these monitors available as a fabrication option in an over-
lay.

3.1 Passive and Active Monitors
Passive Monitors: One potential use of the 3-D control

plane is to act as a passive monitor, simply accessing and
analyzing data from the computation plane. For instance,
we may wish to monitor accesses to a particular region of
memory or audit the use of a particular set of instructions.
To monitor these events, we must understand when such
events are occurring, which necessitates tapping some of the
wires from the processor. This requires posts and vias to
the instruction register and memory wires, which gives us

direct access to the currently executing instruction.
Passive monitoring is reasonably straightforward to im-

plement in 3-D technology, as it just requires a set of vias
to the top of the computation plane, and then a post from
there to the 3-D control plane. Figure 2 shows such a post.

3-
D

 C
on

tr
ol

Pl
an

e
C

om
pu

ta
tio

n
Pl

an
e

Reference

TSV

Sleep
Transistors

Buffer

bus

Metal
Layers

Silicon Substrate

vias

CMOS
Logic

TSV

Post Carries Rerouted

Metal
Layers

Monitor
Logic

Signal from Computation Plane

Diabled by
Bus Is

Contact Point

Figure 2: This figure shows the low level architec-
ture for a method to route data/control lines on the
computation plane through the 3-D control plane.
This can be performed to isolate resources in the
computation plane by disabling a bus, for example.
The computation plane and the 3-D control plane
are connected by inter-die vias or through-silicon
vias (TSVs). Posts are required to tap the required
signals needed by the security logic, and sleep tran-
sistors are used to either reroute, override, or dis-
able lines on the computation plane. Using these
primitives, we can build mechanisms to monitor the
computation plane.

The area overhead of this passive style monitoring in a 3-
D layer was analyzed by Mysore et al. [12] in the context of
hardware support for analyzing the processor in real time
for debugging and performance profiling, which has high
throughput requirements and is very slow to implement in
software. Their conclusion was that, even with very pes-
simistic assumptions about the technology, there would be
less than a 2% increase in the total area on the computation
plane and that there would be no noticeable delay added.
The small amount of area overhead is due to the need to
save space for the vias across all of the layers of metal.

Active Monitors: Whereas passive monitoring allows
for auditing, anomaly detection, and the identification of
suspicious activities, systems enforcing security policies of-
ten require strong guarantees about restrictions to overall
system behavior. A novel contribution of our work is the
employment of active monitors; an active monitor enables
control of information flow between cores, the arbitration of
communication, and the partitioning of resources.

The key ability needed to support such functionality is to
reroute signals to the 3-D control plane and then override
them with potentially modified signals. With this technol-
ogy and minor modification of the computation plane, we

4

can force all inter-core communication, memory accesses,
and shared signals to travel to the 3-D control plane, where
they are subject to both examination and control. For in-
stance, we can ensure that confidential data being sent be-
tween two cores (which are traditionally forced to traverse
a shared bus) is not leaked to a third party with access to
that bus.
We have developed a method to modify signals on the

computation plane that is accomplished in two parts. The
first part is to ensure that the monitor has unfettered access
to all the signals (tapping), which is, in essence, the same
as the passive monitoring scenario described above. The
second part is to selectively disable those links, essentially
turning off portions of the computation plane (e.g., a bus),
or overriding them to inject different values. The difficulty
is that we must remove a capability (the connection between
two components) only by adding a 3-D control plane (which
cannot physically cut or impede that wire). The compu-
tation plane must be fully functional without an attached
3-D control plane, yet it needs to be constructed so that by
adding circuitry, the targeted capability can be completely
disabled. To accomplish this, components in the computa-
tion plane must be modified to support active monitoring.

3.2 Circuit-level Modifications
This section introduces the circuit level modifications we

will make in order for the 3-D control plane to perform its
intended function and for the computation plane to be able
to execute in its absence. These primitives are illustrated in
Figure 4.
Sleep Transistors: A novel and alternative method for

disabling links is to physically impede the connection itself.
While this sounds intrusive, we are the first to leverage an
existing circuit technique called power gating [18] for this
application. Support for power gating is added through the
addition of sleep transistors placed between a circuit’s logic
and its power/ground connections. The sleep transistors
act as switches, effectively removing the power supply from
the circuit. The circuit is awake when the transistors are
activated by a specific signal, which provides power to the
circuit, allowing it to function normally. Alternatively, the
sleep transistors can be given the opposite input and turned
off, thus disconnecting the power to the circuit, temporarily
removing all functionality, and effectively putting the circuit
to sleep.
Sleep transistors are traditionally used to temporarily dis-

able unused portions of an integrated circuit, saving power
by preventing leakage current [19]; however, their use is also
beneficial for providing the isolation an active monitor re-
quires. With only a small amount of added hardware (two
transistors and two resistors, shown in Figure 3) and posts
for connectivity to the 3-D control plane, we can selectively
turn off portions of the computation plane to force adherence
to any specific security policy enforced in the control layer.
Finally, many modern chips already employ power gating.
This reduces the amount of additional hardware necessary
to apply our security primitives, since only posts to the 3-D
control plane to carry the control signal are required.
In addition to selectively removing power from some com-

ponents on-chip, sleep transistors may be used to perform
several key functions on data and control lines required by
active monitors. Sleep transistors can be placed on any link
that may need to be disabled or controlled. They can be

Pull-up
logicin

pu
t

output

pull-down

pull-up

Signal Post
(to Control

Plane)

Pull-
down
logic

PMOS Sleep
Transistor

NMOS Sleep
Transistor

Override Posts
(Controlled by
Control Plane)

Figure 3: A circuit diagram of sleep transistors in
the computation plane being used to remove power
from a circuit.

managed by the 3-D control plane by simply providing a
post that connects to their gate input. The following func-
tions all use only one or two transistors per line and present
a new set of options for trustworthy system development.

Tapping: Tapping can be used to send the requested sig-
nals to the 3-D control plane without interrupting their orig-
inal path. As shown in Figure 4a, we use a transistor and
apply the correct voltage to the gate of the transistor to cre-
ate the additional path of the signal to the 3-D control plane.
This is particularly useful when we are performing analysis
(e.g., dynamic information flow tracking) on the flow of in-
formation on the computation plane without affecting its
original functionality (Figure 6). Tapping can also be used
when security logic on the 3-D control plane is dependent
on some data in the computation plane, without the need to
change their values in the system. In our 3-D cache eviction
monitor (Section 3.3) we use tapping to access the address
of a load or a store instruction to determine whether a cache
eviction is allowed without interfering with the normal flow
of the address through the bus.

Re-routing: Re-routing (Figure 4b) uses two transistors
per line to send the requested signals to the 3-D control plane
and block their transmission to the originally intended path.
A pull-up resistor is attached to the gate of the transistor
that is disabling the line, to force a connection when the
3-D control plane is not attached. Re-routing can be used
in situations where we want to create new buses between
resources on-chip.

Another use of re-routing is using a signal for a different
purpose than was originally intended. Once on the 3-D con-
trol plane, the signal can be analyzed and combined with
other data from the 3-D control or computation planes, or
simply stored for later use. This can then be coupled with
overriding (Figure 4c) to change control or data outputs on

5

(a) Tapping (b) Re-routing

X

X

(c) Overriding

X

(d) Disabling

X

X

X

= Post to the 3-D control plane X = Signal flow

X

X

X

Figure 4: This figure shows the four different kinds of circuit level modifications that can be made and
their respective diagrams. The sample base circuit is an AND gate and is found to the left of each circuit
modification. Tapping requires only one transistor to optionally propagate the signal to the 3-D control plane,
while re-routing and overriding need transistors with pull-up resistors to ensure their continued function
for systems omitting the 3-D control plane. Disabling uses a transistor and a pull-up resistor to uphold
the connection in the absence of the 3-D control plane, while giving the 3-D control plane the option of
disconnecting the line for systems utilizing it.

the computation plane based on new logic in the 3-D control
plane (Figure 7).
Overriding: Overriding (Figure 4c) allows us to block

the intended value of a signal and modify it to a desired
value for the security layer’s function (Figure 6 and Fig-
ure 7). Overriding uses two transistors and a pull-up resistor
much like re-routing. For some security applications, criti-
cal control signals need to be changed in order to adhere to
a security policy that is being enforced by the 3-D control
plane. In our 3-D cache eviction monitor (Section 3.3), we
use overriding to change the value of a cache’s write-enable
signal (see Figure 8), allowing us to inject a value to allow
or deny the eviction of a specific cache line.
Disabling: Disabling (Figure 4d) allows us to completely

stop the flow of data on a common bus or a specific sig-
nal line. Uses of disabling include the ability to isolate a
specific resource from unintended accesses, or enforcement
of policies that require tight guarantees on the integrity of
data on a shared bus. Many bus protocols work on a mutual
trust system, where access to the bus is controlled by the
devices that are connected, not by a trusted arbiter. In sit-
uations such as this, it is important to preserve trustworthy
execution and the confidentiality of data during a sensitive
computation. Disabling can be used to forcibly block access
to a bus to ensure secure transactions without the possibility
of unintended access (Figure 5).

3.2.1 Spice Simulation Results:
To verify the correctness of our circuit-level modifications,

we developed Spice circuit models for each of the circuits in
Figure 4 and used Spice simulations to read the voltage val-
ues at certain nodes for each circuit. Two experiments were
performed, with input voltages at the transistor terminals
corresponding to the 1) absence of the 3-D control plane and
corresponding to the 2) presence of the 3-D control plane.
NMOS transistors from 45nm predictive technology mod-
els [1] were used to characterize the sleep transistors, but
PMOS transistors can also be used. Regardless of which
transistor type we use, we need to buffer the signal after it
has traveled through the transistor to ensure a strong signal
propagation. During the experiment where the 3-D control
plane is omitted, the transistor gates are not powered, and

the pull-up resistors successfully power the transistor’s gate
and create a short, allowing the signal to pass normally.
When the transistor gates are powered, we can successfully
control the circuit and perform the function for each respec-
tive circuit. These experiments verify our ability to create
functional systems with the option to add a modular 3-D
control plane.

3.3 Theoretical 3-D Applications
Isolation: One potential application of our circuit-level

primitives is the active isolation of resources in a system. For
example, in multi-core processors there are shared data and
address buses that rely on a mutually trusting shared bus
protocol, where each core is responsible for its own arbitra-
tion. This is problematical for the security of bus traffic on
a system running code of varying trust levels on each core.
Figure 5 outlines this situation and how we can use Disabling
to disconnect a core from the bus for any given amount of
time, creating a Time Division Multiple Access (TDMA)
protocol between the cores and the shared resources of in-
terest.

Shared L2 $

Core 1

L1 $

Core 0

L1 $ XXX

Shared Bus

= Post to the 3-D control planeX

= Signal flow

��

Figure 5: A multi-core processor with two cores that
we wish to isolate. This is achieved using Disabling
to block the connections to the bus for the core that
is not currently allowed to use the bus.

6

Standard Execution Pipeline

Tag
Prop.
Logic

3-D
Control

Plane

C
om

pu
ta

tio
n

Pl
an

e

1. Instruction bits 2. Tag miss
 exception signal

Reg File

L1 $

Control Logic

Tag Reg File

Range $

X

X

X

X
X

X

X

1. 2.

� �

Figure 6: A 3-D system monitor tracking data flow
on the computation plane. This is achieved using
Tapping(1) to read signals that we want to track and
Overriding(2) to raise an exception signal.

System Analysis and Monitoring: It is often useful
to monitor the activity of the computation plane for audit-
ing, intrusion detection, or post-mortem analysis. Informa-
tion flow tracking in the 3-D control plane, for example, at-
tempts to identify, track, mitigate, and deter the execution
of malicious code. The basic premise of dataflow tracking is
the storage of metadata in the form of tags associated with
each individual address in memory. A dataflow tracking
architecture with a small cache [21] that compresses mem-
ory addresses with matching metadata tags can be utilized
in the 3-D control plane (Figure 6), to raise an exception
in the event that malicious execution on the computation
plane is detected. For such a monitor, we can use Tapping
to read signals of interest on the computation plane and use
Overriding to optionally modify an exception signal without
tampering with normal use.
Secure Alternate Service: Another potential appli-

cation is augmenting the functionality of the computation
plane with additional hardware for security computations.
For systems requiring high-bandwidth cryptographic func-
tionality, we can implement a cryptographic engine on the
3-D control plane that can accept cryptographic instructions
being executed on the computation plane, performing the
operation immediately before sending the result back to the
execution pipeline. This is achieved by using Re-routing
to extract the cryptographic instructions from the standard
execution pipeline, execute the instruction, and use Over-
riding to inject the result into the pipeline as if it were
part of the normal instruction execution flow. While crypto-
graphic hardware has been included in microprocessors [8],
3-D security allows the addition of any cryptographic algo-
rithm or implementation to be included in the system as
a foundry-level option. Essentially, 3-D security introduces
flexibility in the system hardware, allowing any number of

Standard Execution Pipeline

AES
3-D

Control
Plane

1. Crypto Instruction 2. Result

Reg File

L1 $

Crypto
Control

X

X

X

X
X

X

1. 2.

C
om

pu
ta

tio
n

Pl
an

e

RSA DES

XX

X

X

X

� � � �

Unit

Figure 7: A 3-D cryptographic engine used to per-
form secure cryptography in the 3-D control plane,
using Re-routing(1) to block the instruction execu-
tion on the computation plane and to send the in-
struction to the 3-D control plane to be executed.
The result can be placed back in the execution
pipeline using Overriding(2).

cryptographic cores to be optionally added to the processor.
The techniques described in this section provide power-

ful tools for implementing active monitors in the 3-D con-
trol plane, thereby allowing the addition of security-critical
functionality. If used appropriately, this can eliminate cer-
tain types of side channels by mediating the use of a shared
resource. In the following section we present the architec-
ture of an active cache eviction monitor that we have im-
plemented for the 3-D control plane using the previously
discussed circuitry.

3.4 Architecture of a 3-D Cache Monitor
This section presents the custom architecture shown in

Figure 8, implemented in the 3-D control plane, for elim-
inating access-driven cache side channel attacks. Concur-
rent processing platforms present several security issues; al-
though these architectures provide increased performance
through instruction-level parallelism, their methods of re-
source sharing leave them vulnerable to side channel at-
tacks. One side channel attack [16] uses a simultaneous mul-
tithreading processor’s shared memory hierarchy, exploiting
the process-to-process interference arising from the cache
eviction policy to covertly transfer information. As a result,
an attacker thread may be able to extract information from a
victim thread, such as a cryptographic key. This threat was
demonstrated by Percival [16], where an implementation of
the RSA encryption standard was attacked using the cache
eviction protocol and used to observe, in small chunks, the
total cryptographic key. This was achieved by having a ma-

7

Mem

Cache

CPU =
Cache

Controller

Write
Enable

Hit?

V

In
de

x
Ta

g

Ta
g

C
ac

he
 D

at
a

Memory Data

Data

R/WData Address

PID

Lock bit

=

Grant

Address

Lo
ck

ed
?

PI
D

Security
Bits

Computation Plane

3-D Control Plane

Figure 8: The architecture of a CPU/cache memory hierarchy and our 3-D cache eviction monitor working
in concert. The address of the corresponding load/store is tapped to be sent to the 3-D control plane, and
the cache write-enable signal is overridden in the case of a locked cache line eviction. The Lock bit as well
as the Process ID (PID) are also provided to the 3-D control plane. We discuss options on how to access
this information in Section 4. Once the cache monitor receives the load/store address, the Lock bit, and the
PID, it can determine whether a cache eviction can be granted based on whether the cache line is locked or
whether the PID matches, and issue the appropriate override signal on the cache write-enable signal.

licious thread consume sufficient memory so that when the
victim thread executed, the spy thread’s cache lines would
be evicted. Thus by measuring subsequent access times for
its cached items, the spy thread can observe which of its
cache lines had been evicted by the victim. Once the spy
thread knows these cache lines, it can infer parts of the cryp-
tographic key due to the nature of the table look-ups per-
formed during the encryption. Slowly but surely, the whole
key can be compromised with a relatively low margin of er-
ror.
Our method to prevent these attacks is based on a pre-

viously proposed hardware solution [23]. In our application
of this scheme, the 3-D control plane maintains a cache pro-
tection structure that indicates, for each cache line, whether
it is protected, and if so, for which process. When a differ-
ent process loads or stores data related to a protected cache
line, no eviction will occur, and the data is not cached un-
less an alternate line is available in the cache protocol being
used. Figure 9 shows a flowchart describing this new proto-
col, while Figure 10 provides a high-level overview of how the
cache and the 3-D control plane will interact. Specifically,
the cache protection structure contains memory elements
on the 3-D control plane to store security bits, which hold
the permissions of a process to evict shared cache entries
of other processes. With this in place, when instructions
proceed to load or store data, these security bits are first
checked to determine whether to grant a cache eviction that
might otherwise have occurred without policy oversight. As
mentioned previously, when the 3-D control plane is not at-
tached to the processor, the cache functions as normal. How-
ever, when the 3-D control plane is added, we can utilize the
above strategy to avoid undesirable cache evictions. This is
performed with an updated version of the load and store
instructions. These instructions, named secure load and se-

cure store, change the security bits in the 3-D control plane
to reflect the process that currently occupies the line. Ef-
fectively, secure load and secure store modify the necessary
bits to ensure that once a cache line is occupied by a process
that needs cache eviction control, it cannot be evicted by any
other process. This will control a simultaneous multithread-
ing processor’s shared memory and eliminate any threat of
an access-driven side channel attack.

Perform load or
store without
change to any

cache line

Load or Store
Instruction

being executed

Deny

Secure
instruction?

Grant

Yes

No

Update security
bits on control
plane to reflect
new permissions

Perform load
or store

normally

Next
Instruction

Check security
bits on control
plane to grant

or deny
eviction

Figure 9: This flow chart describes how loads and
stores are executed when the 3-D control plane is in
place.

8

Cache/Cache
Controller

3-D Control Plane

Address

Grant

To Processor

Security
bits

V PID L

Responsible for
two main
functions:
1. Given any load
or store; return
whether cache
eviction is
granted
2. Given secure
load or store;
update security
bits on control
plane

To Memory

Figure 10: A high-level logical overview of how the
cache and the 3-D control plane interact in our cache
monitor, as well as the 3-D control plane’s respon-
sibilities when active.

As a proof of concept, we have developed a synthesizeable
version of our security mechanism in Verilog. We designed
our security mechanism as a separate module that is inter-
faced with a simple cache that we also implemented as a
hardware design. Our design uses a straightforward 4-way
set associative cache. For every load or store instruction,
the cache controller first checks the 3-D control plane mod-
ule to determine whether the related cache line is protected
from evictions. The security bits on the 3-D control plane
hold a valid bit, a process ID, and a lock bit for each cache
line. During the loads and stores, these security bits are
checked in the 3-D control plane, and a grant signal is gen-
erated if the cache line is open to eviction. While every load
and store will be forced to check the security bits before
proceeding, these security bits can only be manipulated by
using secure load and secure store.
We synthesized both modules and have verified that the

design is functional, easily scaled, and can be implemented
with low overhead. This will be discussed in further de-
tail in the following sections where we analyze performance
metrics, overhead for a modern processor, and feasibility.

4. EXPERIMENTAL RESULTS
This section outlines our synthesis results, and discusses

the effect of including the 3-D cache eviction monitor, both
in terms of critical path and cache performance. We find
that the 3-D cache eviction monitor does not increase the
critical path of the circuit, and we observe that this type of
cache-line locking produces very little performance degrada-
tion for many programs. We also discuss integration options
and feasibility for the 3-D control plane on a sample com-
modity processor.

4.1 Performance and Analysis
Synthesis Results: In this section, we analyze the per-

formance and area overhead of the 3-D cache eviction mon-
itor. We use Altera Quartus to synthesize our design and
extract specific timing and area information (Figure 11). To
provide a clear picture of the overhead and performance ef-
fects of our design, we gathered timing and area informa-
tion for both the cache/cache controller alone, as well as the
cache/cache controller being interfaced with the 3-D cache

eviction monitor module. The synthesis was performed for a
Stratix II device, with the compiler set to optimize for per-
formance. The standalone cache was able to run at approx-
imately 151MHz; when we include our 3-D cache eviction
monitor, the maximum frequency remains at 151MHz. The
3-D cache eviction monitor synthesized by itself has a maxi-
mum frequency of 217MHz. These maximum frequencies in-
dicate that the critical path in the circuit including the 3-D
cache eviction monitor resides in the underlying cache/cache
controller, resulting in no change in cycle time for the circuit
with the addition of the 3-D cache eviction monitor.

Design Max Frequency Area (LUTs)

Cache/Cache
controller

~151MHz 468

3-D cache
eviction monitor

~217MHz 291

Cache/Cache
controller with
3-D monitor
attached

~151MHz 749

Figure 11: The synthesis results produced by Quar-
tus for the cache and cache controller, as well as the
3-D cache eviction monitor.

The above performance metrics do not take into account
the delay of the vertical posts between the computation
plane and the 3-D control plane. Loi et al. [11] charac-
terized the worst-case delay of a 3-D bus that travels from
one corner of a chip to the opposite corner on a 3-D layer
above, and they found this delay to be about .29ns. Even
with the addition of this bus delay to the 3-D cache eviction
monitor’s critical path, the new critical path is still less than
that of the cache/cache controller, further confirming that
the addition of the 3-D cache eviction monitor will have no
effect on the performance of the cache subsystem.

Performance Evaluation: We evaluated the perfor-
mance impact of locking specific cache lines with our 3-D
cache eviction monitor. We used PTLsim [25], a cycle-
accurate x86 simulator, to execute the SPEC2000 bench-
mark suite. The experiments we developed outline two sce-
narios:

• 1) Running each benchmark with a 32KB 4-way set
associative cache, representing a 32KB L1 cache with
no cache line locking. This is a best-case performance
bound because running the benchmark and the AES
program together will be slower than running the AES
program by itself.

• 2) Running each benchmark on a 32KB 4-way set as-
sociative cache, with one of the ways locked, effectively
resulting in a 24KB 3-way set associative cache. This
is a worst-case performance bound because the AES
program is smaller than an entire way of the cache
(8192 bytes).

We modeled our cryptographic process after the AES algo-
rithm, which can occupy up to 4640 bytes with an enlarged
T-Box implementation [5]. With this in mind, 8192 bytes is

9

-1.4%

-1.2%

-1.0%

-0.8%

-0.6%

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

18
8.

am
m

p
(m

ed
)

17
3.

ap
pl

u
(lg

)
30

1.
ap

si
 (l

g)

17
9.

ar
t (

lg
)

25
6.

bz
ip

2
(lg

/p
ro

g)

25
6.

bz
ip

2
(lg

/s
rc

)
18

6.
cr

af
ty

 (m
ed

)
18

3.
eq

ua
ke

 (l
g)

18

3.
eq

ua
ke

 (t
es

t)
25

4.
ga

p
(lg

)
17

6.
gc

c
(m

ed
)

16
4.

gz
ip

 (s
m

/s
rc

)
16

4.
gz

ip
 (s

m
/p

ro
g)

18

1.
m

cf
 (l

g)

17
2.

m
gr

id
 (l

g)

19
7.

pa
rs

er
 (m

ed
)

25
3.

pe
rlb

m
k

(s
m

)
17

1.
sw

im
 (l

g)

30
0.

tw
ol

f (
sm

)
25

5.
vo

rt
ex

 (l
g)

17

5.
vp

r (
pl

ac
e/

sm
)

17
5.

vp
r (

ro
ut

e/
sm

)
16

8.
w

up
w

is
e

(lg
)

av
er

ag
e

In
cr

ea
se

 in
 IP

C
 (%

)

Benchmark

Figure 12: The results of our cache experiment using SPEC2000 benchmarks that were executed in PTLsim.
We use two different sizes of cache to calculate a bound on the performance impact of locking a cryptography
program like AES to one way of the cache. The average degradation in IPC between the two different cache
sizes is 0.2%, indicating that this form of cache line locking has a small impact on performance for many
different types of programs.

more than enough to store all of the necessary information
(state vectors, round keys, and look-up tables) for AES.
Results for this experiment can be found in Figure 12. The

average degradation in IPC is 0.2%, indicating that this form
of cache line locking has a small impact on performance for
many different types of programs. We were not able to build
the binaries for mesa, galgel, facerec, or fma3d. In addition,
we encountered technical difficulties with lucas, eon, and
sixtrack.

4.2 Discussion and Integration Options
When integrating our security scheme for cache manage-

ment with a processor, several factors must be considered.
Implementing security functionality requires the following
capabilities: access to the process ID of a thread during its
execution, access to the address bus, and a method of dis-
cerning between normal and secure loads and stores. These
are the high-level requirements of the 3-D control plane;
some vertical posts are also needed to propagate this in-
formation to the 3-D control plane.
For our 3-D cache eviction monitor to function, we need

to know the process ID of the thread performing the cur-
rent load or store function. One option we have explored
is accessing the process ID register that some architectures
have, such as the ARM926EJ-S [10]. Accessing this register
through the vertical posts will give the 3-D control plane
direct access to the current process ID, allowing the control
plane to compare it to the security bits.
We also need to know when loads and stores are being ex-

ecuted. One option is tapping the instruction bus, allowing
us to monitor the execution of loads and stores and subse-
quently apply our security functions to those instructions.
During the execution of loads and stores, the control plane
will follow the protocol outlined in Figure 9.
Finally, the 3-D control plane must know whether each

load and store operation is secure or not, so that the system

can determine whether the security bits in the 3-D control
plane need to be updated. One way to supply this informa-
tion is to modify the instruction set to include two special
instructions, secure load and secure store. This would create
separate instructions of which the 3-D control plane is aware
in order to distinguish between normal load/store and secure
load/store operations. Another option is to add a register to
the computation plane that reflects whether the current in-
struction is secure or not. The operating system can control
this bit based on whether the instruction is secure or not,
and the control plane could read this register. Both options
are feasible and have no negative implications on the rest of
the system.

3-D Control
Plane

Computation
Plane

Posts

Figure 13: This figure is a visualization of the phys-
ical circuit-level diagram of our 3-D cache monitor.
Gate-level diagrams were compiled in Quartus after
synthesis of the modules.

10

Delivery of the previously mentioned required information
to the 3-D control plane will be through the vertical posts.
A general idea of the number of posts the 3-D control plane
needs on a given system is the sum of the number of bits of:
the address size, the process ID size, possibly one post for the
secure register, and a grant bit post. For the ARM926EJ-
S, this results in under 100 vias, which equates to about
the silicon space for 50 bits of memory; this is a small and
reasonable number of vertical posts to implement a strong
security measure.

5. RELATEDWORK
In this section, we discuss other work associated with

cache side channel problems. We also discuss related work
on the use of 3-D technology for security and communication
as applied to CMP architectures.
On-chip and board-level resource sharing between cores

is often used to enhance CMP performance. However, con-
tention for those resources at the microarchitectural level
can provide the basis for side-channel cryptanalysis attacks
and other covert timing channels. Code and data caches, as
well as the branch prediction unit, are some of the shared
resources that can be exploited in these attacks [9, 4, 3].
In these cases, one process’s use of the resource perturbs
the response time of the next process that accesses it, in a
predictable manner. Single-core computers with simultane-
ous multithreading, and SMP systems with cache coherency
mechanisms, can have similar problems.
One approach to prevent resource contention in a concur-

rent execution model is to utilize separate physical caches
for each core, or provide separate virtual caches within the
physical cache (if virtual cache support is available in hard-
ware) [15, 23]. Various forms of cache disablement are pos-
sible, including turning it off, turning it off for certain cores
or processes, or turning off the eviction and filling of the
cache through use of the processor no-fill mode. The lat-
ter can be used to create sensitive sections [13] of code that
could not interfere with the cache behavior observable by
other cores or processors – assuming that the code is not in-
terruptible or that the previous processor mode is restored
on interrupt, as otherwise, other processes might sense the
change to the state of the processor (i.e., to no-fill), creating
another covert channel [5].
Specific cryptographic attacks can be defeated or mini-

mized by lowering the bandwidth of the cache channel, such
as through nondeterministic ordering of access to cache [14]
which makes detailed cache-use profiling difficult; and non-
deterministic cache placement [22, 15] or nondeterministic
polyinstantiation [7] of cache entries, [23] which, while the
specific cause of the interference may be masked, still allows
detection of cache misses caused by another process. The
3-D approach has the advantage of being able to implement
many of these schemes for resolving cache contention, while
doing it in an isolated environment, without modification to
the processor ISA.

6. CONCLUSIONS
3-D integration offers the ability to decouple the devel-

opment of security mechanisms from the economics of com-
modity computing hardware. We described the technology
to enable passive and active monitoring of the computation
plane by adding a minimal amount of hardware. Passive

monitoring requires vias and posts, while active monitor-
ing uses sleep transistors to perform several novel functions
on the computation plane. Using these techniques, we de-
scribed a number of broad strategies to enhance the secu-
rity of the computation plane with a control plane. To pro-
vide quantitative measurements of the impacts of the control
plane, we considered cache side channels, developing a com-
plete hardware description for a cache with a control plane
that eliminates eviction-based side channels. This work pro-
vides a pathway for the high-assurance community to utilize
high-performance hardware while shortening development
cycles for trustworthy systems.

Acknowledgements
The authors would like to thank the anonymous reviewers
for their insightful comments. This research was funded in
part by National Science Foundation Grant CNS-0910734.

7. REFERENCES
[1] Arizona State University Predictive Technology

Models, Predictive Technology Models for 45nm
Processes, Available at.
http://www.eas.asu.edu/~ptm/.

[2] N. G. A. Akturk and G. Metze. Self-Consistent
Modeling of Heating and MOSFET Performance in
3-D Integrated Circuits. IEEE Transactions on
Electron Devices, 52(11):2395–2403, 2005.

[3] O. Acıiçmez. Yet another microarchitectural attack:
Exploiting I-cache. In Proceedings of the First
Computer Security Architecture Workshop (CSAW),
Fairfax, VA, November 2007.

[4] O. Acıiçmez, J. Seifert, and C. Koc.
Micro-architectural cryptanalysis. IEEE Security and
Privacy Magazine, 5(4), July-August 2007.

[5] D. J. Bernstein. Cache-timing attacks on AES.
http://cr.yp.to/antiforgery/

cachetiming-20050414.pdf, Apr. 2005. Revised
version of earlier 2004-11 version.

[6] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale,
L. Jiang, G. H. Loh, D. McCauley, P. Morrow, D. W.
Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar,
J. Shen, and C. Webb. Die Stacking (3D)
Microarchitecture. Proceedings of the 39th Annual
IEEE/ACM International Symposium on
Microarchitecture, pages 469–479, December 2006.

[7] D. E. Denning and T. F. Lunt. A multilevel relational
data model. In Proc. IEEE Symposium on Security
and Privacy, pages 220–234, 1987.

[8] S. Gueron. White paper: Advanced encryption
standard (AES) instructions set, Intel corporation,
July 2008.

[9] J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Side
channel cryptanalysis of product ciphers. Journal of
Computer Security, 8(2–3):141–158, 2000.

[10] A. Limited. ARM926EJ-S technical reference manual,
2001-2008.

[11] G. L. Loi, B. Agrawal, N. Srivastava, S.-C. Lin,
T. Sherwood, and K. Banerjee. A Thermally-Aware
Performance Analysis of Vertically Integrated (3-D)
Processor-Memory Hierarchy. In Proceedings of the
43nd Design Automation Conference (DAC), June
2006.

11

[12] S. Mysore, B. Agrawal, S. Lin, N. Srivastava,
K. Banerjee, and T. Sherwood. Introspective 3-D
chips. In Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), San
Jose, CA, October 2006.

[13] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks
and countermeasures: the case of AES: (extended
version). Technical report, Department of Computer
Science and Applied Mathematics, Weizmann
Institute of Science

”
Rehovot 76100, Israel, Oct. 2005.

[14] D. Page. Theoretical use of cache memory as a
cryptanalytic side-channel. Technical Report
CSTR-02-003, Department of Computer Science,
University of Bristol, June 2002.

[15] D. Page. Partitioned cache architecture as a side
channel defence mechanism. In Cryptography ePrint
Archive, Report 2005/280, August 2005.

[16] C. Percival. Cache missing for fun and profit. In
Proceedings of BSDCan 2005, Ottowa, Canada, May
2005.

[17] K. Puttaswamy and G. H. Loh. Implementing Caches
in a 3D Technology for High Performance Processors.
In IEEE International Conference on Computer
Design (ICCD) 2006, pages 525–532, October 2005.

[18] K. Roy, S. Mukhopadhyay, and
H. Mahmoodi-Meimand. Leakage current mechanisms
and leakage reduction techniques in
deep-submicrometer CMOS circuits. Proceedings of
the IEEE, 91(2), February 2003.

[19] K. Shi and D. Howard. Sleep transistor design and

implementation simple concepts yet challenges to be
optimum. IEEE VLSI-DAT Taiwan, 2006.

[20] H. Sun, J. Liu, R. S. Anigundi, N. Zheng, J.-Q. Lu,
K. Rose, and T. Zhang. 3D DRAM design and
application to 3D multicore systems. Design and Test
of Computers, IEEE, 26(5), September 2009.

[21] M. Tiwari, B. Agrawal, S. Mysore, J. K. Valamehr,
and T. Sherwood. A small cache of large ranges:
Hardware methods for efficiently searching, storing,
and updating big dataflow tags. In Proceedings of the
International Symposium on Microarchitecture
(Micro), Lake Como, Italy, November 2008.

[22] Topham and Gonzalez. Randomized cache placement
for eliminating conflicts. IEEETC: IEEE Transactions
on Computers, 48, 1999.

[23] Z. Wang and R. Lee. New cache designs for thwarting
cache-based side channel attacks. In Proceedings of the
34th International Symposium on Computer
Architecture, San Diego, CA, June 2007.

[24] H. Yoshikawa, A. Kawasaki, T. Iizuka, Y. Nishimura,
K. Tanida, K. Akiyama, M. Sekiguchi, M. Matsuo,
S. Fukuchi, and K. Takahashi. Chip scale camera
module (CSCM) using through-silicon-via (TSV). In
Proceedings of the International Solid-State Circuits
Conference (ISSCC), San Francisco, CA, February
2009.

[25] M. T. Yourst. PTLsim: A cycle accurate full system
x86-64 microarchitectural simulator. In Performance
Analysis of Systems & Software, 2007. ISPASS 2007.
IEEE International Symposium on, pages 23–34, 2007.

[26] I. Ziptronix. 3D integration for mixed signal
applications, 2002.

12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

