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Abstract or untrusted, for every piece of data. Data from “untrusted”

For many mission-critical tasks, tight guarantees on theSOurces (e.g. from the network) are marked as untrusted, and
flow of information are desirable, for example, when hargilin the output of an instruction is marked as untrusted if any of
important cryptographic keys or sensitive financial data wits inputs are untrusted. While these systems will likelgver
present a novel architecture capable of tracking all infarm themselves useful in a variety of real-life security scegr
tion flow within the machine, including all explicit data trg=  Ultimately it is impossible for these techniques, or in fat
fers and all implicit flows (those subtly devious flows cause@NY Security system running on a general-purpose progessor
by not performing conditional operations). While the prob-t0 provably capture all of the information flow within the ma-
lem is impossible to solve in the general case, we have créhine (Denning and Denning 1977).
ated a machine that avoids the general-purpose programma- The problem is that in a traditional microprocessor, infor-
bility that leads to this impossibility result, yet is stffo- mation is leaked practically everywhere and by everythihg.
grammable enough to handle a variety of critical operations/ou are executing an exceedingly critical piece of softwire
such as public-key encryption and authentication. Thratingh example, using your private key to sign an important message
application of our novel gate-level information flow tracli  information about that key is leaked in some form or anotlyer b
method, we show how all flows of information can be preciselgimost everything that you do with it. The time it takes to-per
tracked. From this foundation, we then describe how a clas®rm the authentication, the elements in the cache youatispl
of architectures can be constructed, from the gates up, no-co due to your operations, the paths through the code the encryp
pletely capture all information flows and we measure the imtion software takes, even the paths through your code tleat ar
pact of doing so on the hardware implementation, the ISA, andever taken can leak information about the key.

the programmer. While this information leakage may not be a consideration
Categories and Subject Descriptors C.3 [Special-Purpose When you are executing a word processor, leakage can be a
and Application-Based Systejns serious problem for exceptionally sensitive financial,itani,

and personal data. Developers in these domains are witiing t
go to remarkable lengths to minimize the amount of leaked in-
. formation, for example, flushing the cache before and aker e

1. Introduction cuting a piece of critical code (Osvik et al. 2006), attemgtio

The enforcement of information flow policies is one of theSCrub the branch predictor state (Aciicmez et al. 200 Ajyrad-
most important aspects of modern computer security, yésas a 1Zing the execution time of loops by hand (Kocher 1996), and
one of the hardest to get correct in implementation. ThentecePY randomizing or prioritizing the placement of data inte th
explosion of work on dynamic dataflow tracking architecture ¢ache (Lee et al. 2005). While these techniques make it more

has led to many clever new ways through which informatiodifficult for an adversary to gain useful knowledge of sensi-

can be accounted for in modern software, leading to nove:twa)E"e information, at the end of the day these heuristics oann
ring the system significantly closer to a formally strong no

of detecting everything from general code injection attaitk - _ ) . )
cross-site scripting attacks (Dalton et al. 2007; Xu et@0@).  ton of information flow tracking because they do not takeint

The basic scheme keeps track of a binary property, trust&@nsideration the intricate logic and timing that compdse t
implementation.
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a covert channel) or not (e.g. through a timing-channele Onnotbeing accessed. For example, in the pseudo ciddelien

of the key insights in this paper is that all information flows j := 1", even if “j := 1" is neverexecuted becauseis al-
whether implicit, covert, or explicit, look surprisinglynsilar  ways false, by observing we can learn something aboiit

at thegate levelwhere weakly defined ISA descriptions give and hence there is an information flow betweéemd;. If you

way to precise logical functions. While past approache&hawhave a Turing-complete machine, it is impossible to boued th
assumed that any use of untrusted data should lead to an wet of possible actions that the machine might make in some
trusted output, we observe that at the gate level this islypverconditional situation (a la the Halting Problem), and hefar
conservative. If one input to an AND gate is 0, the other inany general-purpose programmable machine, it is impassibl
put canneveraffect the result and thushould have no bear- to precisely preverdll implicit flows. We believe our solution
ing on the trust of the outpuBased upon this observation, to this quandary is unique in that we have built a machine that
we introduce a novel logic disciplin&ate-Level Information- by construction, will not allow unbounded execution. Intfac
Flow Tracking (GLIFT)logic, which is built around a precise our design, which is still programmable through an ISA (dlbe
method for augmenting arbitrary logic blocks with trackinga non-traditional one), is theoretically equivalent to ag&
logic and a further method for making compositions of thoseery large state machine. While this certainly limits th@lap
blocks. Using this discipline we demonstrate how to create acability of the machine, unbounded execution is not reglire
architecture that, while unconventional in ways requirgd bto sort a bounded-size list, encrypt a message, or everyverif
the very nature of being free from the problems of implicit-a message signature. In the end we have created a machine in
flow, is both programmable and capable of performing usewhichall hidden flows of information are made explicit.

ful computation. We present a synthesizable processorimpl  ysing hardware to track the flow of information through a
mentation with a restricted ISA, predicated execution foad processor is by no means a new idea. DIFT (Suh et al. 2004),
loops, and an iteration-coupled load/store architectdmm-  \jinos (Crandall and Chong 2004), Rifle (Vachharajani et al.
bined with GLIFT logic, these restrictions provide tradeab 2004), Raksha (Dalton et al. 2007), FlexiTaint (Venkataam
and provably-sound information-flow tracking, yet allowska et a1. 2008), Log-Based Lifeguards (Ruwase et al. 2008) and
such as public-key cryptography and message authentidatio g nost of other proposals suggest the use of data-flow trgckin
be performed. hardware to track the flow of untrusted network, file and user
In Section 3 we describe how architectural informationinputs through memory. The basic idea behind these toats is t
flows at the level of gates and present a novel compositionaksign a “tag” with every word of physical memory indicating
method by which arbitrary logic functions can be analyzed tevhich words of memory can be trusted, and then to track these
create the fundamental building blocks of our secure harelwa tags around the machine as operations are performed. Every
In Section 4 we then describe the three major pitfalls ingtesi time an arithmetic operation uses an untrusted input, thgubu
ing an architecture free of implicit flows, how our ISA avoidsis marked as “tainted”, and whenever an untrusted memory
them, and how our gate-level implementation correctlyksac word is used for a sensitive operation like a jump address
the resulting information flows in a provably-sound way. Tocondition or a system call, the tool generates a warningher t
ensure that the resulting architecture is not unreasomathe user. Our approach, while inspired by these methods, seeks t
additional overhead it incurs, in Section 5 we describe howtrongly couple the notion of information flow @il parts of
this microprocessor compares with a conventional micrecorthe machine at the gate level, not just the data paths, so that
troller in terms of area and performance. However, before were know for certain that there is no way for information to
can begin the details of our solution, we need to begin with e manipulated in such a way that it will “lose” the tag that
discussion of the great deal of related work in both computeepresents its trust.

architecture and security that this work has built upon. The idea of data-flow tracking is not limited to hardware-
only options. Software projects have shown that data-flow
2. Redated Work tracking can be useful in detecting a variety of attacks (Qin

The idea of tracking and constraining the flow of informa—et al. 2006; Costa et al. 2005; Clause et al. 2007; James New-

tion is one of the primary tenets of computer security, ahd a;ome and Dawn Song 2005; Xu et al. 2006; Vogt et al. 2007;

manner of work has examined both the practical and theore rumiey et al. 2006), some with surprisingly low overhead

ical limitations of mechanisms that perform this functiéws e.g. LIFT (Qin et al. 2006) and Speculation to Security (©-he

has been pointed out countless times before, the genetad pret al. 2008)). In fact this idea can be extended to a genénie ta

lem of determining whether information flows in a program?raCk'ng framework that allows arbitrary policies to be en-

- ; ; - “ _forced. Dytan (Clause etal. 2007), GIFT (Lam and cker Chiueh
from variablez to variabley is undecidable, as “any proce 906), Taint-Enhanced Policy Enforcement (Xu et al. 2006),

dure purported to decide it could be applied to the statemeé

if f(xF)) hgltsthen y := 0 and thus provFi)ge a solution to the aksha (Dalton et 6.‘" .2007)’ System To_mography (Mysore

halting problem for arbitrary recursive function” (Dengiand etal. 2008) and FIeX|Ta|nt (Venkataramanl et al. 2008) dre a
examples of flexible systems for tracking data and/or erforc

Denning 1977). This is a classical example ofimplicit flow, . ) . .
where information flows between variables by virtue of thei"9 polices based on those tags. In addition to explicitiitata



tracking, some prior work has examined the problem of track-

ing implicit information flows (Vogt et al. 2007; Vachharaja Logic Truth Table Trusted A and Untrusted B
et al. 2004; Clause et al. 2007; Xin and Zhang 2007). These ab 3 b out a b a b out
approaches track information at the ISA level and attempt to 0 0 o 0 0 0 1
combine dynamic taint tracking with limited static anaty& 01 o0 0101 0
improve the precision of flow tracking. Our approach is dtiffe 1.0 o0 100 1 1
ent from these prior methods in that we would like to be able o 111 1101 1

to precisely track all flows for any software that can be writ-
ten in our ISA, and because we have knowledge of underlyingjgure 1: Tracking Information Flow through a 2-input AND @a
hardware, we can take into consideration the logical implesigure shows truth table for the AND Gate (left) and a part &f i

mentation including all of its undocumented features, bugshadow truth table (right). The shadow truth table showsitberest-

and timing channels. ing case when only one of the inputandb is trusted (i.ea: = 0 and

. . - . . b: = 1). Each row of the shadow table calculates the trust value of
It is worth noting explicitly what |nf0_rmf';1t|on _Ieaks and the output ¢ut:) by checking whether the untrusted inputan affect

attacks our proposed approach, taken in isolation, does n@k outputout. This requires checkingut for both values o in the

address. We do not explore the untrusted hardware comp@pie on the left. The gray arrows indicate the rows that hawvee

nent problem or physical attacks that may tamper with menthecked for each row on the right. For example, when 1, b affects
ory. There is already a great deal of work on tamper resistaatit (row 3 and 4 on the left). Hence row 3 and 4 on the right have
computing (Suh et al. 2007). Nor do we consider non-digitabut; as untrusted.

side-channel attacks (such as those informed by obsemitio

power distribution (Kocher et al. 1999) or RF radiation (6ana more general information flow tracking problem rather than
dolfi et al. 2001)), as again, there are many circuit levelmet specifically data flow tracking. We wish to treat our whole-pro
ods for dealing with those. Instead, our approach allows usessor as a logical function, one which operates on a set of in
to treat the microprocessor simply as an object throughhvhicputs (some of which are trusted and some of which are not) and
both trusted and untrusted information flows, allowing uséo results in a set of outputs. The trust of the outputs shouttEbe
certain as to which resulting outputs rely on that untrusted termined based on the trust of the inputs, and more speéjfical
put. We have already begun to see mainstream processors wiiihow untrusted inputs affected those outputs. To more fully
physically isolated protection domains, such as ARM's Frus jllustrate the notion of trust propagation at the logicalele
Zone (Alves and Felton 2004) and Cell Broadband Engine'ret's consider a very simple gate, AND. Surprisingly, even f
Synergistic Processor Element (Shimizu et al. 2007), ast firthis simple gate, the trustworthiness of the output is a dermp
step towards preventing trusted and untrusted data froen-int function of the trustworthiness of the inpasdthe actual log-
mingling. While, as you will see, our resulting systemisyett jcal values of those inputs.

efficient in the traditional sense, we believe it is a leapaiv

the goal of a microprocessor capable of provably trackird) an

policing all information flows on chip. 3.1 Information Flow Trackingin an AND gate

3. GateLevel Information Flow Tracking Consider an AND gate (shown in left side of Figure 1) with

Tracking all information flows through a full microproces- two binary inputsg andb, and an outpub. Let's assume for
sor is a daunting task, but one that we can tackle by breakight now that this is our entire system, and that the inputs
ing it down into small pieces. In this section, we begin withto this AND gate can come from either trusted or untrusted
the smallest atomic units of logic in the microprocessotega sources, and that those inputs are marked with aubiadb,
Once we precisely understand how information flows throughespectively) such that a 1 indicates that the data is uetlus
the primitive NOT, AND, and OR gates, we can begin to comThe basic problem of gate-level information flow trackingos
pose these gates together into more complex structuressuchdetermine, given some input ferandb and their correspond-
multiplexers, arithmetic units, and eventually full presers ing trust bitsa; andb,, whether or not the outputis trusted
that are able to manage and manipulate information in such(ahich is then added as an extra output of the functign

way that trust can be tracked through the implementation in a 1q the best of our knowledge, all prior work in the area has
sound and precise way. assumed that if you compute a function, any function, of two
While our techniques can be extended to cover a variety afiputs, then the output should be tagged as taintedtifer

information flow security scenarios, for the purpose of fas  of the inputs are tainted. This assumption is certainly gq(itn
per we will restrict our discussion to simple binary tagstdda should never lead to a case, wherein output which shouldenot b
and code are simply either “trusted” (represented logicadl trusted is marked as trusted) but it is over conservativeanym
0) or as “untrusted” (represented logically as 1). We hawe ch important cases, in particular if something is known abbat t
sen a representation that is close to “taint” tracking,altsh  actual inputs to the function at runtime. In fact, from an in-
we adopt the nomenclature of the security community asghis formation theoretic standpoint, the output of a logicaldiion
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ot Figure 3: A 1-bit counter with reset. With the conventioreghnique

Ot of OR-ing all input shadow values, the feedback loop enstiras
a counter shall never be trusted once it gets marked as uetlus
Figure 2: Shadow logic for an AND Gate. Conventional infotiba  Our shadow logic is more precise and recognizes that a tcListset
flow tracking reports the output as untrusted if any one oftipeits is  guarantees a trustedin the counter value.
untrusted. The circuit on the right shows our shadow AND giade

marksout; as untrusted only ifut depends upon an untrusted input. . . .
outt y but cep P P if by changingb we can cause the outpuf)(to be a different

] ] value, then we know that the result cannot be trusted. For the
should only be untrusted if some untrusted input actualty hagirs; jine of the shadow truth table, it means we need to cemsid
an opportunity to affect the outplut the first two lines of the original truth table (the dependesc

To see why, let us just consider the AND gate, and all ofre drawn with gray arrows in the figure). Because the output
the possible input cases. If both of the inputs are trustesh t is 0 for both values ofb, we know thatb, even if it was
the output should clearly be trusted. If both the inputs ar@rying to, cannot affect the output. For the last line of the
untrusted, the output is again clearly untrusted. Theéstérg shadow truth table, we need to consider the bottom two lines
cases are when you have a mix of trusted and untrusted dagd.the original truth table. Becausecan have an effect on the
If input a is trusted and set to 1, and inphitis untrusted, different outputs, the resulting value cannot be trusteg ch
the output of the AND gate is always equal to the input continue this process and enumerate the truth table (with 16
which, being untrusted, means that the output should also le@tries in all) for the AND gate. After minimizing to an or-
untrusted. However, if input is trusted and set to 0, and input of-ands representation, the resulting shadow logic is shiow
b is untrusted, the result will always be 0 regardless of th€&igure 2.
untrusted value. The untrusted value has absolutely nateffe \yile this seems like an awful lot of trouble to track the in-

on the output and hence the output can inheritthe trustBy  t5rmation flow through an AND gate, the difference in terms
including the actual vaI_ues of the inputs into the detertama. ¢ 1o ability to build a machine that effectively manages th
of whether the output is trusted or not trusted, we can morgy, of information is immense. Consider an extremely sim-
precisely determine whether the output of a logic funct®n iple 1-bit counter that increments (or toggles in this casejye
trusted or not. cycle, or gets cleared back to zero due to a reset. If we imple-
So, how do we formalize this notion of untrusted inputsment that counter as depicted in Figure 3, and use the conser-
“affecting” outputs? Essentially we are going to create & ne vative scheme from above, there is no way for that counter to
truth table, which willshadowthe original logic, but instead ever come to a trusted state once it has been marked untrusted
of computing the outputo], it will compute the trust of the However, if you use our gate-level information flow to deter-
output @;) as a function of the logical inputs: (andb), the  mine the trust value, once a trusted reset has been set we know
the trust of those inputsi{ andb,), and the truth table of the that the counter is in a trusted state 0. While this examp&-is
original function. Let us consider the case again wheie tremely simple, we can continue this analysis further anéco
trusted (untrusted bit set to 0) ahds not (again in Figure 1). the other primitive gates and eventually analyze even thgt mo
To compute the first line in our shadow truth table, we mustomplex of logical functions.
consider all the possible values of the untrusted inpytsagd

3.2 Composing Larger Functions

Lwhile this is jumping ahead somewhat, readers familiar wwithlicit flows . . .
may think this sounds dangerously similar. The key diffeeeis that we While the truth table method that we describe above is the

are talking about logical functions, and in a logical fundtiit is completely ~Most precise way of analyzing logic functions, our end goal
possible for some inputs to have absolutely no bearing onraegsurable s to create an entire processor using this technology. &ur r
output.. The (;iang_(er of implicit flows in a microprocessor lﬂaedeqt because sulting machine is essentially going to be a Iarge Iogicﬁam:

an action which did not happen (for example a branch of cotlbeing taken) . . . .

may result in a measurable difference of output (for exanapiariable not  Which transforms a state (including the internal state eftto-
being set equal to 1). cessor, such as the program counter, and all architectwiadl
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Figure 4: Composing information flow tracking logic for langfunctions using basic shadow cells. Figure shows a 2#iMiuX composed of
AND gates (1 and 2) and an OR gate (3). A shadow MUX is compdstthdow AND-1, shadow AND-2 and a shadow OR cells wiredheget
the same way as the original AND1,2 and OR gates.

ible state, such as the register file), to a new state baseau on trying to affect the output than they actually do. For our MUX
puts. Clearly, enumerating this entire truth table (whidduld example, both the precise shadow logic and the one resulting
have approximatel”%® rows, where 769 is the number of statefrom our compositional approach are precise enough to allow
bits in our processor prototype) is not feasible, therefeee us to build useful architectures. Both capture the notia ith
need a way of composing functions from smaller functions irthe select line is trusted, and the input it is selectingusttd,

a way that preserves the soundness of information flow trackhe resulting output should be trusted regardless of ths-tru
ing. Again, taking a smaller example to demonstrate theelarg worthiness of the other input (which makes intuitive semsmf
principle, let's consider a multiplexer. an architectural perspective). Further, if the select I;an-

A multiplexer is small enough that we could enumerate th&usted, the output of the MUX will always be untrusted, eptce
entire function, but another way to create one is from Idgica©r the case when both inputs are trusted and equal. Thisbeha
gates such as AND and OR. Figure 4 shows both the logicH' IS desirable since both inputs being trusted and equbkis
implementation and the shadow logic. To create this shado@nly case where an untrusted select cannot affect the MUX's
logic we need access to all the inputs of the MUX, and all th@Utput. More precisely, the trust value of the output of a MUX
connections between the gates from which it is constructe§an be described by:

Each one of the gates from which the MUX is constructed Op = aps V b5V s1ay V spa V siby Vo sib

(two AND and one OR) has a corresponding shadow |Ogi51 fact the MUX, by being able to select between trusted and
instantiated. For example the shadow logic for ANDs (1) angntrusted inputs in a way that does not propagate excegsivel
(2) in the figure is simply the logic derived in Section 3.1eTh conservatively, is the foundation of our entire architegtéor
shadow logic for OR (3), created in the same way as the ANBXample, in Section 4.1, we will discuss how we use predi-
gate, is then instantiated, and is fed the inputs from thpudst cation to avoid the standard implicit flow problems encoun-

of the AND gates and the outputs of the AND shadow logic. tered with branches, and architecturally, predicatior&ly a

One nice thing about considering a smaller example is thgtrogrammer-wsmle MUX.

it is still possible to write the truth table for this example
and compare it to the result of this composition. Surprising 4. Architecture

the functions are not quite identical. The shadow logic tegta h h di d loi hod. th
compositionally is, in fact, slightly more conservativaththe Now that we have discussed our GLIFT logic method, the

shadow logic derived directly from the truth table. This & b next question then bepomes how that r.net-hod_can be applied to
cause the compositional approach cannot take advantalge of f pri(()_gram_mable device tor?reatelar; aw-ngh;_lnformatlov_v_ﬂo
fact that, due to the particulars of this logic, it's impdseifor tracking m|croprocessor.T_ € goalot ourarc |t_ecturegi1_3|s

the outputs of AND-1 and AND-2 to both be set to 1 at the sami® create a fullmplementatiorthat, while not terribly efficient
time, yet our OR-gate shadow logic is assuming this is poss?—r sm.aII, is programmable enough _and precise enough in its
ble. In this way, a compositional approach may not be exactl andl!ng of untrusted dat_a th_at it is able to har_1d|e several
precise, but will always be sound. In trying to calculate thiee e(?urlty fe'f”“ed tasks, Wh'le_ simultaneously tra_lcklng angl

or not an untrusted input can affect output, we are esslyntiala” information flows emanating from untrusted inputs.

assuming that those uninterested inputs have more fleyilili To understand how information flows manifest themselves
at the gate level, let us begin with the small snippet of pseud



assembly below which captures nicely the notion of impliciing in the tracking ofall information flows (implicit, timing,
flows discussed in Section 2. Assumikgs untrusted, should covert, or otherwise).

either ofR1 andR2 be marked as trusted? The resulting processor looks like a large state machine,
where the state is defined by the architectural and internal
0x01 br ( X == 0 ) 0x03 state of the processor (PC, flags, registers, counters, @l
gxgg g; = 1 an arbitrarily large bufinite amount of memory (a subtle but
X .=

important distinction). Given the current state at cyglgou

simply compute the next state for cyéle 1. In the subsections
Let us start with what the programmer would expect thdelow we describe several devious ways in which information

correct answer to bek2 does not appear to depend on thewill flow through a machine in ways the programmer is not

untrusted variable, and hence appears to be trusteéd-Af0  intending, and the architecture changes required to atieitht

thenR1 should clearly be marked as untrusted (it is set to 1 ] o

only because of a decision made on an untrusted variable). fs1 Step 1: Handling Conditionals

fact, even ifX = 0, the value oR1 is still dependentoit (the  As is apparent from our previous example, traditional con-
value ofX affected value of1 and hence there is an implicit ditional jumps are problematic, both because they leadiie va
flow). ations in timing and because information is flowing through

Now let us consider what these operations would look likéhe PC (which has many unintended consequences). Remov-
at the gate level on a traditional architecture that has begn ing conditionals presents a challenge: how to provide condi
mented with gate-level flow tracking. Figure 5 shows a simtional operations without modifying the PC? Predicatiop, b
ple example of a branch instruction implemented in hardwardéransforming if~then—else blocks into explicit data degem
The comparison occurs, and the result is used to controkthe <ies (through predicate registers), provides an answer€th
lect line to the Program Counter, which means the PC can rfect of an instruction is guarded by a specified predicate reg
longer be trusted. Once the PC is untrusted, there is no goifgjer, and if our gate-level information flow method works-co
back because each PC is dependent on the result of the lastréstly, the trust-bit of the destination register shouldipdated
our example, not only wilk1 be marked as untrustekl will ~ regardless of the value of the predicate. Since operations f
(seemingly needlessly) be marked as well. In fact, it is evehoth cases (predicate true/false) get executed, the augchen
worse than that — because the PC determines the bits that peecessor should track the information flow through every in
the register to writeback (and because the PC is marked as wtruction that a prograroould possiblyexecute, even though
trusted)all of the registers (and maybe all of memory) mustonly the instructions whose predicates evaluate to trugalyt
also be marked as untrusted. write their value back to a register. As shown in Figure 5 thi

In the architecture described abowe, will be marked as ensures the PC is only ever incremented, and no possible flow

untrusted, but is information really flowing from to r2?  Tom untrusted inputto the PC is possible.

In fact, at the gate level, it is. There istiming dependence Figure 6 shows the actual logical implementation of predi-

between the value af and the time at whicl®2 is written. ~ cation in our processor. As in a normal predicated architect

Such timing observations, while seemingly harmless in ouhe instruction word specifies the source registers gL.gnd

example, do represent real information flow and have beeh usB2) for the instruction, destination register (&), and a pred-

to transmit secret data (Aciiggmez 2007) and reverse eegin icate register or constant (eeg or P1). If the predicate register

secret keys (Aciicmez et al. 2007). stores a 0, then the instruction doesn’t write back and dmkste
Modern processors are simply not built to constrain inforthe old value is written back, but if the predicate is 1 them th

mation flow. Rather, they are built to get things done as dyick "€W value is written. The shaded lines in the figure illustrat
as possible, often times making use of as much information 48iS Point more fully. In addition to implementing preditat,
possible at each step to make that happen. Our approach to fRIS €xample demonstrates a crucial role the MUX plays in our
problem is to restrict both the ISA of the machine and the ad@chitecture by managing to switch between trusted and un-
tual gate level implementation so much that, a) all infoiorat  rusted values. Let us consider the following predicatedeco
flow will be obvious and well understood at the assembly levefNd how trust-bits would flow through the logic in this exam-
b) the actual propagation of trust-bits corresponds cjoséh ple
this understanding, c) it is impossible to write programet th

. . ) . . 0x01 ( 1) P1 := not( PO )
will result in “explosions” of untrusted state, d) the infioation oioz (PO) R2 := ;(1) + R2
flow will be precisely tracked no matter what binary is given t 0x03 (P1) RO := R1 + R2

the machine (there is no compiler pre-analysis step redjuire

to ensure the strength of information flow tracking) e) itis a  Inthis code, either df0 orR2 gets the sunR1 +R2) written
ways possible to return the machine to a trusted state, d@hd f) into it (based upon the conditional PO). Let us consider what
shadow information-flow-tracking logic can be composed antappens to the architecture pictured in Figure 6 on instmct
added automatically in the way described in Section 3 resul®0x02 if PO is untrusted. First, the untrusted predicate will be
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Figure 5: Implementation of a conditional branch instruetiin a traditional architecture compared to ours. The highted wires on the left
figure shows the path from an untrusted conditional to the [IR€ontrast, we eliminate the path in our architecture sctttiee PC never gets
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Figure 6: Implementation of our predicated architectur@eTpredicate bits are used to control MUXs that decide wheghegister is updated
with a new value or gets its old value written back into ithié fpredicate bit is untrusted, the shadow MUXs ensure thaggilsters thaicould
have had an untrusted value get marked as untrusted, thaggimplicit information leaks into explicitly trackedust values.

selected by the MUX, and will be used (in conjunction withdescribed in Section 3 actually manage to augment the logic i

R2) to select the register to write back (this is happeningat tha way that is both sound and in-line with programmer expecta-
bank of small AND gates). As the number 2 flows through theions.

decoder, all of those lines feeding the AND gatgsept for the

one line controllingk2 will be set to 0. For each of those lines, 4-1.1  Step 2: Handling L oops

the untrusted predicate is now irrelevant because we cah tryy/hile we can use predication to eliminate the use of condi-

that output of the AND gate will be 0 no matter what (as Pejona| jumps in the case of if-then-else blocks, handlingple

our discussion of AND gates earlier in the paper), hence, th%quires a different approach. Loops are surprisinglyatiffi

values on those _Iines can be trust_ed. For the one remailm_ieg lits constrain as there are so many different ways for informa-
(the one controllin@2), one of the inputs to the AND gate is 1, i, 4 jeak out in non-obvious ways. Consider a simple while

while the other input in untrusted, and hence the result ah thloop on an untrusted condition. Every instruction in thatdo

line must be untrustedo matter whether the predlc_ate is true may execute an arbitrary number of times, so everythingethos
or false That untrusted line will then control the final MUX instructions touch is untrusted. In fact, everything thatild

that determines if the new value or old value should be Writtehave been modifiedven if it wasn’t, needs to be marked as

back, which will result_irRQ beir?g marked as untrusted (again, ¢y sted. Consider a loop withgoing from 0 toX, and set-

regardless of the predicate being true or false). ting A[i] := 1. The fact that AX + 1] = 0 tells us something
As a programmer, this complex interplay between the origaboutX, and so there is information flow froid to A[X + 1].

inal logic and the information tracking logic is actuallyitgu |n fact there is information flow fronX to A[X + n] for all n

intuitive. If you predicate an instruction on an untrustedd less than the maximum possible vallfecan ever have. Even

icate, the destination register will be marked as untrustesl  the fact that the loop may take an arbitrary number of cycles

as simple as that. As an architect, once you manage to elingreates an implicit timing channel with all of the instracts
inate the spurious information flows, the automated methodfownstream from it.



To limit the effect that loops have on the untrusted state dfmit this implicit untrusted state explosion, in our protpe
the system, we have to severely constrain the types of loopgsign we have limited our ISA to only suppdlirect and
that are possible in the system by bounding the side-effecksop-relative loads and stores. Direct loads use an address
that a loop can have. It needs to be clear, both to the programnacoded in the immediate field, and are used to access fixed
mer and at the logical implementation, exactly what state hanemory addresses. To allow access to arrays without resort-
thepossibilityof being affected by the loop. While predicationing to general purpose indirect loads and stores, we have a
makes the side effects of conditional operation explioiéal loop-relative addressing mode, where loads access a iariab
with loops we use a speciabunt jump instruction that speci- which is at a fixed constant offset from a loop index (the loop
fies statically the number of iterations that should be etextiu counter used in theount jump instruction). This reduces con-
along with the jump target for the iterations. The processer venience of programming in our ISA substantially but it al-
plementation then maintains a unique iteration countettfer lows us to precisely track any memory references. We support
loop instruction and ensures that the counter cannot be-modhese by incorporating two new instructiorigiad-looprel
fied explicitly by the program. and store-looprel. These are used to load and store val-

Counting loop instructions have existed in the context ofieS from a fixed base address (specified as an immediate
DSPs for some time, but we believe this is the first time thejiéld) and an offset stored as set of counters (CO...C7 in our
are being used to aid information tracking. Theuntjump  Prototype) that can be explicitly initialized and incrertesh
instruction has three interesting details. Fiestunt jump has DY @ fixed value using two new instructionsiit-counter
to be unpredicated, implying that it will always commit and@ndincrement-counter. For exampleload-looprel RO,

a constant amount of jumps to the jump target will always b&x100, CO loads the value ofti[0x100 + €0] into RO. The
performed. Ifcount jump were to be predicated, it would be number of times these instructions execute depends upon the
exactly equivalent to a conditional jump and would carryodll number of iterations of the loop, which is fixed, and (as we did
the same problems discussed in the section above. Secand, fior the count jump instruction), the local counter initialization
supported by an internal counter that gets set the first time tand increment instructions commit unconditionally so the s
instruction is encountered. On all subsequent executities, Of all addresses that can possibly be accessed in the loop can
counter decrements by 1 until it reaches 0. One further execlie determined at run-time.

tion will find the counter at 0 and advance the PC by 1 to exit

the loop instead of jumping to the jump target. The third tleta4.2 Implementation and Automatic Shadow L ogic

is that, in order to support nested loops, if a dynamic irestru Generation

tion instance finds the counter at 0, then it gets reset back to
the specified value and the entire loop is restarted. This-fun

tionality is implemented by an internal state machine thés s Il FPGA. It is a 32-bit machine with 64KB each of Instruction

the counter back to an uninitialized state when the couster L
. . nd Data Memory. It has a program counter, 8 general purpose
found to be 0 and the loop is found to be terminated. By us y brog ©9d PUTp

ina predicates inside the 1000S. & broarammer can simutate registers, 2 predicate registers, 8 registers to storedoopters

“e%rﬁ)y termination” by predithi’ng F;" ?nstructions in theop ?that count down the number of iterations) and 8 other reggst
) ; ) o - to store explicit array indices (used as offsets for loaaplel

body with the negation of this termination condition. In Sec P y ( ap

. ) e : and store-looprelinstructions). To make the semanticstite
tion 5.2 we discuss the ramifications of this on the programme . ..o precise, all logic is triggered on the positive kloc
in a bit more detail. '

edge, and each cycle simply transforms the set of machine
state into a new state through simple combinational logiés T
logic uses the PC to read out an instruction word, decode it,
The example for loops above also demonstrates a third arclgerform data memory accesses and ALU computations and
tecture feature that is problematic for information flonckka  finally write back new values into registers, memory and PC.
ing: indirect loads and stores. Most ISAs supportindireetnm  In practice, block RAMs in Stratix 1| FPGAs are synchronous
ory addressing, where aregister’s contents provides ttheeag  and require two cycles to read data out. Our simple processor
for a load or a store. If the register's contents are untdjsteexecutes an instruction every 5 cycles similar to the alass-
then using it as an address for a store instruction wouldignpl stage multicycle machine. We have avoided the complication
itly mark the entire address space as untrusted (as any sé thaf pipelining (especially the forwarding logic it requijefor
addresses could have been affected by that untrusted data).the purposes of this proof-of-concept.
the logical level, this shows up as the untrusted data agdres oyr processor is written in structural verilog as a composi-
makes its way to the address decoder, and all of the lines gfn, of gates and module instantiations, along with regisied
that decoder become untrusted. RAMs to store processor state. To augment this processir wit
Intuitively, the problem is that accessing one untrusted adSLIFT logic we proceed in two steps. First, each bit of preces
dress causes every other address to become implicitly uger state is explicitly shadowed, meaning every registes ge
trusted by virtue of themmot being accessed or modified. To shadow register, and every memory has a shadow RAM (that

Our prototype processor is implemented in Verilog, and we
use Altera’s Quartusll software to synthesize it onto atitra

4.1.2 Step 3: Constraining Loadsand Stores



stores the 1-bit trust values for each bit of the orginal mgto area and timing humbers have been generated by synthesiz-
Second, the logic and signals are shadowed by generating ting the GLIFT-base (with no information flow tracking logic)
proper trust propagation logic as described in Section 3. GLIFT-full and Altera-Nios processors onto a Stratix | =

The first step is easily accomplished by simply dupIicatindVith compilatio_n settings balancing thimization for battea _
the declarations for registers and memory. To handle the se?nd delay. In Figure 10, the left Y-axis shows the area requir
ond step we create a library of shadow cells that perfornrinfo {0 implement the processors measured in Adaptive Look-Up
mation flow tracking for each basic processor component likéable (ALUT) units (the logic cells used by Altera Stratix ||
AND and OR gates, MUX-es, decoders, ALU etc. The shadoWPGAS), while the right Y-axis shows the maximum frequency
logic is wired up with both the inputs to the original funetjo (Fmax) of the processors.
and also with corresponding shadow inputs. While we could Our base processor is almost equal in area to Nios-standard,
spend time describing more formally how this happens, it isand about double the size of Nios-economy. Adding the infor-
easiest to simply see from the resulting verilog code (g)r mation flow tracking logic to the base processor increases it

area by 70%, to about 1700 ALUTs. However, in terms of ab-

421 Programmingin theresulting | SA solute size, even the now outdated Stratix Il FPGAs have upto

. . . _ . 180K ALUTSs, while all the above processors consume only in
Figure 8 summarizes our instruction set. We eliminate cony, range of 1K-2K ALUTS. On the right Y axis, Fmax for Al-
ditional jumps and indirect loads and stores from our ISAtera Nios processors is around 160MHz, while both the base
and introduce a countjump instruction to execute fixed-sizgnOI full GLIFT processors have an Fmax of around 130MHz.
Ioops, predicateq instructions to implement conditioqaé—e n terms of delay, both GLIFT and Nios are multi-cycle pro-
cution, and restn(_:t_ed loads an_d storefs that use onIy_ IMMEQessors with the path through the ALU to the destination reg-
ate_values. In addition to these |ns_truct|o_ns, we supporcbua_L ister being the most critical. The extra tracking logic does
Iog|cal (AND, OR, NOT, XOR),_arlthmenc (ADD, SUB), bit- jmpose a significant overhead on the Fmax, reducing it from
wise (SHR, SHL) z.:md comparison operatqrs. As an examp%?)lMHzto 129MHz. Further, the GLIFT processors operate at
usage of the new instructions, let us consider a code snippPEYy \1Hz as opposed to 160 MHz because we include a bar-
from theSubBytes function in the GLIFT implementation of rel shift that the Nios does not (with 1-b shifts, our process
the AES (Daemen and Rijmen 2002) encryption algorithm (irélso operates at 160MHz.). While these overheads aremigrtai
Figure 9). The function substitutes values in wate matrix non-trivial, keep in mind that this version of the processad-

V;:'th values in ,theSthth Thehf:ode bel(l)wl loads tge valye N ows everybit in the machine. By trading off precision for ef-
the state matrix (which in this example is stored starting alficiency it may be possible to keep the soundness of our result
address 0x100). Every loaded element serves as an index i

the SBox, and is substituted by the value in tBBox (which
is stored starting at address 0x300). Tdtate has 16 ele-
ments and th&Box is a 256 entry table, correspondingly, the
count jump instructions 0x0b and 0x08 loop back a fixed num-  To test the programmability of our design, we have hand
ber of times (15 and 255 respectively). coded a set of applications kernels onto our ISA. This allows
us to examine the impact of our modified ISA on the the static
. code size and the dynamic instruction count of the programs.
5. Evaluation Our kernels are drawn from the potential program security
To demonstrate that our proposed architecture is actuallyses of a strong information flow tracking system including a
implementable, we have built a working model of our proJublic key encryption algorithm (RSA), a block cipher (AES)
cessor on an FPGA, and we have written several applic& cryptographic hash (md5), along with a small finite state
tion kernels to help us quantify the overheads involved: Figmachine (CSMA-CD), and a sorting algorithm (bubble-sort).
ure 10 shows one portion of that result, the area and frequenc Mapping applications onto our ISA requires converting con-
overhead of our proposed architecture, both with and withowitional if-else constructs into predicated blocks, tagwari-
GLIFT logic added, as compared to a NIOS processor. able sized loops into fixed size ones (by bounding them), and
turning indirect loads/stores into direct memory accesses
loop-relative ones using the loop counters. In general,amy
We use Altera’s Nios processor as a point of comparisoplication that has predominantly regular behavior shoute e
as it has a RISC instruction set, and, as a commercial produte without much additional overhead, while dynamic behav
uct, is reasonably well optimized. The Nios can be instantiior such as irregular array accesses will incur much greéater
ated as either an economy core (Nios-econ) or a standard cafficiency. For our experiments, we implemented each of the
(Nios-std). The economy version is an unpipelined 6 stage myprograms under test both directly in our assembly and in C.
ticycle processor without caches, branch-predictors(etost The C programs are compiled down to Nios-RISC executables
closely comparable with our core), while the standard wersi with “-O2” and emulated with Altera’s instruction set siratll
is pipelined and has an additional 4KB instruction caches Thtor (ISS). Our assembly is mapped to our FPGA implemen-

Rile reducing the performance impact.

5.2 Analysisof Application Kernels

5.1 Hardwarelmpact



Original Logic

reg [31:0] gen_reg [7:0];
wire [31:0] mux2gregO0;

always @ (posedge clk) begin
g_reg[0] <= mux2greg0;
end

assign is_store = instrn[29] | instrn[22];

mux2x1_32b my_mux0( .in0(g_reg0),
.in1(newval), .sel(p_sel0),
.result(mux2greg0) );

Added Logic

reg [31:0] gen_reg_shadow [7:0];
wire [31:0] mux2greg0_shadow;

g_reg_shadow[0] <= mux2greg0_shadow;

assign is_store_shadow = ( instrn_shadow[29] & Instrn_shadow[22] )
| (instrn_shadow[29] & ( ~ instrn_shadow [22]) & ( ~ instrn [22] ) )
| ((~instrn_shadow[29] ) & instrn_shadow[22] & ( ~ instrn[29] ) );

mux2x1_32b_shadow sh_my_mux0( .in0(g_reg0), .in0_t(g_reg0_shadow),
.in1(newval), .in1_t(newval_shadow), .sel(p_sel0), .sel_t(p_sel0_shadow),
.ot(mux2greg0_shadow) );

Figure 7: An example of how our very structured verilog code be automatically augmented with the logic required tackrthe trust through
the hardware implementation. Each wire, register, and aig;maugmented with a corresponding shadow element thegstbe 1-bit trust value

for each.

load-immediate yes Rdest := immed

load-direct yes Rdest := M[ immed ]

store-direct yes M[ immed ] := Rsrc

load-looprel yes Rdest := M[ immed + LCount ]

store-looprel yes M[ immed + LCount ] := Rdest

add, sub, and, or, not, xor, yes Standard 3-address register to

shl, shr, cmpeq, cmplt register operations

predset yes Pdest := Rsrc

countjump no Jump to target exactly N times (N
specified in immediate field)

init-counter no LCount := 0

increment-counter no LCount := LCount + 1

Rdest inherits the trust of the predicate

Rdest is truted if both the predicate and the memory value are
trusted

The memory value is trusted if the predicate and Rsrc are trusted
Rdest is trusted if the memory value and the predicate are trusted

The memory values is trusted if the predicate and Rdest are
trusted

Rdest is trusted if the both the inputs to the ALU operation are
trusted

Pdest is trusted if the predicate and Rsrc are trusted

The loopcounter can only be written by an immediate and should
never become untrusted

LCount is trusted

LCount remains trusted

Figure 8: An overview of the ISA of our prototype architeefusind the information flow tracking policies that are extemtfrom the actual

logic level implementation.

0x01 ( 1) load-immediate P1 :=0 #

0x02 ( 1) init-counter Co :=0 #1=0

0x03 ( 1) load-looprel RO := M[0x100 + CO] # RO = statel[i]

0x04 ( 1) init-counter Cl :=0 #3=0

0x05 ( 1) cmpeq P1 := C1, RO # if ( j == RO)
0x06 (P1) load-looprel R1 := M[0x300 + C1] # R1 = SBox[j]
0x07 ( 1) increment-counter C1 :=1 # j++

0x08 ( 1) countjump (0x05), 255 # loop back 255 times
0x09 ( 1) store-looprel M[0x100 + CO] R1 # state[i] = R1

0x0a ( 1) increment-counter CO := 1 # i++

0xOb ( 1) countjump (0x03), 15 # loop back 15 times

Figure 9: Example usage of the new GLIFT instructions: a cedgpet from theSsubBytes function in the GLIFT implementation of the
AES (Daemen and Rijmen 2002) encryption algorithm.

tation to ensure the correctness of our design, and is then ra very large dynamic instruction count in comparison to the

through our instruction set simulator to gather dynamitrires

general purpose ISA. On the other hand, bubble sort, which

tion counts. Figure 11 presents the results of those expetsn also requires array accesses, is fairly efficient becausetbe

In terms of static code size, our new ISA is very close tdVios and our ISA loop over the entire array times. Any in-
the Nios-RISC ISA. However, the dynamic instruction count€fficiency there is owing to instructions that were execiet
vary substantially. Programs such as the CSMA-CD finitestaf10t written back because their predicates were false. Igjnal
machine and AES have numerous table look-ups where eaB®A and md5 have very little in the way of predicated instruc-

look-up requires a full table iteration. As a result, thesgeh

tions, and both comprise mainly of ALU instructions. Fordbae
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Figure 10: Quantifying the area and timing overhead of glteel information flow tracking. The left Y-axis comparestiamber of FPGA logic
cells required to implement a basic GLIFT processor (whidplements the ISA but doesn’t include the shadow logic) afiadl anformation
flow tracking GLIFT processor to two general purpose microepssors by Altera.

applications, the number of executed instructions is veagec  of such flow tracking over a general-purpose micro-corgroll
to the Nios. While our assembly is unoptimized and opportuniWhile there are many opportunities to further optimize bmih
ties for optimization abound, the main point of this is towho architecture and our application kernels, the techniques p
that it is indeed possible to constrain a processor enouwagh thsented here show that is indeed possible to track informatio
all information flow is apparent at the gate level, yet stilim  flows through a programmable design.
tain enough programmability that programs can be mapped
it without an unmanageable amount of overhead. }ngnOWIGdgments
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