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Abstract

For many mission-critical tasks, tight guarantees on the
flow of information are desirable, for example, when handling
important cryptographic keys or sensitive financial data. We
present a novel architecture capable of tracking all informa-
tion flow within the machine, including all explicit data trans-
fers and all implicit flows (those subtly devious flows caused
by not performing conditional operations). While the prob-
lem is impossible to solve in the general case, we have cre-
ated a machine that avoids the general-purpose programma-
bility that leads to this impossibility result, yet is stillpro-
grammable enough to handle a variety of critical operations
such as public-key encryption and authentication. Throughthe
application of our novel gate-level information flow tracking
method, we show how all flows of information can be precisely
tracked. From this foundation, we then describe how a class
of architectures can be constructed, from the gates up, to com-
pletely capture all information flows and we measure the im-
pact of doing so on the hardware implementation, the ISA, and
the programmer.

Categories and Subject Descriptors C.3 [Special-Purpose
and Application-Based Systems]

General Terms Design, Security

1. Introduction

The enforcement of information flow policies is one of the
most important aspects of modern computer security, yet is also
one of the hardest to get correct in implementation. The recent
explosion of work on dynamic dataflow tracking architectures
has led to many clever new ways through which information
can be accounted for in modern software, leading to novel ways
of detecting everything from general code injection attacks to
cross-site scripting attacks (Dalton et al. 2007; Xu et al. 2006).
The basic scheme keeps track of a binary property, trusted
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or untrusted, for every piece of data. Data from “untrusted”
sources (e.g. from the network) are marked as untrusted, and
the output of an instruction is marked as untrusted if any of
its inputs are untrusted. While these systems will likely prove
themselves useful in a variety of real-life security scenarios,
ultimately it is impossible for these techniques, or in factfor
any security system running on a general-purpose processor,
to provably capture all of the information flow within the ma-
chine (Denning and Denning 1977).

The problem is that in a traditional microprocessor, infor-
mation is leaked practically everywhere and by everything.If
you are executing an exceedingly critical piece of software, for
example, using your private key to sign an important message,
information about that key is leaked in some form or another by
almost everything that you do with it. The time it takes to per-
form the authentication, the elements in the cache you displace
due to your operations, the paths through the code the encryp-
tion software takes, even the paths through your code that are
never taken can leak information about the key.

While this information leakage may not be a consideration
when you are executing a word processor, leakage can be a
serious problem for exceptionally sensitive financial, military,
and personal data. Developers in these domains are willing to
go to remarkable lengths to minimize the amount of leaked in-
formation, for example, flushing the cache before and after exe-
cuting a piece of critical code (Osvik et al. 2006), attempting to
scrub the branch predictor state (Aciiçmez et al. 2007), normal-
izing the execution time of loops by hand (Kocher 1996), and
by randomizing or prioritizing the placement of data into the
cache (Lee et al. 2005). While these techniques make it more
difficult for an adversary to gain useful knowledge of sensi-
tive information, at the end of the day these heuristics cannot
bring the system significantly closer to a formally strong no-
tion of information flow tracking because they do not take into
consideration the intricate logic and timing that compose the
implementation.

In this paper we present, for the first time, a processor ar-
chitecture and implementation that can trackall information-
flows. On such a microprocessor it is impossible for an ad-
versary to hide the flow of information through the design,
whether that flow was intended by both parties (e.g. through



a covert channel) or not (e.g. through a timing-channel). One
of the key insights in this paper is that all information flows,
whether implicit, covert, or explicit, look surprisingly similar
at thegate levelwhere weakly defined ISA descriptions give
way to precise logical functions. While past approaches have
assumed that any use of untrusted data should lead to an un-
trusted output, we observe that at the gate level this is overly
conservative. If one input to an AND gate is 0, the other in-
put canneveraffect the result and thusshould have no bear-
ing on the trust of the output. Based upon this observation,
we introduce a novel logic discipline,Gate-Level Information-
Flow Tracking (GLIFT)logic, which is built around a precise
method for augmenting arbitrary logic blocks with tracking
logic and a further method for making compositions of those
blocks. Using this discipline we demonstrate how to create an
architecture that, while unconventional in ways required by
the very nature of being free from the problems of implicit-
flow, is both programmable and capable of performing use-
ful computation. We present a synthesizable processor imple-
mentation with a restricted ISA, predicated execution, bounded
loops, and an iteration-coupled load/store architecture.Com-
bined with GLIFT logic, these restrictions provide tractable
and provably-sound information-flow tracking, yet allow tasks
such as public-key cryptography and message authentication to
be performed.

In Section 3 we describe how architectural information
flows at the level of gates and present a novel compositional
method by which arbitrary logic functions can be analyzed to
create the fundamental building blocks of our secure hardware.
In Section 4 we then describe the three major pitfalls in design-
ing an architecture free of implicit flows, how our ISA avoids
them, and how our gate-level implementation correctly tracks
the resulting information flows in a provably-sound way. To
ensure that the resulting architecture is not unreasonablein the
additional overhead it incurs, in Section 5 we describe how
this microprocessor compares with a conventional microcon-
troller in terms of area and performance. However, before we
can begin the details of our solution, we need to begin with a
discussion of the great deal of related work in both computer
architecture and security that this work has built upon.

2. Related Work

The idea of tracking and constraining the flow of informa-
tion is one of the primary tenets of computer security, and all
manner of work has examined both the practical and theoret-
ical limitations of mechanisms that perform this function.As
has been pointed out countless times before, the general prob-
lem of determining whether information flows in a program
from variablex to variabley is undecidable, as “any proce-
dure purported to decide it could be applied to the statement
if f(x) halts then y := 0 and thus provide a solution to the
halting problem for arbitrary recursive function” (Denning and
Denning 1977). This is a classical example of animplicit flow,
where information flows between variables by virtue of their

notbeing accessed. For example, in the pseudo code “if i then
j := 1”, even if “j := 1” is neverexecuted becausei is al-
ways false, by observingj we can learn something abouti

and hence there is an information flow betweeni andj. If you
have a Turing-complete machine, it is impossible to bound the
set of possible actions that the machine might make in some
conditional situation (à la the Halting Problem), and hence for
any general-purpose programmable machine, it is impossible
to precisely preventall implicit flows. We believe our solution
to this quandary is unique in that we have built a machine that,
by construction, will not allow unbounded execution. In fact
our design, which is still programmable through an ISA (albeit
a non-traditional one), is theoretically equivalent to a single
very large state machine. While this certainly limits the appli-
cability of the machine, unbounded execution is not required
to sort a bounded-size list, encrypt a message, or even verify
a message signature. In the end we have created a machine in
whichall hidden flows of information are made explicit.

Using hardware to track the flow of information through a
processor is by no means a new idea. DIFT (Suh et al. 2004),
Minos (Crandall and Chong 2004), Rifle (Vachharajani et al.
2004), Raksha (Dalton et al. 2007), FlexiTaint (Venkataramani
et al. 2008), Log-Based Lifeguards (Ruwase et al. 2008) and
a host of other proposals suggest the use of data-flow tracking
hardware to track the flow of untrusted network, file and user
inputs through memory. The basic idea behind these tools is to
assign a “tag” with every word of physical memory indicating
which words of memory can be trusted, and then to track these
tags around the machine as operations are performed. Every
time an arithmetic operation uses an untrusted input, the output
is marked as “tainted”, and whenever an untrusted memory
word is used for a sensitive operation like a jump address
condition or a system call, the tool generates a warning for the
user. Our approach, while inspired by these methods, seeks to
strongly couple the notion of information flow toall parts of
the machine at the gate level, not just the data paths, so that
we know for certain that there is no way for information to
be manipulated in such a way that it will “lose” the tag that
represents its trust.

The idea of data-flow tracking is not limited to hardware-
only options. Software projects have shown that data-flow
tracking can be useful in detecting a variety of attacks (Qin
et al. 2006; Costa et al. 2005; Clause et al. 2007; James New-
some and Dawn Song 2005; Xu et al. 2006; Vogt et al. 2007;
Brumley et al. 2006), some with surprisingly low overhead
(e.g. LIFT (Qin et al. 2006) and Speculation to Security (Chen
et al. 2008)). In fact this idea can be extended to a generic taint-
tracking framework that allows arbitrary policies to be en-
forced. Dytan (Clause et al. 2007), GIFT (Lam and cker Chiueh
2006), Taint-Enhanced Policy Enforcement (Xu et al. 2006),
Raksha (Dalton et al. 2007), System Tomography (Mysore
et al. 2008) and FlexiTaint (Venkataramani et al. 2008) are all
examples of flexible systems for tracking data and/or enforc-
ing polices based on those tags. In addition to explicit dataflow



tracking, some prior work has examined the problem of track-
ing implicit information flows (Vogt et al. 2007; Vachharajani
et al. 2004; Clause et al. 2007; Xin and Zhang 2007). These
approaches track information at the ISA level and attempt to
combine dynamic taint tracking with limited static analysis to
improve the precision of flow tracking. Our approach is differ-
ent from these prior methods in that we would like to be able
to precisely track all flows for any software that can be writ-
ten in our ISA, and because we have knowledge of underlying
hardware, we can take into consideration the logical imple-
mentation including all of its undocumented features, bugs,
and timing channels.

It is worth noting explicitly what information leaks and
attacks our proposed approach, taken in isolation, does not
address. We do not explore the untrusted hardware compo-
nent problem or physical attacks that may tamper with mem-
ory. There is already a great deal of work on tamper resistant
computing (Suh et al. 2007). Nor do we consider non-digital
side-channel attacks (such as those informed by observation of
power distribution (Kocher et al. 1999) or RF radiation (Gan-
dolfi et al. 2001)), as again, there are many circuit level meth-
ods for dealing with those. Instead, our approach allows us
to treat the microprocessor simply as an object through which
both trusted and untrusted information flows, allowing us tobe
certain as to which resulting outputs rely on that untrustedin-
put. We have already begun to see mainstream processors with
physically isolated protection domains, such as ARM’s Trust-
Zone (Alves and Felton 2004) and Cell Broadband Engine’s
Synergistic Processor Element (Shimizu et al. 2007), as a first
step towards preventing trusted and untrusted data from inter-
mingling. While, as you will see, our resulting system is notyet
efficient in the traditional sense, we believe it is a leap toward
the goal of a microprocessor capable of provably tracking and
policing all information flows on chip.

3. Gate Level Information Flow Tracking
Tracking all information flows through a full microproces-

sor is a daunting task, but one that we can tackle by break-
ing it down into small pieces. In this section, we begin with
the smallest atomic units of logic in the microprocessor: gates.
Once we precisely understand how information flows through
the primitive NOT, AND, and OR gates, we can begin to com-
pose these gates together into more complex structures suchas
multiplexers, arithmetic units, and eventually full processors
that are able to manage and manipulate information in such a
way that trust can be tracked through the implementation in a
sound and precise way.

While our techniques can be extended to cover a variety of
information flow security scenarios, for the purpose of thispa-
per we will restrict our discussion to simple binary tags. Data
and code are simply either “trusted” (represented logically as
0) or as “untrusted” (represented logically as 1). We have cho-
sen a representation that is close to “taint” tracking, although
we adopt the nomenclature of the security community as this is
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Figure 1: Tracking Information Flow through a 2-input AND Gate.
Figure shows truth table for the AND Gate (left) and a part of its
shadow truth table (right). The shadow truth table shows theinterest-
ing case when only one of the inputsa andb is trusted (i.e.at = 0 and
bt = 1). Each row of the shadow table calculates the trust value of
the output (outt) by checking whether the untrusted inputb can affect
the outputout. This requires checkingout for both values ofb in the
table on the left. The gray arrows indicate the rows that haveto be
checked for each row on the right. For example, whena = 1, b affects
out (row 3 and 4 on the left). Hence row 3 and 4 on the right have
outt as untrusted.

a more general information flow tracking problem rather than
specifically data flow tracking. We wish to treat our whole pro-
cessor as a logical function, one which operates on a set of in-
puts (some of which are trusted and some of which are not) and
results in a set of outputs. The trust of the outputs should bede-
termined based on the trust of the inputs, and more specifically
on howuntrusted inputs affected those outputs. To more fully
illustrate the notion of trust propagation at the logical level,
let’s consider a very simple gate, AND. Surprisingly, even for
this simple gate, the trustworthiness of the output is a complex
function of the trustworthiness of the inputsandthe actual log-
ical values of those inputs.

3.1 Information Flow Tracking in an AND gate

Consider an AND gate (shown in left side of Figure 1) with
two binary inputs,a andb, and an outputo. Let’s assume for
right now that this is our entire system, and that the inputs
to this AND gate can come from either trusted or untrusted
sources, and that those inputs are marked with a bit (at andbt

respectively) such that a 1 indicates that the data is untrusted.
The basic problem of gate-level information flow tracking isto
determine, given some input fora andb and their correspond-
ing trust bitsat andbt, whether or not the outputo is trusted
(which is then added as an extra output of the functionot).

To the best of our knowledge, all prior work in the area has
assumed that if you compute a function, any function, of two
inputs, then the output should be tagged as tainted ifeither

of the inputs are tainted. This assumption is certainly sound (it
should never lead to a case, wherein output which should not be
trusted is marked as trusted) but it is over conservative in many
important cases, in particular if something is known about the
actual inputs to the function at runtime. In fact, from an in-
formation theoretic standpoint, the output of a logical function
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Figure 2: Shadow logic for an AND Gate. Conventional information
flow tracking reports the output as untrusted if any one of theinputs is
untrusted. The circuit on the right shows our shadow AND gatethat
marksoutt as untrusted only ifout depends upon an untrusted input.

should only be untrusted if some untrusted input actually had
an opportunity to affect the output1.

To see why, let us just consider the AND gate, and all of
the possible input cases. If both of the inputs are trusted, then
the output should clearly be trusted. If both the inputs are
untrusted, the output is again clearly untrusted. The interesting
cases are when you have a mix of trusted and untrusted data.
If input a is trusted and set to 1, and inputb is untrusted,
the output of the AND gate is always equal to the inputb,
which, being untrusted, means that the output should also be
untrusted. However, if inputa is trusted and set to 0, and input
b is untrusted, the result will always be 0 regardless of the
untrusted value. The untrusted value has absolutely no effect
on the output and hence the output can inherit the trust ofa. By
including the actual values of the inputs into the determination
of whether the output is trusted or not trusted, we can more
precisely determine whether the output of a logic function is
trusted or not.

So, how do we formalize this notion of untrusted inputs
“affecting” outputs? Essentially we are going to create a new
truth table, which willshadowthe original logic, but instead
of computing the output (o), it will compute the trust of the
output (ot) as a function of the logical inputs (a and b), the
the trust of those inputs (at andbt), and the truth table of the
original function. Let us consider the case again wherea is
trusted (untrusted bit set to 0) andb is not (again in Figure 1).
To compute the first line in our shadow truth table, we must
consider all the possible values of the untrusted inputs (b), and

1 while this is jumping ahead somewhat, readers familiar withimplicit flows
may think this sounds dangerously similar. The key difference is that we
are talking about logical functions, and in a logical function it is completely
possible for some inputs to have absolutely no bearing on anymeasurable
output. The danger of implicit flows in a microprocessor is different because
an action which did not happen (for example a branch of code not being taken)
may result in a measurable difference of output (for examplea variable not
being set equal to 1).

Clock

D Q
Reset

Figure 3: A 1-bit counter with reset. With the conventional technique
of OR-ing all input shadow values, the feedback loop ensuresthat
a counter shall never be trusted once it gets marked as untrusted.
Our shadow logic is more precise and recognizes that a trusted reset
guarantees a trusted0 in the counter value.

if by changingb we can cause the output (o) to be a different
value, then we know that the result cannot be trusted. For the
first line of the shadow truth table, it means we need to consider
the first two lines of the original truth table (the dependencies
are drawn with gray arrows in the figure). Because the output
is 0 for both values ofb, we know thatb, even if it was
trying to, cannot affect the output. For the last line of the
shadow truth table, we need to consider the bottom two lines
of the original truth table. Becauseb can have an effect on the
different outputs, the resulting value cannot be trusted. We can
continue this process and enumerate the truth table (with 16
entries in all) for the AND gate. After minimizing to an or-
of-ands representation, the resulting shadow logic is shown in
Figure 2.

While this seems like an awful lot of trouble to track the in-
formation flow through an AND gate, the difference in terms
of the ability to build a machine that effectively manages the
flow of information is immense. Consider an extremely sim-
ple 1-bit counter that increments (or toggles in this case) every
cycle, or gets cleared back to zero due to a reset. If we imple-
ment that counter as depicted in Figure 3, and use the conser-
vative scheme from above, there is no way for that counter to
ever come to a trusted state once it has been marked untrusted.
However, if you use our gate-level information flow to deter-
mine the trust value, once a trusted reset has been set we know
that the counter is in a trusted state 0. While this example isex-
tremely simple, we can continue this analysis further and cover
the other primitive gates and eventually analyze even the most
complex of logical functions.

3.2 Composing Larger Functions

While the truth table method that we describe above is the
most precise way of analyzing logic functions, our end goal
is to create an entire processor using this technology. Our re-
sulting machine is essentially going to be a large logic function
which transforms a state (including the internal state of the pro-
cessor, such as the program counter, and all architecturally vis-
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Figure 4: Composing information flow tracking logic for larger functions using basic shadow cells. Figure shows a 2-input MUX composed of
AND gates (1 and 2) and an OR gate (3). A shadow MUX is composed of shadow AND-1, shadow AND-2 and a shadow OR cells wired together
the same way as the original AND1,2 and OR gates.

ible state, such as the register file), to a new state based on in-
puts. Clearly, enumerating this entire truth table (which would
have approximately2769 rows, where 769 is the number of state
bits in our processor prototype) is not feasible, thereforewe
need a way of composing functions from smaller functions in
a way that preserves the soundness of information flow track-
ing. Again, taking a smaller example to demonstrate the larger
principle, let’s consider a multiplexer.

A multiplexer is small enough that we could enumerate the
entire function, but another way to create one is from logical
gates such as AND and OR. Figure 4 shows both the logical
implementation and the shadow logic. To create this shadow
logic we need access to all the inputs of the MUX, and all the
connections between the gates from which it is constructed.
Each one of the gates from which the MUX is constructed
(two AND and one OR) has a corresponding shadow logic
instantiated. For example the shadow logic for ANDs (1) and
(2) in the figure is simply the logic derived in Section 3.1. The
shadow logic for OR (3), created in the same way as the AND
gate, is then instantiated, and is fed the inputs from the outputs
of the AND gates and the outputs of the AND shadow logic.

One nice thing about considering a smaller example is that
it is still possible to write the truth table for this example,
and compare it to the result of this composition. Surprisingly,
the functions are not quite identical. The shadow logic created
compositionally is, in fact, slightly more conservative than the
shadow logic derived directly from the truth table. This is be-
cause the compositional approach cannot take advantage of the
fact that, due to the particulars of this logic, it’s impossible for
the outputs of AND-1 and AND-2 to both be set to 1 at the same
time, yet our OR-gate shadow logic is assuming this is possi-
ble. In this way, a compositional approach may not be exactly
precise, but will always be sound. In trying to calculate whether
or not an untrusted input can affect output, we are essentially
assuming that those uninterested inputs have more flexibility in

trying to affect the output than they actually do. For our MUX
example, both the precise shadow logic and the one resulting
from our compositional approach are precise enough to allow
us to build useful architectures. Both capture the notion that if
the select line is trusted, and the input it is selecting is trusted,
the resulting output should be trusted regardless of the trust-
worthiness of the other input (which makes intuitive sense from
an architectural perspective). Further, if the select lineis un-
trusted, the output of the MUX will always be untrusted, except
for the case when both inputs are trusted and equal. This behav-
ior is desirable since both inputs being trusted and equal isthe
only case where an untrusted select cannot affect the MUX’s
output. More precisely, the trust value of the output of a MUX
can be described by:

ot = ats ∨ bts̄ ∨ stat ∨ sta ∨ stbt ∨ stb

In fact the MUX, by being able to select between trusted and
untrusted inputs in a way that does not propagate excessively
conservatively, is the foundation of our entire architecture. For
example, in Section 4.1, we will discuss how we use predi-
cation to avoid the standard implicit flow problems encoun-
tered with branches, and architecturally, predication is really a
programmer-visible MUX.

4. Architecture

Now that we have discussed our GLIFT logic method, the
next question then becomes how that method can be applied to
a programmable device to create an air-tight information flow
tracking microprocessor. The goal of our architecture design is
to create a fullimplementationthat, while not terribly efficient
or small, is programmable enough and precise enough in its
handling of untrusted data that it is able to handle several
security related tasks, while simultaneously tracking anyand
all information flows emanating from untrusted inputs.

To understand how information flows manifest themselves
at the gate level, let us begin with the small snippet of pseudo



assembly below which captures nicely the notion of implicit
flows discussed in Section 2. AssumingX is untrusted, should
either ofR1 andR2 be marked as trusted?

0x01 br ( X == 0 ) 0x03
0x02 R1 := 1
0x03 R2 := 1

Let us start with what the programmer would expect the
correct answer to be:R2 does not appear to depend on the
untrusted variable, and hence appears to be trusted. IfX 6= 0
thenR1 should clearly be marked as untrusted (it is set to 1
only because of a decision made on an untrusted variable). In
fact, even ifX = 0, the value ofR1 is still dependent onX (the
value ofX affected value ofR1 and hence there is an implicit
flow).

Now let us consider what these operations would look like
at the gate level on a traditional architecture that has beenaug-
mented with gate-level flow tracking. Figure 5 shows a sim-
ple example of a branch instruction implemented in hardware.
The comparison occurs, and the result is used to control the se-
lect line to the Program Counter, which means the PC can no
longer be trusted. Once the PC is untrusted, there is no going
back because each PC is dependent on the result of the last. In
our example, not only willR1 be marked as untrusted,R2 will
(seemingly needlessly) be marked as well. In fact, it is even
worse than that – because the PC determines the bits that set
the register to writeback (and because the PC is marked as un-
trusted)all of the registers (and maybe all of memory) must
also be marked as untrusted.

In the architecture described above,R2 will be marked as
untrusted, but is information really flowing fromX to R2?
In fact, at the gate level, it is. There is atiming dependence
between the value ofX and the time at whichR2 is written.
Such timing observations, while seemingly harmless in our
example, do represent real information flow and have been used
to transmit secret data (Aciiçgmez 2007) and reverse engineer
secret keys (Aciiçmez et al. 2007).

Modern processors are simply not built to constrain infor-
mation flow. Rather, they are built to get things done as quickly
as possible, often times making use of as much information as
possible at each step to make that happen. Our approach to the
problem is to restrict both the ISA of the machine and the ac-
tual gate level implementation so much that, a) all information
flow will be obvious and well understood at the assembly level,
b) the actual propagation of trust-bits corresponds closely with
this understanding, c) it is impossible to write programs that
will result in “explosions” of untrusted state, d) the information
flow will be precisely tracked no matter what binary is given to
the machine (there is no compiler pre-analysis step required
to ensure the strength of information flow tracking) e) it is al-
ways possible to return the machine to a trusted state, and f)the
shadow information-flow-tracking logic can be composed and
added automatically in the way described in Section 3 result-

ing in the tracking ofall information flows (implicit, timing,
covert, or otherwise).

The resulting processor looks like a large state machine,
where the state is defined by the architectural and internal
state of the processor (PC, flags, registers, counters, etc.), and
an arbitrarily large butfinite amount of memory (a subtle but
important distinction). Given the current state at cyclei, you
simply compute the next state for cyclei+1. In the subsections
below we describe several devious ways in which information
will flow through a machine in ways the programmer is not
intending, and the architecture changes required to avoid them.

4.1 Step 1: Handling Conditionals

As is apparent from our previous example, traditional con-
ditional jumps are problematic, both because they lead to vari-
ations in timing and because information is flowing through
the PC (which has many unintended consequences). Remov-
ing conditionals presents a challenge: how to provide condi-
tional operations without modifying the PC? Predication, by
transforming if–then–else blocks into explicit data dependen-
cies (through predicate registers), provides an answer. The ef-
fect of an instruction is guarded by a specified predicate reg-
ister, and if our gate-level information flow method works cor-
rectly, the trust-bit of the destination register should beupdated
regardless of the value of the predicate. Since operations for
both cases (predicate true/false) get executed, the augmented
processor should track the information flow through every in-
struction that a programcould possiblyexecute, even though
only the instructions whose predicates evaluate to true actually
write their value back to a register. As shown in Figure 5, this
ensures the PC is only ever incremented, and no possible flow
from untrusted input to the PC is possible.

Figure 6 shows the actual logical implementation of predi-
cation in our processor. As in a normal predicated architecture,
the instruction word specifies the source registers (e.g.R1 and
R2) for the instruction, destination register (e.gR2), and a pred-
icate register or constant (e.gP0 orP1). If the predicate register
stores a 0, then the instruction doesn’t write back and instead
the old value is written back, but if the predicate is 1 then the
new value is written. The shaded lines in the figure illustrate
this point more fully. In addition to implementing predication,
this example demonstrates a crucial role the MUX plays in our
architecture by managing to switch between trusted and un-
trusted values. Let us consider the following predicated code,
and how trust-bits would flow through the logic in this exam-
ple.

0x01 ( 1) P1 := not( P0 )
0x02 (P0) R2 := R1 + R2
0x03 (P1) R0 := R1 + R2

In this code, either ofR0 orR2 gets the sum (R1 + R2) written
into it (based upon the conditional P0). Let us consider what
happens to the architecture pictured in Figure 6 on instruction
0x02 if P0 is untrusted. First, the untrusted predicate will be
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Figure 6: Implementation of our predicated architecture. The predicate bits are used to control MUXs that decide whether a register is updated
with a new value or gets its old value written back into it. If the predicate bit is untrusted, the shadow MUXs ensure that all registers thatcould
have had an untrusted value get marked as untrusted, thus turning implicit information leaks into explicitly tracked trust values.

selected by the MUX, and will be used (in conjunction with
R2) to select the register to write back (this is happening at the
bank of small AND gates). As the number 2 flows through the
decoder, all of those lines feeding the AND gatesexcept for the
one line controllingR2 will be set to 0. For each of those lines,
the untrusted predicate is now irrelevant because we can trust
that output of the AND gate will be 0 no matter what (as per
our discussion of AND gates earlier in the paper), hence, the
values on those lines can be trusted. For the one remaining line
(the one controllingR2), one of the inputs to the AND gate is 1,
while the other input in untrusted, and hence the result on that
line must be untrustedno matter whether the predicate is true
or false. That untrusted line will then control the final MUX
that determines if the new value or old value should be written
back, which will result inR2 being marked as untrusted (again,
regardless of the predicate being true or false).

As a programmer, this complex interplay between the orig-
inal logic and the information tracking logic is actually quite
intuitive. If you predicate an instruction on an untrusted pred-
icate, the destination register will be marked as untrusted. It is
as simple as that. As an architect, once you manage to elim-
inate the spurious information flows, the automated methods

described in Section 3 actually manage to augment the logic in
a way that is both sound and in-line with programmer expecta-
tions.

4.1.1 Step 2: Handling Loops

While we can use predication to eliminate the use of condi-
tional jumps in the case of if-then-else blocks, handling loops
requires a different approach. Loops are surprisingly difficult
to constrain as there are so many different ways for informa-
tion to leak out in non-obvious ways. Consider a simple while-
loop on an untrusted condition. Every instruction in that loop
may execute an arbitrary number of times, so everything those
instructions touch is untrusted. In fact, everything thatcould
have been modified, even if it wasn’t, needs to be marked as
untrusted. Consider a loop withi going from 0 toX , and set-
ting A[i] := 1. The fact that A[X + 1] = 0 tells us something
aboutX , and so there is information flow fromX to A[X +1].
In fact there is information flow fromX to A[X + n] for all n

less than the maximum possible valueX can ever have. Even
the fact that the loop may take an arbitrary number of cycles
creates an implicit timing channel with all of the instructions
downstream from it.



To limit the effect that loops have on the untrusted state of
the system, we have to severely constrain the types of loops
that are possible in the system by bounding the side-effects
that a loop can have. It needs to be clear, both to the program-
mer and at the logical implementation, exactly what state has
thepossibilityof being affected by the loop. While predication
makes the side effects of conditional operation explicit, to deal
with loops we use a specialcountjump instruction that speci-
fies statically the number of iterations that should be executed,
along with the jump target for the iterations. The processorim-
plementation then maintains a unique iteration counter forthe
loop instruction and ensures that the counter cannot be modi-
fied explicitly by the program.

Counting loop instructions have existed in the context of
DSPs for some time, but we believe this is the first time they
are being used to aid information tracking. Thecountjump
instruction has three interesting details. First,countjump has
to be unpredicated, implying that it will always commit and
a constant amount of jumps to the jump target will always be
performed. Ifcountjump were to be predicated, it would be
exactly equivalent to a conditional jump and would carry allof
the same problems discussed in the section above. Second, itis
supported by an internal counter that gets set the first time the
instruction is encountered. On all subsequent executions,the
counter decrements by 1 until it reaches 0. One further execu-
tion will find the counter at 0 and advance the PC by 1 to exit
the loop instead of jumping to the jump target. The third detail
is that, in order to support nested loops, if a dynamic instruc-
tion instance finds the counter at 0, then it gets reset back to
the specified value and the entire loop is restarted. This func-
tionality is implemented by an internal state machine that sets
the counter back to an uninitialized state when the counter is
found to be 0 and the loop is found to be terminated. By us-
ing predicates inside the loops, a programmer can simulate an
“early termination” by predicating all instructions in theloop
body with the negation of this termination condition. In Sec-
tion 5.2 we discuss the ramifications of this on the programmer
in a bit more detail.

4.1.2 Step 3: Constraining Loads and Stores

The example for loops above also demonstrates a third archi-
tecture feature that is problematic for information flow track-
ing: indirect loads and stores. Most ISAs support indirect mem-
ory addressing, where a register’s contents provides the address
for a load or a store. If the register’s contents are untrusted,
then using it as an address for a store instruction would implic-
itly mark the entire address space as untrusted (as any of those
addresses could have been affected by that untrusted data).At
the logical level, this shows up as the untrusted data address
makes its way to the address decoder, and all of the lines of
that decoder become untrusted.

Intuitively, the problem is that accessing one untrusted ad-
dress causes every other address to become implicitly un-
trusted by virtue of themnot being accessed or modified. To

limit this implicit untrusted state explosion, in our prototype
design we have limited our ISA to only supportdirect and
loop-relative loads and stores. Direct loads use an address
encoded in the immediate field, and are used to access fixed
memory addresses. To allow access to arrays without resort-
ing to general purpose indirect loads and stores, we have a
loop-relative addressing mode, where loads access a variable
which is at a fixed constant offset from a loop index (the loop
counter used in thecountjump instruction). This reduces con-
venience of programming in our ISA substantially but it al-
lows us to precisely track any memory references. We support
these by incorporating two new instructions:load-looprel

and store-looprel. These are used to load and store val-
ues from a fixed base address (specified as an immediate
field) and an offset stored as set of counters (C0...C7 in our
prototype) that can be explicitly initialized and incremented
by a fixed value using two new instructions:init-counter

andincrement-counter. For example,load-looprel R0,

0x100, C0 loads the value ofM[0x100 + C0] into R0. The
number of times these instructions execute depends upon the
number of iterations of the loop, which is fixed, and (as we did
for thecountjump instruction), the local counter initialization
and increment instructions commit unconditionally so the set
of all addresses that can possibly be accessed in the loop can
be determined at run-time.

4.2 Implementation and Automatic Shadow Logic
Generation

Our prototype processor is implemented in Verilog, and we
use Altera’s QuartusII software to synthesize it onto a Stratix
II FPGA. It is a 32-bit machine with 64KB each of Instruction
and Data Memory. It has a program counter, 8 general purpose
registers, 2 predicate registers, 8 registers to store loopcounters
(that count down the number of iterations) and 8 other registers
to store explicit array indices (used as offsets for load-looprel
and store-looprel instructions). To make the semantics of astate
machine precise, all logic is triggered on the positive clock
edge, and each cycle simply transforms the set of machine
state into a new state through simple combinational logic. This
logic uses the PC to read out an instruction word, decode it,
perform data memory accesses and ALU computations and
finally write back new values into registers, memory and PC.
In practice, block RAMs in Stratix II FPGAs are synchronous
and require two cycles to read data out. Our simple processor
executes an instruction every 5 cycles similar to the classical 5-
stage multicycle machine. We have avoided the complications
of pipelining (especially the forwarding logic it requires) for
the purposes of this proof-of-concept.

Our processor is written in structural verilog as a composi-
tion of gates and module instantiations, along with registers and
RAMs to store processor state. To augment this processor with
GLIFT logic we proceed in two steps. First, each bit of proces-
sor state is explicitly shadowed, meaning every register gets a
shadow register, and every memory has a shadow RAM (that



stores the 1-bit trust values for each bit of the orginal memory).
Second, the logic and signals are shadowed by generating the
proper trust propagation logic as described in Section 3.

The first step is easily accomplished by simply duplicating
the declarations for registers and memory. To handle the sec-
ond step we create a library of shadow cells that perform infor-
mation flow tracking for each basic processor component like
AND and OR gates, MUX-es, decoders, ALU etc. The shadow
logic is wired up with both the inputs to the original function,
and also with corresponding shadow inputs. While we could
spend time describing more formally how this happens, it is
easiest to simply see from the resulting verilog code (Figure 7).

4.2.1 Programming in the resulting ISA

Figure 8 summarizes our instruction set. We eliminate con-
ditional jumps and indirect loads and stores from our ISA,
and introduce a countjump instruction to execute fixed-size
loops, predicated instructions to implement conditional exe-
cution, and restricted loads and stores that use only immedi-
ate values. In addition to these instructions, we support various
logical (AND, OR, NOT, XOR), arithmetic (ADD, SUB), bit-
wise (SHR, SHL) and comparison operators. As an example
usage of the new instructions, let us consider a code snippet
from theSubBytes function in the GLIFT implementation of
the AES (Daemen and Rijmen 2002) encryption algorithm (in
Figure 9). The function substitutes values in thestate matrix
with values in theSBox. The code below loads the value in
the state matrix (which in this example is stored starting at
address 0x100). Every loaded element serves as an index into
the SBox, and is substituted by the value in theSBox (which
is stored starting at address 0x300). Thestate has 16 ele-
ments and theSBox is a 256 entry table, correspondingly, the
countjump instructions 0x0b and 0x08 loop back a fixed num-
ber of times (15 and 255 respectively).

5. Evaluation

To demonstrate that our proposed architecture is actually
implementable, we have built a working model of our pro-
cessor on an FPGA, and we have written several applica-
tion kernels to help us quantify the overheads involved. Fig-
ure 10 shows one portion of that result, the area and frequency
overhead of our proposed architecture, both with and without
GLIFT logic added, as compared to a NIOS processor.

5.1 Hardware Impact

We use Altera’s Nios processor as a point of comparison
as it has a RISC instruction set, and, as a commercial prod-
uct, is reasonably well optimized. The Nios can be instanti-
ated as either an economy core (Nios-econ) or a standard core
(Nios-std). The economy version is an unpipelined 6 stage mul-
ticycle processor without caches, branch-predictors etc.(most
closely comparable with our core), while the standard version
is pipelined and has an additional 4KB instruction cache. The

area and timing numbers have been generated by synthesiz-
ing the GLIFT-base (with no information flow tracking logic),
GLIFT-full and Altera-Nios processors onto a Stratix II device
with compilation settings balancing optimization for botharea
and delay. In Figure 10, the left Y-axis shows the area required
to implement the processors measured in Adaptive Look-Up
Table (ALUT) units (the logic cells used by Altera Stratix II
FPGAs), while the right Y-axis shows the maximum frequency
(Fmax) of the processors.

Our base processor is almost equal in area to Nios-standard,
and about double the size of Nios-economy. Adding the infor-
mation flow tracking logic to the base processor increases its
area by 70%, to about 1700 ALUTs. However, in terms of ab-
solute size, even the now outdated Stratix II FPGAs have upto
180K ALUTs, while all the above processors consume only in
the range of 1K-2K ALUTs. On the right Y axis, Fmax for Al-
tera Nios processors is around 160MHz, while both the base
and full GLIFT processors have an Fmax of around 130MHz.
In terms of delay, both GLIFT and Nios are multi-cycle pro-
cessors with the path through the ALU to the destination reg-
ister being the most critical. The extra tracking logic doesnot
impose a significant overhead on the Fmax, reducing it from
131MHz to 129MHz. Further, the GLIFT processors operate at
130 MHz as opposed to 160 MHz because we include a bar-
rel shift that the Nios does not (with 1-b shifts, our processor
also operates at 160MHz.). While these overheads are certainly
non-trivial, keep in mind that this version of the processorshad-
ows everybit in the machine. By trading off precision for ef-
ficiency it may be possible to keep the soundness of our result
while reducing the performance impact.

5.2 Analysis of Application Kernels

To test the programmability of our design, we have hand
coded a set of applications kernels onto our ISA. This allows
us to examine the impact of our modified ISA on the the static
code size and the dynamic instruction count of the programs.
Our kernels are drawn from the potential program security
uses of a strong information flow tracking system including a
public key encryption algorithm (RSA), a block cipher (AES),
a cryptographic hash (md5), along with a small finite state
machine (CSMA-CD), and a sorting algorithm (bubble-sort).

Mapping applications onto our ISA requires converting con-
ditional if-else constructs into predicated blocks, turning vari-
able sized loops into fixed size ones (by bounding them), and
turning indirect loads/stores into direct memory accessesor
loop-relative ones using the loop counters. In general, anyap-
plication that has predominantly regular behavior should exe-
cute without much additional overhead, while dynamic behav-
ior such as irregular array accesses will incur much greaterin-
efficiency. For our experiments, we implemented each of the
programs under test both directly in our assembly and in C.
The C programs are compiled down to Nios-RISC executables
with “-O2” and emulated with Altera’s instruction set simula-
tor (ISS). Our assembly is mapped to our FPGA implemen-



reg [31:0] gen_reg [7:0];   
wire [31:0] mux2greg0; 

always @ (posedge clk) begin 
  g_reg[0] <= mux2greg0; 
end 

assign is_store =  instrn[29] | instrn[22]; 

mux2x1_32b my_mux0( .in0(g_reg0),  
 .in1(newval),  .sel(p_sel0), 
 .result(mux2greg0) ); 

reg [31:0] gen_reg_shadow [7:0]; 
wire [31:0] mux2greg0_shadow; 

g_reg_shadow[0] <= mux2greg0_shadow; 

assign is_store_shadow = ( instrn_shadow[29] & Instrn_shadow[22] )  
  | ( instrn_shadow[29] & ( ~ instrn_shadow [22]) & ( ~ instrn [22] ) )  

                         | ( ( ~ instrn_shadow[29] ) & instrn_shadow[22] & ( ~ instrn[29] ) ); 

mux2x1_32b_shadow sh_my_mux0( .in0(g_reg0), .in0_t(g_reg0_shadow), 
      .in1(newval), .in1_t(newval_shadow), .sel(p_sel0), .sel_t(p_sel0_shadow), 
            .ot(mux2greg0_shadow) ); 

Original Logic Added Logic  

Figure 7: An example of how our very structured verilog code can be automatically augmented with the logic required to track the trust through
the hardware implementation. Each wire, register, and signal is augmented with a corresponding shadow element that stores the 1-bit trust value
for each.

Instruction Pred Action Information Flow 

load-immediate yes Rdest := immed  Rdest inherits the  trust of the predicate 

load-direct yes Rdest := M[ immed ] Rdest is truted if both the predicate and the memory value are 
trusted 

store-direct yes M[ immed ] := Rsrc The memory value is trusted if the predicate and Rsrc are trusted 

load-looprel yes Rdest := M[ immed + LCount ] Rdest is trusted if the memory value and the predicate are trusted  

store-looprel yes M[ immed + LCount ] := Rdest The memory values is trusted if the predicate and Rdest are 
trusted 

add, sub, and, or, not, xor, 
shl, shr, cmpeq, cmplt 

yes Standard 3-address register to 
register operations 

Rdest is trusted if the both the inputs to the ALU operation are 
trusted 

predset yes Pdest := Rsrc   Pdest is trusted if the predicate and Rsrc are trusted  

countjump no Jump to target exactly N times (N 
specified in immediate field) 

The loopcounter can only be written by an immediate and should 
never become untrusted 

init-counter no LCount := 0 LCount is trusted 

increment-counter no LCount := LCount + 1 LCount remains trusted 

Figure 8: An overview of the ISA of our prototype architecture, and the information flow tracking policies that are extracted from the actual
logic level implementation.

0x01 ( 1) load-immediate P1 := 0 #
0x02 ( 1) init-counter C0 := 0 # i = 0
0x03 ( 1) load-looprel R0 := M[0x100 + C0] # R0 = state[i]
0x04 ( 1) init-counter C1 := 0 # j = 0
0x05 ( 1) cmpeq P1 := C1, R0 # if ( j == R0)
0x06 (P1) load-looprel R1 := M[0x300 + C1] # R1 = SBox[j]
0x07 ( 1) increment-counter C1 := 1 # j++
0x08 ( 1) countjump (0x05), 255 # loop back 255 times
0x09 ( 1) store-looprel M[0x100 + C0] := R1 # state[i] = R1
0x0a ( 1) increment-counter C0 := 1 # i++
0x0b ( 1) countjump (0x03), 15 # loop back 15 times

Figure 9: Example usage of the new GLIFT instructions: a codesnippet from theSubBytes function in the GLIFT implementation of the
AES (Daemen and Rijmen 2002) encryption algorithm.

tation to ensure the correctness of our design, and is then run
through our instruction set simulator to gather dynamic instruc-
tion counts. Figure 11 presents the results of those experiments.

In terms of static code size, our new ISA is very close to
the Nios-RISC ISA. However, the dynamic instruction counts
vary substantially. Programs such as the CSMA-CD finite state
machine and AES have numerous table look-ups where each
look-up requires a full table iteration. As a result, these have

a very large dynamic instruction count in comparison to the
general purpose ISA. On the other hand, bubble sort, which
also requires array accesses, is fairly efficient because both the
Nios and our ISA loop over the entire arrayN2 times. Any in-
efficiency there is owing to instructions that were executedbut
not written back because their predicates were false. Finally,
RSA and md5 have very little in the way of predicated instruc-
tions, and both comprise mainly of ALU instructions. For these
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Figure 10: Quantifying the area and timing overhead of gate-level information flow tracking. The left Y-axis compares the number of FPGA logic
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flow tracking GLIFT processor to two general purpose micro-processors by Altera.

applications, the number of executed instructions is very close
to the Nios. While our assembly is unoptimized and opportuni-
ties for optimization abound, the main point of this is to show
that it is indeed possible to constrain a processor enough that
all information flow is apparent at the gate level, yet still main-
tain enough programmability that programs can be mapped to
it without an unmanageable amount of overhead.

6. Conclusions

At the end of the day, our new microprocessor is bigger,
slower, harder to program, and computationally less powerful
than a traditional microcontroller architecture. But whatthis ar-
chitecture does for the first time is provide the ability to account
for all information flows through the chip. It is impossible for
an adversary, through clever programming, carefully crafted in-
put, or even the use of covert or timing channels, to ever cause
a resulting data element to be marked as “trusted” when in fact
it was derived in any way from untrusted data. This is accom-
plished by tracking the flow of information at the level of gates,
where timing signals, predicates, the bits of an address, even
the internal results of logical operations all look like signals on
a wire, and all of them are tracked by augmenting those struc-
tures using our GLIFT logic transformations. When criticalor
sensitive operations need to be performed, a co-processor aug-
mented with these abilities could be an attractive option.

We devise a flow tracking logic for simple gates that con-
siders theeffectof inputs on outputs while propagating taint
directly from the truth tables of those gates, and propose a
sound composition rule to generate shadow logic for more
complex structures. We then show that gate level information
flow tracking, when directly applied to a traditional micropro-
cessor, quickly points out many subtle information flows that
might be hidden by the ISA abstraction, and at the very worst,
lead to a quick explosion of untrusted state. We then go on
to describe an architecture that removes these problems while
still retaining sufficient programmability to allow it to handle
a variety of small but critical tasks. Finally, by implementing
a prototype and automatically augmenting it with our informa-
tion flow tracking logic, we quantify the extra area/delay cost

of such flow tracking over a general-purpose micro-controller.
While there are many opportunities to further optimize bothour
architecture and our application kernels, the techniques pre-
sented here show that is indeed possible to track information
flows through a programmable design.
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