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Abstract— Essential to adaptive devices is the ability to recon-
figure Medium Access Control (MAC) protocols to environment
conditions and application requirements. We propose MadMAC,
a platform for building reconfigurable MAC protocols on com-
modity 802.11x hardware. Programming on top of MadWiFi,
MadMAC transmits packets at configurable time and frame for-
mat. In this paper, we build a TDMA-based MAC protocol using
MadMAC, and examine the impact of various design parameters.
Experimental results show that MadMAC allows flexible control
of protocol settings with small processing overhead. We also
observe that the TDMA MAC protocol provides 20% throughput

that were developed for networking research make use of
802.11 device due to their low-cost and wide-availability. As
a result, many networking designs are limited to CSMA MAC
protocols.

Our goal is to build a wireless testbed using commod-
ity 802.11 hardware with a reconfigurable MAC layer. We
propose MadMAC, a kernel-mode driver to build new MAC
protocols, motivated by the work in [11]. This paper makes
the following three contributions.

improvement over the CSMA protocol in a simple two-node o
network.

I. INTRODUCTION

Proliferation of wireless networks under a limited spectrum
requires adaptive radio devices that can adapt to various net-
work settings and spectrum availabilities. Essential to adaptive,
devices is the ability to reconfigure Medium Access Control
(MAC) protocols to efficiently access spectrum resources and
avoid interference from concurrent transmissions.

To design a reconfigurable MAC layer, we can apply lessons
from existing proposals that have been designed for different,
network configurations. Most of them can be categorized as
either reservation based channel accessrandom channel

access Reservation based channel access protocols such as

TDMA [5] and spatial TDMA [10] avoid contention by sep-

arating transmissions across orthogonal resource boundaries

using a priori assignment. Transmission links are assigned
with a set of time slots and channels to avoid conflict. These
protocols are ideal for links with stable, predictable traffic

By programming radio hardware, we design a MadMAC
driver to transmit packets at a configurable time and
frame format, without triggering CSMA contention and
backoff. MadMAC is a kernel-mode driver built on top of
MadWiFi, allowing tight control of radio hardware with
minimal delay.

Using MadMAC, we implement a TDMA based MAC
protocol with tight timing control and reconfigurable
slot structure. We address several design challenges to
maintain persistent slot structure and continuous packet
transmissions.

We build a two-node testbed using two laptops with
Linksys wireless 802.11a/b/g card. We measure Mad-
MAC performance using both ICMP ping and bi-
directional UDP flows. We verify that MadMAC provides
tight control of transmission timing at a small process-
ing overhead. We also measure the flow throughput
and packet round-trip-time (RTT), and the impact of
slot configurations. Finally, we compare the MadMAC
TDMA protocol to CSMA and cheesyMAC protocols,

loads. In contrast, random channel access protocols such as and observe a 20% throughput improvement.

802.11x CSMA take a distributed and on-demand approach;the rest of this paper is organized as follows. In Section II
where nodes vie for transmission resources as necessaryyireview prior efforts on building reconfigurable protocols
forward their messages. This approach provides adaptivity {8ing 802.11x devices, and present the unique contributions
changing traffic requirements, avoids contentions without agy njadMAC. Section 1lI provides an overview of MadMAC,

central server or explicit user coordinations.

and Section IV presents the detailed implementation of each

While both MAC protocols have distinct advantages, theyomponent. We summarize experimental results in Section V.

work best under a particular network/application scenario. Afjnally, we conclude in Section VI and describe on-going
adaptive MAC protocol should observe network environmenggrections.

and adjust its behavior according to application requirements.
One simple solution is to switch between these protocols.

Il. RELATED WORK

While this concept is simple, the application to existing wire- The low-cost of 802.11 device and its wide availability has

less devices is challenging. The majority of existing wirelesaade it the de-facto choice for developing and evaluating
devices are 802.11 devices, and hence confined to the buikw wireless systems and applications. Many researchers have
in CSMA protocols. In addition, most experimental testbedsiccessfully built wireless 802.11x testbeds of different scales,



from home [12] and local area mesh networks [8], [14], [9],
to campus wide systems [1] and metropolitan networks [6].

Using both experimental simulations and testbed measure- |

ments, many studies have identified the limitations of the
conventional CSMA MAC protocols used by 802.11x devices,
and proposed modifications and alternatives. In addition to
incorporating these new designs in future wireless devices,
several efforts modify commodity 802.11x devices for im-
mediate benefits. We can categorize these efforts into two
types. The first approach builds an overlay on top of the
CSMA MAC layer to implement alternative MAC protocols
without modifying the built-in MAC operations [13], [15].
The overlay allows loose control of the packet transmission
time by controlling the content and size of the network buffer.
The second approach utilizes the reconfigurability of 802.11
devices with Atheros chipsets and MadWiFi driver to control
transmission timing and format. The work by Neufetial.
proposes SoftMAC [11] to support different frame formats
and control over transmission timing. As an application of
the SoftMAC architecture, Doest al. implemented a set of
MAC protocols [2]. Unlike the overlay approach, this approach
allows a direct control of MAC operations at much finer time
granularity.

I1l. MADMAC OVERVIEW

MadMAC is a kernel-mode driver built on top of the
MadWiFi driver. This configuration allows MadMAC to in-
teract with the underlying radio device in real time, avoiding
overheads due to context switching. Using the open-source
programming capability provided by MadWiFi, MadMAC
reconfigures 802.11 devices to transmit packets at controllable
time and frame formats, without confining to the contention e
and backoff procedures of CSMA. Next, we describe the
required device configurations, and present the general archi-
tecture of MadMAC.

A. System setup
We build MadMAC on laptops running Linux 2.6.15-26
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Fig. 1. MadMAC Architecture

Interface with the network layer

This module is responsible for transporting packets be-
tween the MAC and network layers. The interface con-
verts out-going application packetise( IP packets) into
MAC frames in a format defined by the MAC protocaol,
and retrieves application packets from in-coming MAC
frames.

Packet transmission and reception

This is the key component of MadMAC. It is respon-
sible for transmitting or receiving packets according
to a specific schedule, defined by the MAC protdcol
Using a well-defined scheddlegpackets do not experience
contention or back-off. Transmission schedules, such as
TDMA time slot duration, transmission mode per slot,
can be configured through thproc

Peer synchronization

Since time-driven transmissions require tight clock syn-
chronization, we implement a simple synchronization
software. Using the given hardware device, it has a
precision of 2&s.

IV. MADMAC | MPLEMENTATION

kernel, compiled with gcc-4.0.3. We use Linksys WPCS5AG |y this section, we describe each MadMAC component in
wireless cards with Atheros chipsets, each equipped with gg;ail.

extended MadWiFi [7] driver and uses the Hardware Abstrac-

tion Layer (HAL) to take control over the radio hardware. A. Interface with Network Layer

Before deploying MadMAC, we need to disable selected This module is responsible for transporting packets between
functions of CSMA protocols. Following the procedure prothe MAC and network layers following their frame format. It
posed in [2], [11], we operate each device in the “monpccepts out-going packets from the network layer (IP packets),
tor” mode to disable several default functions, including thgdds MAC specific frame headers and checksum, and en-
default MPDU format, automatic acknowledgement (ACK§ueues them at the MAC buffer. Upon receiving MAC frames
and retransmissions, RTS/CTS signalling and virtual carrigom the medium, it strips the MAC header and forwards the
sensing. We control the duration of backoff by setting thgacket payload to the network layer.

value of CW,,in, andCWp,4,), the maximum and minimum e implement these functions using raquest routine

values of the contention window. We also set tagy flag to  Algorithm 1 summarizes the procedure for processing packets
prevent outgoing data packets from being stamped with MAC

sequence numbers.

B. MadMAC Architecture

The proposed MadMAC framework consists of the follo
ing three components, shown in Fig. 1.

lin a TDMA based system, each radio device transmits only during its
scheduled time slots.
2In this paper, we focus on implementing packet transmissions under pre-
defined schedules. The derivation of time schedules is beyond the scope of
Wehis paper. In our experiments, we assume a 2-node system where two nodes
transmit at alternating time slots.
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transmitting ' receiving ! transmitting time
time slot time slot time slot
from the network layer to the MAC layer. We override the Fig. 3. MadMAC Packet Transmissions.

default 802.11 frame structure (MAC overhead) and add an
ethernet interface, similar to that of [11]. Our implementation
can also be extended to use other frame structures.

Algorithm 1 MadMAC Algorithm: Request Routine The performance of the TDMA system depends heavily on
the configuration of slot duration and guard-time. However, the

choice is a tradeoff between protocol efficiency and application
delay requirements. Since guard-time increases the protocol
overhead, we should use large slot duration and small guard-
time for better protocol efficiency. On the other hand, packet
} delay and jitter increase with slot duration - packets arriving
after a transmit slot have to wait till the next transmit slot.
The choice of guard-time depends on hardware configuration
B. Scheduled Packet Transmission and Reception and synchronization precision. We will further evaluate their

We implement aservice routineto transmit packets at pre-impact through experimental results in Section V.
defined schedules. The routine acquires the transmit scheddlie 2) Processing multiple packets

and pr'otqcol paramgters when MadMAC |n|t|a}llzes. It Wakefhe slot-duration is in general much larger than the per-packet
up periodically following the schedule and configures the radjo

hardware to transmit or receive packets. In the MadMA ansmission time. Hence, one challenge facing MadMAC

enabled TDMA system, this module tracks the remaining t|mltsa how to_ process multiple packet .transm_lssmn efficiently
: 2 o . IN each time slot. We need to validate time before each
during a transmitting slot to maintain a persistent slot structure. o . . X
e : acket transmission to ensure a precise slot structure, incurring
At the end of a transmitting slot, this module re-enqueu€s .
. . . omputation overhead. To control the overhead, we can pre-
the un-transmitted packets, configures a wake-up timer at the )
S s compute the maximum number of packets that can be trans-
beginning of the next transmitting slot. . : .
. . . mitted in the current slot, assuming that packets are of the

In this paper, we focus on implementing a TDMA protocol. : o .

: : . ize of the Maximum Transmission Unit (MTU). When a slot
using MadMAC. The main design challenges are 1) how .
L2 - Starts, MadMAC sends a batch of packets together without
maintain the slot structure, and 2) how to efficiently process

multiple packet transmissions in each slot performing per-packet time validation.
piep ' This approach is efficient when the buffer is backlogged.

Issue 1) Maintaining the time-slot structure At the beginning of a slot, the transmitter can take a batch

Immediately switching operating modes (transmit, receivef packets from the buffer without recomputing the residue
sleep) at slot boundaries can incur unnecessary packet I¢é8e or number of packets to send. However, most wireless
In addition to clock drift between the transmit and receivéevices have limited buffers, and application packets arrive
nodes, delay fluctuations in radio configuration and packggduentially.

transmission could result in mismatches of slot boundary.Using the batch approach, the packets arriving after the start
To compensate for these impairments, our TDMA systeﬁ‘f a transmit slot have to wait till the next transmit slot. This
introduces ayuard-timebetween consecutive time slots, showfiot only increases packet delay and jitter, but also could lead
in Figure 2. During guard-time, devices can configure thel@ buffer overflow and dropping of packets (see Figure 3). To
transmission mode and operating channels, and perform tigdress these issues, the service routine periodically checks
synchronization. MadMAC provides the flexibility of reconthe MAC buffer during the transmit slot, and serves incoming
figuring these parameters according to the radio hardwarg&ckets continuously (see Figure 3).

reconfiguration speédthe average packet transmission tim
and the precision of clock synchronization.

1: Requestroutine (packet)

2: receive_packet_from_network_layer(packet);
3: mac_frame = add-mac_headers(packet);

4: enqueue_at_tail_of buf fer(mac_frame);

€ L
C. Synchronization

We synchronize devices to a central node. We adopt the
SWe are currently expanding MadMAC to enable channel switch acroEchhronization pl’OtOCOl proposed in [3] that was originaIIy

time slots, and hence the configuration of guard-time should consider f] . d f ith n .
channel switching delay. We have performed some initial tests and measl Igned for motes with an accuracy o /JBOIn a sensor

the delay to be approximated 4-5ms. network.



Algorithm 2 MadMAC TDMA Algorithm: Service Routine _ Soal
1: Serviceroutine { <—

2. if current_slot # my_transmit_slot then Slot 2

3 timer_value = estimate_time_to_next_tx_slot(); Fia 4. Experimental Set
ig. 4. Experimental Setup

4. reset_timer(timer_value);
5 return,
6: end if $A$
7. /% Check : Guard time at the start of slot  / P
8: if guard_time < £ %

(current_time — current_slot_start_time) then F g ¢
9 /* Check : Guard tzme‘at the end of slgt * / Arrive Artive HAL | HAL >
10:  while (c”urrent,slot,end,tzme — current_time) > at MAC buffer at HAL packet 3 packet

guard_time do transmission ~ reception
11 if buf fer_is_empty() then
12: break; Fig. 5. Definitions of MadMAC processing overheBX, ., and propagation
13: end if overheadD,.
14: dequeue_from_tail_of _buf fer(packet);
15: tx_duration =
16: estimate_tx_duration(packet, bit_rate); across time slots. Both devices operate on a 802.11a channel.
17: if (current_slot_end time — currenttime — \We synchronize nodes at the initialization.
tx_duration) > guard_time then We perform two set of experiments to measure packet delay

18: transmit(packet); and flow throughput. In the first set of experiments, we send a
19: else ping packet (64 bytes) every second, and measure the round-
20: enqueue-at_head-of -buf fer(packet); trip delay as well as the MadMAC processing overhead. In the
21: break; second set of experiments, we inject bi-directional UDP traffic
22: end if to the system and use Iperf [4] to measure flow throughput.
23:  end while We compare the performance of TDMA protocol to that of
24: end if CSMA and CheesyMAC [11] protocols.
25: timer_value = current_time -+ service_period,
26: reset_timer(timer_value); A. MadMAC Packet Processing Overhead
27: return; } We start by evaluating the efficiency of MadMAC by

measuring processing overhead. The overliead, is defined
as the time lag between when a packet transmission request
is sent to the HAL layer (during a transmitting slot) and

During neighbor discovery, a node claims the rolentds- ;
ter while its neighbors behave agaves The master node fche subsequent reception of a callback from the HAL layer

broadcasts a packet to its peers with its system time. Tigicating the completion of transmissioR,;,.q includes the
broadcast packet received at each slave node experieri!B€ 0 transmit a packet at the physical layer and thus scales
different propagation delay, resulting in time difference acro¥4th the packet size. However),,,q does not include the

slave nodes. Slave nodes respond to the master with its sysfifuind delay when packets arrive outside of a transmit slot,

time information, from which the master derives a correctioigie'red to ad,. We also measurgropagation delay),,,, the

factor and replies. Each slave node then adjusts its tiflifference between the packet transmission time and the time
according to the correction factor. the packet is received at the destination. Figure 5 illustrates

Our current implementation synchronizes nodes With;aszsthe de_f|n|t|on OfD,mad' D, apd Dy )
precision when MadMAC initializes. In our experiments, the BY time-stamping transmitted and received packets at both
clock drift between a pair of nodes is at a rate ofy40 N°des. we measure the following factors,
per second. Hence, we need to synchronize nodes at least 7z(m): local time at noden when MadMAC requests
once every 100 second to maintain persistent slot structure. & packet transmission.
Our preliminary synchronization tool is appropriate single-hop ¢ 7zDn(m): local time at nodem when MadMAC re-
networks. We are currently working on extensions to multi-hop ~ Ceives an indicator of successful packet transmission from

systems. the HAL layer.
o Rz(m): local time at noden when its MadMAC layer
V. EXPERIMENTAL RESULTS AND DISCUSSION receives a notification of receiving a packet from the HAL
layer.

We evaluate the pe.rformance of MadMAC using a simple ?Ve estimate the MadMAC overhead at nodeas
node network (see Figure 4). The MadMAC-TDMA protoco

assumes a simple transmit schedule where nodes alternate Dinaa = TxDn(A) — Tz (A)
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100
G=4ms
and the propagation delay from nodeto B as 90| G=8ms -
g 80 | G=12ms
D,, = Rz(B) — TxDn(A). E
To remove the impact of time drift between nodes, we compute =
the propagation delay by solving the following equations: ‘%‘3
TxDn(A)+ D, —CD = Ruxz(B)
TxDn(B) + D, + CD = Rx(A) 1) 20 32 40 48 60
where CD = Clock(A) — Clock(B) represents the clock Slot Duration (ms)
difference between node A and B. Note that this assumes Hﬂ@ 8. The mean Round Trip Time (ms) measured under different
propagation delay between A and B is symmetric. configurations of slot-duration and guard-time.

We measureD,,,q and Dy, by sending ICMP ping pack-
ets (64 bytes) every second from one node to another. We

timestampTx, TxDn, and Revents at both nodes, and SOIV‘?frace in terms of the index of received packets over time. The

:Ee above equatlctnn? t04§e”.@m“d andtDpQVngreﬂ? tsr':/?V\éSMre ults verify the time slot based transmission schedule. Each
€ measurements or 2> ping requests. Ve see that Ma 'sal t (20ms) transmits approximately 66 packets of 1470 bytes,

introduces an average delay @Bus to process the ping resultin _
, . g a flow throughput of 0(66-1470-8/20) = 19.9Mbps,
packets. It is comparable to the propagation delgy. (15- and a total system throughput(of 38.8Mt{ps.>

20us). Another interesting observation is that we observe a, Figure 11, we examine the total system throughput mea-

cIock'dlfference_ Of.984 B 1464”3. over the course of the sured by Iperf, under different configurations of slot duration
experiment, indicating a clock drift between the nodes ataéﬁd guard-tim& For a fixed slot duration, increasing guard-
rate of 10y ffr je;:ond_. Aihstated hearll_er,t_we can gse tm?ne reduces the effective transmission time in a slot and the
measurement to determine the synchronization period. system throughput. For a fixed guard-time, increasing slot-
B. Ping Packets based TDMA Performance duration reduces the slot overhead and increases the system
n roughput. With small guard-time of 4ms, the impact of the

We examine packet round-trip-time (RTT) by sending pi
P P ( ) by gp bot duration on the system throughput is relatively small.

packets one per second. Fig. 7 shows the individual pi he th h : ¢ th
packet RTT under different slot-duration values. We see that\eX: We compare the throughput performance of the
RTT varies significantly over time since packets experiena—éD MA protocol to that of CSMA and cheesyMAC [11] proto-

different levels of queuing delay due to TDMA schedule. Thgo!S- We disable the RTS/CTS in CSMA for a fair comparison.
minimum and maximum RTT for a ping packet & guard- Figure 12 illustrates the stacked throughput of both flows using

time) and @- slot duration + 2 guard-time), respectively. We different protocols. TDMA achie\_/es the best throughput which
further examine the average RTT and its variance (jitter) [ 20% better over CS(!VIA' while gheesyMAC achieves th_e
Fig. 8 and 9. Both scale linearly with the slot duration. ll){yorst performance, 28% degradation over CSMA. In addi-

addition, guard-time has great impact on mean delay, but FLgn, we examine the fairness by examining individual flow
impact on delay jitter throughput. We see that both TDMA and CSMA protocols

provide balanced throughput to both flows, while cheesyMAC

C. TDMA Throughput Performance
. L R . 4The system does not support 20ms slot duration with 12ms guard-time,
We examine flow throthpUt by Injecting bl'd"’ecuon"’lgince we require slot duration 2x guard-time, so there is no result for this
UDP traffic. Figure 10 shows a sample packet transmissiesnfiguration.
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has poor fairness since one flow dominates the use of spectn[nm IPERF. http://dast.nlanr.net/Projects/Iperf/
channels.

In this paper, we explore the feasibility of implementing!
reconfigurable MAC protocols on commodity 802.11x devicesy
We propose MadMAC, a kernel-mode driver built on top of(8]
MadWiFi, to provide packet transmission and reception wit
configurable time and frame formats. We implement a TDMA

VI. CONCLUSION AND FUTURE WORK

protocol using MadMAC, and perform experiments to examme

the
in a

impact of various design parameters. Preliminary res
2-node network show that MadMAC provides flexibilit

to control packet transmission time and format with minimum

processing overhead. We also show that the use of MadMAE!

TDMA protocol achieves 20% throughput improvement over

the CSMA protocol. We are currently working on expanding.3]
MadMAC to perform real-time per slot channel switch, an
conducting experiments on multi-hop scenarios.

(1]
(2]
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