
Secure Information Flow Analysis for Hardware Design:
Using the Right Abstraction for the Job

Xun Li
Department of Computer Science

University of California, Santa Barbara
xun@cs.ucsb.edu

Mohit Tiwari
Department of Computer Science

University of California, Santa Barbara
tiwari@cs.ucsb.edu

Ben Hardekopf
Department of Computer Science

University of California, Santa Barbara
benh@cs.ucsb.edu

Timothy Sherwood
Department of Computer Science

University of California, Santa Barbara
sherwood@cs.ucsb.edu

Frederic T Chong
Department of Computer Science

University of California, Santa Barbara
chong@cs.ucsb.edu

ABSTRACT
Hardware designers need to precisely analyze high-level de-
scriptions for illegal information flows. Language-based in-
formation flow analyses can be applied to hardware descrip-
tion languages, but a straight-forward application either con-
servatively rules out many secure hardware designs, or con-
strains the designers to work at impractically low levels of
abstraction. We demonstrate that choosing the right level
of abstraction for the analysis, by working on Finite State
Machines instead of the hardware code, allows both precise
information flow analysis and high-level programmability.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Hardware description
languages

General Terms
Languages, Security

Keywords
Information Flow Analysis, Hardware Security, Language-
Based Automated Verification

1. INTRODUCTION
Embedded systems are increasingly being used in criti-

cal applications that require a high level of assurance. For
example, systems used in banks, automobiles, aircraft, and
smartphones can benefit from strong guarantees on how se-
cret or untrusted information flows through the system, en-
suring that secrets never leak to unclassfied outputs or that
untrusted information never affects critical system data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLAS ’10 Toronto, Canada
Copyright 2010 ACM 978-1-60558-827-8 ...$10.00.

To provide such guarantees, designers of embedded sys-
tems often rely on information-flow analysis tools. Information-
flow analysis is a versatile technique that associates informa-
tion labels (such as secret/unclassified or trusted/untrusted)
with various system inputs, and tracks how these labels
propagate through the system to the outputs. Such tracking
can then be used to ensure policies on information-flow such
as non-interference, which requires that secret inputs have
no visible effect on unclassified outputs.

While there exist many techniques to track information
flows through software [17], little work has been done to aid
hardware developers in analyzing information flows through
hardware designs. In systems where the entire functional-
ity is implemented in hardware, the hardware itself has to
guarantee an end-to-end information flow policy. In sys-
tems which are programmable, all software-based security
schemes build upon an interface provided by the hardware,
hence it is also important to verify that the actual hard-
ware implementation allows no covert channels. However, it
is a non-trivial task to verify that a design complies with
a given information-flow policy, as it could involve com-
plex features such as caches, branch-predictors, status-bits,
exception-handlers and pipelining. The situation becomes
worse when we consider that hardware developers are not
usually experts in information flow analysis.

Ideally, hardware designers should be able to design using
familiar idioms, get early design-time feedback about infor-
mation flows in the system, and quickly iterate through dif-
ferent options to create verifiably secure hardware designs.
However, hardware designs have unique characteristics that
make a direct application of traditional information flow
tracking techniques too conservative to be useful. Hence
in this paper, we posit that by carefully choosing the right
level of abstraction for analysis, we can analyze information
flows through hardware designs precisely using automated,
language-level techniques.

We explore a new direction where we base the information-
flow analysis on a pervasive idiom in hardware design, namely
Finite State Machines, and use this fact to make our anal-
ysis more precise even as the developers focus on specifying
functionality using a familiar high-level abstraction. State
machines are widely recognized as a natural way to describe

M t f ll i f ti
S0

Meet of all information

flows into every state

S0 S1 S

S1

Security

Label

cur_state S0 S1 Sn……
Label Label Label

Meet of all informationSn

……

(a) (b)

Meet of all information

flows out from every state

Sn

(a) (b)

Figure 1: (a) Existing program analysis on state machines: States are represented as values of a single variable
cur_state, associated with a single tag, and all information flows into and out from every individual state are
combined. (b)Our proposed precise analysis: Every specific state is analyzed independently.

hardware controllers, and most commercial Computer-aided
design (CAD) tools can extract state machines from Ver-
ilog/VHDL programs automatically. More recently, numer-
ous state machine based languages and diagrams have been
invented to explicitly express hardware as state machines [10,
19]. We propose that this trend towards expressing hard-
ware explicitly as state machines not only retains the high-
level programmability that is so desired by developers, but
also allows more precise information-flow analysis.
A state machine can be expressed as a set of states and

transitions among those states triggered by signals which
are either inputs to the state machine or local data. The
most natural way to implement a state machine using pro-
gramming languages is to have a variable cur_state to store
the current state, and case-style statements to decide state
transitions based on cur_state and some other conditions.
Figure 1(a) shows how conventional information analysis is
applied to such state machines implementations. The value
of cur_state can be one of S0, S1 . . ., indicating the current
state. When information flows are analyzed, cur_state is
associated with a single security label. Such analysis does
not take into consideration the fact that information flows
are actually flowing through each individual state, hence
there is no way to track the security labels of individual
states when states are represented only as different values
of the variable cur_state, making the analysis conserva-
tive. The key insight of our approach is that by analyzing
hardware descriptions explicitly as state machines (i.e., as
a reified set of individual states with accompanying transi-
tions) rather than as an implicit state machine encoded us-
ing variables, the analysis can precisely track security labels
for individual states. Figure 1(b) shows that we associate
security labels with each individual state, and analyze in-
formation flows for every state independently, hence we are
able to derive more precise information flow relations.
Specifically, this paper makes the following contributions:

• We investigate the problem of precise information-flow
analysis of hardware descriptions without compromis-
ing programmability. We demonstrate that traditional
information-flow tracking techniques are overly conser-
vative for many critical hardware designs.

• We show that precise analysis can be performed on

explicit state-machine based designs rather than con-
ventional high-level descriptions.

• We outline a general framework for a state machine
based hardware verification tool.

2. BACKGROUND
Simple hardware designs can be expressed structurally as

a composition of hardware design primitives. For example,
as shown in Figure 2, a multiplexer can be expressed as a
composition of a pair of AND gate, one OR gate and an
inverter. However, as the desired functionality grows in size
and complexity, hardware design increasingly relies on CAD
tools and higher-level hardware description languages and
design patterns. Modern CAD tools require programmers
to specify only the high-level behavior that is expected of
the logic. For example, the above multiplexer can be simply
expressed by the hardware designer using an if-else or a
switch-case construct (as illustrated in Figure 2), while the
CAD tool automatically synthesizes a gate-level implemen-
tation. While the difference in expressiveness is not evident
when all we need is a multiplexer, being able to synthesize an
adder by writing a <= b + c instead of a gate-level descrip-
tion of an adder frees the programmer to focus on higher-
order issues and leaves low-level details to the CAD tool.
Such behavioral modeling of hardware design has become
predominant since creating large hardware designs such as
the OpenSPARC CPU [1] in a completely structural manner
becomes intractable quickly.

A design pattern that arises frequently in hardware de-
scription and synthesis is that of a Finite State Machine.
State machines are useful because they naturally arise as
a means of modeling many hardware controllers, allow de-
signers to model the behavior of the digital system clearly
under all input conditions, and guarantee that a design can
be synthesized correctly. One can implement state machines
implicitly in HDLs by using combinations of if and case
statements. Alternatively, to help explicitly model digital
system designs as state machines, programming languages
and tools such as Statecharts [10] and Esterel [19] have been
invented. Modeling hardware designs explicitly as state ma-
chines has become an increasingly recognized trend.

A

Sel

B

Out

if (Sel) begin

Out <= A;

end

else begin

Out <= B;

end

Behavioral

(Algorithmic)

Structural

(Component interconnections)

AND

AND

OR

NOT

Figure 2: Implementation of a 2-1 multiplexer us-
ing structural description and behavioral description.
The function of a 2-1 multiplexer is to choose be-
tween input A and B based upon the value of input
Sel. The structural description demonstrates how
logic gates are connected to achieve multiplexing,
while behavioral description describes the high level
behaviors by using high level languages

3. RELATED WORK

3.1 Information Flow Security
Information flow policies can involve either confidentiality

(secret data can never leak to unclassified users) or integrity
(untrusted data can not affect trusted data), where both
confidentiality and integrity are duals that can be captured
by a general notion of Non-Interference [8]. Different ap-
proaches have been taken to enforce information flow poli-
cies at various levels of computer abstraction. Tag-based
tracking at the virtual machine, architecture, or ISA levels
is a popular dynamic solution, and tracks information flows
through all registers and memory [2, 7, 3, 24, 4, 25, 16].
Projects such as LoStar [30], HiStar [29] and Flume [13] ap-
ply distributed information flow control (DIFC) [28] through
general purpose operating systems abstractions. Program-
ming language-based techniques either use specific type sys-
tems to represent security levels to enforce information flow
policies statically [15, 26], or use program analysis tech-
niques to derive information flow properties [5, 14]. A sur-
vey by Sabelfeld and Myers [17] gives a more complete list
of related work in language based information security. As
compared to the above research on information flow secu-
rity (that aims to guarantee software security policies), our
problem is to analyze information flow properties of the un-
derlying hardware digital systems.

3.2 Program Analysis on HDLs
While there exists considerable research on functional ver-

ification of hardware, techniques for verifying information
flow policies for hardware designs have been scarce. Func-
tional verification of the hardware becomes harder with the
increasing complexity of designs, and detecting errors through
simulation becomes impractical due to long simulation time
and limited coverage. Approaches based on program analy-
sis have been proposed to help functional hardware verifica-
tion, i.e, static analysis [9] and model checking [6]. In [11,
12] Hymans gives a design for static analysis of VHDL using
abstract interpretations, while Schlicking further presents a
framework for generating static analyzers on VHDL code [18].
These static analysis techniques are useful for deriving hard-
ware specification properties and to ease testing and evalu-
ation [27].
The closest related work on analyzing information flow

properties for HDLs was proposed by Tolstrup et al [22, 23].
In this paper the authors describe techniques to identify
information flows in synthesizable VHDL programs. Tol-
strup’s work is promising, but we find that for many hard-
ware designs that multiplex different trust domains onto the
same hardware, the analysis is imprecise and will label as
unsafe designs that can be shown to have no illegal informa-
tion flows. In the next section, we will give an example to
show this imprecision and provide a novel method to analyze
HDLs in a more precise way.

In another related work [21], we have proposed a technique
that can dynamically track all information flows through
hardware designs at the level of individual logic gates. Such
Gate-Level Information Flow Tracking (GLIFT) can account
for explicit, implicit, and timing channels in a unified man-
ner, but the downside is that it requires the hardware design
to be synthesized down into a netlist before its information
flows can be tracked dynamically. Ideally, we would like the
information flow analysis to be able to work statically on a
behavioral description of the hardware, and enable quicker
feedback and redesign without losing precision such as in
extant higher-level analysis.

4. HARDWARE DESCRIPTION ANALYSIS
In this section, we will show that program analysis on con-

ventional hardware description languages can be imprecise
for certain types of digital systems, and we demonstrate how
to perform precise analysis by raising the level of abstraction
to explicit state machines.

4.1 Hardware Information Security
Hardware information security can be enforced in two

ways. The first is by physical separation such that trusted
components and untrusted components are physically sepa-
rated and can never interact with each other, hence there is
no way to leak information. While physical separation can
completely guarantee hardware information flow policies,
one needs to duplicate each resource into different copies
for each partition. Such aggressive duplication is expensive
and hence not practical in many situations.

The other solution is controlled separation. The same
hardware resource is shared by all security partitions, but
each partition uses the resource in a bounded way such that
the boundaries of different partitions can never intersect.
Examples of controlled separation include Time Division
Multiple Access (TDMA) which divides a shared commu-
nication channel into separated time slots, and execution
leases [20], which allow the execution of untrusted compo-
nents within bounded time and using bounded resources.
Analysing information flow policies for physically separated
systems is trivial, while verifying the correctness of con-
trolled separation is challenging. In the following paragraphs
we will show how conventional program analysis can fail to
precisely derive information flow policies for system descrip-
tions using controlled separation.

4.2 Imprecise Program Analysis on Behavioral
HDLs

We use the Execution Lease controller as an example hard-
ware design and Verilog as an example hardware description
language. Execution Leases are an architectural mechanism
that enables trusted code to grant access to a limited amount
of machine resources to untrusted code for a fixed amount of

Untrusted

cloud

Input: Data

(untrusted)

Timer

expires Sl

Slave

S2

expires Slave
S1

So

Set timer

Timer

expires

Input: Timer

(trusted)
Master

Lease
p

Lease

Controller

output

Figure 3: State machine diagram of the lease con-
troller. The input to the lease controller consists
of a trusted timer and untrusted data, and the out-
put is generated by the master state. When a timer
is specified, the state machine transfers to the un-
trusted cloud until the timer expires, at which time
the state machine goes back to the master state.

time. One can imagine a lease to be a sandbox of space and
time which untrusted components can never go beyond. A
lease starts by setting up a timer and transferring the con-
trol to untrusted components. After the timer expires, the
control will be automatically transferred back to the trusted
system.
Without losing generality, in this paper we assume a two-

label security lattice with security labels High and Low,
where High indicates secret (in terms of secrecy) or un-
trusted (in terms of trustiness), and Low represents unclas-
sified or trusted. In such security lattice, information is
allowed to flow from any data with a Low security label to
data marked as High, while the other direction is illegal.
Figure 3 gives the simplified state machine diagram of an

Execution Lease controller. As can be seen from the figure,
the inputs to the lease controller include the timerlow which
is a trusted value and datahigh which is an untrusted value.
The output is generated by state S0. The lease mechanism
works as follows: Some trusted component (master state S0)
initiates a lease to some untrusted cloud (simplified as two
states in this example) by specifying a timerlow boundary.
The control transfers to slave state S1 which is inside the
untrusted cloud, and either stays at S1 or jumps to S2 based
on some untrusted datahigh and loops inside the cloud until
the timerlow expires. When the timerlow expires the control
automatically transfers back to the master state no matter
what the current state is.
The corresponding Verilog program is shown in Figure 4.

The value of the state variable cur_state can be either 0
(master state) or 1, 2, 3 . . .(in the untrusted cloud). In mas-
ter state S0, if the timerlow is activated, the state will trans-
fer to S1 by assigning cur_state to 1. In slave state S1, if the
timer expires, the state will transfer back to S0, otherwise
datahigh is processed and timerlow will be decremented.
We apply conventional program analysis techniques on the

program to identify how information flows between input
and output. Figure 5 gives part of a simplified set of in-
formation flow analysis rules used by most previous type-
system-based approaches. In this figure we only list two

…// Module declarations and clock synchronizations

// next_state is assigned to cur_state during every clock cycle

// timer is decreased by 1 and checked for expiration every clock cycle

always @ * // Indicating the state machine will execute repeatedly

begin

case (cur_state)

//Master State (trusted)

0:

if(timer) begin

next_state <= 1; //Jump to slave state

next_timer <= timer; //Trusted Timer

end

else begin

next_state <= 0;

next_timer <= 0;

output = ... //Generate Output

end

//Untrusted Cloud (untrusted):

1:

if (timer == 0) begin

next_state <= 0; //Jump back to master state

end

else begin

//Do something with untrusted data

if (data) begin //Untrusted Data

next_state <= 2; //Keep jumping inside untrusted cloud

end

next_timer <= timer - 1;

end

2: ...

3: ...

endcase

end

Figure 4: Behavioral Verilog Code for Lease Con-
troller: State Transitions are made based on both
the current state and other conditions. Arrows rep-
resent state transitions, and the highlighted state-
ments are those that makes the state variable un-
trusted.

rules that derive how explicit (through assignment) and im-
plicit (through branch) information flows along with a sub-
type rule that enables information flows from low security
labels to high security labels: This rule-set only deals with
if statements but case statements can be transformed into
a set of if else statements hence share the same rules. In
state S1 of the lease controller, as highlighted by Figure 4,
the state variable can either stay at S1 or change into S2

based on the value of datahigh, hence there is implicit infor-
mation flow from datahigh to the state variable cur_state.
By applying Rule branch, cur_state becomes high. Once
the state variable becomes high, everything including output
gets high according to Rule branch extended to case state-
ments since every assignment is based on the current state.
Hence conventional program analysis will conclude that the
output of the lease controller will be high. However, the lease
mechanism guarantees that when the timerlow expires, con-
trol will always transfer back to the master state–there is no
way that datahigh can actually affect either the value or the
timing of the output generated in the master state. Conven-
tional program analysis techniques can not detect that the
timer which triggers the control transferring back is low and
hence security label of the master state and any information
derived from the master state are also low.

4.3 State Machine Based Analysis
In the previous analysis cur_state, the variable keeping

Γ(x) = τ var ` e : τ

` x := e : τ cmd
(assign)

` e : τ ` c1 : τ cmd ` c2 : τ cmd

` if e then c1 else c2 : τ cmd
(branch)

` p : τ τ <: τ ′

` p : τ ′
(subtype)

Figure 5: Conventional Analysis Rules (from [26]):
rule assign formalizes explicit information flows
through assignment statements, and rule branch
gives implicit flows through conditional statements.
The rule subtype indicates that information can flow
from low security labels into high security labels.
Γ(x) is defined as the mapping from a variable to its
security label. Security labels can be either τ which
is the security label of expressions, τ var as the se-
curity label of variables, or τ cmd as the security
label of commands. The overline in τ cmd indicates
contravariance.

track of the current state in the state machine, is associ-
ated with a single security label. Once cur_state becomes
high, taint explosion will mark everything as high. How-
ever, cur_state being high does not necessarily mean every
specific state of the state machine (S0,S1 . . . in this case)
contains high information. The root cause of this problem
is that there is no way to track the security labels of in-
dividual states, because states are represented only as dif-
ferent values of the variable cur_state. The key insight of
our approach is that by analyzing hardware descriptions ex-
plicitly as state machines (i.e., as a reified set of individual
states with accompanying transitions) rather than as an im-
plicit state machines encoded using variables, the analysis
can precisely track the security labels for individual states.
We informally describe below the resulting rules that allow
for a more precise analysis 1.
To perform program analysis on the hardware descriptions

with explicit state machine information we associate a secu-
rity label with every specific state and extend conventional
analysis rules to include the following Basic Rules:

1. Under some state S0, if there is some condition e mak-
ing the state transits to S1 then there are information
flows from both S0 and e to S1.

2. Under some state S0, if there is any assignment to some
variable x then there is information flow from S0 to x.

To increase the precision of the analysis we propose two
extra Reduction Rules which can reduce the conservative
propagation of information flows. These reduction rules are
the key rules to make our analysis precise:

1. If there is a transition from every state labeled as high
to some state S0 based on the same low signal, there
should not be any information flow from high states to
S0 even there seem to be flows from every high state to
S0 according to Basic Rule 1. The reason is that the

1Our ongoing work involves formalizing and proving the
soundness of an analysis based on these insights.

transition to S0 will be executed in every high state,
and hence is independent of any single high state.

2. If under every high state there is the same computa-
tion assigned to some variable x, then there should
not be any information flow from high states to x even
though there seems to be according to Basic Rule 2.
The reason can be explained similarly to Reduction
Rule 1.

These reduction rules can be seen as generalizations of
the branch rule in Figure 5. Notice that this rule re-
quires the security levels of the then and else branches to
be raised to at least the level of the guard expression, but
that these raised security levels are reduced at the join point
of these two branches; i.e., the security level of the point
immediately following the two branches is independent of
the guard expression. This reduction is sound because only
the two branches are control-dependent on the guard ex-
pression; the program point following the branches is not
control-dependent on the guard expression. Our reduction
rules similarly recognize the fact that if multiple states tran-
sition to the same new state under exactly the same condi-
tion, then that new state isn’t control-dependent on any one
of the original source states and allows the analysis to reduce
the security levels accordingly.

Now we apply the new rules to the lease controller and
we will get the following flows between inputs, states and
outputs:

• {S0,timerlow,datahigh,S1} → S1

• {S1,datahigh} → S2

• {S1,S2,timerlow} → S0

• {S1, S2} → timer

• {S0} → output

The first flow gives the result that S1 is labeled as high
since data is high. The second gives the result that S2 is also
high for the same reason. The third one is reduced according
to Reduction Rule 1: in both S1 and S2 the transition can go
back to S0 if timer expires. The fourth one is also reduced
according to Reduction Rule 2: the computation assigned to
timer is the same under every untrusted states S1 and S2.
From the results of the above analysis, we can conclude the
following security status for every state: S1 and S2 are high
while S0 is low. Finally the output, which comes out from
low state S0, now is correctly marked as low.

4.4 General Framework of Our Tool
In conclusion, we propose to explicitly model hardware

descriptions as state machines such that we are able to an-
alyze information flows through every individual state, and
give more precise results than conventional techniques. Fig-
ure 6 presents the general framework for our proposed ap-
proach. The bottom part represents the existing framework
in which hardware descriptions are written at either behav-
ioral or structural abstraction, verified by conventional anal-
ysis tools, then synthesized down to physical implementa-
tions. To enable precise information flow analysis, we add
another level above behavioral hardware descriptions which

State Machine

D i i

Precise

Information FlowDescription Information Flow

Analysis

Auto generateConservative
Our!

Contribution

Behavioral HDL

Auto generate
Information Flow

Analysis

Contribution

Synthesis Tool

Physical Hardware

Figure 6: General Framework of Our Tool: The
highlighted part is our contribution which allows one
to explicitly model hardware designs as state ma-
chines and perform more precise information flow
analysis. The gray part–conventional imprecise in-
formation flow analysis techniques are then removed
from the framework.

allows one to describe hardware using state machine lan-
guages, verified using our proposed analysis tool, and com-
piled to conventional behavioral or structural code using the
tool’s back-end.
As a common pattern used in system designs, state ma-

chines are not limited to hardware designs, but can also be
applied to model software systems such as software proto-
cols. Analyzing state-machine-based software protocols by
explicitly tracking information flows among individual states
may also lead to more precise observations. Our future work
seeks to build formal type system based analyses to express
the reduction rules proposed in this paper, and explore po-
tentials of such technique in software design.

5. REFERENCES
[1] OpenSPARC project. http://www.opensparc.net.

[2] James Newsome and Dawn Song. Dynamic taint
analysis for automatic detection, analysis, and
signature generation of exploits on commodity
software. In 12th Annual Network and Distributed
System Security Symposium (NDSS), 2005.

[3] J. R. Crandall and F. T. Chong. Minos: Control Data
Attack Prevention Orthogonal to Memory Model. In
Proceedings of the 37th annual IEEE/ACM
International Symposium on Microarchitecture
(Micro), pages 221 – 232, 2004.

[4] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A
Flexible Information Flow Architecture for Software
Security. In Proceedings of the 34th annual
international symposium on Computer architecture
(ISCA), June 2007.

[5] D. E. Denning and P. J. Denning. Certification of
programs for secure information flow. Communications
of the ACM, 20(7):504–513, 1977.

[6] E.M.Clarke, O. Grumberg, and D.Peled. Model
Checking. MIT Press, 2000.

[7] G.E.Suh, J.W.Lee, D.Zhang, and S.Devadas. Secure
program execution via dynamic information flow
tracking. In Proceedings of the 11th international
conference on Architectural support for programming
languages and operating systems, 2004.

[8] J. A. Goguen and J. Meseguer. Security policies and
security models. In Proceedings of IEEE Symposium
on Security and Privacy, 1982.

[9] C. Hankin. Program analysis tools. International
Journal on Software Tools for Technology Transfer,
2(1), 1998.

[10] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming 8, 1987.

[11] C. Hymans. Checking safety properties of behavioral
vhdl descriptions by abstract interpretation. In 9th
International Static Analysis Symposium (SAS’02)
(2002, pages 444–460. Springer.

[12] C. Hymans. Design and implementation of an abstract
interpreter for vhdl. D.Geist and E.Tronci, editors,
CHARME, 2860 of LNCS, 2003.

[13] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. Frans,
K. Eddie, and K. R. Morris. Information flow control
for standard os abstractions. In In SOSP, 2007.

[14] J. McHugh and D. I. Good. An information flow tool
for gypsy. In IEEE Symposium on Security and
Privacy, pages 46–48, Apr. 1985.

[15] A. C. Myers, N. Nystrom, L. Zheng, and
S. Zdancewic. Jif: Java information flow. Software
release. http://www.cs.cornell.edu/jif, July 2001.

[16] O.Ruwase, P.B.Gibbons, T.C.Mowry,
V.Ramachandran, S.Chen, M.Kozuch, and M.Ryan.
Parallelizing dynamic information flow tracking. In
SPAA’08: Proceedings of the twentieth annual
symposium on Parallelism in algorithms and
architectures, pages 35–45. ACM, 2008.

[17] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1), Jan. 2003.

[18] M. Schlickling and M. Pister. A framework for static
analysis of vhdl code. 7th International Workshop on
Worst-Case Execution Time (WCET) Analysis, 2007.

[19] E. Technologies. The Esterel v7 Reference Manual,
version v7.30 - initial IEEE standardization proposal
edition. 2005.

[20] M. Tiwari, X. Li, H. Wassel, F. Chong, and
T. Sherwood. Execution leases: A hardware-supported
mechanism for enforcing strong non-interference. In
Proceedings of the International Symposium on
Microarchitecture (MICRO), 2009.

[21] M. Tiwari, H. Wassel, B. Mazloom, S. Mysore,
F. Chong, and T. Sherwood. Complete information
flow tracking from the gates up. In Proceedings of the
14th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2009.

[22] T. K. Tolstrup. Language-based Security for VHDL.
PhD thesis, Technical University of Denmark, 2006.

[23] T. K. Tolstrup, F. Nielson, and H. R. Nielson.
Information flow analysis for vhdl. volume 3606 of
LNCS, 2005.

[24] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani,
and D. I. August. Rifle: An architectural framework
for user-centric information-flow security. In In
MICRO 37: Proceedings of the 37th annual
IEEE/ACM International Symposium on
Microarchitecture, pages 243–254. IEEE Computer
Society, 2004.

[25] G. Venkataramani, I. Doudalis, Y. Solihin, and

M. Prvulovic. Flexitaint: A programmable accelerator
for dynamic taint propagation. In Fourteenth
International Symposium on High Performance
Computer Architecture (HPCA), pages 196–206, New
York, NY, USA, 2008. ACM.

[26] D. Volpano and G. Smith. A type-based approach to
pro-gram security. In In Proceedings of the 7th
International Joint Conference on the Theory and
Practice of Software Devel-opment, pages 607–621.
Springer, 1997.

[27] S. Wilhelm. Efficient analysis of pipeline models for
WCET computation. In Proceedings of the 5th Intl
Workshop on Worst-Case Execution Time (WCET)
Analysis, 2005.

[28] N. Zeldovich, S. Boyd-Wickizer, and D.Mazieres.
Security distributed systems with information flow
control. In Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI), pages 293–308, Apr. 2008.

[29] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
histar. In USENIX’06: Proceedings of the 7th
conference on USENIX Symposium on Operating
Systems Design and Implementation, 2006.

[30] N. Zeldovich, H. Kannan, M. Dalton, and
C. Kozyrakis. Hardware enforcement of application
security policies using tagged memory. In 8th USENIX
Sumposium on Operating Systems Design and
Implementation (OSDI), Dec. 2008.

