
MadMAC: Building a Reconfigurable Radio
Testbed using Commodity 802.11 Hardware

Ashish Sharma, Mohit Tiwari, Haitao Zheng
Department of Computer Science

University of California, Santa Barbara, CA 93106 U.S.A
Email: {asharma, tiwari, htzheng}@cs.ucsb.edu

Abstract— Essential to adaptive devices is the ability to recon-
figure Medium Access Control (MAC) protocols to environment
conditions and application requirements. We propose MadMAC,
a platform for building reconfigurable MAC protocols on com-
modity 802.11x hardware. Programming on top of MadWiFi,
MadMAC transmits packets at configurable time and frame for-
mat. In this paper, we build a TDMA-based MAC protocol using
MadMAC, and examine the impact of various design parameters.
Experimental results show that MadMAC allows flexible control
of protocol settings with small processing overhead. We also
observe that the TDMA MAC protocol provides 20% throughput
improvement over the CSMA protocol in a simple two-node
network.

I. I NTRODUCTION

Proliferation of wireless networks under a limited spectrum
requires adaptive radio devices that can adapt to various net-
work settings and spectrum availabilities. Essential to adaptive
devices is the ability to reconfigure Medium Access Control
(MAC) protocols to efficiently access spectrum resources and
avoid interference from concurrent transmissions.

To design a reconfigurable MAC layer, we can apply lessons
from existing proposals that have been designed for different
network configurations. Most of them can be categorized as
either reservation based channel accessor random channel
access. Reservation based channel access protocols such as
TDMA [5] and spatial TDMA [10] avoid contention by sep-
arating transmissions across orthogonal resource boundaries
using a priori assignment. Transmission links are assigned
with a set of time slots and channels to avoid conflict. These
protocols are ideal for links with stable, predictable traffic
loads. In contrast, random channel access protocols such as
802.11x CSMA take a distributed and on-demand approach,
where nodes vie for transmission resources as necessary to
forward their messages. This approach provides adaptivity to
changing traffic requirements, avoids contentions without any
central server or explicit user coordinations.

While both MAC protocols have distinct advantages, they
work best under a particular network/application scenario. An
adaptive MAC protocol should observe network environments
and adjust its behavior according to application requirements.
One simple solution is to switch between these protocols.
While this concept is simple, the application to existing wire-
less devices is challenging. The majority of existing wireless
devices are 802.11 devices, and hence confined to the built-
in CSMA protocols. In addition, most experimental testbeds

that were developed for networking research make use of
802.11 device due to their low-cost and wide-availability. As
a result, many networking designs are limited to CSMA MAC
protocols.

Our goal is to build a wireless testbed using commod-
ity 802.11 hardware with a reconfigurable MAC layer. We
propose MadMAC, a kernel-mode driver to build new MAC
protocols, motivated by the work in [11]. This paper makes
the following three contributions.
• By programming radio hardware, we design a MadMAC

driver to transmit packets at a configurable time and
frame format, without triggering CSMA contention and
backoff. MadMAC is a kernel-mode driver built on top of
MadWiFi, allowing tight control of radio hardware with
minimal delay.

• Using MadMAC, we implement a TDMA based MAC
protocol with tight timing control and reconfigurable
slot structure. We address several design challenges to
maintain persistent slot structure and continuous packet
transmissions.

• We build a two-node testbed using two laptops with
Linksys wireless 802.11a/b/g card. We measure Mad-
MAC performance using both ICMP ping and bi-
directional UDP flows. We verify that MadMAC provides
tight control of transmission timing at a small process-
ing overhead. We also measure the flow throughput
and packet round-trip-time (RTT), and the impact of
slot configurations. Finally, we compare the MadMAC
TDMA protocol to CSMA and cheesyMAC protocols,
and observe a 20% throughput improvement.

The rest of this paper is organized as follows. In Section II
we review prior efforts on building reconfigurable protocols
using 802.11x devices, and present the unique contributions
of MadMAC. Section III provides an overview of MadMAC,
and Section IV presents the detailed implementation of each
component. We summarize experimental results in Section V.
Finally, we conclude in Section VI and describe on-going
directions.

II. RELATED WORK

The low-cost of 802.11 device and its wide availability has
made it the de-facto choice for developing and evaluating
new wireless systems and applications. Many researchers have
successfully built wireless 802.11x testbeds of different scales,

from home [12] and local area mesh networks [8], [14], [9],
to campus wide systems [1] and metropolitan networks [6].

Using both experimental simulations and testbed measure-
ments, many studies have identified the limitations of the
conventional CSMA MAC protocols used by 802.11x devices,
and proposed modifications and alternatives. In addition to
incorporating these new designs in future wireless devices,
several efforts modify commodity 802.11x devices for im-
mediate benefits. We can categorize these efforts into two
types. The first approach builds an overlay on top of the
CSMA MAC layer to implement alternative MAC protocols
without modifying the built-in MAC operations [13], [15].
The overlay allows loose control of the packet transmission
time by controlling the content and size of the network buffer.
The second approach utilizes the reconfigurability of 802.11
devices with Atheros chipsets and MadWiFi driver to control
transmission timing and format. The work by Neufeldet al.
proposes SoftMAC [11] to support different frame formats
and control over transmission timing. As an application of
the SoftMAC architecture, Doerret al. implemented a set of
MAC protocols [2]. Unlike the overlay approach, this approach
allows a direct control of MAC operations at much finer time
granularity.

III. M ADMAC OVERVIEW

MadMAC is a kernel-mode driver built on top of the
MadWiFi driver. This configuration allows MadMAC to in-
teract with the underlying radio device in real time, avoiding
overheads due to context switching. Using the open-source
programming capability provided by MadWiFi, MadMAC
reconfigures 802.11 devices to transmit packets at controllable
time and frame formats, without confining to the contention
and backoff procedures of CSMA. Next, we describe the
required device configurations, and present the general archi-
tecture of MadMAC.

A. System setup

We build MadMAC on laptops running Linux 2.6.15-26
kernel, compiled with gcc-4.0.3. We use Linksys WPC55AG
wireless cards with Atheros chipsets, each equipped with an
extended MadWiFi [7] driver and uses the Hardware Abstrac-
tion Layer (HAL) to take control over the radio hardware.

Before deploying MadMAC, we need to disable selected
functions of CSMA protocols. Following the procedure pro-
posed in [2], [11], we operate each device in the “moni-
tor” mode to disable several default functions, including the
default MPDU format, automatic acknowledgement (ACK)
and retransmissions, RTS/CTS signalling and virtual carrier
sensing. We control the duration of backoff by setting the
value of (CWmin andCWmax), the maximum and minimum
values of the contention window. We also set theretry flag to
prevent outgoing data packets from being stamped with MAC
sequence numbers.

B. MadMAC Architecture

The proposed MadMAC framework consists of the follow-
ing three components, shown in Fig. 1.

Channel Batch
Switch Processing

Slot
Processing

Packet transmission under Predefined Schedule

Interface with Networking Layer

Packet Scheduling

MadWifi & Atheros HAL

Wireless Medium

Fig. 1. MadMAC Architecture

• Interface with the network layer
This module is responsible for transporting packets be-
tween the MAC and network layers. The interface con-
verts out-going application packets (i.e. IP packets) into
MAC frames in a format defined by the MAC protocol;
and retrieves application packets from in-coming MAC
frames.

• Packet transmission and reception
This is the key component of MadMAC. It is respon-
sible for transmitting or receiving packets according
to a specific schedule, defined by the MAC protocol1.
Using a well-defined schedule2, packets do not experience
contention or back-off. Transmission schedules, such as
TDMA time slot duration, transmission mode per slot,
can be configured through the/proc .

• Peer synchronization
Since time-driven transmissions require tight clock syn-
chronization, we implement a simple synchronization
software. Using the given hardware device, it has a
precision of 25µs.

IV. M ADMAC I MPLEMENTATION

In this section, we describe each MadMAC component in
detail.

A. Interface with Network Layer

This module is responsible for transporting packets between
the MAC and network layers following their frame format. It
accepts out-going packets from the network layer (IP packets),
adds MAC specific frame headers and checksum, and en-
queues them at the MAC buffer. Upon receiving MAC frames
from the medium, it strips the MAC header and forwards the
packet payload to the network layer.

We implement these functions using arequest routine.
Algorithm 1 summarizes the procedure for processing packets

1In a TDMA based system, each radio device transmits only during its
scheduled time slots.

2In this paper, we focus on implementing packet transmissions under pre-
defined schedules. The derivation of time schedules is beyond the scope of
this paper. In our experiments, we assume a 2-node system where two nodes
transmit at alternating time slots.

������
�����	

	��� � ������

����
�	�� � ������
����
�	

	��� �

���������� �������������

�

Fig. 2. TDMA Time Slot Structure.

from the network layer to the MAC layer. We override the
default 802.11 frame structure (MAC overhead) and add an
ethernet interface, similar to that of [11]. Our implementation
can also be extended to use other frame structures.

Algorithm 1 MadMAC Algorithm: Request Routine

1: Requestroutine (packet){
2: receive packet from network layer(packet);
3: mac frame = add mac headers(packet);
4: enqueue at tail of buffer(mac frame);
}

B. Scheduled Packet Transmission and Reception

We implement aservice routineto transmit packets at pre-
defined schedules. The routine acquires the transmit schedule
and protocol parameters when MadMAC initializes. It wakes
up periodically following the schedule and configures the radio
hardware to transmit or receive packets. In the MadMAC
enabled TDMA system, this module tracks the remaining time
during a transmitting slot to maintain a persistent slot structure.
At the end of a transmitting slot, this module re-enqueues
the un-transmitted packets, configures a wake-up timer at the
beginning of the next transmitting slot.

In this paper, we focus on implementing a TDMA protocol
using MadMAC. The main design challenges are 1) how to
maintain the slot structure, and 2) how to efficiently process
multiple packet transmissions in each slot.

Issue 1) Maintaining the time-slot structure

Immediately switching operating modes (transmit, receive,
sleep) at slot boundaries can incur unnecessary packet loss.
In addition to clock drift between the transmit and receive
nodes, delay fluctuations in radio configuration and packet
transmission could result in mismatches of slot boundary.
To compensate for these impairments, our TDMA system
introduces aguard-timebetween consecutive time slots, shown
in Figure 2. During guard-time, devices can configure their
transmission mode and operating channels, and perform time
synchronization. MadMAC provides the flexibility of recon-
figuring these parameters according to the radio hardware’s
reconfiguration speed3, the average packet transmission time,
and the precision of clock synchronization.

3We are currently expanding MadMAC to enable channel switch across
time slots, and hence the configuration of guard-time should consider the
channel switching delay. We have performed some initial tests and measured
the delay to be approximated 4-5ms.

� ��� � ���

� � �� � ��

� � ���� � �

�
�
	

�
�
	

� �
��
���

������

����������� ����
� �������

���
������������
���
 ����

�
�
�����
���
 ����

������������
���
 ����

Fig. 3. MadMAC Packet Transmissions.

The performance of the TDMA system depends heavily on
the configuration of slot duration and guard-time. However, the
choice is a tradeoff between protocol efficiency and application
delay requirements. Since guard-time increases the protocol
overhead, we should use large slot duration and small guard-
time for better protocol efficiency. On the other hand, packet
delay and jitter increase with slot duration - packets arriving
after a transmit slot have to wait till the next transmit slot.
The choice of guard-time depends on hardware configuration
and synchronization precision. We will further evaluate their
impact through experimental results in Section V.

Issue 2) Processing multiple packets

The slot-duration is in general much larger than the per-packet
transmission time. Hence, one challenge facing MadMAC
is how to process multiple packet transmission efficiently
in each time slot. We need to validate time before each
packet transmission to ensure a precise slot structure, incurring
computation overhead. To control the overhead, we can pre-
compute the maximum number of packets that can be trans-
mitted in the current slot, assuming that packets are of the
size of the Maximum Transmission Unit (MTU). When a slot
starts, MadMAC sends a batch of packets together without
performing per-packet time validation.

This approach is efficient when the buffer is backlogged.
At the beginning of a slot, the transmitter can take a batch
of packets from the buffer without recomputing the residue
time or number of packets to send. However, most wireless
devices have limited buffers, and application packets arrive
sequentially.

Using the batch approach, the packets arriving after the start
of a transmit slot have to wait till the next transmit slot. This
not only increases packet delay and jitter, but also could lead
to buffer overflow and dropping of packets (see Figure 3). To
address these issues, the service routine periodically checks
the MAC buffer during the transmit slot, and serves incoming
packets continuously (see Figure 3).

C. Synchronization

We synchronize devices to a central node. We adopt the
synchronization protocol proposed in [3] that was originally
designed for motes with an accuracy of 20µs in a sensor
network.

Algorithm 2 MadMAC TDMA Algorithm: Service Routine

1: Serviceroutine{
2: if current slot 6= my transmit slot then
3: timer value = estimate time to next tx slot();
4: reset timer(timer value);
5: return;
6: end if
7: / ∗ Check : Guard time at the start of slot ∗ /
8: if guard time <

(current time− current slot start time) then
9: / ∗ Check : Guard time at the end of slot ∗ /

10: while (current slot end time − current time) >
guard time do

11: if buffer is empty() then
12: break;
13: end if
14: dequeue from tail of buffer(packet);
15: tx duration =
16: estimate tx duration(packet, bit rate);
17: if (current slot end time − current time −

tx duration) ≥ guard time then
18: transmit(packet);
19: else
20: enqueue at head of buffer(packet);
21: break;
22: end if
23: end while
24: end if
25: timer value = current time + service period;
26: reset timer(timer value);
27: return; }

During neighbor discovery, a node claims the role ofmas-
ter while its neighbors behave asslaves. The master node
broadcasts a packet to its peers with its system time. The
broadcast packet received at each slave node experiences
different propagation delay, resulting in time difference across
slave nodes. Slave nodes respond to the master with its system
time information, from which the master derives a correction
factor and replies. Each slave node then adjusts its time
according to the correction factor.

Our current implementation synchronizes nodes with a 25µs
precision when MadMAC initializes. In our experiments, the
clock drift between a pair of nodes is at a rate of 10µs
per second. Hence, we need to synchronize nodes at least
once every 100 second to maintain persistent slot structure.
Our preliminary synchronization tool is appropriate single-hop
networks. We are currently working on extensions to multi-hop
systems.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We evaluate the performance of MadMAC using a simple 2-
node network (see Figure 4). The MadMAC-TDMA protocol
assumes a simple transmit schedule where nodes alternate

Node A
Slot 1

Slot 2

Node B

Fig. 4. Experimental Setup

�

������
�� ��	
�����

�
�

������
��
��

��
������

������������

�

��
������

���������

���
��
����
��

��
 ��!
��

"#$%"& "'(

Fig. 5. Definitions of MadMAC processing overheadDmad and propagation
overheadDpr .

across time slots. Both devices operate on a 802.11a channel.
We synchronize nodes at the initialization.

We perform two set of experiments to measure packet delay
and flow throughput. In the first set of experiments, we send a
ping packet (64 bytes) every second, and measure the round-
trip delay as well as the MadMAC processing overhead. In the
second set of experiments, we inject bi-directional UDP traffic
to the system and use Iperf [4] to measure flow throughput.
We compare the performance of TDMA protocol to that of
CSMA and CheesyMAC [11] protocols.

A. MadMAC Packet Processing Overhead

We start by evaluating the efficiency of MadMAC by
measuring processing overhead. The overheadDmad is defined
as the time lag between when a packet transmission request
is sent to the HAL layer (during a transmitting slot) and
the subsequent reception of a callback from the HAL layer
indicating the completion of transmission.Dmad includes the
time to transmit a packet at the physical layer and thus scales
with the packet size. However,Dmad does not include the
queuing delay when packets arrive outside of a transmit slot,
referred to asDq. We also measurepropagation delayDpr, the
difference between the packet transmission time and the time
the packet is received at the destination. Figure 5 illustrates
the definition ofDmad, Dq andDpr.

By time-stamping transmitted and received packets at both
nodes, we measure the following factors,

• Tx(m): local time at nodem when MadMAC requests
a packet transmission.

• TxDn(m): local time at nodem when MadMAC re-
ceives an indicator of successful packet transmission from
the HAL layer.

• Rx(m): local time at nodem when its MadMAC layer
receives a notification of receiving a packet from the HAL
layer.

We estimate the MadMAC overhead at nodeA as

Dmad = TxDn(A)− Tx(A)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 5 10 15 20 25 30 35 40 45

D
el

ay
 (

us
)

Ping Event (one ping per second)

Dpr

Dmad

Fig. 6. MadMAC Processing overheadDmad and Physical Process-
ing/Propagation overheadDpr measured from ping packets over 50s, one
ping per second, 64 bytes per ping packet.

and the propagation delay from nodeA to B as

Dpr = Rx(B)− TxDn(A).

To remove the impact of time drift between nodes, we compute
the propagation delay by solving the following equations:

TxDn(A) + Dpr − CD = Rx(B)
TxDn(B) + Dpr + CD = Rx(A) (1)

where CD = Clock(A) − Clock(B) represents the clock
difference between node A and B. Note that this assumes the
propagation delay between A and B is symmetric.

We measureDmad and Dpr by sending ICMP ping pack-
ets (64 bytes) every second from one node to another. We
timestampTx, TxDn, and Rxevents at both nodes, and solve
the above equations to deriveDmad andDpr. Figure 6 shows
the measurements for 45 ping requests. We see that MadMAC
introduces an average delay of78µs to process the ping
packets. It is comparable to the propagation delayDpr (15-
20µs). Another interesting observation is that we observe a
clock difference of984 − 1464µs over the course of the
experiment, indicating a clock drift between the nodes at a
rate of 10µs per second. As stated earlier, we can use this
measurement to determine the synchronization period.

B. Ping Packets based TDMA Performance

We examine packet round-trip-time (RTT) by sending ping
packets one per second. Fig. 7 shows the individual ping
packet RTT under different slot-duration values. We see that
RTT varies significantly over time since packets experience
different levels of queuing delay due to TDMA schedule. The
minimum and maximum RTT for a ping packet are(2· guard-
time) and (2· slot duration + 2· guard-time), respectively. We
further examine the average RTT and its variance (jitter) in
Fig. 8 and 9. Both scale linearly with the slot duration. In
addition, guard-time has great impact on mean delay, but no
impact on delay jitter.

C. TDMA Throughput Performance

We examine flow throughput by injecting bi-directional
UDP traffic. Figure 10 shows a sample packet transmission

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30

P
in

g
R

T
T

 (
m

s)

Ping Event (one ping per second)

Slot=20ms
Slot=40ms

Fig. 7. Individual Ping Round Trip Time (ms) measured under different
configurations of slot-duration, assuming 4ms guard-time.

 30

 40

 50

 60

 70

 80

 90

 100

 60 48 40 32 20
M

ea
n

R
T

T
 (

m
s)

Slot Duration (ms)

G=4ms
G=8ms
G=12ms

Fig. 8. The mean Round Trip Time (ms) measured under different
configurations of slot-duration and guard-time.

trace in terms of the index of received packets over time. The
results verify the time slot based transmission schedule. Each
slot (20ms) transmits approximately 66 packets of 1470 bytes,
resulting a flow throughput of 0.5(66·1470·8/20) = 19.9Mbps,
and a total system throughput of 38.8Mbps.

In Figure 11, we examine the total system throughput mea-
sured by Iperf, under different configurations of slot duration
and guard-time4. For a fixed slot duration, increasing guard-
time reduces the effective transmission time in a slot and the
system throughput. For a fixed guard-time, increasing slot-
duration reduces the slot overhead and increases the system
throughput. With small guard-time of 4ms, the impact of the
slot duration on the system throughput is relatively small.

Next, we compare the throughput performance of the
TDMA protocol to that of CSMA and cheesyMAC [11] proto-
cols. We disable the RTS/CTS in CSMA for a fair comparison.
Figure 12 illustrates the stacked throughput of both flows using
different protocols. TDMA achieves the best throughput which
is 20% better over CSMA, while cheesyMAC achieves the
worst performance, 28% degradation over CSMA. In addi-
tion, we examine the fairness by examining individual flow
throughput. We see that both TDMA and CSMA protocols
provide balanced throughput to both flows, while cheesyMAC

4The system does not support 20ms slot duration with 12ms guard-time,
since we require slot duration> 2× guard-time, so there is no result for this
configuration.

 10

 15

 20

 25

 30

 35

 40

 60 48 40 32 20

R
T

T
 S

T
D

Slot Duration (ms)

G=4ms
G=8ms
G=12ms

Fig. 9. The standard deviation of Round Trip Time (ms) measured under
different configurations of slot-duration and guard-time.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

In
de

x
of

 P
ac

ke
ts

 R
ec

ei
ve

d

Time (ms)

Slot=20ms

Fig. 10. The number of packets received at a MadMAC peer. Packets are
of 1470 bytes. Slot duration=20ms, guard-time=4ms.

has poor fairness since one flow dominates the use of spectrum
channels.

VI. CONCLUSION AND FUTURE WORK

In this paper, we explore the feasibility of implementing
reconfigurable MAC protocols on commodity 802.11x devices.
We propose MadMAC, a kernel-mode driver built on top of
MadWiFi, to provide packet transmission and reception with
configurable time and frame formats. We implement a TDMA
protocol using MadMAC, and perform experiments to examine
the impact of various design parameters. Preliminary results
in a 2-node network show that MadMAC provides flexibility
to control packet transmission time and format with minimum
processing overhead. We also show that the use of MadMAC
TDMA protocol achieves 20% throughput improvement over
the CSMA protocol. We are currently working on expanding
MadMAC to perform real-time per slot channel switch, and
conducting experiments on multi-hop scenarios.

REFERENCES

[1] DARTMOUNTH COLLEGE. CRAWDAD: A community resource for
archiving wireless data at dartmouth. http://crawdad.cs.dartmouth.edu/.

[2] DOERR, C., NEUFELD, M., FIFIELD , J., WEINGART, T., SICKER,
D. C.,AND GRUNWALD , D. Multimac - an adaptive mac framework for
dynamic radio networking. InFirst IEEE Symposium on New Frontiers
in Dynamic Spectrum Networks (DySPAN)(November 2005).

[3] GANERIWAL , S., KUMAR , R., AND SRIVASTAVA , M. Timingsync
protocol for sensor networks. InProc. of ACM SenSys(2003).

 0

 10

 20

 30

 40

 50

 60 48 40 32 20

T
hr

ou
gh

pu
t (

M
bp

s)

Slot Duration (ms)

Guard-Time4ms
8ms

12ms

Fig. 11. System throughput under different slot configurations.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

MadMACcheesyMACCSMA

F
lo

w
 T

hr
ou

gh
pu

t (
M

bp
s)

Flow 1
Flow 2

Fig. 12. Flow throughput (stacked) using different MAC protocols.

[4] IPERF. http://dast.nlanr.net/Projects/Iperf/ .
[5] KOUTSAKIS, P.,AND PATERAKIS, M. On multiple traffic type integra-

tion over wireless TDMA channels with adjustable request bandwidth.
International Journal of Wireless Information Networks 7(April 2000),
55–68.

[6] LAMARCA, A., ET AL . Place lab: Device positioning using radio
beacons in the wild. InProc. of Pervasive(June 2005).

[7] MADWIFI. http://www.madwifi.org .
[8] M ICROSOFT. Microsoft Research Mesh Networking.

http://research.microsoft.com/mesh/.
[9] MIT . MIT roofnet. http://pdos.csail.mit.edu/roofnet/doku.php.

[10] NELSON, R., AND KLEINROCK, L. Spatial TDMA: A collision-free
multihop channel access protocol.IEEE Transactions on Communica-
tions (1985), 934–944.

[11] NEUFELD, M., FIFIELD , J., DOERR, C., SHETH, A., AND GRUNWALD ,
D. Softmac - flexible wireless research platform. InFourth Workshop
on Hot Topics in Networks (HotNets)(November 2005).

[12] PAPAGIANNAKI , K., YARVIS, M., AND CONNER, W. S. Experimental
characterization of home wireless networks and design implications. In
Proc. of INFOCOM(April 2006).

[13] RAO, A., AND STOICA, I. An overlay MAC layer for 802.11 networks.
In Proc. of Mobisys(April 2005).

[14] UCSB MOMENT LAB. UCSB wireless mesh network testbed.
http://moment.cs.ucsb.edu/meshnet/.

[15] WU, H., WANG, X., L IU , Y., ZHANG, Q.,AND ZHANG, Z.-L. Softmac:
layer 2.5 mac for voip support in multi-hop wireless networks. InProc.
of IEEE SECON(September 2005).

