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Abstract—Microarchitectural resources such as caches
and predictors can be used to leak information across
security domains. Significant prior work has demonstrated
attacks and defenses for specific types of such microarchitec-
tural side and covert channels. In this paper, we introduce a
general mathematical study of microarchitectural channels
using information theory. Our conceptual contribution is a
simple mathematical abstraction that captures the common
characteristics of all microarchitectural channels. We call
this the Bucket model and it reveals that microarchitectural
channels are fundamentally different from side and covert
channels in networking.

We then quantify the communication capacity of sev-
eral microarchitectural covert channels (including chan-
nels that rely on performance counters, AES hardware
and memory buses) and measure bandwidths across both
KVM based heavy-weight virtualization and light-weight
operating-system level isolation. We demonstrate channel
capacities that are orders of magnitude higher compared
to what was previously considered possible.

Finally, we introduce a novel way of detecting intel-
ligent adversaries that try to hide while running covert
channel eavesdropping attacks. Our method generalizes a
prior detection scheme (that modeled static adversaries) by
introducing noise that hides the detection process from an
intelligent eavesdropper.

1. Introduction
Virtual machine isolation is a fundamental security

primitive. However, several recent works [1], [2], [3], [4],
[5], [6] have shown that shared hardware can be exploited
to leak information from one process to another, negating
all isolation guarantees offered by operating systems and
hypervisors. For example, a ‘1’ in a secret key induces
a square-and-multiply operation while a ‘0’ induces only
a squaring operation. Using this information, an attacker
that shares CPU usage with a victim process can measure
its own instruction cache hit rate and use it to determine
the secret key [5].

Such information leaks have been used to infer secret
keys from cryptographic libraries in commercial clouds
like Amazon EC2 [1], [5]. When these covert channels are
used deliberately to exfiltrate secret data, rates up to 100
bits per second [2] have been reported on Amazon EC2.
These leaks do more damage than just giving up victims’
secrets; their threat has led commercial cloud vendors to
shut down important features such as hardware counters
and simultaneous multi-threading [3] for all customers.

To combat these information leaks, hardware archi-
tects have proposed several solutions including parti-
tioning or time-multiplexing caches [7], memory con-
trollers [8], and networks-on-chip [9], [8]; clearing out
leftover state in caches [10] and branch predictor on a
context switch [11]; and even complete systems-on-chip
where processes cannot interfere with each other [12],
[13], [14]. Alternatively, architects have also proposed the
introduction of random noise to hardware counters [15]
or cache replacement policies [7]. While these approaches

are promising, they either address only known, specific
sources of leaks [7], [8], [9] or require far-reaching
changes to the entire microarchitecture [12], [14] that
hamper adoption.

A complementary software-only approach to protect
sensitive data in the cloud is to rent dedicated physical
machines, so that only friendly virtual machines co-reside
on a physical machine. The challenge for a cloud tenant
then is to audit whether an attacker has exploited a
vulnerability in the cloud provider’s software to co-reside
on the same hardware [1]. HomeAlone [3] introduces
one such audit technique where a tenant uses cache
lines like miners use canaries – the tenant leaves the
canary cache lines untouched and if an attacker process
evicts a few such lines, the tenant’s detector process
raises an alarm. Avoiding co-residency thus addresses all
microarchitectural attacks at a cost of scaling in terms
of physical machines (v. virtual machines), and is used
by cloud tenants who work with financial, military, and
sensitive personal data.

However, considerable work is required to realize the
promise of dedicated machines as a secure, immediately
usable approach. First, HomeAlone’s detector is specific
to caches and an attacker who uses the main memory in-
terface to leak data [2] using cache bypassing instructions
will avoid triggering cache-line based alarms. HomeAlone
also requires multi-threading and performance counters to
be turned off to prevent data leaks. Worse, HomeAlone is
vulnerable against an intelligent attacker who is aware of
the defense and can adapt to it. For example, HomeAlone
has to determine whether canary lines are evicted by an
attacker or by the hypervisor. An attacker who a) lowers
her hardware activity to match the background noise and
b) models HomeAlone’s detector to pause the attack while
detection is underway can evade HomeAlone’s detector.

In this paper, we introduce the formal study of mi-
croarchitectural channels using information theory. Our
conceptual contribution is a simple mathematical ab-
straction that captures the common characteristics of all
microarchitectural channels. We call this the Bucket model
and it reveals that microarchitectural covert channels are
fundamentally different from previously studied timing
channels because reads are destructive, i.e., reading a bit
overwrites the value of the bit. We start by developing
the noise-free case and show that perfect (in the Shannon
sense) detection can be obtained against arbitrary co-
resident virtual machines. In contrast, provably unde-
tectable covert channels have been shown in networking
where attackers encode secret bits into the timing or size
of network packets.

We quantify the information theoretic capacity achiev-
able through microarchitectural channels, including new
ones through AES hardware and cache bypass instruc-
tions. By optimizing the alignment of clocks between
sender and receiver processes, we show high capacities
of greater than 500 Kbps for both intra-core and inter-
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core channels. Further, we show that multiple channels
communicating concurrently can achieve capacities over
200 Kbps. These high capacities, when compared to
100 bps on EC2 today, show that as commercial hyper-
visors move towards lighter-weight isolation techniques
such as Docker [16], microarchitectural channels become
tremendously more leaky.

Finally, we extend the Bucket model to account for
noise from background processes and apply the model to
detecting an intelligent attacker. The intelligent attacker
conducts low-bandwidth probes in order to distinguish
a detector from the victim application and goes quiet
if she sees a detector. In response, our detector mim-
ics a victim application’s microarchitectural behavior to
prevent the attacker from going quiet, and listens to
the channel for bits that are overwritten by an attacker
during eavesdropping attempts. In the presence of other
processes or system noise, however, our detector simulates
an optimized amount of random noise to minimize being
detected by an intelligent eavesdropper.

Section 3 describes our design and implementation of
a diverse set of microarchitectural channels. We generalize
these channels and present the Bucket Model with its
destructive read feature in Section 4. Further, we quantify
the communication capacity of each channel (Section 5)
and use these channels for detection games against an
intelligent adversary in Section 6. But first, we begin with
a summary of the considerable related work that we build
upon.
2. Background and Related Work
A. Threat Model

We minimally assume two principals in the system:
tenants and cloud providers. Tenants purchase compute
and storage resources, typically as virtual machines (VMs)
configured equivalent to a real machine, from cloud
providers who maintain physical machines in data centers.

We consider tenants to be mutually distrustful: a
malicious tenant wishes to either learn other tenants’ data
(violating confidentiality) or compromise the victim VM’s
availability by stealing its compute resources. We trust
that the cloud providers are neutral – their hypervisor
and hardware do not maliciously leak data or compute
resources from one tenant VM to another.

Specifically, we address co-residency based attacks
through the hardware, where an attacker VM infers infor-
mation about the victim’s VM that is contained in microar-
chitectural structures like caches and memory controllers.
We consider two attack scenarios: a side-channel attack,
where a victim process such as a cryptographic library
inadvertently leaks data that is inferred by an attacker
process, and a covert channel attack, where a malicious
process (e.g., a document reader application) that has
access to confidential data in a tenant VM deliberately
leaks the data to a co-resident attacker VM.

In particular, we quantify the covert channel attack
surface since they become particularly relevant in sys-
tems that include third-party software (as most cloud
applications are). Further, covert channel capacities rep-
resent an upper bound on side-channel capacities. The
Bucket model and detection algorithms, however, target
co-resident attackers and hence model/detect both covert
and side channel attackers.
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Fig. 1: Microarchitecture covert channel examples. Sender-
receiver pairs can execute alternately (a) or in parallel (b)
– both cases rely on contention for shared hardware.

B. Known microarchitectural channel attacks
Microarchitectural channels can be created by a sender

and a receiver VM executing alternately or parallel as
shown in Figure 1.

One popular alternating communication technique is
termed the Prime-Access-Probe method (Figure 1a). Dur-
ing the Prime stage of communication for (say) a cache
channel, the channel receiver sets the cache into a known
state by accessing memory locations and bringing its data
into the cache. During the Access stage, the channel
sender conditionally accesses the cache based on a secret
bit. To send a 1 (say), the sender accesses memory
addresses and evicts the receiver’s cache lines. To send
a 0, the sender minimizes memory accesses. In the Probe
phase, the receiver accesses memory similar to that in the
Prime phase and monitors the time it takes to access the
entire portion of memory or specific addresses that miss in
the cache. The former approach is termed a timing-driven
attack while the latter is called an access-driven attack.
After the initial bit is communicated, each subsequent
Probe of the channel also serves as a Prime, because both
bring the data into the cache. Flush+Reload is another
similar technique where a covert channel is created by a
receiver first Flushing (instead of Priming) some shared
addresses and then Reloading to infer the sender’s access
trace.

Parallel communication, on the other hand, does not
require precise time sharing of the channel between the
sender and receiver (Figure 1b). For example, a receiver
for the memory interface channel continuously monitors
the latency of memory fetching instructions. At the same
time, the sender issues its own memory instructions to
send a 1, increasing the latency seen by the receiver. To
send a 0, the sender decreases contention by idling.

Making such side channels robust in a noisy pro-
duction cloud setting introduces additional problems.
Ristenpart et al. [1] demonstrate how an attacker can
reverse engineer Amazon’s VM placement algorithms
on Amazon EC2 to colocate the attacker VM on the
same physical machine as a victim’s VM. Once co-
located, the attacker can choose from side and covert
channel attacks using shared caches (0.2bps to 10bps
with varying error rates [17], [18], [19], [10], [1], [5],
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[20]) or the shared main-memory interface in symmetric
multi-processors as deployed in EC2 (at 100bps [2]). VM
migration, frequency scaling, and hypervisor activity add
noise and significant synchronization related challenges
that the authors address through self-clocking and error
correcting codes.

On multi-threaded processors, microarchitectural at-
tacks have been further shown to leak secret keys through
branch predictors [11], instruction caches [21], [22], and
integer/floating-point units [23]. Such channels have also
been estimated to have a potential communication band-
width of over 100 Kbps [24]. To protect against such
attacks, multi-threading is not available in production
clouds such as Amazon EC2 [3].

We build on this prior work and present the first
information theoretic characterization of microarchitec-
tural channels, including known channels, such as caches
and branch predictors, and new ones such as memory
bandwidth, the new AES-NI hardware units, and per-
formance counters. Performance counters have recently
been virtualized (available on both VMWare ESX 5.1
and KVM) and present cross-VM attackers with a new
measurement interface that is unaffected even if the
VMs’ clocks are mutually obfuscated (“fuzzed” [15]).
We measure channel capacities using both heavy-weight
(KVM) and increasingly popular light-weight (LinuX
Containers/Docker) virtualization platforms.
C. Formal model for Covert Channels

Network covert channels have been demonstrated that
are provably undetectable from normal “overt” traffic [25].
Such channels are comprised of a sender process exfiltrat-
ing secret data through inter-packet timing or packet sizes,
for example. A flow is undetectable if the detector cannot
distinguish between legitimate and covert flows – i.e, has
the same rate of false positives and false negatives for
both flows.

Our Bucket Model of microarchitectural channels
identifies a crucial difference from network based chan-
nels – a receiver has to perturb the medium (e.g., caches)
in the act of reading a bit, whereas receivers in network
channels can read a bit “silently” (without affecting the
medium and transmitted bits). We show that a microar-
chitectural channel thus forces reads to be “destructive”,
i.e., the receiver overwrites the bit in the act of reading
it. Interestingly, this property makes it impossible (in a
noise-free setting) to construct an undetectable microar-
chitectural channel (Section 4).

Other prior work in modeling microarchitectural chan-
nel focuses on measuring relative vulnerability of two
hardware designs to side-channel attacks [26], [27]. In-
stead of relative leakage, our work exposes the implica-
tions of contention based communication and applies it to-
wards detecting attacks. Kopf and Basin [28] quantify side
channel capacities by explicitly modeling an attacker’s
uncertainty about a secret bit after each attack. Their
quantitative estimates complement our practical capacity
measurements while our model exposes qualitative aspects
of contention-driven communication that their model does
not cover.
D. Defending against covert channels

Microarchitectural support to minimize interfer-
ence [8], [9], [12] can eliminate several covert channels.
Other architectural measures such as fuzzy time for hard-

ware events [15] or random permutation and partition
locked caches [24] also help reduce covert channel leak-
age. These proposals require substantial modifications to
the architecture – we present complementary guest-VM
level software techniques to audit microarchitectural usage
and detect co-resident adversaries.

In software, StealthMem [29] proposes the use of page
coloring to assign a confidential VM’s physical memory
pages to specific cache lines and then lock the lines
in the cache (i.e. they are not evicted by other VMs’
accesses). However, locking cache lines has been shown
to leak information — the very number of lines that were
locked leaks information [30] if an attacker can prime the
resource beforehand. Duppel [31] proposes to add noise
to memory accesses to lower the bandwidth of the cache
channel. Both StealthMem and Duppel are promising but
leave non-cache microarchitectural channels unchecked.

The second software-only approach is to reserve a
dedicated machine and attempt to ensure that no other ma-
licious VM is co-resident on the machine. HomeAlone [3]
proposes that friendly VMs coordinate to avoid specific,
randomly chosen L2 cache lines at pre-determined inter-
vals. A foe VM will likely touch the chosen cache line and
will be detected (once HomeAlone removes noise from
the underlying hypervisor). HomeAlone’s approach for
dedicated physical instances thus introduces a new design
point – achieving security against co-residency attacks for
the price of working with dedicated instances.

We generalize HomeAlone’s approach in two new
directions. First, we show how covert channels other than
a shared cache can be used to detect an attacker. Second,
we present a technique to detect intelligent attackers who
can hide behind background noise (e.g., introduced by a
hypervisor) whenever HomeAlone’s detector is turned on
(Section 6).
3. Creating High Capacity Covert Channels

In this section, we describe our approach to creating
efficient microarchitectural covert channels and measure
their capacity. Our key insight to achieving high band-
width is to optimize synchronization, i.e., align clocks in
the sender and receiver so that they agree on the time
period for each bit and when to Access or Probe (see
Figure 1). Synchronizing to within a few microseconds
enables the sender and receiver to use simple binary
signaling without self-clocking codes and yet achieve low
bit error rates.
A. Deconstructing Covert Channels

We observe that the root cause of covert channels is
contention over shared resources between two processes.
Wang and Lee [7] identify cache interference as the key
to a successful cache side channel attack. We find that
this observation extends to every demonstrated side or
covert microarchitectural channel attack – including both
timing and access driven attacks (the former encodes a
bit as contention/no-contention while the latter encodes a
bit as contend for address A v. address B) – and attacks
through branches, function units, and memory bandwidth.
In all cases, a sender accesses a shared microarchitectural
structure predicated on secret data, and the receiver ob-
serves this variation in the degree of contention and infers
the secret bit. Such implicit information flows through
hardware resources create a covert channel.

Note that architectural (ISA) channels where the re-
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ceiver explicitly reads some processor state left behind
by the sender (e.g., floating point registers after a context
switch [23] or directly reading a victim’s performance
counters) are not covered by our analysis. Such explicit
flows of information require all program-visible hardware
state to be correctly virtualized (cleared or saved-and-
restored on context switches).

We deconstruct a covert channel into three key prim-
itives that we summarize here before describing each in
detail.
1. Communication through contention. A sender and
receiver communicate by executing alternately or in par-
allel. The exact method of contention is specific to each
processor resource and (in our prototype) is used to
signal a ‘0’ and a ‘1’ through low and high degree of
contention. We show high capacities even with simple
binary signaling and leave other signaling mechanisms
for future work.
2. Offline analysis to determine channel parameters.
The sender and receiver have to agree on channel pa-
rameters such as frequency (i.e., time slot duration per
bit) and within each bit, the duration of an Access and
Prime/Probe if the channel is based on Prime-Access-
Probe technique. We profile the target machine in order to
determine these parameters; e.g., for the load instruction
channel, we determine the number of load instructions to
be executed per time slot and the range of addresses to
be accessed.

Fixing the time slot duration for each bit as opposed
to using self-clocking codes [2] is important. This saves
the receiver from handling bit insertions and deletions, i.e.
transmission errors that cause phantom bits to be decoded
by the receiver or bits to be lost in transmission. Insertion
and deletion of bits not only decreases capacity but also
make such channels significantly harder to analyze for
capacity. In contrast, a fixed time period guarantees that
the number of bits that are sent and decoded are equal –
the receiver only needs to estimate bit flip errors which
can then be analyzed to estimate channel capacity [32],
[33], [34].
3. Precise Synchronization. The final step is to ensure
that the sender and receiver’s time slots are aligned.
If not aligned, both will contend for the channel at
overlapping times and introduce bit flip errors. Further,
this unconstrained contention leads to a less separable
distribution of values for ‘0’ and ‘1’, which in turn forces
both the sender and receiver to contend more intensely
(i.e. for a longer duration or higher shared resource usage).
Unaligned time periods thus reduce channel capacity. On
the other hand, aligned time slots enable more precise
contention and lower errors even with a low amplitude
signal.

We determined channel parameters (Step 2 above)
through extensive experiments on our test machine, but
achieving precise synchronization (Step 3) and signaling
through contention for each channel (Step 1) require
further explanation.
B. Synchronizing Sender-Receiver Clocks

The sender and receiver VMs track time using their
internal wall-clock timers and our goal is to determine the
time-offset between their internal clocks. The first stage
of our synchronization protocol is similar to Network
Time Protocol, in which the sender and receiver exchange

timestamps via explicit communication to align their
internal clocks to within one hundred microseconds. In the
next stage, the two processes make fine-grained changes
to the offset applied to their wall-clock times. Finally,
the sender transmits a pilot signal so that the start of
communication is clearly detectable by a receiver.
Explicit communication. From our experiments, we find
that the wall-clock timers between the sender and receiver
VMs can differ by a magnitude of seconds. The receiver
determines the offset between their wall-clock times as
shown in Figure 3 – the receiver records its own clock
value; requests the sender for its wall-clock time; com-
putes the round-trip latency and can thus determine the
offset to adjust its own clock value by. Typically, this
explicit synchronization phase allows the processes to
synchronize their internal clocks within a few hundred
microseconds of one another.

One might question why explicit synchronization is
allowed when the goal is to establish a covert channel.
The answer is that many scenarios allow a covert channel
sender and receiver to communicate explicitly. For exam-
ple, in this paper a sender and receiver are friendly and
communicate covertly to detect a malicious co-resident
tenant. Hence, they are allowed to first communicate
explicitly via a network socket to synchronize their clocks.
Another more traditional attack scenario where explicit
synchronization can work is in an information flow control
(IFC) systems [35], [36]. IFC systems prevent a sender
and receiver from communicating only after the sender
has accessed secret data. The sender can align itself with
a malicious receiver using explicit network messages,
access secret data which upgrades its security label to a
confined process, and then start leaking secrets covertly.
Fundamentally, explicit synchronization primarily accel-
erates the synchronization procedure. We now present
our slower, but much more finer-grained, synchronization
technique that uses only covert channels.
Fine-grained alignment. Clock alignment within a few
hundred microseconds of one another is not close enough
to execute reliable communication at high bandwidth rates
(over 10 Kbps). Therefore, we execute an additional syn-
chronization protocol to further align the sender-receiver
time slots (Figure 2a). We do this by communicating
a known bit sequence across the covert channel for
multiple rounds, as seen in Figure 4. After each round
of communication, the sender shifts its clock by one
microsecond, slightly changing the time when the two
processes will contend for the shared resource. As the
clocks become more synchronized, the two processes’
contention becomes more aligned and the communication
becomes increasingly reliable as seen in Figure 2b.

Once the optimal period alignment has been reached,
each shift the sender makes degrades the communication
across the channel. This spike in communication accuracy
can also be seen in Figure 2c. From the best round of
communication, the receiver determines the clock offset at
1µs precision. All in all, synchronization takes around 15s
in our experiments, depending upon the number of bits
to test communication, and only needs to be performed
once per VM execution. Figure 5 shows the benefits
of precise synchronization compared to a coarse-grained
synchronized channel.
Pilot Signal. Once the VMs’ clocks are aligned, the
receiver only needs to know when the sender is actively
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Fig. 2: (a) The sender transmits 10 Kb data to receiver and shifts its internal clock by an offset of 1µs for each round.
When sender and receiver time periods align, communication capacity is maximum. (b) As time periods align, contention
increases and hence the difference between a 0 and 1 increases (blue v. red). When further shifts throw time periods out of
alignment, load instructions per time period decreases (red v. black). (c) Across multiple rounds of communication, accuracy
in transmission improves with better alignment of time periods (rounds 1 through 10) and decreases once the time periods
go out of alignment (rounds 11 through 19) and improve again when the periods fall back into alignment (round 20).

Sender 
 

for n < 1 to 100 do 
 
receive_request(); 
clock_time = get_time(); 
send_clock(clock_time); 

 
 
 
 
 
 
end for 
 
 
 
 
clock_offset = receive_offset(); 

Receiver 
 

for n <  1 to 100 do 
receiver_clock = get_time(); 
request_clock(); 
 
sender_clock = receive_clock(); 
latency = get_time() – receiver_clock; 

 
/* Adjust for the message latency */ 
sender_clock -= latency/2; 
 

/* Keep track of the offset */ 
total_offset += (sender_clock – receiver_clock) 

end for 
 
/* Send offset to Sender*/ 
offset = total_offset/100; 
send_offset(offset); 

Time 

Fig. 3: Explicit synchronization protocol.

communicating. For this purpose, the sender uses a pilot
signal to mark the start of each message. In our experi-
ments, we use a pilot signal comprising of five hundred
“10” pairs of bits followed by a hundred consecutive 0s.
We chose this sequence because a) a repeating 10 pattern
creates large number of oscillations that a receiver can
easily distinguish from noise, and b) the hundred 0s allow
the receiver to detect a flatline signal and recover from
errors in decoding the first few 10 oscillations.
C. Communication through Contention
Performance counter based channels. Since adding
noise to the time-stamp counter instruction has been
shown to obfuscate purely timing channels, we con-
structed covert channels using performance counters in-
cluding L1, L2, and L3 cache misses, branch mispredic-
tions, and load and store instruction counters. Transmis-
sion of a 0 or a 1 thus relates to a low or high increment
in a performance counter.

In cache channels, the sender transmits a 1 by access-
ing cache-line sized data in random order from a working
set just greater than the cache size. The sender thus evicts
the receiver’s data, which is repeatedly accessing a cache
sized array, and effectively creates contention for the
cache. To transmit a 0, the sender minimizes contention
by busy waiting in a loop for one time period. Since L3
caches are larger, we implemented an additional access-

Receiver 
 

for n < 1 to 20 do 
receive_signal(data_array[n]); 
 
 

 
end for 
 
/* Find the best round of communication */ 
best_round = calculate_best_round(data_array); 
 
/* Send offset for sender to adjust clock */ 
offset = find_offset(best_round); 
send_offset(offset); 

Sender 
 

for n <  1 to 20 do 
send_covert_bits(10000); 
 
/* Shift clock by 1 µsecond */ 
start_time = start_time + 1; 

end for 
 
 
 
 
 
 
clock_offset = receive_offset(); 

Time 

Fig. 4: Synchronization protocol using covert channels to
achieve fine-grained alignment.

driven channel where the sender and receiver identify
and then contend for a small number of shared cache
sets. While an L3 access driven channel has much higher
bandwidth than a timing driven one that contends for the
entire cache, the latter can detect contention for any part
of the L3 cache.

The branch sender transmits a 1 by executing a param-
eterizable number of branches, each with 50% probability
of being taken, which decreases the branch prediction
accuracy of the receiver. To transmit a 0, the sender
busy waits to lower its impact on the receiver’s branch
prediction. The receiver process executes a large number
of branches, each with 50% probability, in a loop. Cache
and branch channels cause the sender and receiver to
execute alternately and are thus based on Prime-Access-
Probe method.

Load and store counter channels involve the sender
and receiver executing in parallel, where the load (store)
sender issues a large number of loads (stores) in a time
slot to communicate 1 and does not issue memory access
instructions to communicate a 0. The corresponding re-
ceivers execute parameterizable number of load (store)
instructions in a loop. Load and store instructions are
also good candidates for detecting co-resident attackers
since they can be constructed to detect contention in both
CPU pipeline (instructions committed per cycle) and the
memory hierarchy – we use the load channel to detect
attackers in Section 6.
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(a) Unsynchronized store instructions channel (b) Synchronized store instructions channel

Fig. 5: (a) Unsynchronized communication leads to poor channels where phantom bits get inserted or real bits get deleted
during transmission. This reduces channel capacity. (b) Once synchronized precisely, the signal is stable and the number of
bits transmitted is equal to the number received. Thus, only simple bit-flip errors have to be detected.

Memory bus and AES timing channels: The sender and
receiver VMs execute in parallel for both these channels.
For the memory bus channel, the receiver measures the
time required to perform a fixed number of memory bus
accesses by issuing cache bypassing instructions. The
sender transmits a 1 by issuing bus locking instructions to
cause contention for the bus and delaying the receiver’s
memory traffic. Intel added 6 instructions to their micro-
processors to speed up AES encryption/decryption. We
exploit contention for these resources using a receiver
that continuously executes AES instructions and records
the bandwidth available per time slot. The sender issues
its own set of AES instructions to send a 1, increasing
contention for the 4 available instruction slots in the AES
units, or busy waits to send a 0.

Interestingly, we observed that increasing the number
of AES instructions per time slot increases the CPU fre-
quency. This sudden change in frequency scaling prevents
the receiver from accurately determining the latency of
each probe. To prevent frequency scaling from interfer-
ing with the channel, we keep the AES workload at a
(moderate) rate that we determined using experiments.
Finally, we note that both performance counter and timing
channels include inter-core as well as intra-core channels.
Multi-input multi-output covert channels. We further
construct multiple covert channels on the same core and
across cores. For attackers, a multi-input multi-output
(MIMO) across covert channels helps create more resilient
channels, but at the same time detectors also benefit from
listening to multiple channels for eavesdroppers. For intra-
core channels, we combine the all senders into one process
and the receivers into another. This is crucial since it
prevents senders’ and receivers’ processes from being
scheduled out by the OS, causing the precise synchroniza-
tion to break and bandwidth to drop. Within each process,
we schedule the sender and receiver pairs for a part of the
overall repeating time-slot, guaranteeing that the correct
receiver will be probing the channel simultaneously with
its sender.

We present experimental capacity measurements in
Section 5, and continue next with a model that captures
all the channels presented here.
4. Information-theoretic Model of Covert
Channels

In this section, we develop a novel mathematical
abstraction to accurately model shared-resource based
covert channels. We use a timing-driven cache channel
as an example to illustrate this model and then discuss
how it applies to other channels. Consider a cache that is

accessed by three processes, Alice, Bob and Eve. Each
process can load memory addresses into the cache by
executing a load command and the most recent loads are
kept in the cache by the processor. In the simplest case,
assume that each process loads a large amount of data so
that the cache is fully overwritten with each operation.
When Alice loads her data, this stays in the cache if
nobody else makes a request. When Alice loads the same
data again (performing a Probe operation), the operation
will be faster (or a performance counter will indicate a
cache hit), so Alice will know that her data is still there.

We model the shared resource (cache in this case) as a
bucket — shown in Figure 6 — where each process can
place water (data). We emphasize that water is labeled
here: there is Alice’s water, Eve’s water, and Bob’s water.
When processes load large amounts of data in each oper-
ation, the bucket fully refills and there will only be water
from one process at any given time. In the Bucket Model,
each process can perform two primitive actions: Write:
Fill the bucket with your water, and Probe: Check if
your water is still there. Eve, a malicious process, will try
to eavesdrop or block the communication between Alice
and Bob. In microarchitectural channels, and hence in
the Bucket model, processes cannot fake someone else’s
identity since the underlying architecture and OS enforce
the absence of explicit flows (e.g., a process cannot read
another’s cache lines explicitly).

That Eve must contend for the shared resource (the
bucket) in order to obtain any information from the
channel is the fundamental difference of microarchitecture
channels versus network covert channels. Specifically,
communicating one bit through contention is equivalent
to one Write operation followed by a Probe operation
– in a microarchitecture channel the two operations in
the Bucket Model coalesce into a single Write-and-Probe
operation. To see this, observe that reading one bit in
the cache channel requires Eve to load her data in the
cache and measure the time required to do so (Write), let
Alice execute for some time, and then Eve will once again
measure the time to load her data in the cache (Probe). In
contrast, in a network channel, Alice can Write into the
shared medium by varying inter-packet delay or packet
sizes while Eve Probes the stream of packets without
Writing any packets to the network herself.

While the above example used a timing driven chan-
nel where the sender and receiver alternate execution,
the insight that “Writes and Probes coalesce into one
operation” is true for other microarchitecture channels
as well: both Write and Probe become simply a “Use
resource” operation. Specifically, we observe an access
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Alice Bob

Eve

Fig. 6: Alice, Bob and Eve communicating through a shared
resource abstracted by our bucket model. Alice, Bob and
Eve have two operations: Write: add their water into bucket,
and Probe: ask if their water is still in the bucket. When
somebody adds their water into the bucket, previous content
is discarded. Users can only ask if their water is currently
in the bucket.

driven channel simply encodes one bit of information
into the choice of a bucket instead of whether the bucket
was written to or not – Probing a specific bucket (e.g.,
cache line) still Writes to that bucket. Similarly, a channel
with sender and receiver operating in parallel (such as
the load instruction or AES channels) effectively turns
the load instruction bandwidth into the bucket – if Eve
sees low bandwidth it means the bucket does not have
her water, while high bandwidth implies the bucket has
Eve’s water. To Probe this channel, Eve still has to issue
load/AES instructions and time them, effectively Writing
to the channel.

We will show that this simple model captures a
surprising number of properties of covert channels and
can be used to develop provably secure and robust com-
munication and detection strategies. In this section we
make the following assumptions:
A1. No Background Noise: In a real system, OS and other
background processes will sometimes influence the caches
and the other covert channels adding noise into the bucket:
Alice might add her water and some (or all) of it might
be disposed even if Eve and Bob remain idle due to
background processes adding their water. We observed
and measured the amount of such background noise and
show how it can be handled statistically in Section 6.
A2. Time Synchronization: We assume that Alice and Bob
are synchronized and operate within a time-slotted proto-
col. This was achieved in our experiments by accessing
the system clock and agreeing on a protocol for time-
slot beginning and ending. We further assume that Eve is
aware of this synchronization and further can interject at
arbitrary times between the assigned time slots.

Figure 7 shows a simple communication protocol for
Alice to send bits to Bob. Bob writes and probes and
Alice chooses to send a zero by doing nothing (N) or
write (W). Bob decodes a zero when he finds his water
still present using a probe (P). In time-slots 7-9 Eve
writes her water right after Bob and probes right before
he does, essentially imitating Bob. That way she is able
to eavesdrop the fact that Alice tried to send a one since
Eve’s probe will reveal that her water is no longer there,
displaced by Alice’s write. Note that in time-slot 9 Bob
will still decode a one. This leads to the following simple
but fundamental lemma:

Lemma 1: Eve can flip 0→ 1 but it is impossible to flip
1 → 0. Further, when Eve eavesdrops, Bob will always

time

Alice

Bob

Eve

1 2 3 4 5 6 7 8 9 10 11 12

W

N

P W

W

P W

W

P

W P

W

N

P

W P

0 sent 1 sent 1 Eavesdropped 0 → 1

Fig. 7: Twelve time-slots of our simple communication proto-
col and Eve interjecting and jamming. Each communication
round consists of three time-slots. In the first of these Bob
performs a write (W) and fills the bucket with his water. In
the second time-slot he waits and in the third performs a
probe (P) to check if his water is still there. Alice acts in
the intermediate time-slots by either doing nothing (N) to
send a 0 or by writing (W) that fills the bucket with her
water. When Bob probes if he finds his water still there he
decodes a 0 otherwise a 1. In time-slots 1-3 a 0 is sent and
in 4-5 a 1 is sent. In time-slots 7-9 Eve interjects her own
water and probes right before Bob. In time-slots 10-12 she
interjects to jam communication by changing a 0 into a 1.

decode a 1 regardless of what was transmitted.
Proof: Bob decodes a 0 when he finds his own water
still present in the bucket when he probes. The only way
that his water is still there is if Eve and Alice do not
displace it by writing. This is because it is impossible for
any process to Write water with someone else’s identity
in the bucket. Therefore, when Bob reads a 0, this is a
certificate that both Alice and Eve have remained idle and
hence it is impossible to flip 1→ 0.

The second claim relies on the fact that a probe by
Eve will contain no information unless it follows a write
by Eve. This again is because a probe only reveals if
Eve’s water is still there. Therefore every eavesdropping
sequence of time-slots will displace Bob’s water and will
be read by him as a 1.
There are, potentially, three goals for a malicious process:
disrupt communication between good processes, eaves-
drop on communication and activity and finally, remain
undetected. It can be seen that in our simple model Eve
has a lot of power since she can essentially simulate Bob’s
behavior.

We now show how a very simple code can provide
strong secrecy and integrity guarantees. This relies on
the unique characteristic of the covert channels: that one
has to use the resource (i.e. write) to communicate or
eavesdrop. Define the simple Differential Code that maps
a bit x as follows:

x→ {x, (1− x)}. (1)

This maps a 0→ {0, 1} and 1 7→ {1, 0} and has rate 1/2
(i.e. maps one bit into two).
Theorem 1: The rate 1/2 Differential Code provides
the following guarantees. If Eve tries to eavesdrop, she
is detected with probability 1/2 per communicated bit.
Further, Eve cannot introduce any bit error without being
detected.
Proof: Assume, without loss of generality, that Eve tries
to observe the first symbol. She must interject a write
operation before Alice. If Alice wants to transmit 01 then
the first 0 will be decoded as a 1 by Bob since Eve’s write
removed Bob’s water from the bucket. Now Eve knows
that 01 was the intended symbol but further knows that
her detection is unavoidable: the next bit will be a 1 and
there is no way to convert it into a zero by lemma 1.
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So Bob will decode 11 which is not a symbol of the
differential code and can only originate from malicious
behavior in our noiseless model. Subsequently, Bob can
sound a public alarm and stop the service. The second
case is if Alice transmits 10. Then Eve will capture the 1
and stay silent in the next symbol knowing it must be a 0.
In this case Eve is successful and undetected. However,
since each symbol is equiprobable and independent, she
is detected with probability 1/2 per communicated bit as
claimed.

To see the second claim, observe that the code
{01, 10} maps to the set of symbols {01, 10, 11} and
any action by Eve during the transmission of a 0 can
only produce the symbol 11. Since this is not part of the
code, it is immediately detected as the result of malicious
behavior.

This theorem shows that it is possible to obtain very
strong secrecy and integrity in Bucket channels. The
differential code we presented for Bucket channels allows
Alice and Bob to communicate while detecting Eve. But
we can devise a simpler protocol if detecting Eve is the
sole goal. All friendly VMs elect a leader VM to run
the detection algorithm and agree on a specific time to
begin the detection process. The detector then transmits
a stream of 0s, reads every bit, and raises an alarm if it
detects even a single bit flip from 0 to 1. We start with
this simple protocol as the baseline in Section 6.
5. Covert Channel Capacities

Having set up covert channels, our next task is
to quantify the capacity of these channels in a noisy
setting. The channel capacity is by definition [37] the
peak communication rate achievable using any coding
scheme. We assume that our channels are memoryless –
i.e. that the symbols and noise are independent across
time. Subsequently, we empirically establish that most of
our channels are indeed memoryless at the time resolution
that we use them.

A discrete memoryless channel (DMC) with input
alphabet X and output alphabet Y is characterized by its
transition probabilities

PY |X = {p(y|x)}x∈X ,y∈Y . (2)

Here, p(y|x) denotes the probability that channel outputs
y when x is input to the channel. Note that the outcome
of a discrete memoryless channel y depends only on its
current input x (through PY |X ) and is independent of the
past and future inputs to the channel. For a DMC with
transition probabilities PY |X , the capacity (measured in
bits per channel use) is given by Shannon’s theorem [37]:

C = max
p(x)

I(X;Y ). (3)

Here, I(X;Y ) denotes the mutual information between
X and Y ; and the maximization is performed over all
probability distributions over the input alphabet X . In our
setting, we transmit a single bit over a covert channel in
one channel use. Therefore, we have X = {0, 1} as the
input alphabet of the channel. Given specific values of
transition probabilities for a covert channel – Figure 10
shows an example for the L1 channel – its channel
capacity can be obtained as described in (3). Note that the
computation of the capacity involves maximization of mu-
tual information over all possible distributions on {0, 1}.

0

1

0

1

p(0|0)

p(1|1)

p(0|1)

p(1|0)
0 1 

0 

1 

Tr
an

sm
it

te
d

 

Received 

99.79 0.21 

1.08 98.92 

Fig. 10: Bit flip probabilities to be estimated for each binary
asymmetric channel (left). (Right) Measured probabilities for
the L1 channel at 50 Kbps.

To solve this optimization problem we use the Blahut-
Arimoto algorithm [38], [39] for capacity computation.
A. Measured Capacities

We ran the experiments on an Intel Quad-Core i7-2600
running at 3.40GHz with a 32kB L1i and L1d cache, a
256KB L2 cache, and an 8MB L3 cache. Figure 8 (a) and
(b) shows the capacity of channels that we established in
our experiments for single and multiple channels respec-
tively (with the drop due to heavy-weight virtualization
represented on top of the graphs). As we discuss below,
these numbers are much higher than reported on EC2
or estimated through back of the envelope computations.
Figure 9 shows how capacity (blue line) and error rate
(bits per channel use; red line) vary with frequency of
each covertly transmitted bit. This is interesting because
increasing the frequency at first improves capacity but
makes error rates worse. Decreasing the frequency reduces
error rates but also lowers the potential capacity. Figure 9
also shows the frequencies for which capacities (blue
lines) hit peak values in each channel.

For our experiments, we found capacities for individ-
ual and joint channels across both processes and virtual
machines. For the cross-process tests, we pinned two pro-
cesses to specific cores using taskset and ran 20 rounds of
communication for every frequency tested. In each round,
we communicated a 10,000 bit message across the chan-
nel. To determine the difference between a 0 and 1 on the
channel, we used kmeans clustering on the performance
counter or access latency values. We then used cross
correlation to determine the percentage of bits that were
flipped during communication. For our virtual machine
experiment, each VM was launched using QEMU with
KVM enabled. We used the libvirt library [40] to pin
a specific virtual CPU to a hardware CPU. This allows
for both intra-core and inter-core communication between
two VM’s when determining joint capacities for channels.
Performance counter channels. Figure 9 shows the
theoretical capacities for each channel. Capacities range
from only 1.21 Kbps for the timing-driven channel that
uses all of L3 to 216.97 Kbps for L1. Contending for
only a few sets of L3, predictably, increases its bandwidth
and we determine it to be 40.87 Kbps. L3 also has the
benefit of being a cross-core channel while L1 and L2
are intra-core channels. Interestingly, the branch predictor
channel has a capacity of 66.53 Kbps – branch channel
has only been used to infer bits of keys before. Load and
Store performance counters also have a surprisingly high
bandwidth (148.56 Kbps and 78.44 Kbps respectively).
Timing Channels. We measure capacities of 565.62 Kbps
for the memory bus contention channel (MemBus in
Figure 9) and 624.97 Kbps for AES-NI instructions.
Interestingly, the MemBus channel’s peak capacity is
achieved with a frequency of 1.1 MHz, which shows how
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Fig. 8: (a) Capacities for inter-core (L3 and Memory Bus channels) and intra-core (all other) channels. In particular, AES and
Mem Bus channels at 500+ Kbps are particularly attractive for attackers due to their high bandwidth. (b) Joint capacities
for an intra-core, two inter-core, and a 3-way inter-core combination. Sometimes joint capacity is lower than individual ones
(e.g., for MemBus) because of mutual interference. However, joint channels provide more coverage when used for defense.
Note the log scale for the y-axis.
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Fig. 9: Capacity (blue) and error rate (red, inverse of bits per channel use) varying with channel frequency. As frequency
increases, capacity increases but so does error rate (red line drops). Capacity thus achieves a peak value and decreases.

operating the channel faster with an optimal error rate
yields a higher capacity than operating the channel with
minimal errors. Overall, our results show that capacity can
be substantially improved beyond the 100 bps bandwidth
achieved on EC2 [2].
Multi-input Multi-output Communication. We mea-
sured the joint capacities of some interesting channel
combinations. L1 and Load channels run on a shared
core and have a capacity of 228.72 Kbps – just beyond
that of the L1 channel itself, which indicates substantial
mutual interference between L1 and load channels. Inter-
core combinations such as L3 access driven paired with
either load or branch channel interfere less – hence the
joint capacity is closer to the sum of each channel’s
capacity. Finally, we measured three channels running
concurrently and find that the combination of MemBus,
Load, and L1 can operate at 209.75 Kbps. This indicates
that there is substantial mutual interference that limits the
joint capacity well below that of MemBus alone (although
still above just Load and L1 individually).

Our mutual interference results indicate that running
multiple channels can benefit the attacker by simultane-
ously leaking data over intra and inter core channels (such
as L3 and branch channels). At the same time, multiple
channels when used by a detector increase the chance of
exposing an attacker.
Light-weight v. Heavy-weight Virtualization. Our base-
line results above are measured for virtualization tech-
niques like LinuX Containers (LXC/Docker [41], [16])
where VMs are almost as light-weight as processes. We
also measure capacities for channels with a heavy-weight
hypervisor (KVM [42], using hardware virtualization)
which results in noisier channels. We find that this de-
creases capacities for all channels on average by 41.7%
(Figure 8).

We have also quantified the memory of each channel

but defer the details of this study to an anonymous
technical report [43]. We found that channels like load,
store, L1, and other caches have low memory – these can
be controlled precisely by a sender and hence are well-
suited for detecting attackers – while the branch predictor
channel exhibits long range memory. This indicates that
branch predictor channels have a higher error rate and also
are a poor choice for detecting malicious co-residents.
6. Detection Games Using Covert Channels

In this section we discuss the problem of how a
friendly VM (Claude) can detect an intelligent, co-resident
eavesdropper (Eve). As we showed in Lemma 1, Eve (in
fact, any process) can flip 0 → 1 but not flip 1 → 0
in Claude’s transmission. It follows that writing a 1 is
useless for detecting Eve – even if Eve eavesdrops during
that time slot, Claude will still read a 1 and hence
Eve will remain undetected. For this reason, the optimal
Eve detection pattern for Claude to transmit will be a
consecutive transmission of 0s (similar to HomeAlone’s
proposal [3] of leaving cache lines untouched).

We show that, surprisingly, in the presence of noise,
an all 0s detection pattern is no longer optimal. The
intuition is that Eve can perform a few probes while
Claude runs his detector and still remain undetected. This
is because, besides Eve, the background noise can also
cause evictions of Claude’s data. Therefore, Claude cannot
easily distinguish between the evictions caused only by
the noise and the evictions caused by both the noise
and the eavesdropping probes unless Eve’s evictions are
statistically more frequent. Therefore, Eve can hide below
the noise and try to detect Claude’s detector. In response,
Claude now has a reason to add noise into the detection
pattern to make it harder for Eve to detect Claude.

We now step through the three stages in this detection
game between Claude and Eve. Claude and Eve both start
with static strategies of probing the channel (Stage 1).
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Intelligent Principals Claude Eve Result
Neither Probes @ 50 Kbps Probes @ 50 Kbps Eve is easily detected

Eve Probes @ 50 Kbps
Hides in noise until Claude
has finished detection

Claude cannot distinguish
between Eve and noise

Both
Intelligent detector
mimicking httpd

Attempts to hide from Claude
to avoid detection

Eve cannot distinguish between httpd
and Claude, and is detected

TABLE I: Three stages in the detection game between Claude and Eve.
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Fig. 11: (a) Stage 1: Claude wins since noise and Eve at 50 Kbps are markedly different. (b) Stage 2: Eve reduces probe
bandwidth to 10 Kbps and Claude cannot reliably tell Eve and Baseline noise apart. (c) Eve, however, can tell Claude apart
from the target application (httpd).

Eve then adapts by lowering her probe bandwidth to hide
behind the baseline noise and detect Claude (Stage 2).
Finally, in Stage 3, Claude adapts by adding noise to the
channel to mimic his own application – Eve gets exposed
as anomalous interference which turns 0s into 1s. Table I
summarizes these stages and the outcome at each stage.

The key reason why Claude wins this game is because
he controls the noise in the channel (by switching between
the detector and the benign program) while Eve is forced
to respond and hide in the noise. Eve’s task of distin-
guishing between the application and Claude’s mimicry is
much harder than Claude’s task of distinguishing between
low noise and Eve’s probes. Claude can thus force Eve
into staying at low probing frequencies that also leak less
information. We now demonstrate this experimentally.

All experiments in this section represent Claude and
Eve using virtual machines on KVM pinned to separate
hardware threads on the same core. Claude’s Apache web
server (httpd) is Eve’s target application. We select
the load instruction channel for Claude to detect Eve
with, since it is sensitive to interference from even simple
programs with negligible cache footprints.

Stage 1. Neither Claude nor Eve attempt to hide their
detection/attack schemes. Prior to performing detection,
Claude first generates a baseline model (defines a 0)
for the load channel by probing without any additional
processes running (to minimize noise). Next, Claude
actively monitors the channel by remaining silent, and
detects Eve when she perturbs the channel (sends a 1).
Figure 11a shows Claude’s time-line view of the channel
– plotting Claude’s average load latency per time slot –
when he probes the channel at 50 Kbps. The two time
series correspond to two experiments, one with baseline
noise (blue) and the other with Eve probing at 50 Kbps
(red). Eve is easily detectable because Eve’s activity
significantly alters the state of the channel from a 0 into
a 1.

Stage 2. Eve attempts to hide from Claude by a) lower-
ing the frequency of her probes to appear within the noise
margin to Claude, and b) distinguishing Claude’s detector
from the baseline application. Once Claude’s detector is
off, Eve can resume probing at higher frequencies.

Figure 11a shows Claude’s view of how Eve is able to
hide behind the noise of the channel by sleeping for 100µs
between each probe. Eve looks very similar to baseline
noise. At the same time, in Figure 11b we can see Eve’s
view when she lowers her probe rate to 5 Kbps – Eve
can clearly distinguish Claude’s detector at 50 Kbps from
httpd and stay low.

Figure 12b shows the true positive vs. false positive
detection rates for each threshold tested as Eve varies her
probing rate. As expected, longer calls to sleep increases
Eve’s ability to hide from Claude (the “knee” of the curve
becomes lower). We also find that in order for Eve to
successfully hide from Claude, she must call sleep and
stop executing any instructions on the hardware. It is not
sufficient to perform an empty busy wait, as even this
causes enough noise on the load channel for Claude to
detect.

Stage 3. Claude now adds noise into the detection
pattern (alters his workload during the detection phase)
to prevent Eve from hiding. However, because we assume
that Eve knows httpd’s characteristics, it is not sufficient
for Claude to write 1s at arbitrary times as this may be
distinguishable from a normal workload. Instead, Claude’s
noise mimics the channel characteristics of the benign
workload and prevents Eve from identifying the detection
phase of Claude. Eve must either come out of hiding,
allowing Claude to detect her presence, or remain inactive.
In either scenario, Claude has successfully prevented Eve
from carrying out an attack.

Specifically, we generate a Markov Model for httpd
by sampling its load instruction performance counters
using the Linux perf tool at a frequency of 500 mi-
croseconds for 30 minutes. We ran httpd in a VM
pinned to a single hardware thread and used httperf to
issue 100 requests per second to load Yahoo’s homepage.
The rate at which we are able to record the performance
counter values of httpd yields the length of each state
of the model. Thus, Claude now probes the channel at
2 Kbps. Next, we transformed the recorded counter values
into a Markov Model by clustering the data into 5 states.
Here, each state represents the number of load instructions
Claude must execute in order to simulate the noise caused
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(b) Stage 1 Claude: true v. false positives
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(c) Stage 3 Claude: true v. false positives

Fig. 12: (a) Claude adds noise into the channel by creating a Markov Model of httpd and mimicking the effect that httpd
has on the load channel. To Eve, Claude looks like httpd but Claude’s detector can look for additional noise in the channel
to identify Eve. (b) Detection v. false positive results for the unintelligent Claude (Stage 1) generated by varying detection
threshold (number of 1s before alarm is raised). Eve at 50 Kbps is almost 100% detectable. Forcing Eve to 10 Kbps (100µs
sleep) still yields a detection rate around 40%. (c) Intelligent Claude (Stage 3), by adding noise into the channel should
hamper its own detector, yet detection rates are close to that of Stage 1 Claude.

by httpd. Claude can then transition through the states of
the model, mimicking the load instructions executed by
httpd. Research on synthetic workload generation [44],
[45] can be used here to considerably improve Claude’s
mimicry of httpd.

As seen in Figure 12a, it is difficult for Eve to
determine the difference between Claude’s execution and
that of httpd, even when Eve samples the channel at
50Kbps. Figure 12c quantifies the true-positive v. false-
positive detection rates for different probing frequencies
of Eve when Claude mimics httpd. When compared
to Figure 12b, we see there is not much degradation in
Claude’s ability to detect Eve. Therefore, mimicking a
workload’s channel characteristics comes at little cost to
Claude’s ability to successfully detect Eve.

Finally, note that time to detection is small, since the
knee of each curve is close to the Y-axis. We attribute this
to each bit’s time period in the channel being a long time
at processor timescales; for example, 20µs for a 50 Kbps
channel. Thus even a few 1s in the channel are sufficient
to reach the potential for detectability. Increasing the
threshold for 1s further only increases the false positive
rate.
7. Conclusion

Third-party software should not leak secrets through
the microarchitecture, yet several covert channels have
been demonstrated that do so. Indeed, we demonstrate
that by careful synchronization, extremely high capac-
ities can be achieved. Our Bucket model captures the
contention-driven nature of microarchitecture channels
and shows how microarchitecture channels force Eve to
leave indelible footprints by turning 0s into 1s. In real
systems with noisy channels and adaptive adversaries, this
insight leads to a detection game where both detector and
eavesdropper do their best to hide. However, the detector
has the advantage of controlling the channel which tips
the game in its favor. For architects, this work lays an in-
formation theoretic foundation for a long-studied problem
and opens up a new direction in protecting and detecting
microarchitectural channels – exposing contention and its
sources directly to software that can then run precise
covert channel detectors.
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