
UNIVERSITY OF CALIFORNIA
Santa Barbara

Design and Verification of

Information Flow Secure Systems

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Mohit Tiwari

Committee in Charge:

Professor Timothy P. Sherwood, Chair

Professor Frederic T. Chong

Professor Tevfik Bultan

Professor Ben Hardekopf

Professor Ryan Kastner

September 2011

The Dissertation of
Mohit Tiwari is approved:

Professor Frederic T. Chong

Professor Tevfik Bultan

Professor Ben Hardekopf

Professor Ryan Kastner

Professor Timothy P. Sherwood, Committee Chairperson

July 2011

Design and Verification of

Information Flow Secure Systems

Copyright c© 2011

by

Mohit Tiwari

iii

Curriculum Vitæ
Mohit Tiwari

Education

2011 Doctor of Philosophy, University of California, Santa Barbara

2010 Masters in Science, University of California, Santa Barbara

2005 Bachelor of Technology, Indian Institute of Technology,
Guwahati, India

Honors and Awards

Micro Top Pick IEEE Micro’s Top Picks from Computer Architecture Confer-
ences, January-February 2010.

Best Paper Parallel Architecture and Compiler Techniques (PACT), Sept
2009. Raleigh, NC.

Outstanding TA Department of Computer Science, UC Santa Barbara. March
2006.

Research Experience

Sept 2005 – 2011 Graduate Research Assistant, University of California, Santa Bar-
bara.

Jun–Aug 2007 Summer Intern, NEC Labs, Princeton, NJ.

Jun–Aug 2004 Summer Intern, EDA Lab, Politecnico di Torino, Italy.

Publications

Mohit Tiwari, Jason Oberg, Xun Li, Jonathan K Valamehr, Ben
Hardekopf, Ryan Kastner, Frederic T Chong, and Timothy Sher-
wood. Crafting a Usable Microkernel, Processor, and I/O System
with Strict and Provable Information Flow Security In Proceed-
ings of the International Symposium of Computer Architecture
(ISCA), June 2011. San Jose, CA

Susmit Biswas, Mohit Tiwari, Luke Theogarajan, Timothy Sher-
wood, and Frederic T Chong. Fighting Fire with Fire: Modeling
the Data Center Scale Effects of Targeted Superlattice Thermal
Management. In Proceedings of the International Symposium of
Computer Architecture (ISCA), June 2011. San Jose, CA

iv

Xun Li, Mohit Tiwari, Jason Oberg, Frederic T Chong, Timothy
Sherwood, and Ben Hardekopf. Caisson: A Hardware Descrip-
tion Language for Secure Information Flow. In Proceedings of
the ACM Conference on Programming Language Design and Im-
plementation (PLDI). June 2011. San Jose, CA.

Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sher-
wood, and Ryan Kastner. Information Flow Isolation in I2C
and USB. In Proceedings of the Design Automation Conference
(DAC). June 2011. San Diego, CA.

Xun Li, Mohit Tiwari, Ben Hardekopf, Timothy Sherwood, and
Frederic Chong. Secure Information Flow Analysis for Hardware
Design: Using the Right Abstraction for the Job. In Proceedings
of the Fifth ACM SIGPLAN Workshop on Programming Lan-
guages and Analysis for Security (PLAS), June 2010.

Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sher-
wood and Ryan Kastner. Theoretical Analysis of Gate Level
Information Flow Tracking. In Proceedings of the 47th Design
Automation Conference (DAC), June 2010.

Jonathan Valamehr, Mohit Tiwari, Timothy Sherwood, Ryan
Kastner, Ted Huffmire, Cynthia Irvine, and Timothy Levin, Hard-
ware Assistance for Trustworthy Systems through 3-D Integra-
tion, In Annual Computer Security Applications Conference (AC-
SAC), December 2010. Austin, TX.

Mohit Tiwari, Xun Li, Hassan Wassel, Bita Mazloom, Shashid-
har Mysore, Frederic Chong, and Timothy Sherwood. Track-
ing Information Flow at the Gate-Level for Secure Architectures.
In IEEE Micro: Micro’s Top Picks from Computer Architecture
Conferences (IEEE Micro - top pick), January-February 2010.

Mohit Tiwari, Xun Li, Hassan M G Wassel, Frederic T Chong,
and Timothy Sherwood. Execution Leases: A Hardware Sup-
ported Mechanism for Enforcing Strong Non-Interference. In
Proceedings of the International Symposium on Microarchitecture
(MICRO), December 2009. New York, NY

Mohit Tiwari, Shashidhar Mysore, and Timothy Sherwood. Quan-
tifying the Potential for Program Analysis Peripherals. In Par-
allel Architecture and Compiler Techniques (PACT), Sept 2009.
Raleigh, NC

v

Mohit Tiwari, Hassan M G Wassel, Bita Mazloom, Shashidhar
Mysore, Frederic Chong, and Timothy Sherwood. Complete In-
formation Flow Tracking from the Gates Up. In Proceedings
of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
March 2009. Washington, DC

Mohit Tiwari, Banit Agrawal, Shashidhar Mysore, Jonathan K
Valamehr, and Timothy Sherwood. A Small Cache of Large
Ranges: Hardware Methods for Efficiently Searching, Storing,
and Updating Big Dataflow Tags. In Proceedings of the Inter-
national Symposium on Microarchitecture (MICRO), November
2008. Lake Como, Italy

vi

Abstract

Design and Verification of

Information Flow Secure Systems

Mohit Tiwari

We show that it is possible to construct hardware-software systems whose im-

plementations are verifiably free from all illegal information flows. This work is

motivated by high assurance systems such as aircraft, automobiles, banks, and

medical devices where secrets should never leak to unclassified outputs or un-

trusted programs should never affect critical information. Such systems are so

complex that, prior to this work, formal statements about the absence of covert

and timing channels could only be made about simplified models of a given system

instead of the final system implementation.

This thesis proposes a verification technique, Gate Level Information Flow

Tracking, that allows system implementations to be analyzed for all digital infor-

mation flows. The key insight is that all such flows look surprisingly similar at the

level of logic gates, where covert channels through low-level software and timing

channels arising from the underlying hardware all become explicit information

flows. Our verification technique first constructs a sound approximation of all

possible system behaviors, representing an entire system as a large, synchronous

vii

state machine, and then analyzes information flows through this abstract state

machine logic to ensure that all possible executions arising from unknown state

and inputs conform to a given security policy.

We then devise an architecture and programming model, Execution Leases,

that allows programmers to explicitly construct space-time sandboxes to run secret

or untrusted programs. Further, we show how to construct a usable embedded

system around the constraints imposed by complete information flow tracking. We

implement a system that includes a micro-kernel running on top of a processor

with complex features such as pipelining and caches, all implemented and tested

on an FPGA and verified at the gate level to be free from illegal information flows.

Professor Timothy P. Sherwood

Dissertation Committee Chair

viii

Contents

Curriculum Vitæ iv

Abstract vii

List of Figures xii

1 Introduction 1
1.1 High Assurance Systems . 3
1.2 Thesis Statement and Dissertation Roadmap 5

1.2.1 Gate-Level Information Flow Tracking 6
1.2.2 Information Flow Secure Architecture and Programming
Model . 6
1.2.3 Building Full Systems with Kernel and I/O 7

2 Complete Information Flow Tracking from the Gates Up 9
2.1 Related Work . 13
2.2 Gate Level Information Flow Tracking 16

2.2.1 Information Flow Tracking in an AND gate 18
2.2.2 Composing Larger Functions 23

2.3 Designing a Processor for Gate-Level Verification 25
2.3.1 Step 1: Handling Conditionals 29
2.3.2 Step 2: Handling Loops 32
2.3.3 Step 3: Constraining Loads and Stores 34
2.3.4 Implementation and Automatic Shadow Logic Generation 36

2.4 Evaluation . 40
2.4.1 Hardware Impact . 40
2.4.2 Analysis of Application Kernels 42

2.5 Conclusions . 44

ix

3 Theoretical Foundations of Gate-Level Information Flow Track-
ing 47
3.1 Motivation . 51
3.2 ∗-Logic (Star Logic) . 58

3.2.1 High Level Description of ∗-logic 59
3.2.2 Abstraction and Augmentation Details 63

3.3 Proof of Soundness . 67
3.3.1 Proof of Soundness of Abstractions 70
3.3.2 Proof of Tracking Non-Interference 76

3.4 Information Flows through a Lattice 79
3.5 Experimental Analysis . 87

3.5.1 Experimental Setup . 87
3.5.2 Experimental Results . 90
3.5.3 Discussion . 92

3.6 Conclusions . 93

4 Execution Leases: A Hardware-Supported Mechanism for En-
forcing Strong Non-Interference 95
4.1 Architecture . 97

4.1.1 The Problem with Overprotecting Critical State 97
4.1.2 Bounding and Cleaning up Tainted State with Execution
Leases . 100

4.2 Mechanism . 102
4.2.1 Inherent Enforcement of Time-Bounds 103
4.2.2 Inherent Enforcement of Memory Accessibility 108
4.2.3 Executing General Purpose Code 110

4.3 Evaluation . 111
4.3.1 A New ISA for Execution Leases 112
4.3.2 A Prototype Processor that implements Execution Leases . 116
4.3.3 Programming with Execution Leases 119
4.3.4 Quantitative Differences in the Resulting Code 124

4.4 Conclusions . 126

5 Making Gate-Level Verified Systems Practical 129
5.1 A Secure Architectural Skeleton 132

5.1.1 CPU: Using Caches, Pipelines, and Other Micro-architectural
Structures . 137
5.1.2 Micro-Kernel: Context Switches, Scheduling and Commu-
nication . 140

x

5.1.3 I/O: Using Off-The-Shelf Protocols and
Devices Securely . 146

5.2 Results . 148
5.2.1 CPU Implementation . 149
5.2.2 Kernel Implementation . 152
5.2.3 I/O Implementation . 154
5.2.4 Verification Results . 155

5.3 Conclusions . 157

6 Conclusion 159
6.1 Contributions . 160
6.2 Discussion 1: Utility of ∗-logic Verification Technique 162
6.3 Discussion 2: Higher Level Design with Gate-level Verification . . 165
6.4 Discussion 3: On Static vs Dynamic Verification 168

Bibliography 171

xi

List of Figures

2.1 Tracking Information Flow through a 2-input AND Gate. 18
2.2 Shadow logic for an AND Gate. 19
2.3 A 1-bit counter with reset. 20
2.4 Composing information flow tracking logic for larger functions us-
ing basic shadow cells. 22
2.5 Implementation of a conditional branch instruction 27
2.6 Implementation of our predicated architecture. 30
2.7 Automatically augmenting verilog code with tracking logic 35
2.8 An overview of the ISA of our prototype architecture. 38
2.9 Example usage of the new GLIFT instructions. 39
2.10 Quantifying the area and timing overhead of gate-level information
flow tracking. 44
2.11 A comparison of the static and dynamic instruction counts for sev-
eral application kernels. 46

3.1 Flattening a typical embedded system into a giant state machine. 58
3.2 Our toolchain for verifying information flow properties of embed-
ded systems. 60
3.3 Abstraction and Augmentation: Two steps in the ∗-logic verifica-
tion technique. 62
3.4 Generating information flow tracking logic for a 2-input NAND gate. 63
3.5 A set of concrete objects mapped conservatively to an abstract
object for a 2-bit system. 71
3.6 Security labels expressed as lattices, and information flow con-
straints obtained from a square lattice. 79
3.7 Tracking Information Flow through a 2-input AND Gate. 83
3.8 Analyzing information leaks through a USB system. 87
3.9 Verifying USB Host and Device Controllers for three label lattices. 90

xii

4.1 Figure shows the basic GLIFT processor running tainted code. . . 100
4.2 Execution Lease Architecture. 103
4.3 Information that has to be stored as part of a stack of successively
nested execution leases. 104
4.4 Preventing taint explosion through timers. 105
4.5 Implementing memory bounds in a verifiable manner. 109
4.6 Figure shows the assembly instructions generated to implement a
lease called by a programmer in the high-level language. 114
4.7 Execution Leases allow indirect memory accesses within bounded
memory regions. 115
4.8 An overview of the Execution Lease ISA. 116
4.9 Quantifying the area and timing overhead of Execution Leases in
a Glift CPU. 118
4.10 Programming using Execution Leases. 124
4.11 Comparing static and dynamic instruction counts between tradi-
tional, initial GLIFT, and Execution Lease based CPUs. 127

5.1 Proposed Architectural Skeleton. 131
5.2 Implementing caches in a verifiably secure manner. 134
5.3 Implementing pipelining in a verifiably secure manner. 136
5.4 Implementing flexible timers with bit-level isolation. 144
5.5 Figure shows the ISA for the Star-CPU 151
5.6 Area and Frequency comparison among secure CPUs. 151
5.7 Kernel scheduler and context switch functions in assembly. 154
5.8 Check for a safe reset of the I2C adapter to a trusted state. 157

xiii

Chapter 1

Introduction

This dissertation presents a verification technique and design methodology to

construct information flow secure systems. The need for formal, implementation-

level information flow security is motivated by high assurance computing systems

that control aircraft, automobiles, and medical devices. With the growing use

of on-demand, untrusted compute facilities for sensitive commercial and personal

purposes, the demand for strong information flow-security is increasingly becom-

ing more mainstream.

One desirable information flow policy is to maintain integrity, so that no un-

trusted component of the system can disrupt the execution of trusted components.

Another policy can be to preserve confidentiality, where no secret information ever

flows undetected to an unclassified component. These policies map intuitively to

real concerns such as passenger internet never affecting critical aircraft controls or

the root key of a bank not leaking to a malicious program. In both cases, we label

1

Chapter 1. Introduction

the inputs to the system as being either trusted/untrusted or secret/unclassified,

and track the flow of these labels to ensure that no untrusted data affects trusted

outputs or that no secrets leak to unclassified outputs.

We show that only by peering far below the hardware-software interface, at a

level where bits are operated on by simple logic gates, is it possible to account for

all information flows and build systems with strong, implementation-level guaran-

tees for information flow policies. Specifically, we show that all digital information

flows through a system, whether they look like explicit, implicit or timing channels

to the software, can be expressed as logic functions of its inputs and input labels.

We present Gate Level Information Flow Tracking (GLIFT), a technique that can

track all information flows precisely through an arbitrary combinational block,

and extend it to compositionally analyze gate-level descriptions of entire micro-

processors. We then describe a novel processor architecture, Execution Leases,

that presents programmers with explicit control over all information flows, and

use GLIFT to verify its information flow behavior at the gate-level. Finally, we de-

sign and implement a complete embedded system, including a CPU with optimiza-

tions such as caches and pipelines, a separation kernel, and an I/O sub-system, by

constructing the system around a small, trusted hardware-software skeleton that

manages information flows through the rest of the system. Together, these steps

take us closer to our goal of an end-to-end information flow secure system.

2

Chapter 1. Introduction

Before we dive into the details of each step, we begin with some background

on the growing demand for high assurance systems in traditional and emerging

domains.

1.1 High Assurance Systems

The strict demands on the design of high assurance systems are a direct func-

tion of the cost of failure. As an example, Boeing plans to use a single physical

network for both aircraft control data and passenger network data in its new

787 [26], and keeping these two very strictly separated is obviously critical. Sur-

prisingly, while avionics controllers in the 787 require about 6.5 million lines of

code, a premium-class automobile today includes 70 – 100 electronic control units

running close to 100 million lines of code. These control units interact over one or

more shared networks to monitor the state of the machine and control everything

from the brakes to the radio [5]. With the push towards “car as a platform” for

third-party applications, that provide services such as vehicular internet and en-

tertainment, the on-board software is expected to grow to 200 – 300 million lines

of code in the near future. Even though it is clear that all untrusted programs

and hardware components should be strictly sandboxed, virtually any malicious

3

Chapter 1. Introduction

control unit can bypass the rudimentary protection mechanisms and take over

control of all automotive functions [43].

While the above examples discuss the problem of interference between various

software components on the same processor from the view point of preserving

integrity, exactly the same problem occurs in systems concerned with secrecy. If

a secret such as a private key is used in performing an operation, an attacker may

be able to reverse engineer the key through direct timing observations[39], cache

interference[55], even through the state of the branch predictor [10]. Once an at-

tack has been identified and publicized, effective countermeasures can be deployed,

e.g. randomizing the replacement policy for the cache[48], but this constant cy-

cle of attack-and-respond is unsatisfying when the cost of leaking some data is

extraordinarily high (for example the root private key for a bank, or a military au-

thorization code). Such attacks have now assumed a much wider significance due

to the growth of cloud computing, where malicious virtual machines can mount

side-channel attacks over shared hardware and thus infer secret information from

a target virtual machine [57].

Although there are many useful software techniques to help developers tackle

information flow security at the programming language level [75, 49, 52, 62], in

special purpose operating systems [36, 51, 4, 82, 59, 44], with software virtual

machines [7, 20, 28, 81], or through careful static analysis [14], true end-to-end

4

Chapter 1. Introduction

properties are often foiled by the refinement from language-level specification to

actual hardware-level execution. It is estimated that verifying software running

on commodity hardware to an assurance rating of EAL6 costs on the order of

$10k per line of code and takes over 10 years [4], and in the end it is not clear

that the end product will ever even make it to EAL7 because of the difficulties

in formally proving the most critical aspects of the design. One of the primary

difficulties in getting software verified at these levels is that modern machines are

simply not built with the idea of information containment in mind.

1.2 Thesis Statement and Dissertation Roadmap

I propose that all digital information flows become explicit at the level of logic

gates, an observation we can then use to verify gate-level implementations of ar-

bitrary systems, and specifically to verify a complete embedded system that allows

explicit programmer control over all information flows.

The rest of this chapter provides an overview of our proposed steps towards a

system that provides strong information flow guarantees.

5

Chapter 1. Introduction

1.2.1 Gate-Level Information Flow Tracking

We first present a novel technique capable of tracking all information flows

within a machine, including all explicit data transfers and all implicit flows (those

subtly devious flows caused by not performing conditional operations). Through

the application of our novel gate-level information flow tracking (GLIFT) method,

we show how all flows of information can be tracked precisely for small circuits and

compositionally for larger designs. From this foundation, we then describe how a

class of architectures can be constructed, from the gates up, to completely capture

all information flows and we measure the impact of doing so on the hardware

implementation, the ISA, and the programmer. While the problem is impossible

to solve in the general case, we create a machine that avoids the general-purpose

programmability that leads to this impossibility result, yet is still programmable

enough to handle a variety of critical operations such as public-key encryption

and authentication.

1.2.2 Information Flow Secure Architecture and Program-

ming Model

We describe a new method for creating architectures that both a) makes the

complete information-flow properties of the machine fully explicit and available to

6

Chapter 1. Introduction

the programmer and b) allows those properties to be verified all the way down to

the gate-level implementation the design. The core of our contribution is a new

call-and-return mechanism, Execution Leases, that allows regions of execution to

be tightly quarantined and their side effects to be tightly bounded. Because in-

formation can flow through untrusted program counters, stack pointer or other

global processor state, these and other states are leased to untrusted environments

with an architectural bound on both the time and memory that will be accessible

to the untrusted code. We demonstrate through a set of novel micro-architectural

modifications that these leases can be enforced precisely enough to form the basis

for information-flow bounded function calls, table lookups, and mixed-trust execu-

tion, and show the effectiveness of the resulting design through the development

of a new language, compiler, ISA, and synthesizable prototype.

1.2.3 Building Full Systems with Kernel and I/O

High assurance systems often rely on a small trusted base of hardware and

software to manage the rest of the system. Crafting the core of such a system

in a way that achieves flexibility, security, and performance requires a careful

balancing act. Simple static primitives presented above, with hard partitions of

space and time, are easier to analyze formally, but such strict approaches to the

7

Chapter 1. Introduction

problem at the hardware level are extremely restrictive, failing to allow even the

simplest of dynamic behaviors to be expressed.

Our approach to this problem is to construct a minimal but configurable ar-

chitectural skeleton. This skeleton couples a critical slice of the low level hardware

implementation with a microkernel in a way that allows information flow prop-

erties of the entire construction to be statically verified all the way down to its

gate-level implementation. This strict structure is then made usable by a runtime

system that delivers more traditional services (e.g. communication interfaces and

long-living contexts) in a way that is decoupled from the information flow prop-

erties of the skeleton. To test the viability of this approach we design, test,

and statically verify the information-flow security of a hardware/software system

complete with support for unbounded operation, inter-process communication,

pipelined operation, and I/O with traditional devices. The resulting system is

provably sound even when adversaries are allowed to execute arbitrary code on

the machine, yet is flexible enough to allow caching, pipelining, and other common

case optimizations.

8

Chapter 2

Complete Information Flow
Tracking from the Gates Up

The enforcement of information flow policies is one of the most important

aspects of modern computer security, yet is also one of the hardest to get correct

in implementation. The recent explosion of work on dynamic dataflow tracking

architectures has led to many clever new ways through which information can be

accounted for in modern software, leading to novel ways of detecting everything

from general code injection attacks to cross-site scripting attacks [24, 79]. The

basic scheme keeps track of a binary property, trusted or untrusted, for every

piece of data. Data from “untrusted” sources (e.g. from the network) are marked

as untrusted, and the output of an instruction is marked as untrusted if any

of its inputs are untrusted. While these systems will likely prove themselves

useful in a variety of real-life security scenarios, ultimately it is impossible for

9

Chapter 2. Complete Information Flow Tracking from the Gates Up

these techniques, or in fact for any security system running on a general-purpose

processor, to provably capture all of the information flow within the machine [25].

The problem is that in a traditional microprocessor, information is leaked

practically everywhere and by everything. If you are executing an exceedingly

critical piece of software, for example, using your private key to sign an important

message, information about that key is leaked in some form or another by almost

everything that you do with it. The time it takes to perform the authentication,

the elements in the cache you displace due to your operations, the paths through

the code the encryption software takes, even the paths through your code that

are never taken can leak information about the key.

While this information leakage may not be a consideration when you are exe-

cuting a word processor, leakage can be a serious problem for exceptionally sensi-

tive financial, military, and personal data. Developers in these domains are willing

to go to remarkable lengths to minimize the amount of leaked information, for ex-

ample, flushing the cache before and after executing a piece of critical code [55],

attempting to scrub the branch predictor state [8], normalizing the execution time

of loops by hand [39], and by randomizing or prioritizing the placement of data

into the cache [48]. While these techniques make it more difficult for an adversary

to gain useful knowledge of sensitive information, at the end of the day these

heuristics cannot bring the system significantly closer to a formally strong no-

10

Chapter 2. Complete Information Flow Tracking from the Gates Up

tion of information flow tracking because they do not take into consideration the

intricate logic and timing that compose the implementation.

In this chapter we present the first ever processor architecture and imple-

mentation that can track all information-flows. On such a microprocessor it is

impossible for an adversary to hide the flow of information through the design,

whether that flow was intended by both parties (e.g. through a covert channel)

or not (e.g. through a timing-channel). One of the key insights in this paper is

that all information flows, whether implicit, covert, or explicit, look surprisingly

similar at the gate level where weakly defined ISA descriptions give way to precise

logical functions. While past approaches have assumed that any use of untrusted

data should lead to an untrusted output, we observe that at the gate level this

is overly conservative. If one input to an AND gate is 0, the other input can

never affect the result and thus should have no bearing on the trust of the out-

put. Based upon this observation, we introduce a novel logic discipline, Gate-Level

Information-Flow Tracking (GLIFT) logic, which is built around a precise method

for augmenting arbitrary logic blocks with tracking logic and a further method for

making compositions of those blocks. Using this discipline we demonstrate how

to create an architecture that, while unconventional in ways required by the very

nature of being free from the problems of implicit-flow, is both programmable and

capable of performing useful computation. We present a synthesizable processor

11

Chapter 2. Complete Information Flow Tracking from the Gates Up

implementation with a restricted ISA, predicated execution, bounded loops, and

an iteration-coupled load/store architecture. Combined with GLIFT logic, these

restrictions provide tractable and provably-sound information-flow tracking, yet

allow tasks such as public-key cryptography and message authentication to be

performed.

In Section 2.2 we describe how architectural information flows at the level of

gates and present a novel compositional method by which arbitrary logic functions

can be analyzed to create the fundamental building blocks of our secure hardware.

In Section 2.3 we then describe the three major pitfalls in designing an architecture

free of implicit flows, how our ISA avoids them, and how our gate-level implemen-

tation correctly tracks the resulting information flows in a provably-sound way.

To ensure that the resulting architecture is not unreasonable in the additional

overhead it incurs, in Section 2.4 we describe how this microprocessor compares

with a conventional microcontroller in terms of area and performance. However,

before we can begin the details of our solution, we need to begin with a discussion

of the great deal of related work in both computer architecture and security that

this work has built upon.

12

Chapter 2. Complete Information Flow Tracking from the Gates Up

2.1 Related Work

The idea of tracking and constraining the flow of information is one of the pri-

mary tenets of computer security, and all manner of work has examined both the

practical and theoretical limitations of mechanisms that perform this function. As

has been pointed out countless times before, the general problem of determining

whether information flows in a program from variable x to variable y is undecid-

able, as “any procedure purported to decide it could be applied to the statement

if f(x) halts then y := 0 and thus provide a solution to the halting problem for

arbitrary recursive function” [25]. This is a classical example of an implicit flow,

where information flows between variables by virtue of their not being accessed.

For example, in the pseudo code “if i then j := 1”, even if “j := 1” is never

executed because i is always false, by observing j we can learn something about

i and hence there is an information flow between i and j. If you have a Turing-

complete machine, it is impossible to bound the set of possible actions that the

machine might make in some conditional situation (à la the Halting Problem), and

hence for any general-purpose programmable machine, it is impossible to precisely

prevent all implicit flows. We believe our solution to this quandary is unique in

that we have built a machine that, by construction, will not allow unbounded

execution. In fact our design, which is still programmable through an ISA (al-

13

Chapter 2. Complete Information Flow Tracking from the Gates Up

beit a non-traditional one), is theoretically equivalent to a single very large state

machine. While this certainly limits the applicability of the machine, unbounded

execution is not required to sort a bounded-size list, encrypt a message, or even

verify a message signature. In the end we have created a machine in which all

hidden flows of information are made explicit.

Using hardware to track the flow of information through a processor is by no

means a new idea. DIFT [67], Minos [22], Rifle [71], Raksha [24], FlexiTaint [72],

Log-Based Lifeguards [61] and a host of other proposals suggest the use of data-

flow tracking hardware to track the flow of untrusted network, file and user inputs

through memory. The basic idea behind these tools is to assign a “tag” with

every word of physical memory indicating which words of memory can be trusted,

and then to track these tags around the machine as operations are performed.

Every time an arithmetic operation uses an untrusted input, the output is marked

as “tainted”, and whenever an untrusted memory word is used for a sensitive

operation like a jump address condition or a system call, the tool generates a

warning for the user. Our approach, while inspired by these methods, seeks to

strongly couple the notion of information flow to all parts of the machine at the

gate level, not just the data paths, so that we know for certain that there is no

way for information to be manipulated in such a way that it will “lose” the tag

that represents its trust.

14

Chapter 2. Complete Information Flow Tracking from the Gates Up

The idea of data-flow tracking is not limited to hardware-only options. Soft-

ware projects have shown that data-flow tracking can be useful in detecting a

variety of attacks [28, 21, 20, 7, 79, 73, 18], some with surprisingly low overhead

(e.g. LIFT [28] and Speculation to Security [19]). In fact this idea can be ex-

tended to a generic taint- tracking framework that allows arbitrary policies to be

enforced. Dytan [20], GIFT [45], Taint-Enhanced Policy Enforcement [79], Rak-

sha [24], System Tomography [53] and FlexiTaint [72] are all examples of flexible

systems for tracking data and/or enforcing polices based on those tags. In ad-

dition to explicit dataflow tracking, some prior work has examined the problem

of tracking implicit information flows [73, 71, 20, 78]. These approaches track

information at the ISA level and attempt to combine dynamic taint tracking with

limited static analysis to improve the precision of flow tracking. Our approach is

different from these prior methods in that we would like to be able to precisely

track all flows for any software that can be written in our ISA, and because we

have knowledge of underlying hardware, we can take into consideration the logi-

cal implementation including all of its undocumented features, bugs, and timing

channels.

It is worth noting explicitly what information leaks and attacks our proposed

approach, taken in isolation, does not address. We do not explore the untrusted

hardware component problem or physical attacks that may tamper with memory.

15

Chapter 2. Complete Information Flow Tracking from the Gates Up

There is already a great deal of work on tamper resistant computing [66]. Nor

do we consider non-digital side-channel attacks (such as those informed by obser-

vation of power distribution [38] or RF radiation [29]), as again, there are many

circuit level methods for dealing with those. Instead, our approach allows us to

treat the microprocessor simply as an object through which both trusted and un-

trusted information flows, allowing us to be certain as to which resulting outputs

rely on that untrusted input. We have already begun to see mainstream proces-

sors with physically isolated protection domains, such as ARM’s TrustZone [11]

and Cell Broadband Engine’s Synergistic Processor Element [63], as a first step

towards preventing trusted and untrusted data from intermingling. While, as you

will see, our resulting system is not yet efficient in the traditional sense, we believe

it is a leap toward the goal of a microprocessor capable of provably tracking and

policing all information flows on chip.

2.2 Gate Level Information Flow Tracking

Tracking all information flows through a full microprocessor is a daunting task,

but one that we can tackle by breaking it down into small pieces. In this section,

we begin with the smallest atomic units of logic in the microprocessor: gates. Once

we precisely understand how information flows through the primitive NOT, AND,

16

Chapter 2. Complete Information Flow Tracking from the Gates Up

and OR gates, we can begin to compose these gates together into more complex

structures such as multiplexers, arithmetic units, and eventually full processors

that are able to manage and manipulate information in such a way that trust can

be tracked through the implementation in a sound and precise way.

While our techniques can be extended to cover a variety of information flow

security scenarios, for the purpose of this paper we will restrict our discussion

to simple binary tags. Data and code are simply either “trusted” (represented

logically as 0) or as “untrusted” (represented logically as 1). We have chosen a

representation that is close to “taint” tracking, although we adopt the nomencla-

ture of the security community as this is a more general information flow tracking

problem rather than specifically data flow tracking. We wish to treat our whole

processor as a logical function, one which operates on a set of inputs (some of

which are trusted and some of which are not) and results in a set of outputs. The

trust of the outputs should be determined based on the trust of the inputs, and

more specifically on how untrusted inputs affected those outputs. To more fully

illustrate the notion of trust propagation at the logical level, let’s consider a very

simple gate, AND. Surprisingly, even for this simple gate, the trustworthiness of

the output is a complex function of the trustworthiness of the inputs and the

actual logical values of those inputs.

17

Chapter 2. Complete Information Flow Tracking from the Gates Up

a b

o

a b out
0 0 0
0 1 0
1 0 0
1 1 1

 Logic Truth Table Trusted A and Untrusted B
a b at bt outt

0 0 0 1 0
0 1 0 1 0
1 0 0 1 1
1 1 0 1 1

Figure 2.1: Tracking Information Flow through a 2-input AND Gate. Figure
shows truth table for the AND Gate (left) and a part of its shadow truth table
(right). The shadow truth table shows the interesting case when only one of the
inputs a and b is trusted (i.e. at = 0 and bt = 1). Each row of the shadow table
calculates the trust value of the output (outt) by checking whether the untrusted
input b can affect the output out. This requires checking out for both values of b
in the table on the left. The gray arrows indicate the rows that have to be checked
for each row on the right. For example, when a = 1, b affects out (row 3 and 4 on
the left). Hence row 3 and 4 on the right have outt as untrusted.

2.2.1 Information Flow Tracking in an AND gate

Consider an AND gate (shown in left side of Figure 2.1) with two binary inputs,

a and b, and an output o. Let’s assume for right now that this is our entire system,

and that the inputs to this AND gate can come from either trusted or untrusted

sources, and that those inputs are marked with a bit (at and bt respectively) such

that a 1 indicates that the data is untrusted. The basic problem of gate-level

information flow tracking is to determine, given some input for a and b and their

corresponding trust bits at and bt, whether or not the output o is trusted (which

is then added as an extra output of the function ot).

18

Chapter 2. Complete Information Flow Tracking from the Gates Up

at bt

ot

Precise Trust Propagation ft Traditional Sound

yet Conservative

Trust Propagation ft

at bt b a

ot

Figure 2.2: Shadow logic for an AND Gate. Conventional information flow
tracking reports the output as untrusted if any one of the inputs is untrusted.
The circuit on the right shows our shadow AND gate that marks outt as untrusted
only if out depends upon an untrusted input.

To the best of our knowledge, all prior work in the area has assumed that if you

compute a function, any function, of two inputs, then the output should be tagged

as tainted if either of the inputs are tainted. This assumption is certainly sound (it

should never lead to a case, wherein output which should not be trusted is marked

as trusted) but it is over conservative in many important cases, in particular if

something is known about the actual inputs to the function at runtime. In fact,

from an information theoretic standpoint, the output of a logical function should

only be untrusted if some untrusted input actually had an opportunity to affect

the output1.

1while this is jumping ahead somewhat, readers familiar with implicit flows may think this
sounds dangerously similar. The key difference is that we are talking about logical functions,
and in a logical function it is completely possible for some inputs to have absolutely no bearing
on any measurable output. The danger of implicit flows in a microprocessor is different because
an action which did not happen (for example a branch of code not being taken) may result in
a measurable difference of output (for example a variable not being set equal to 1).

19

Chapter 2. Complete Information Flow Tracking from the Gates Up

Clock

D Q
Reset

Figure 2.3: A 1-bit counter with reset. With the conventional technique of OR-
ing all input shadow values, the feedback loop ensures that a counter shall never
be trusted once it gets marked as untrusted. Our shadow logic is more precise
and recognizes that a trusted reset guarantees a trusted 0 in the counter value.

To see why, let us just consider the AND gate, and all of the possible input

cases. If both of the inputs are trusted, then the output should clearly be trusted.

If both the inputs are untrusted, the output is again clearly untrusted. The

interesting cases are when you have a mix of trusted and untrusted data. If input

a is trusted and set to 1, and input b is untrusted, the output of the AND gate

is always equal to the input b, which, being untrusted, means that the output

should also be untrusted. However, if input a is trusted and set to 0, and input

b is untrusted, the result will always be 0 regardless of the untrusted value. The

untrusted value has absolutely no effect on the output and hence the output

can inherit the trust of a. By including the actual values of the inputs into

the determination of whether the output is trusted or not trusted, we can more

precisely determine whether the output of a logic function is trusted or not.

20

Chapter 2. Complete Information Flow Tracking from the Gates Up

So, how do we formalize this notion of untrusted inputs “affecting” outputs?

Essentially we are going to create a new truth table, which will shadow the original

logic, but instead of computing the output (o), it will compute the trust of the

output (ot) as a function of the logical inputs (a and b), the trust of those inputs

(at and bt), and the truth table of the original function. Let us consider the case

again where a is trusted (untrusted bit set to 0) and b is not (again in Figure 2.1).

To compute the first line in our shadow truth table, we must consider all the

possible values of the untrusted inputs (b), and if by changing b we can cause the

output (o) to be a different value, then we know that the result cannot be trusted.

For the first line of the shadow truth table, it means we need to consider the

first two lines of the original truth table (the dependencies are drawn with gray

arrows in the figure). Because the output is 0 for both values of b, we know that b,

even if it was trying to, cannot affect the output. For the last line of the shadow

truth table, we need to consider the bottom two lines of the original truth table.

Because b can have an effect on the different outputs, the resulting value cannot

be trusted. We can continue this process and enumerate the truth table (with 16

entries in all) for the AND gate. After minimizing to an or-of-ands representation,

the resulting shadow logic is shown in Figure 2.2.

While this seems like an awful lot of trouble to track the information flow

through an AND gate, the difference in terms of the ability to build a machine that

21

Chapter 2. Complete Information Flow Tracking from the Gates Up

st at a s

s

a b st bt b s

o

ot

OR

MUX AND-1 AND-2

1 2

s

a b

o

s

a b

o

Logical Function of MUX (ft)

1 2

3

3

Figure 2.4: Composing information flow tracking logic for larger functions using
basic shadow cells. Figure shows a 2-input MUX composed of AND gates (1 and
2) and an OR gate (3). A shadow MUX is composed of shadow AND-1, shadow
AND-2 and a shadow OR cells wired together the same way as the original AND1,2
and OR gates.

effectively manages the flow of information is immense. Consider an extremely

simple 1-bit counter that increments (or toggles in this case) every cycle, or gets

cleared back to zero due to a reset. If we implement that counter as depicted

in Figure 2.3, and use the conservative scheme from above, there is no way for

that counter to ever come to a trusted state once it has been marked untrusted.

However, if you use our gate-level information flow to determine the trust value,

once a trusted reset has been set we know that the counter is in a trusted state 0.

While this example is extremely simple, we can continue this analysis further and

cover the other primitive gates and eventually analyze even the most complex of

logical functions.

22

Chapter 2. Complete Information Flow Tracking from the Gates Up

2.2.2 Composing Larger Functions

While the truth table method that we describe above is the most precise way

of analyzing logic functions, our end goal is to create an entire processor using

this technology. Our resulting machine is essentially going to be a large logic

function which transforms a state (including the internal state of the processor,

such as the program counter, and all architecturally visible state, such as the

register file), to a new state based on inputs. Clearly, enumerating this entire

truth table (which would have approximately 2769 rows, where 769 is the number

of state bits in our processor prototype) is not feasible, therefore we need a way of

composing functions from smaller functions in a way that preserves the soundness

of information flow tracking. Again, taking a smaller example to demonstrate the

larger principle, let’s consider a multiplexer.

A multiplexer is small enough that we could enumerate the entire function,

but another way to create one is from logical gates such as AND and OR. Fig-

ure 2.4 shows both the logical implementation and the shadow logic. To create

this shadow logic we need access to all the inputs of the MUX, and all the con-

nections between the gates from which it is constructed. Each one of the gates

from which the MUX is constructed (two AND and one OR) has a corresponding

shadow logic instantiated. For example the shadow logic for ANDs (1) and (2) in

the figure is simply the logic derived in Section 2.2.1. The shadow logic for OR

23

Chapter 2. Complete Information Flow Tracking from the Gates Up

(3), created in the same way as the AND gate, is then instantiated, and is fed the

inputs from the outputs of the AND gates and the outputs of the AND shadow

logic.

One nice thing about considering a smaller example is that it is still possible

to write the truth table for this example, and compare it to the result of this

composition. Surprisingly, the functions are not quite identical. The shadow logic

created compositionally is, in fact, slightly more conservative than the shadow

logic derived directly from the truth table. This is because the compositional

approach cannot take advantage of the fact that, due to the particulars of this

logic, it’s impossible for the outputs of AND-1 and AND-2 to both be set to 1

at the same time, yet our OR-gate shadow logic is assuming this is possible. In

this way, a compositional approach may not be exactly precise, but will always be

sound. In trying to calculate whether or not an untrusted input can affect output,

we are essentially assuming that those uninterested inputs have more flexibility

in trying to affect the output than they actually do. For our MUX example, both

the precise shadow logic and the one resulting from our compositional approach

are precise enough to allow us to build useful architectures. Both capture the

notion that if the select line is trusted, and the input it is selecting is trusted, the

resulting output should be trusted regardless of the trustworthiness of the other

input (which makes intuitive sense from an architectural perspective). Further,

24

Chapter 2. Complete Information Flow Tracking from the Gates Up

if the select line is untrusted, the output of the MUX will always be untrusted,

except for the case when both inputs are trusted and equal. This behavior is

desirable since both inputs being trusted and equal is the only case where an

untrusted select cannot affect the MUX’s output. More precisely, the trust value

of the output of a MUX can be described by:

ot = ats ∨ bts̄ ∨ stat ∨ sta ∨ stbt ∨ stb

In fact the MUX, by being able to select between trusted and untrusted inputs

in a way that does not propagate excessively conservatively, is the foundation of

our entire architecture. For example, in Section 2.3.1, we will discuss how we

use predication to avoid the standard implicit flow problems encountered with

branches, and architecturally, predication is really a programmer-visible MUX.

2.3 Designing a Processor for Gate-Level Verifi-

cation

Now that we have discussed our GLIFT logic method, the next question then

becomes how that method can be applied to a programmable device to create an

air-tight information flow tracking microprocessor. The goal of our architecture

design is to create a full implementation that, while not terribly efficient or small,

is programmable enough and precise enough in its handling of untrusted data that

25

Chapter 2. Complete Information Flow Tracking from the Gates Up

it is able to handle several security related tasks, while simultaneously tracking

any and all information flows emanating from untrusted inputs.

To understand how information flows manifest themselves at the gate level, let

us begin with the small snippet of pseudo assembly below which captures nicely

the notion of implicit flows discussed in Section 2.1. Assuming X is untrusted,

should either of R1 and R2 be marked as trusted?

0x01 br (X == 0) 0x03

0x02 R1 := 1

0x03 R2 := 1

Let us start with what the programmer would expect the correct answer to

be: R2 does not appear to depend on the untrusted variable, and hence appears

to be trusted. If X 6= 0 then R1 should clearly be marked as untrusted (it is set

to 1 only because of a decision made on an untrusted variable). In fact, even if

X = 0, the value of R1 is still dependent on X (the value of X affected value of R1

and hence there is an implicit flow).

Now let us consider what these operations would look like at the gate level

on a traditional architecture that has been augmented with gate-level flow track-

ing. Figure 2.5 shows a simple example of a branch instruction implemented in

hardware. The comparison occurs, and the result is used to control the select line

to the Program Counter, which means the PC can no longer be trusted. Once

the PC is untrusted, there is no going back because each PC is dependent on the

26

Chapter 2. Complete Information Flow Tracking from the Gates Up

PC

Instr Mem

+1

jump target

R1

R2Reg

File

is jump?

through

decode

Traditional Conditional Branch Architecture

PC

Instr Mem

+1

jump target

R1

R2

is jump?

through

decode

Reg

File

PRegs

old value

Predicates-Only Architecture

Figure 2.5: Implementation of a conditional branch instruction in a traditional
architecture compared to ours. The highlighted wires on the left figure shows the
path from an untrusted conditional to the PC. In contrast, we eliminate the path
in our architecture so that the PC never gets untrusted.

result of the last. In our example, not only will R1 be marked as untrusted, R2

will (seemingly needlessly) be marked as well. In fact, it is even worse than that –

because the PC determines the bits that set the register to writeback (and because

the PC is marked as untrusted) all of the registers (and maybe all of memory)

must also be marked as untrusted.

In the architecture described above, R2 will be marked as untrusted, but is

information really flowing from X to R2? In fact, at the gate level, it is. There is

a timing dependence between the value of X and the time at which R2 is written.

Such timing observations, while seemingly harmless in our example, do represent

real information flow and have been used to transmit secret data [9] and reverse

engineer secret keys [8].

27

Chapter 2. Complete Information Flow Tracking from the Gates Up

Modern processors are simply not built to constrain information flow. Rather,

they are built to get things done as quickly as possible, often times making use of

as much information as possible at each step to make that happen. Our approach

to the problem is to restrict both the ISA of the machine and the actual gate

level implementation so much that, a) all information flow will be obvious and

well understood at the assembly level, b) the actual propagation of trust-bits

corresponds closely with this understanding, c) it is impossible to write programs

that will result in “explosions” of untrusted state, d) the information flow will

be precisely tracked no matter what binary is given to the machine (there is

no compiler pre-analysis step required to ensure the strength of information flow

tracking) e) it is always possible to return the machine to a trusted state, and f) the

shadow information-flow-tracking logic can be composed and added automatically

in the way described in Section 2.2 resulting in the tracking of all information flows

(implicit, timing, covert, or otherwise).

The resulting processor looks like a large state machine, where the state is

defined by the architectural and internal state of the processor (PC, flags, registers,

counters, etc.), and an arbitrarily large but finite amount of memory (a subtle but

important distinction). Given the current state at cycle i, you simply compute

the next state for cycle i+1. In the subsections below we describe several devious

28

Chapter 2. Complete Information Flow Tracking from the Gates Up

ways in which information will flow through a machine in ways the programmer

is not intending, and the architecture changes required to avoid them.

2.3.1 Step 1: Handling Conditionals

As is apparent from our previous example, traditional conditional jumps are

problematic, both because they lead to variations in timing and because infor-

mation is flowing through the PC (which has many unintended consequences).

Removing conditionals presents a challenge: how to provide conditional opera-

tions without modifying the PC? Predication, by transforming if–then–else blocks

into explicit data dependencies (through predicate registers), provides an answer.

The effect of an instruction is guarded by a specified predicate register, and if our

gate-level information flow method works correctly, the trust-bit of the destination

register should be updated regardless of the value of the predicate. Since opera-

tions for both cases (predicate true/false) get executed, the augmented processor

should track the information flow through every instruction that a program could

possibly execute, even though only the instructions whose predicates evaluate to

true actually write their value back to a register. As shown in Figure 2.5, this

ensures the PC is only ever incremented, and no possible flow from untrusted

input to the PC is possible.

29

Chapter 2. Complete Information Flow Tracking from the Gates Up

Register File:

R1+R2

R0

P0P1

R1 R2 R3

V(R1) V(R2)R2 Pred

1 0 1 0 1 0 1 0

Figure 2.6: Implementation of our predicated architecture. The predicate bits
are used to control MUXs that decide whether a register is updated with a new
value or gets its old value written back into it. If the predicate bit is untrusted,
the shadow MUXs ensure that all registers that could have had an untrusted value
get marked as untrusted, thus turning implicit information leaks into explicitly
tracked trust values.

Figure 2.6 shows the actual logical implementation of predication in our pro-

cessor. As in a normal predicated architecture, the instruction word specifies the

source registers (e.g. R1 and R2) for the instruction, destination register (e.g R2),

and a predicate register or constant (e.g P0 or P1). If the predicate register stores

a 0, then the instruction doesn’t write back and instead the old value is written

back, but if the predicate is 1 then the new value is written. The shaded lines in

the figure illustrate this point more fully. In addition to implementing predication,

this example demonstrates a crucial role the MUX plays in our architecture by

managing to switch between trusted and untrusted values. Let us consider the

30

Chapter 2. Complete Information Flow Tracking from the Gates Up

following predicated code, and how trust-bits would flow through the logic in this

example.

0x01 (1) P1 := not(P0)

0x02 (P0) R2 := R1 + R2

0x03 (P1) R0 := R1 + R2

In this code, either of R0 or R2 gets the sum (R1 + R2) written into it (based

upon the conditional P0). Let us consider what happens to the architecture

pictured in Figure 2.6 on instruction 0x02 if P0 is untrusted. First, the untrusted

predicate will be selected by the MUX, and will be used (in conjunction with R2)

to select the register to write back (this is happening at the bank of small AND

gates). As the number 2 flows through the decoder, all of those lines feeding the

AND gates except for the one line controlling R2 will be set to 0. For each of

those lines, the untrusted predicate is now irrelevant because we can trust that

output of the AND gate will be 0 no matter what (as per our discussion of AND

gates earlier in the paper), hence, the values on those lines can be trusted. For

the one remaining line (the one controlling R2), one of the inputs to the AND gate

is 1, while the other input in untrusted, and hence the result on that line must

be untrusted no matter whether the predicate is true or false. That untrusted

line will then control the final MUX that determines if the new value or old value

should be written back, which will result in R2 being marked as untrusted (again,

regardless of the predicate being true or false).

31

Chapter 2. Complete Information Flow Tracking from the Gates Up

As a programmer, this complex interplay between the original logic and the in-

formation tracking logic is actually quite intuitive. If you predicate an instruction

on an untrusted predicate, the destination register will be marked as untrusted.

It is as simple as that. As an architect, once you manage to eliminate the spurious

information flows, the automated methods described in Section 2.2 actually man-

age to augment the logic in a way that is both sound and in-line with programmer

expectations.

2.3.2 Step 2: Handling Loops

While we can use predication to eliminate the use of conditional jumps in the

case of if-then-else blocks, handling loops requires a different approach. Loops

are surprisingly difficult to constrain as there are so many different ways for in-

formation to leak out in non-obvious ways. Consider a simple while-loop on an

untrusted condition. Every instruction in that loop may execute an arbitrary

number of times, so everything those instructions touch is untrusted. In fact,

everything that could have been modified, even if it wasn’t, needs to be marked as

untrusted. Consider a loop with i going from 0 to X, and setting A[i] := 1. The

fact that A[X + 1] = 0 tells us something about X, and so there is information

flow from X to A[X + 1]. In fact there is information flow from X to A[X + n]

for all n less than the maximum possible value X can ever have. Even the fact

32

Chapter 2. Complete Information Flow Tracking from the Gates Up

that the loop may take an arbitrary number of cycles creates an implicit timing

channel with all of the instructions downstream from it.

To limit the effect that loops have on the untrusted state of the system, we have

to severely constrain the types of loops that are possible in the system by bounding

the side-effects that a loop can have. It needs to be clear, both to the programmer

and at the logical implementation, exactly what state has the possibility of being

affected by the loop. While predication makes the side effects of conditional

operation explicit, to deal with loops we use a special countjump instruction that

specifies statically the number of iterations that should be executed, along with

the jump target for the iterations. The processor implementation then maintains

a unique iteration counter for the loop instruction and ensures that the counter

cannot be modified explicitly by the program.

Counting loop instructions have existed in the context of DSPs for some time,

but we believe this is the first time they are being used to aid information tracking.

The countjump instruction has three interesting details. First, countjump has to

be unpredicated, implying that it will always commit and a constant amount of

jumps to the jump target will always be performed. If countjump were to be

predicated, it would be exactly equivalent to a conditional jump and would carry

all of the same problems discussed in the section above. Second, it is supported

by an internal counter that gets set the first time the instruction is encountered.

33

Chapter 2. Complete Information Flow Tracking from the Gates Up

On all subsequent executions, the counter decrements by 1 until it reaches 0. One

further execution will find the counter at 0 and advance the PC by 1 to exit the

loop instead of jumping to the jump target. The third detail is that, in order

to support nested loops, if a dynamic instruction instance finds the counter at 0,

then it gets reset back to the specified value and the entire loop is restarted. This

functionality is implemented by an internal state machine that sets the counter

back to an uninitialized state when the counter is found to be 0 and the loop is

found to be terminated. In Section 2.4.2 we discuss the ramifications of this on

the programmer in a bit more detail.

2.3.3 Step 3: Constraining Loads and Stores

The example for loops above also demonstrates a third architecture feature

that is problematic for information flow tracking: indirect loads and stores. Most

ISAs support indirect memory addressing, where a register’s contents provides the

address for a load or a store. If the register’s contents are untrusted, then using

it as an address for a store instruction would implicitly mark the entire address

space as untrusted (as any of those addresses could have been affected by that

untrusted data). At the logical level, this shows up as the untrusted data address

makes its way to the address decoder, and all of the lines of that decoder become

untrusted.

34

Chapter 2. Complete Information Flow Tracking from the Gates Up

reg [31:0] gen_reg [7:0];
wire [31:0] mux2greg0;

always @ (posedge clk) begin
 g_reg[0] <= mux2greg0;
end

assign is_store = instrn[29] | instrn[22];

mux2x1_32b my_mux0(.in0(g_reg0),
 .in1(newval), .sel(p_sel0),
 .result(mux2greg0));

reg [31:0] gen_reg_shadow [7:0];
wire [31:0] mux2greg0_shadow;

g_reg_shadow[0] <= mux2greg0_shadow;

assign is_store_shadow = (instrn_shadow[29] & Instrn_shadow[22])
 | (instrn_shadow[29] & (~ instrn_shadow [22]) & (~ instrn [22]))

 | ((~ instrn_shadow[29]) & instrn_shadow[22] & (~ instrn[29]));

mux2x1_32b_shadow sh_my_mux0(.in0(g_reg0), .in0_t(g_reg0_shadow),
 .in1(newval), .in1_t(newval_shadow), .sel(p_sel0), .sel_t(p_sel0_shadow),
 .ot(mux2greg0_shadow));

Original Logic Added Logic

Figure 2.7: An example of how our very structured verilog code can be automat-
ically augmented with the logic required to track the trust through the hardware
implementation. Each wire, register, and signal is augmented with a correspond-
ing shadow element that stores the 1-bit trust value for each.

Intuitively, the problem is that accessing one untrusted address causes every

other address to become implicitly untrusted by virtue of them not being accessed

or modified. To limit this implicit untrusted state explosion, in our prototype de-

sign we have limited our ISA to only support direct and loop-relative loads and

stores. Direct loads use an address encoded in the immediate field, and are used

to access fixed memory addresses. To allow access to arrays without resorting

to general purpose indirect loads and stores, we have a loop-relative addressing

mode, where loads access a variable which is at a fixed constant offset from a

loop index (the loop counter used in the countjump instruction). This reduces

convenience of programming in our ISA substantially but it allows us to precisely

track any memory references. We support these by incorporating two new in-

structions: load-looprel and store-looprel. These are used to load and store

35

Chapter 2. Complete Information Flow Tracking from the Gates Up

values from a fixed base address (specified as an immediate field) and an offset

stored as set of counters (C0...C7 in our prototype) that can be explicitly initial-

ized and incremented by a fixed value using two new instructions: init-counter

and increment-counter. For example, load-looprel R0, 0x100, C0 loads the

value of M[0x100 + C0] into R0. The number of times these instructions execute

depends upon the number of iterations of the loop, which is fixed, and (as we

did for the countjump instruction), the local counter initialization and increment

instructions commit unconditionally so the set of all addresses that can possibly

be accessed in the loop can be determined at run-time.

2.3.4 Implementation and Automatic Shadow Logic Gen-

eration

Our prototype processor is implemented in Verilog, and we use Altera’s Quar-

tusII software to synthesize it onto a Stratix II FPGA. It is a 32-bit machine with

64KB each of Instruction and Data Memory. It has a program counter, 8 general

purpose registers, 2 predicate registers, 8 registers to store loop counters (that

count down the number of iterations) and 8 other registers to store explicit array

indices (used as offsets for load-looprel and store-looprel instructions). To make

the semantics of a state machine precise, all logic is triggered on the positive clock

edge, and each cycle simply transforms the set of machine state into a new state

36

Chapter 2. Complete Information Flow Tracking from the Gates Up

through simple combinational logic. This logic uses the PC to read out an in-

struction word, decode it, perform data memory accesses and ALU computations

and finally write back new values into registers, memory and PC. In practice,

block RAMs in Stratix II FPGAs are synchronous and require two cycles to read

data out. Our simple processor executes an instruction every 5 cycles similar

to the classical 5-stage multicycle machine. We have avoided the complications

of pipelining (especially the forwarding logic it requires) for the purposes of this

proof-of-concept.

Our processor is written in structural verilog as a composition of gates and

module instantiations, along with registers and RAMs to store processor state.

To augment this processor with GLIFT logic we proceed in two steps. First, each

bit of processor state is explicitly shadowed, meaning every register gets a shadow

register, and every memory has a shadow RAM (that stores the 1-bit trust values

for each bit of the orginal memory). Second, the logic and signals are shadowed

by generating the proper trust propagation logic as described in Section 2.2.

The first step is easily accomplished by simply duplicating the declarations for

registers and memory. To handle the second step we create a library of shadow

cells that perform information flow tracking for each basic processor component

like AND and OR gates, MUX-es, decoders, ALU etc. The shadow logic is wired

up with both the inputs to the original function, and also with corresponding

37

Chapter 2. Complete Information Flow Tracking from the Gates Up

Instruction Pred Action Information Flow

load-immediate yes Rdest := immed Rdest inherits the trust of the predicate

load-direct yes Rdest := M[immed] Rdest is truted if both the predicate and the memory value are
trusted

store-direct yes M[immed] := Rsrc The memory value is trusted if the predicate and Rsrc are trusted

load-looprel yes Rdest := M[immed + LCount] Rdest is trusted if the memory value and the predicate are trusted

store-looprel yes M[immed + LCount] := Rdest The memory values is trusted if the predicate and Rdest are
trusted

add, sub, and, or, not, xor,
shl, shr, cmpeq, cmplt

yes Standard 3-address register to
register operations

Rdest is trusted if the both the inputs to the ALU operation are
trusted

predset yes Pdest := Rsrc Pdest is trusted if the predicate and Rsrc are trusted

countjump no Jump to target exactly N times (N
specified in immediate field)

The loopcounter can only be written by an immediate and should
never become untrusted

init-counter no LCount := 0 LCount is trusted

increment-counter no LCount := LCount + 1 LCount remains trusted

Figure 2.8: An overview of the ISA of our prototype architecture, and the in-
formation flow tracking policies that are extracted from the actual logic level
implementation.

shadow inputs. While we could spend time describing more formally how this

happens, it is easiest to simply see from the resulting verilog code (Figure 2.7).

Programming in the resulting ISA

Figure 2.8 summarizes our instruction set. We eliminate conditional jumps

and indirect loads and stores from our ISA, and introduce a countjump instruc-

tion to execute fixed-size loops, predicated instructions to implement conditional

execution, and restricted loads and stores that use only immediate values. In ad-

dition to these instructions, we support various logical (AND, OR, NOT, XOR),

arithmetic (ADD, SUB), bitwise (SHR, SHL) and comparison operators. As an

example usage of the new instructions, let us consider a code snippet from the

38

Chapter 2. Complete Information Flow Tracking from the Gates Up

0x01 (1) load-immediate P1 := 0 #

0x02 (1) init-counter C0 := 0 # i = 0

0x03 (1) load-looprel R0 := M[0x100 + C0] # R0 = state[i]

0x04 (1) init-counter C1 := 0 # j = 0

0x05 (1) cmpeq P1 := C1, R0 # if (j == R0)

0x06 (P1) load-looprel R1 := M[0x300 + C1] # R1 = SBox[j]

0x07 (1) increment-counter C1 := 1 # j++

0x08 (1) countjump (0x05), 255 # loop back 255 times

0x09 (1) store-looprel M[0x100 + C0] := R1 # state[i] = R1

0x0a (1) increment-counter C0 := 1 # i++

0x0b (1) countjump (0x03), 15 # loop back 15 times

Figure 2.9: Example usage of the new GLIFT instructions: a code snippet from
the SubBytes function in the GLIFT implementation of the AES [23] encryption
algorithm.

SubBytes function in the GLIFT implementation of the AES [23] encryption al-

gorithm (in Figure 2.9). The function substitutes values in the state matrix with

values in the SBox. The code below loads the value in the state matrix (which

in this example is stored starting at address 0x100). Every loaded element serves

as an index into the SBox, and is substituted by the value in the SBox (which is

stored starting at address 0x300). The state has 16 elements and the SBox is a

256 entry table, correspondingly, the countjump instructions 0x0b and 0x08 loop

back a fixed number of times (15 and 255 respectively).

39

Chapter 2. Complete Information Flow Tracking from the Gates Up

2.4 Evaluation

To demonstrate that our proposed architecture is actually implementable, we

have built a working model of our processor on an FPGA, and we have written

several application kernels to help us quantify the overheads involved. Figure 2.10

shows one portion of that result, the area and frequency overhead of our proposed

architecture, both with and without GLIFT logic added, as compared to a NIOS

processor.

2.4.1 Hardware Impact

We use Altera’s Nios processor as a point of comparison as it has a RISC

instruction set, and, as a commercial product, is reasonably well optimized. The

Nios can be instantiated as either an economy core (Nios-econ) or a standard core

(Nios-std). The economy version is an unpipelined 6 stage multicycle processor

without caches, branch-predictors etc. (most closely comparable with our core),

while the standard version is pipelined and has an additional 4KB instruction

cache. The area and timing numbers have been generated by synthesizing the

GLIFT-base (with no information flow tracking logic), GLIFT-full and Altera-

Nios processors onto a Stratix II device with compilation settings balancing op-

timization for both area and delay. In Figure 2.10, the left Y-axis shows the

40

Chapter 2. Complete Information Flow Tracking from the Gates Up

area required to implement the processors measured in Adaptive Look-Up Table

(ALUT) units (the logic cells used by Altera Stratix II FPGAs), while the right

Y-axis shows the maximum frequency (Fmax) of the processors.

Our base processor is almost equal in area to Nios-standard, and about double

the size of Nios-economy. Adding the information flow tracking logic to the base

processor increases its area by 70%, to about 1700 ALUTs. However, in terms of

absolute size, even the now outdated Stratix II FPGAs have upto 180K ALUTs,

while all the above processors consume only in the range of 1K-2K ALUTs. On

the right Y axis, Fmax for Altera Nios processors is around 160MHz, while both

the base and full GLIFT processors have an Fmax of around 130MHz. In terms of

delay, both GLIFT and Nios are multi-cycle processors with the path through the

ALU to the destination register being the most critical. The extra tracking logic

does not impose a significant overhead on the Fmax, reducing it from 131MHz to

129MHz. Further, the GLIFT processors operate at 130 MHz as opposed to 160

MHz because we include a barrel shift that the Nios does not (with 1-b shifts,

our processor also operates at 160MHz.). While these overheads are certainly

non-trivial, keep in mind that this version of the processor shadows every bit in

the machine. By trading off precision for efficiency it may be possible to keep the

soundness of our result while reducing the performance impact.

41

Chapter 2. Complete Information Flow Tracking from the Gates Up

2.4.2 Analysis of Application Kernels

To test the programmability of our design, we have hand coded a set of appli-

cations kernels onto our ISA. This allows us to examine the impact of our modified

ISA on the static code size and the dynamic instruction count of the programs.

Our kernels are drawn from the potential program security uses of a strong infor-

mation flow tracking system including a public key encryption algorithm (RSA),

a block cipher (AES), a cryptographic hash (md5), along with a small finite state

machine (CSMA-CD), and a sorting algorithm (bubble-sort).

Mapping applications onto our ISA requires converting conditional if-else con-

structs into predicated blocks, turning variable sized loops into fixed size ones (by

bounding them), and turning indirect loads/stores into direct memory accesses or

loop-relative ones using the loop counters. In general, any application that has

predominantly regular behavior should execute without much additional overhead,

while dynamic behavior such as irregular array accesses will incur much greater

inefficiency. For our experiments, we implemented each of the programs under

test both directly in our assembly and in C. The C programs are compiled down

to Nios-RISC executables with “-O2” and emulated with Altera’s instruction set

simulator (ISS). Our assembly is mapped to our FPGA implementation to ensure

the correctness of our design, and is then run through our instruction set simulator

42

Chapter 2. Complete Information Flow Tracking from the Gates Up

to gather dynamic instruction counts. Figure 2.11 presents the results of those

experiments.

In terms of static code size, our new ISA is very close to the Nios-RISC ISA.

However, the dynamic instruction counts vary substantially. Programs such as

the CSMA-CD finite state machine and AES have numerous table look-ups where

each look-up requires a full table iteration. As a result, these have a very large

dynamic instruction count in comparison to the general purpose ISA. On the other

hand, bubble sort, which also requires array accesses, is fairly efficient because

both the Nios and our ISA loop over the entire array N2 times. Any inefficiency

there is owing to instructions that were executed but not written back because

their predicates were false. Finally, RSA and md5 have very little in the way of

predicated instructions, and both comprise mainly of ALU instructions. For these

applications, the number of executed instructions is very close to the Nios. While

our assembly is unoptimized and opportunities for optimization abound, the main

point of this is to show that it is indeed possible to constrain a processor enough

that all information flow is apparent at the gate level, yet still maintain enough

programmability that programs can be mapped to it without an unmanageable

amount of overhead.

43

Chapter 2. Complete Information Flow Tracking from the Gates Up

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Nios econ Nios std GLIFT base GLIFT full
 0

 50

 100

 150

 200

A
re

a
(in

 A
LU

T
s)

F
m

ax
 (

in
 M

H
z)

Area
Fmax

Figure 2.10: Quantifying the area and timing overhead of gate-level information
flow tracking. The left Y-axis compares the number of FPGA logic cells required
to implement a basic GLIFT processor (which implements the ISA but doesn’t
include the shadow logic) and a full information flow tracking GLIFT processor
to two general purpose micro-processors by Altera, while the right Y-axis shows
maximum frequency achieved by each.

2.5 Conclusions

At the end of the day, our new microprocessor is bigger, slower, harder to

program, and computationally less powerful than a traditional microcontroller

architecture. But what this architecture does for the first time is provide the

ability to account for all information flows through the chip. It is impossible for

an adversary, through clever programming, carefully crafted input, or even the

use of covert or timing channels, to ever cause a resulting data element to be

marked as “trusted” when in fact it was derived in any way from untrusted data.

This is accomplished by tracking the flow of information at the level of gates,

where timing signals, predicates, the bits of an address, even the internal results

44

Chapter 2. Complete Information Flow Tracking from the Gates Up

of logical operations all look like signals on a wire, and all of them are tracked

by augmenting those structures using our GLIFT logic transformations. When

critical or sensitive operations need to be performed, a co-processor augmented

with these abilities could be an attractive option.

We devise a flow tracking logic for simple gates that considers the effect of

inputs on outputs while propagating taint directly from the truth tables of those

gates, and propose a sound composition rule to generate shadow logic for more

complex structures. We then show that gate level information flow tracking, when

directly applied to a traditional microprocessor, quickly points out many subtle

information flows that might be hidden by the ISA abstraction, and at the very

worst, lead to a quick explosion of untrusted state. We then go on to describe

an architecture that removes these problems while still retaining sufficient pro-

grammability to allow it to handle a variety of small but critical tasks. Finally, by

implementing a prototype and automatically augmenting it with our information

flow tracking logic, we quantify the extra area/delay cost of such flow tracking

over a general-purpose micro-controller. While there are many opportunities to

further optimize both our architecture and our application kernels, the techniques

presented here show that it is indeed possible to track information flows through

a programmable design.

45

Chapter 2. Complete Information Flow Tracking from the Gates Up

St
at

ic
 In

st
ru

ct
io

n
Co

un
t (

NI
O

S)

St
at

ic
 In

st
ru

ct
io

n
Co

un
t (

th
is

 w
or

k)

Dy
na

m
ic

 In
st

r.
Co

un
t (

NI
O

S)

Dy
na

m
ic

 In
st

r.
Co

un
t (

th
is

 w
or

k)

Pe
rc

en
ta

ge
 o

f I
ns

tr.

w
/ t

ru
e

pr
ed

ic
at

es

Kernel Description

FSM CSMA-CD state machine with with 6 states
and 4 inputs. Many table lookups 123 190 441 3322 68%

Sort Perform bubble sort on a fixed size
list of integers 26 21 20621 30358 66%

RSA Montgomery multiplication and exponentiation
from RSA public key cryptography 256 143 44880 39297 84%

AES Block Cipher, involves extensive table lookups
and complex control structures 781 1100 12807 1082207 79%

Md5 Core of the cryptographic hash function,
involves mostly ALU and logical operations 769 1386 1226 1431 100%

Figure 2.11: A comparison of the static and dynamic instruction counts for sev-
eral application kernels on our proposed ISA and an equivalent traditional RISC
style architecture (the Nios). While the static instruction counts are comparable,
applications that require many irregular accesses to arrays (such as indirect table
look-ups) require many more instructions to select out those values.

46

Chapter 3

Theoretical Foundations of
Gate-Level Information Flow
Tracking

When designing and implementing a new piece of hardware, the security rami-

fications of low-level design decisions can be complicated and confusing. Hardware

developers typically work from a high level functional specification, such as an in-

struction set architecture (ISA) manual, a mathematical model, or a functional

simulator. These abstractions are necessary steps in the process of refining a

design, but gloss over many implementation complexities. However, when the

hardware is being built as part of a high assurance design, these complexities are

absolutely critical in determining the trustworthiness of the end design.

The problem with high-level hardware specifications is that they often ignore

the predictors, caches, buffers, timing variations, and undocumented and unspec-

ified instruction behaviors that are necessary to complete a real system. These

47

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

structures complicate higher level information flow evaluations because they can

be used to covertly transmit information between security domains [58], to infer

the values of secret keys [10, 39], and to subvert documented protection mecha-

nisms [64]. Even worse, many times these details are just ignored.

The goal of this work is to assist developers in creating hardware and firmware

with well-defined and statically verifiable information flow properties, and to do so

at the lowest digital level of refinement – the level of logic gates. By verifying the

properties at this level we are sure to capture the low level timing, implicit flow,

and potentially covert channels that are often ignored by higher level analysis.

Given a hardware/firmware design, and an information flow policy (defined

over the inputs and outputs of the design), one might ask “will this design always

conform to policy”. Our approach to the problem is to “convolve” a hardware im-

plementation (e.g. a USB controller) with a circuit formulation of the policy (e.g.

Bell-LaPadula) in a way that it creates a new circuit with a single Boolean output

with the following properties: If that circuit can be satisfied (i.e. a sequence of

input exists that will cause the circuit to output a 1 instead of a 0) then there may

be a violation, and the details of the satisfying input will lead a designer to the

problem; If that circuit can be proven to be unsatisfiable (through enumeration or

otherwise) then we know that the hardware implementation will always conform

to the policy. Since the analysis is a conservative approximation to the satisfi-

48

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

ability problem, i.e. it may return a violation when the circuit is really secure,

it is therefore polynomial in the size of the input design. At the same time, our

technique requires the design to carefully manage the flow of information so that

even a conservative approximation allows designs to pass the verification.

This new analysis circuit, which will only be used for static analysis and never

physically implemented in hardware, can then be analyzed by more traditional

verification tools. However, constructing an efficient analysis circuit with the

above listed properties is difficult: the analysis should ignore inputs and states that

are irrelevant to information flow analysis, it should scale to reasonably complex

designs, and it should be able to be efficiently and automatically generated for

arbitrary designs and information flow policies.

To create this circuit, we start with the actual design to be analyzed, flatten

the entire design down to a set of interconnected gates, registers, and memories

(the hardware), a set of initial conditions on those memory bits (the firmware),

and a set of inputs and outputs with known security labels. Using a set of rules

based on the policy lattice, we create our new analysis circuit by replacing the

individual gates of the original design with new abstract gates that operate on

both abstract values (e.g. {0, 1, ∗}: zero, one, and “unknown”) and concrete

security labels (e.g. trusted and untrusted). A policy violation is then a simple

49

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

logical statement over this new domain (e.g. the output at this output port is

untrusted).

Specifically, in this chapter:

• We introduce ∗-logic (star-logic), a new method of statically verifying ar-

bitrary information flow policies that works at the gate-level. By carefully

designing a hardware-firmware system to work in conjunction with this ver-

ification method, all of the states of the resulting design can be efficiently

explored.

• We prove that the ∗-logic based abstract execution is sound and that static

information flow policy analysis under abstraction is at worst conservative.

We also present an algorithm to track security labels through a given boolean

circuit for an arbitrary lattice of labels.

• We implement ∗-logic technique as a tool that extracts a gate-level descrip-

tion from a high-level hardware design, converts it into an abstract form

that can be efficiently analyzed for policy violations, and verifies compliance

using standard design tools. We evaluate the practicality of ∗-logic using an

USB bus master controller modified to time-multiplex a single shared bus

among mixed-trust I/O devices.

50

Chapter 3. Theoretical Foundations of Gate-Level Information Flow

Tracking

After a discussion of the related work, Section 3.2 describes our verification

technique and how it fits into existing design flows. We then formalize these ideas

and prove that our verification is sound in Section 3.3 and extend the analysis to

a general lattice in Section 3.4. Finally, in Section 3.5 we present the results of

the tool’s application over the entire system, and conclude with Section 3.6.

3.1 Motivation

Systems that operate our cars, control our hearts, and are used in avionics,

military, and banking require security assurances far above the norm. Automo-

tive systems have been shown to be vulnerable to attacks [46, 77], and Koscher

et al [42] show how an attacker who is able to infiltrate an Electronic Control

Unit (ECU) can leverage this ability to completely circumvent safety-critical sys-

tems. Medical devices such as a modern implantable defibrillator is also shown

to be vulnerable to unauthorized communication, potentially harmful device re-

programming, and unauthorized data extraction [32], threatening patients’ health

and safety conditions. Further, in the current design of the Boeing 787 aircraft

system, the trusted aircraft control network shares the physical ARINC bus with

the untrusted passenger network [26]. The ability to protect the integrity and

51

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

confidentiality of certain critical programs will form a crucial capability on which

future high assurance automobile, medical, and avionics devices will be built.

Information Flow Policies: Information flow analysis targets security prop-

erties such as confidentiality and integrity. These properties can be modeled with

an information flow control lattice (L, ⊑), where L is the set of security labels

and ⊑ is the partial order indicating relative trust or secrecy of the labels [25].

Security labels (such as trusted and untrusted, or secret and unclassified) are as-

signed to each input and output in the system, and we seek to determine whether

it is possible under any scenario for the information flow policy to be violated

(e.g., secret data flowing to an unclassified output). This model of security can be

used to determine if policies such as non-interference [31] (where untrusted infor-

mation must never affect trusted outputs) and Bell-LaPadula [16] (where secrets

can never leak down, but unclassified information can be read up) are enforced.

While strict adherence to information flow policies alone is not sufficient to

ensure the trustworthiness of a system, information flow policies are certainly

necessary. For example, in the case of cryptographic operations, while there is

clearly information flowing from the key to the encrypted data, we also need to

show the key is not flowing anywhere else (e.g., through a timing channel [39]).

Our Threat Model: We consider a system with a set of labeled inputs (e.g.

trusted and untrusted) and a set of labeled outputs – for example a software

52

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

router in a mixed-level trust network running on board an aircraft. The system

is composed of a set of different software modules, some of which are known at

analysis time and some of which are not, all running on the same processor. The

attacker is assumed to have complete control of all untrusted inputs to the device.

The attacker is further assumed to have full control over the subset of software

running on the system that is unknown at analysis time. Given an information-

flow policy defined over the input and output from this device (described as a

lattice over the labels), the attacker attempts to manipulate the inputs, outputs,

and unknown software in such a way that the policy is violated. In our examples

in the paper, this would mean a transfer of information from an untrusted (or

secret) input to a trusted (or unclassified) output. This threat model includes

timing channels, implicit flows, storage channels, and any other digital forms of

information flow, but does not include the use of physical phenomena such as EM

emission or power draw. A system is said to be strictly enforcing a policy if it can

be shown that the policy can never be violated regardless of the actions of the

attacker.

Formal Verification of Systems: One very popular approach to reducing

state to be verified is to analyze a higher level model of the system. Many formal

methods have been proposed towards this end. The seL4 project verifies all of

the C code for an entire microkernel [37], while Verve [80] moves the verification

53

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

another step down to the assembly code, and verifies the safety of the operat-

ing system using a typed assembly language. The FLINT project even aims at

providing a framework for certifying machine code by producing a proof for an

executable program [27]. However, all the above work verifies functional correct-

ness, type safety and memory safety of the operating system: none of them is able

to detect covert channels and malicious implicit flows beneath the system, i.e. in

the hardware.

Extending the formal methods to handle the hardware channels present in real

systems has proven quite difficult. Gianvecchio et al. [30] propose an entropy-

based approach to detect covert timing channels based on the observation that

the creation of a covert timing channel has certain effects on the entropy of the

original process. Hu et al. [74] describe a solution called fuzzy time to reduce the

bandwidths of covert timing channels by making all clocks available to a process

noisy. Techniques for general black-box mitigation of timing channels are also well

studied along with a general class of timing mitigators that can achieve any given

bound on timing channel leakage, with a trade-off in system performance [12].

Karger, in a retrospective on the VAX-VMM security kernel [36], explains the

difficulties of modeling hardware covert channels at higher layers and mentions

that while they attempted formally address these issues, in the end these “were

done on an informal basis by engineers by closely studying system design” and

54

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

that “timing channels proved a much more serious problem ... because many of

them were inherent in the underlying hardware”. In the end their solution for

timing channels was to “fuzz” sources of clock information and thus lower the

bandwidth of these channels.

Formal Methods for Information Flow Security: While information flow

tracking has been proposed at many levels of the computing hierarchy, from vir-

tual machines [34], high-level languages [62, 56, 14] and compilers [79, 47, 15] to

binary analysis tools [7, 20, 28] and even hardware-assisted information flow track-

ing systems [67, 71, 24, 72, 61], formal approaches for the same have been confined

to language-level and operating system-level proposals. Approaches that operate

at the language level can even track implicit flows due to branches and loops that

introduce observable variations in a program execution. Since code that is never

executed can leak information (by the absence of its execution), some secure lan-

guages eliminate conditional behavior from the program code (either entirely [49]

or based on confidential or untrusted conditionals [62]). A complementary ap-

proach to the above techniques is to control information flow through operating

system abstractions such as processes, pipes, file systems, etc. [59, 44, 4, 13].

However, none of these approaches track covert flows through architectural

features that are hidden beneath the hardware-software interface (i.e., the pro-

cessor’s instruction-set architecture), and the timing channels created through

55

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

shared architectural resources like caches, branch predictors, functional units or

even processor cores. Determinator, for example, uses instruction counts as an in-

direct method of measuring time [13]. Such covert channels have received isolated

attention, for example methods to build secure caches [76] or branch predictors [8],

but general design methods and tools are lacking. Further, without an automated

method of formal analysis, some proposals were subsequently found to be vulner-

able [40] and then fixed [41].

Information Flow Tracking at the Gate Level: While the approaches

discussed above are very valuable, many of the most subtle and exploitable infor-

mation channels require that we peer far below even architecture-level specifica-

tions of a design to where the timing of the machine is actually well defined, i.e.,

the level of logic gates. Higher-level infrastructures cannot provide a strong guar-

antee that the full system implementation adheres to desired access control and

information-flow policies. For this reason, we build upon recent work on Gate-

Level Information Flow Tracking (GLIFT) [70]. Based on the observation that all

digital information flows are a function of logical information flows through the

gates and wires in a circuit, GLIFT shows that a gate-level description of a pro-

cessor can be automatically augmented with shadow logic gates that dynamically

track the flow of information through the processor and can identify information

leaks through explicit, implicit, and even timing channels. Execution Leases [69]

56

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

then builds upon this idea to present an architecture where the ISA allows pro-

grammers to explicitly control information flows with a form of hardware-bounded

function call.

Limitations of Dynamic Gate-Level Information Flow Tracking: One

downside of this approach is that shadowing every gate in the circuit adds a

considerable hardware overhead over the original logic (up to 3X [69]). This

analysis logic costs money to design, verify, and fabricate, takes up area in the

final implementation, and uses more power during operation. None of these costs

are acceptable in the embedded domain.

The other, more significant, downside is that the dynamic techniques can only

identify information leaks on specific executions that require the entire system to

be fully specified. Embedded system designers would often like to statically ana-

lyze a hardware/software system and determine if it conforms to a specific policy,

such as non-interference, even when certain components are neither known a pri-

ori nor are trustworthy. In contrast to dynamic tracking methods, our technique

allows properties of gate-level descriptions of systems to be verified statically even

when parts of the system are not known.

Finally, prior works on Gate-Level Information Flow Tracking formulate the

label propagation algorithm informally for a two-level lattice. We generalize the

57

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

Figure 3.1: A typical embedded system can be flattened into a giant state ma-
chine whose state comprises of all software (including kernels and processes) and
all hardware state (such as general purpose register-files, internal pipeline regis-
ters etc.). The state machine also includes some combinational logic that uses the
current state and external inputs to generate next state and outputs. Analyzing
information flows for all possible states reachable by this state machine allows us
to verify the entire system with respect to a security policy.

algorithm to propagate labels for an arbitrary lattice so as to enable its use in

realistic systems that implement Multiple Independent Levels of Security (MILS).

Finally, the techniques we propose for embedded systems make information-

flow analysis an integral and automated part of the design flow. Without a method

of providing feedback to the hardware designers about problematic information

flows, we are stuck in a rut trying to model designs and argue that they are secure,

rather than making information flow verification a measurable design constraint

from the very beginning.

3.2 ∗-Logic (Star Logic)

In this section we present an overview of our verification method and show how

it fits into existing hardware design flows. Given a system in which the hardware

58

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

and software cooperate to enforce a specific policy, we want to verify that the

measures taken by a small, known portion of the software will be sufficient to

prevent unauthorized labels from ever appearing at memory locations and output

ports. As Figure 3.1 shows, at the gate-level, all digital hardware systems look

relatively similar – a set of internal state (in the form of registers and memory),

inputs and outputs (on I/O ports), and some combinational logic that reads the

state and inputs and produces the next state (back to registers and memory) and

the output (to I/O ports). At the hardware level any software that is running on

this system is simply a set of bits in the memory. While certain bits of the state

(e.g., the separation kernel) need to be concrete values, we want to verify the final

properties of the system for all possible settings of the other bits (e.g., processes

and external inputs).

3.2.1 High Level Description of ∗-logic

Figure 3.2 describes how our technique leverages existing design flows to aid

in the verification of information flow properties. A user begins with a full digital

design of a system (or a portion of a system), usually in some form of HDL. Those

regions of the system that are not complete, for example particular regions of

memory corresponding to as-of-yet unwritten software, or certain external com-

ponents of hardware, are filled in with simple placeholder values which will be

59

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

user tools

abstrac on

tool

augmenta on

tool

tradi onal

digital simula on

tradi onal

digital simula on

d
e

b
u

g

R
e

d
e

si
g

n
 f

o
r

 �
o

w
 c

o
n

tr
o

l

Figure 3.2: Our toolchain for verifying information flow properties of embed-
ded systems. Once the design has been debugged using conventional tools, our
abstraction and augmentation tools create a new design that operates on secu-
rity labels and unknown values in addition to traditional digital values. This
augmented design can then be simulated using standard hardware simulators to
generate output labels. These are then compared with labels specified by the
desired information flow policy to determine if the design conforms to the policy.

60

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

replaced for analysis. This base HDL description is compiled down to a gate-level

description by existing design tools and tested through traditional methods.

The first step of the tool, abstraction, takes two inputs: the results of the above

design synthesis and a specification of which bits are “unspecified” (represented

as ∗) and hence could be either a 0 or 1. The output of this first step is one

abstract state, in the form of a digital logic design that operates on an encoding

of {0, 1, ∗}, that represents all possible initial states the concrete system can be

in.

The second step in the tool, augmentation, takes two inputs as well: the

abstract design from the first step, and an information flow lattice (such as Trusted

⊏ Untrusted), that specifies a set of labels and implies rules for how they they are

to be propagated. This second tool then convolves the lattice with the abstract

design to create a new design that operates on both abstract values and labels.

The augmented logic, again being a hardware design itself, can then be simulated

using existing hardware synthesis and simulation tools.

The final step in the process is to exhaustively simulate the resulting aug-

mented system to check that it conforms to a specified information flow policy.

To specify information flow policies the user has to initialize the inputs, outputs,

and memory of the system with security labels such as secret/unclassified or trust-

ed/untrusted that are allowed to be assigned to each bit. If an output of the system

61

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

Specifica�on of

unknown bits

1. Abstraction

Digital Design

1011

clock

test inputs

state

output

2. Augmentation

10

clock

abstract inputs

state

abstract output

**

a a

a

**

10
state input
** **

1 0

clock

labeled inputs

state

labeled output

* *

L L

L

T T U U

* *
U U

*1

01

1
U T

*
U

T

Informa�on

Flow La!ce

Abstract Design Augmented Design

Figure 3.3: Given a concrete design to be verified and a specification of system
state and inputs whose values are unknown, Step 1 of our technique automatically
generates an abstract representation of the design that covers all possible concrete
executions. In Step 2, the technique augments the abstract system with the state
and logic to track the flow of security labels. The resulting augmented system is
then synthesized and simulated using hardware design tools such as ModelSim
and Altera Quartus. Augmented logic uses security labels specified by the user
for inputs and memory bits and generates output labels that are compared with
the desired output labels as specified by the information flow policy.

(or some state bit) is found to have an illegal label (e.g. trusted output is labeled

untrusted), then the system under test has to be modified for correct information

flow control. In this way dataflow assertions (such as “no classified information

should egress the system via port 2”) can be checked as standard logic assertions

(“the label bit for out-port 2 should never be set to True”). Covering the set of

logic states possible to ensure that this assertion holds is made far more tractable

by the abstraction from step 1, and because the concretely specified system that

comprises the trusted computing base only has a practically enumerable number

of states (a scenario very common to high assurance systems).

62

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

Inputs B=0 B=1 B=

A=0 1 1 1

A=1 1 0 *

A= 1 * **

*

Inputs B=0 B=1

A=0 1 1

B=1 1 0

1. Out = A NAND B 2. Outa = Aa NANDa Ba

1. abstraction

Inputs B = 0T B = 0U B = 1T B = 1U B = T B = U

A = 0T 1T 1T 1T 1T 1T 1T

A = 0U 1T 1U 1U 1U 1U 1U

A = 1T 1T 1U 0T 0U

A = 1U 1T 1U 0U 0U

A = T 1T 1U T U

A = U 1T 1U U U

*

*

* *

*

*

*

*
U

*
U

*

T
*

U
*

U
*

U
*

T
*

U
*

3. Outa
Label = Aa

Label NANDL Ba
Label

2. Augmentation

Figure 3.4: Generating information flow tracking logic for a 2-input NAND gate
when the inputs can be unknown (∗): Figure shows the truth tables for a NAND
gate (1), an abstract NAND gate (2), and the augmented NAND gate (3) that can
track security labels trusted (T) and untrusted (U) through the abstract NAND
gate. Each NAND gate in the original circuit will be replaced by an augmented
NAND, which will be composed similar to the original NAND gates to create the
complete augmented circuit.

3.2.2 Abstraction and Augmentation Details

Figure 3.3 shows a more detailed view of the two steps in our toolchain. We

begin with the specifics of creating an abstract circuit that represents all possible

concrete executions.

Step 1: Abstract Representation of a Digital System: To define an

abstract system, we have to map both the concrete bits and logical functions to

their abstract counterparts. To map concrete bits, the intuition is to map all the

unknown bits in the given digital system to a ∗ in the abstract system. The bits in

the concrete system whose values are known take the same values in the abstract

system as they have in the concrete system.

To map the concrete logical operators such as NAND into the abstract domain,

we create an abstract-NAND (NANDa) that can operate on inputs valued 0, 1, or

∗. When all inputs are known, NANDa functions just like the concrete NAND. If

63

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

any inputs are unknown (∗), NANDa determines if the ∗ inputs cause the output

to be a ∗. Instead of simply marking an output as unknown when an input is ∗,

we can use the precise definition of NAND to decide whether an ∗ input affects the

output. In particular, if one of the inputs to a 2-input NAND is 0, then its output

will be a 1 regardless of the other input value. This intuition can be captured in

the definition of NANDa so that given two inputs valued 0 and ∗, it still outputs

a 1. Being precise in defining NANDa and not outputting a ∗ whenever one input

is a ∗ prevents the uncontrolled spread of ∗-values in the system.

Step 1 in Figure 3.4 shows the NANDa logic described completely as a logical

function derived from the definition of the concrete NAND. Each cell in the truth

table of NANDa is generated using multiple cells in the truth table of the NAND.

For example, when A = 0 and B = ∗ for NANDa, we look up cells in the NAND

truth table with A = 0, B = 0 and A = 0, B = 1. Since the output of NAND is

unchanged (Out = 1) for both values of B, B being ∗ is ineffective and the output

of NANDa is also a 1. On the other hand, when A = 1 and B = ∗, NANDa’s

output is a ∗ since the value of B affects the value of the NAND’s output.

This algorithm to generate an abstract logical operator can be generalized to

any logical function, and we use it to generate abstract counterparts for small

logical functions such as 2-input AND, OR, and MUX. However, since it requires

checking whether any ∗ valued input affects the output value, it is exponential in

64

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

the number of inputs to the logical function. Thus, given a larger circuit expressed

as a composition of smaller functions, we have to create a corresponding abstract

circuit compositionally by replacing the concrete functions with their abstract

counterparts and retaining the structure of the original circuit. As we will show

in the next section, such a composition of abstract logical functions propagates

the ∗ values in a sound fashion.

Step 2: Tracking Information Flows through the Abstract System:

Consider a single two-input NAND gate. The problem of tracking the flow of

information through this NAND gate is to decide, given both its inputs and their

security labels, what the value and label of the output is going to be. The inputs

can be assigned any values from {0, 1, ∗}, while the labels can be either trusted

(T) or untrusted (U). Intuitively, information is said to flow from an input to an

output if the input has some means of affecting the value of the output. This

implies that the output of a NANDa gate should be marked as untrusted only

if some untrusted input can affect its value, and should be marked as trusted

only if no combination of untrusted inputs can affect the value of the output. As

compared to previous GLIFT works [70], we have to take unknown inputs into

account to compute the effect of untrusted inputs.

As observed in Step 1, an input with a value 0 controls the output of a NAND

gate irrespective of the value of the other input. This observation allows the

65

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

output of a NAND gate to be marked as trusted when one of its inputs is a

trusted 0 even when the other input is an untrusted unknown ∗U . On the other

hand, if one input is either 1T or a ∗T , the other input can affect the output and its

label will propagate to the output’s label. This intuition of checking for effective

inputs to determine the output’s label can be described in terms of an algorithm

that checks whether the output of the NANDa gate changes for any combination

of untrusted and unknown values, and marks the output as trusted only if none

of the combinations alters the output value. This is shown as the second step in

Figure 3.4.

Each gate in the original design is replaced with its corresponding augmented

gate. These augmented gates are for the purposes of analysis only; these will

never be actually fabricated, but will only be simulated in various design tools

to help aid verification. Using the truth table for a NAND gate (the left-most

table in Figure 3.4), we can construct an augmented truth table where the inputs

can assume a value that is one of {0U , 1T , 0U , 0T , ∗U , ∗T} (encoded respectively as

{000, 001, 010, 011, 110, 111}), and the output is computed to be one of the same.

The most significant bit in the new tuple of values that the gate will operate on

is 0 if the original value is concrete or 1 if the value is unknown. The middle bit

is the actual value if known and 1 otherwise. The least significant bit is 0 for U

and 1 for T . Thus an n-input m-output digital gate is replaced by a gate with 3n

66

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

inputs and produces 3m outputs. These augmented gates are then interconnected

just as original gates of the system were.

To summarize, our technique takes a partial description of a system along with

an information flow policy that specifies security labels for the initial system state,

and statically verifies whether the system conforms to the policy for every possible

state the system can ever be in, i.e. for all possible executions of the system. We

verify this by representing all possible system states using an abstract system,

simulating all possible executions by simulating the abstract system once, and

verifying conformance to information flow rules for every abstract state.

3.3 Proof of Soundness

We consider the computing system to be a synchronous state-machine as in

Figure 3.1 where the state is updated every cycle by some combinatorial logic. To

prove that our technique tracks all flows for the entire execution, it is sufficient to

prove that information flows are tracked soundly through arbitrary combinatorial

logic operating on arbitrary inputs for one clock cycle. By induction on the

number of clock cycles, the proof will apply to a system that executes for multiple

cycles.

67

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

The first step is to prove that the abstraction step accounts for all possible

executions of the concrete system that can arise from unspecified state. Figure 3.5

illustrates, for a system with two bits of state, the intuition behind why our

abstraction is sound.

We can describe the current state of a particular concrete execution as a con-

figuration that maps concrete state bits to values; we can then describe the states

for all possible concrete executions as a set of configurations. We abstract these

concrete configurations into a representation where each bit whose value can be

both 0 and 1 across all configurations is treated as ∗, while bits that have a fixed

value of 0 or 1 retain their value in the abstract domain. For example, a set of con-

crete configurations {01,11} yields an abstract configuration {∗1} while {01,10}

yields {∗∗}. To prove that this abstraction is sound, we have to show that this

abstract configuration represents a set of concrete configurations that is larger

than or equal to the initial concrete configuration. In this case, while {∗1} con-

cretizes precisely into {01,10}, {∗∗} represents the configuration set {00,01,10,11}

and thus clearly over-approximates {01,10}.

More formally, we use the framework of abstract interpretation to prove the

soundness of our abstraction mechanisms. The technique itself is fairly standard;

the novelty lies in choosing an abstraction that captures only enough information

to perform useful information flow analysis while also letting it scale to larger

68

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

designs. An object in the abstract domain is a compact representation of a set

of concrete objects (or configurations). An abstraction function α maps sets of

concrete objects to abstract objects and its inverse concretization function γ maps

abstract objects into a set of concrete objects. By showing that α and γ form a

Galois Connection, we can reason about properties of concrete objects by manip-

ulating their corresponding abstract objects. To establish a Galois connection, α

and γ have to fulfill the following three conditions. Representing concrete objects

as σ ∈ Σ, abstract objects as σa ∈ Σa, and a set of concrete objects as σ:

• α and γ are monotonic

• γ ◦ α(σ)) ⊇ σ

• α ◦ γ(σa)) ⊑a σa

Once a Galois Connection has been established, we can compute the abstract

semantics systematically using only the concrete semantics and the Galois Con-

nection. In particular, an abstract operator fa defined as α ◦ f ◦ γ can be proven

to be a sound abstraction of a given concrete operator f (Lemma 4.42 in [54]),

and we use this result to compute abstract counterparts for a NAND gate.

The second step in our proof is to show that the algorithm we employ for

propagating labels through combinational circuits conforms to the formal notion

of non-interference, as defined in prior works on language-based information flow

69

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

security. By first creating an abstract circuit and then tracking information flows

through the abstract circuit, we are able to guarantee that in the end, our tech-

nique is able to track all flows for all possible system executions.

3.3.1 Proof of Soundness of Abstractions

We will begin by formally defining the concrete and abstract domains and

some helper functions, and use these to establish a Galois Connection between

the domains. Once established, the Galois Connection will provide us with an

abstract NAND operator that is provably sound with respect to the concrete

NAND.

The concrete domain is defined as follows. Let ci be a concrete boolean variable

that represents one bit of state (memory or register), external input, or output of

the digital system under test, and C be the set of all ci. We define σ as a store that

returns the current value of a concrete variable, i.e. σ : C 7→ {0, 1}, and represents

an object in the concrete domain. Entries in σ look like [c1 = 0], [c2 = 1] and so

on. The collecting semantics for the concrete domain is defined as the set Σ of σ

generated by all possible executions of the concrete digital system. P(Σ) together

with the subset operator ⊆ form a complete lattice, called the concrete lattice.

The abstract domain is defined in a similar fashion. Let ai be the abstract

counterpart of ci in the abstract domain and A be the set of all ai. We define σa as a

70

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

Figure 3.5: Figure shows how a set of concrete objects are mapped conservatively
to an abstract object for a 2-bit system. A concrete object {00,01} represents all
possible values concrete bits are allowed to have for some system, and is mapped
to an abstract object {0,∗}. In the figure, the shaded concrete objects all map
to the abstract object {∗,∗}, which when concretized yields a superset of all the
shaded objects. The abstraction is sound because abstracting some concrete ob-
jects followed by concretizing the resultant abstract object will always yield a
more conservative set of concrete objects.

store that returns the current value of an abstract variable, i.e. σa : A 7→ {0, 1, ∗},

and Σa as the set of all possible σa. The ordering relation on abstract stores is

⊑a. σa1 ⊑a σa2 iff ∀i, either σa1(i) = σa2(i) or σa2(i) = ∗. Σa and the ordering

operator ⊏a also form a lattice, and
⊔

a
is used to represent the join operator in

the abstract lattice. Also, note that throughout this section we let the subscript

i range over all entries in a concrete or abstract store.

To help map sets of σ into the abstract domain, we define a projection function

on σ, σ(i), that returns the entry for the ith variable . Another projection function

σ(ci) extracts just the value of the i
th variable. To map one concrete object σ into

its corresponding abstract object σa, we define a function β as follows.

Definition 1. (Beta function) β is defined as β(σ) = σa, where σa(ai) =

σ(ci), ∀i.

71

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

Definition 2. (Abstraction function) α : σ 7→ σa is defined as α(σ) =
⊔

a
(β(σi)), ∀σi ∈

σ.

A helper function δ is used to concretize one entry in σa into a set of entries

belonging to concrete stores.

Definition 3. (Delta function) δ(σa(i)) = {[ci = 0], [ci = 1]} if σa(ai) = ∗,

{[ci = σa(ai)]} otherwise.

Since abstract variable with value ∗ concretizes into both 0 and 1, concretizing

a 0|1-valued abstract variable always yields a subset of concretizing an abstract

variable with value ∗:

Lemma 1. δ([a0 = 0]) ⊂ δ([a0 = ∗]) and δ([a0 = 1]) ⊂ δ([a0 = ∗]).

Definition 4. (Concretization function) γ : σa 7→ σ is defined as γ(σa) =

×(δ(σa(i)), ∀i), where × is the cartesian product operator.

Lemma 2. α is monotone, i.e. for sets of concrete objects σ1 and σ2, σ1 ⊆ σ2 ⇒

α(σ1) ⊑a α(σ2).

Proof. σ1 ⊆ σ2 ⇒ there may be a σ, s.t. σ /∈ σ1 and σ ∈ σ2 ⇒
⊔

a
(β(σ1i), ∀σ1i ∈

σ1) ⊑a

⊔
a
(β(σ2i), ∀σ2i ∈ σ2), since

⊔
a
is monotonic ⇒ α(σ1) ⊑a α(σ2) (by

definition of α)

72

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

Lemma 3. γ is monotone, i.e. σa1 ⊑a σa2 ⇒ γ(σa1) ⊆ γ(σa2).

Proof. σa1 ⊑a σa2 ⇒ there may be an ai, such that σa1(ai) = 0|1 and σa2(ai) =

∗ ⇒ from Lemma 1, δ(σa1(i)) ⊆ δ(σa2(i))⇒ ×(δ(σa1(i)), ∀i) ⊆ ×(δ(σa2(i)), ∀i)⇒

γ(σa1) ⊆ γ(σa2).

Lemma 4. γ ◦ α(σ) ⊇ σ

Proof. Let c be the set of concrete variables ci such that ∃σ1, σ2 ∈ σ where σ1(ci) =

0 and σ2(ci) = 1. Also, let σa = α(σ) =
⊔

a
(β(σi)). Then γ ◦ α(σ) = γ(σa) =

×(δ(σa(i)), ∀i). It is clear that this cartesian product will generate 2(|c|) concrete

objects, while the initial set of concrete objects σ may only have a subset of these

combinations (the join of whose abstractions creates a ∗ in the abstract state).

Thus, γ ◦ α(σ) ⊇ σ.

Lemma 5. α ◦ γ(σa) ⊑a σa

Proof. We show the slightly stronger condition that α ◦ γ(σa) = σa. α ◦ γ(σa) =

α(×(δ(σa(i)), ∀i) =

⊔
a
(β(×(δ(σa(i)), ∀i))) = σa. Since the cartesian product creates all possible

concrete states, the join of their abstractions results in the initial abstract state.

73

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

Theorem 1. (Galois Connection) Σ <α, γ> Σa form a Galois Connection.

Proof. Follows from the definition of Galois Connection and Lemmas 2,3,4 and

5.

We have established a Galois Connection between the concrete boolean do-

main and an abstract domain. To complete the mapping from concrete to the

abstract domains, we define an abstract transfer function NANDa to soundly cap-

ture the effect of a given concrete transfer function NAND. We use NAND since

any arbitrary combinational circuit can be represented as a composition of NAND

gates.

The Abstract NAND gate: The concrete semantics of a NAND gate can be

formalized through a truth table that represents the usual NAND logic function.

The collecting semantics of the NAND gate can then be defined as NAND : P(B)×

P(B) 7→ P(B) by applying the concrete NAND gate pairwise to each member of

the input set to generate the output set. Here, since the concrete domain is defined

in terms of Σ, the collecting semantics are expressed as NAND : Σ x Σ 7→ Σ. The

most precise abstract operator that is sound with respect to NAND follows from

the Galois connection:

Theorem 2. (Soundness of Abstract NAND) NANDa : σa × σa 7→ σa defined as

NANDa = α ◦ NAND ◦ γ is a sound approximation of NAND.

74

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

The procedure to compute NANDa presented in Figure 3.4 closely follows the

mathematical definition of NANDa above, where given a truth table for a NAND

gate, a new truth table is generated to encode the NANDa function. First the

abstract inputs are concretized (so that a ∗ input generates both concrete 0 and

1). Then the concrete NAND is applied to all the input sets, so that the output set

will include the effect of all the generated concrete inputs. Finally, the concrete

output set is abstracted to yield the abstract output bit. This abstraction step

effectively ensures that, if the generated concrete inputs cause the output to be

both 0 and 1, then the abstract output will be a ∗. Note that the signature of

NANDa uses σa instead of Σa, as NANDa operates on individual abstract states

instead of sets of abstract states.

Finally, any combinational circuit can be expressed as a partially ordered se-

quence of 2-input NAND operations.

Theorem 3. (Soundness of Composition) For every concrete trace NANDi(σ0), i ≥

0, there exists an abstract trace NANDi

a
(σa0),

i ≥ 0, such that ∀i, α(σi) ⊑a σai where σi = NANDi(σ0) and σai = NANDi

a
(σa0).

Proof. Given a Galois Connection Σ <α, γ> Σa and an abstract operator NANDa

that is sound w.r.t. the concrete operator NAND, the proof is by strong induction

on the length of the trace.

75

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

A similar proof applies to the truth tables of other abstract logic functions

such as 2-input AND, OR, and MUX, and we use such verified modules in our

prototype tool. We have shown that the abstract machine represents the entire

set of feasible executions, because for each output and for every clock cycle, the

abstract logic reads in, operates on, and updates the abstract state and input-

s/outputs. In the next section, we show how tracking information flows for this

abstract representation allows us to formally prove non-interference for the entire

family of executions that the abstract exection represents.

3.3.2 Proof of Tracking Non-Interference

In this section, we prove that our technique verifies non-interference for the

abstract system. The technique associates security labels with each bit of abstract

state to create augmented states, and introduces new logic to track labels through

the abstract circuit. An example of such augmented logic for an abstract NAND

gate is generated as the result of Step 2 in Figure 3.4.

More precisely, each abstract store σa is transformed into an augmented store

σl that maps variables to values in {0, 1, ∗}× {T, U}. The given combinational

logic functions map σl to a new value σ′
l
, and is treated as a sequence of 2-input

NAND operations on σl. For the purposes of this proof, we include every wire in

the circuit as a part σl, so that σl includes all inputs to intermediate NAND gates.

76

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

We also introduce the notion of T-equivalence of two augmented stores, such that

σl1 ∼T σl2 if both σl1 and σl2 agree on all trusted values. Our non-interference

theorem based on prior work on type-based information flow security [65]. It

formalizes the intuition that two stores that begin by agreeing on all trusted

state, after executing the same abstract operation, will still agree on all trusted

state. Effectively, the untrusted inputs had no affect on the trusted state. Further,

operating at the gate-level ensures that we explicitly track all information flows,

including timing channels [70].

Theorem 4. (Non-Interference) Given an augmented logic function fl, and stores

σl1 and σl2, σl1 ∼T σl2 ⇒ fl(σl1) ∼T fl(σl2)

Proof. The proof uses strong induction on the number of levels in the partial

ordering of NANDs. The initial stores σl1 and σl2 have state/external input values

derived from the user specification, and the output bits set to ∗U .

Base Case: For n = 1, the system is a two input NANDl gate generated

after Step 2 in Figure 3.4. Since the stores are initially T-equivalent, and only

the output is assigned a value by the NANDl gate, T-equivalence of σ′
l1 and σ′

l2

depends on whether the outputs get identical values in σ′
l1 and σ′

l2 whenever either

one is labeled trusted. If both outs are labeled untrusted, even then σ′
l1 ∼T σ′

l2.

Using in0 and in1 to refer to the inputs of the NAND gate, which could come

77

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

from either state or external inputs, and out to refer to its output, the proof that

the final stores σ′
l1 and σ′

l2 are T-equivalent has three cases:

(1) both in0 and in1 untrusted ⇒ σl1(out) = σl2(out) = (1|∗)U , i.e. some

untrusted value (from NANDl truth table) ⇒ σ′
l1 ∼T σ′

l2.

(2) both in0 and in1 trusted: σl1 ∼T σl2 ⇒ σl1(in0) = σl2(in0) and σl1(in1) =

σl2(in1) ⇒ σl1(out) = σl2(out) (and out is trusted, from NANDl truth table) ⇒

σ′
l1 ∼T σ′

l2.

(3) one of the inputs (e.g. in0) is trusted and the other (in1) untrusted: σl1 ∼T

σl2 ⇒ σl1(in0) = σl2(in0)⇒

(Case A) in0 is 0: σl1(out) = σl2(out) = 1T (from NANDl truth table) ⇒ σ′
l1 ∼T

σ′
l2.

(Case B) in0 is 1: σl1(out) = σl2(out) = (1|∗)U , i.e some untrusted value (from

NANDl truth table) ⇒ σ′
l1 ∼T σ′

l2.

Inductive step: Assume that the stores σl1 and σl2 are T-equivalent for

partial orders of NANDs with levels ≤ n. Thus an (n + 1)th level NAND gate

receives input stores that are T-equivalent. Since the proof for the base case works

for arbitrary values of the initial stores, following the same reasoning as the base

case for the (n+ 1)th NAND gate, σ′
l1 ∼T σ′

l2 after the (n+1)th step.

78

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

S1 S2

U

TS

S1 S2

U

TS

Con ict Set for S1

Direction of illegal

information ow

S1

S2

U

TS

S1

U

2-level

Linear
4-level

Linear

3-level

Square
Information Flow Constraints

Inferred from a Square Lattice
Example Security Lattices

Figure 3.6: Security labels expressed as lattices: Figure on the left shows three
example lattices, two linear and one square, that can be created using four labels,
Unclassified (U), Secret (S1 and S2), and Top Secret (TS). Figure on the right
shows the graph of information flow constraints obtained from a square lattice.
The graph shows, for example, that information should not flow from labels S2
and TS to S1 in order to ensure secrecy.

3.4 Information Flows through a Lattice

Thus far, we have explained the ∗-logic technique using a simple, two-level

lattice, e.g. Trusted ⊑ Untrusted. In this section, we present an algorithm

to generalize gate-level information flow analysis to handle arbitrary information

flow policies. While a simple system may only have two security levels, many

systems have more complex information flow policies such as Unclassified ⊑

Secret ⊑ Top Secret. The main challenge in extending a two-level information

flow analysis to an arbitrary lattice is in propagating a label when the input

labels are non-comparable with each other, e.g. Air force and Navy in the lattice

79

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

Unclassified ⊑ Air force, Navy ⊑Top Secret. We present a method that tracks

labels more precisely than conservatively assigning the Least Upper Bound of the

input labels to the output.

Figure 3.6 shows a few example security lattices on the left, where labels

Unclassified (U), Secret (S1 and S2), and Top Secret (TS), are arranged in either

a linear or a diamond lattice. Conventionally, given two labels in a lattice, the

output is labeled conservatively with the Least Upper Bound of all the input

labels. This assumes that all inputs could be potentially effective. Precision in

label propagation, on the other hand, requires that the output have the least

conservative label that does not allow any illegal information flows.

Our insight for propagating labels precisely through a boolean function is to

use the input values and the boolean function itself to determine a Candidate Set

of labels that are all information flow secure assignments, and then choose the

least conservative label from this set. As an example, in order to be information

flow secure when an output is labeled S1, we have to check whether the only

inputs that can affect the output should have labels that are dominated by S1 in

the lattice. In case there is more than one non-comparable label in the Candidate

Set, we show that it is information flow secure to choose any one of them to be

propagated.

80

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

To describe how we determine candidate labels, we first define the Conflict Set

of a label. The conflict set for a label includes labels that are either more conser-

vative or labels that are mutually unordered with the label under consideration.

Figure 3.6, on the right, shows a directional graph where the edges represent con-

straints on information flows for a square three-level lattice. In this graph, we

refer to the set of labels that have edges directed towards a label as its conflict set

(for example, S2 and TS for S1 in Figure 3.6). The edge from S2 to S1 indicates

that S2 should be isolated from S1, and the edge from TS to S1 indicates that no

information should leak down from TS to S1. For the purposes of non-interference,

once an output is assigned a label, no input with a label belonging to the assigned

label’s conflict set should be able to affect the value of the output.

Label-propagation algorithm for a general lattice: Algorithms 1 and 2

describe the complete procedure. The algorithm takes as inputs the logic function

and the lattice of labels, and has to generate a shadow logic function that tracks

information flow through the given logic function. This requires enumerating the

entire truth table for the shadow logic function, and for each row of the shadow

truth table, assign a precise yet safe security label from the lattice to the output.

In the first step, the algorithm generates inputs for the truth table of the

shadow logic function by iterating over every possible assignment to the function’s

inputs and their labels.

81

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

Algorithm 1 This figure shows the main algorithm for propagating labels through
“F” when the labels belong to a general lattice. For each row of the shadow truth
table, the algorithm works by determining the lowest possible label such that no
combination of inputs with a label above or incomparable with the chosen label
can affect F’s output.

procedure propagateLabel
input F : combinatorial logic function
input Labels : set of all labels
input Lat : lattice representation of all labels
input X : set of inputs to F with values in 0,1
input L : set of input labels with values in Labels
output Sh F : truth table for shadow F
XSet← Set of all possible assignments to X
LSet← Set of all possible assignments to L
{Shadow truth table requires all combinations of
X ∪ L}
for each XRow ∈ XSet do
for each LRow ∈ LSet do
Candidate set← φ
{All labels are candidates for output label of
the row}
for each label ∈ Labels do
{C : Set of conflicting inputs for label}
C ← φ
for each li ∈ LRow do
if Lat.conflictsWith(li,label) then
{xi is the input corresponding to label li}
C ← C ∪ {xi}

end if
end for
{Check if C affects F (Xrow)}
if not isAffectedBy(F, Xrow, C) then
Candidate set ← Candidate set ∪ {label}

end if
end for
Sh Frow ← Lat.ChooseMin(Candidate set)
Print Xrow, Trow, Sh Frow

end for
end for
end procedure

82

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

0 0 S2 S1 S1|2

0 1 S2 S1 S2

1 0 S2 S1 S1

1 1 S2 S1 TS

a b

out

Shadow AND Logic

a b aL bL out L

0 0 U S1 U

0 1 U S1 U

1 0 U S1 S1

1 1 U S1 S1

a b out

0 0 0

0 1 0

1 0 0

1 1 1

AND Logic (A)

(B)

Figure 3.7: Tracking Information Flow through a 2-input AND Gate: Figure
shows truth table for the AND Gate (left) and a part of its shadow truth table
(right). The shadow truth table shows the interesting cases when both the inputs
a and b have different labels (e.g. aL = U and bL = S1). For the top half, each row
of the shadow table calculates the label for the output (outL) by checking whether
the conservative input b can affect the output out. This requires checking out for
both values of b in the table on the left. The gray arrows indicate the rows that
have to be checked for each row on the right. The bottom half has two unordered
labels, and so it has to check both labels as candidates for the output, and look
up three rows from the AND truth table.

The second step executes for each row in the shadow truth table. The algo-

rithm begins by considering every label in the lattice as a potential candidate label

for the output. For this, the algorithm computes the current label’s conflict set

and uses these to find inputs that have labels belonging to this conflict set. The

key idea is to check whether any combination of inputs that have conflicting labels

can affect the value of the output. If the output is affected by some combination

of such inputs, then the current label under consideration is not a valid candidate

output label. The algorithm then moves on to examine the next label, until, in

the worst case, the most conservative label is added to the candidate set.

83

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

Algorithm 2 This function is used in Algorithm 1, to checks if the value of a
combinatorial function F is affected by a given subset of its inputs

procedure isAffectedBy
input F : combinatorial logic function
input Xrow : set of input values
input Crow : a subset of inputs
funcrow ← F (Xrow)
{Toggle each combination of subset’s elements, and}
{Check if F’s output changes}
for each Comb ∈ power set of Crow do
Combinv ← {ci}, where ci ∈ Comb
funcinv ← F (Combinv ∪ (Xrow − Comb))
if funcinv 6= funcrow then
return 1

end if
end for
return 0
end procedure

Note that the most conservative label is always a candidate label, as informa-

tion can flow from all labels to it (i.e. its conflict set is null). This ensures that

the algorithm is guaranteed to assign at least one label for the output for every

row in the shadow truth table. Having considered all labels, the algorithm will

output a candidate set of labels that are all safe to be assigned to the output.

Also, note that the order in which labels are considered is not important.

In the final step, once a candidate set of labels is found, the algorithm will

assign the output label most precisely by choosing a label from the candidate set

that is the least conservative (or is lowest in the lattice). This choice depends on

the two conditions below:

84

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

Handling Totally Ordered Labels: If one label in the candidate set is totally

ordered and lesser than all the other candidates (i.e. there is a unique lowest

candidate label), assign it as the output label.

Handling Mutually Unordered Labels: If there are multiple, mutually unordered

labels in the candidate set (e.g. S1 and S2) that are lower than all other labels in

the candidate set, then it is safe to choose either one as the output label. We will

analyze this case in more detail.

Analysis of the Algorithm: For most cases, there is one label that is the

lowest among the candidate labels. Multiple incomparable choices emerge when

multiple non-comparable labeled inputs have no effect on the output. This occurs

for example when both inputs a and b are 0 and have labels S1 and S2 from a

square lattice (as in the first row of the lower half of the shadow AND truth table

in Figure 3.7). For this situation, neither S1’s conflict set by itself nor S2’s conflict

set by itself affects the value of the output, and hence both S1 and S2 could be

assigned to the output label legally and belong to the Candidate Set.

Conventionally, given two inputs with labels S1 and S2, the output would

be marked as Top Secret. Following the informal descriptions presented in prior

dynamic gate-level information tracking [70], one may be tempted to label the

output as Unclassified, since neither S1 nor S2 by itself affects the output. How-

85

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

ever, the combination of S1 and S2 definitely affects the output, and hence the

informal treatment in [70] does not extend to a general lattice.

We propose that selecting any one of the lowest candidate labels as the output

label, even though they are mutually unordered, ensures security while at the

same time maintaining precision. Security is maintained because we have checked

that the input’s conflict set is ineffective, while not using Top Secret allows the

output to remain at a lower security level.

To further understand why choosing any one label is secure, consider the fol-

lowing example. Add a new label S3 to the square lattice such that S1 dominates

S3 while S2 is incomparable with S3. The logic function to be shadowed has two

steps: in the first step, S1 and S2 inputs produce an intermediate output, which

is later AND-ed with S3-labeled input to create the final output. The tricky case

occurs when all three inputs individually do not affect the output, for example

when the functions at each step are 2-input AND gates, and all three inputs are

0s. When we choose S1 after the first step, 0S1&0S2 = 0S1.0S1&0S3 = 0S3. When

we choose S2, 0S1&0S2 = 0S2.0S2&0S3 = 0S3 or 0S2. Finally, we end up with the

output label being either a precise S3 or an imprecise (but safe) S2. In either case,

the output was not labeled conservatively as Top Secret.

Finally, we would like to note that the algorithm presented here is not op-

timized for efficient execution time. Rather, it is deliberately independent of

86

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

HOST

(0/1)T

DEV 1

(â)U

DEV 2

(0/1)T

Figure 3.8: Information leaks in a USB system: Once the Host controller receives
an ACK from the untrusted device, its state is untrusted. When it broadcasts
next, the untrusted information spreads to all trusted devices on the bus.

performance optimizations such as traversing the lattice from bottom to top, and

emphasizes how the security property is enforced.

3.5 Experimental Analysis

We will now apply ∗-logic to verify whether a shared Universal Serial Bus

(USB) follows information flow policies.

3.5.1 Experimental Setup

Our particular test scenario works to demonstrate that we can in fact guarantee

non-interference between devices on the USB bus. Specifically, our experimental

setup consists a completely specified Host (with each bit (0|1)T)) and 2 Devices.

Device 1 is untrusted and unspecified and Device 2 is trusted and specified. We

87

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

want to guarantee that all unintended information flows are contained for all

possible values of untrusted inputs and state, i.e. for any communication between

Device 1 and the Host there should not be any untrusted information flowing to

Device 2.

For representative information flow policies, we choose three security lattices.

The first lattice L0 is the simplest two level lattice such as Trusted ⊑ Untrusted.

The second lattice (L1) is a 4-level linear lattice (Unclassified ⊑ Secret 1 ⊑

Secret 2 ⊑ Top Secret, and the final one is a square lattice (L2) with four

labels and 3 levels (Unclassified ⊑ Secret 1, Secret 2 ⊑ Top Secret). These

lattices cover the cases where labels are both strictly ordered and partially ordered,

and also the case where there are at least three independent security levels, as

required by many military applications.

Methodology

Our verification toolchain can analyze hardware designs written in behavioral

Verilog or VHDL so that hardware designers can use their tools of choice for de-

sign entry. Verilog/VHDL designs are then synthesized using Synopsys Design

Compiler into a gate-level description (netlist) using the and or.db library. The

result of this synthesis is a netlist that consists of just AND, OR, and NOT gates

along with registers and memory. This netlist is input to our abstraction tool,

88

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

which replaces gates and bits of the netlist with their abstract counterparts and

outputs the abstract netlist. The abstract netlist is then input to our augmenta-

tion tool that generates information flow tracking logic for the abstract design to

create the final netlist. As both the final augmented design and the intermediate

abstract design are full hardware system designs in and of themselves, each can

be simulated using existing hardware synthesis and simulation tools such as Mod-

elSim or Altera Quartus. Figure 5.8 shows the results of this synthesis process

for the USB host and devices for each of the three tested lattices. We obtained

these area and synthesis numbers using Synopsys Design Compiler and targeting

the SAED 90nm technology library [1].

To conduct an experiment, we first initialize the system with the Master’s

state machine being instantiated as a set of abstract bits and logic, represented

as 00 and 01 for concrete 0 and 1 respectively, and the shadow state bits marked

as trusted (0). Device 1 is unknown and untrusted, hence each device bit is 11

to represent ∗ and each of its shadow bits is 1 to represent untrusted. Device 2

is known (so as to carry out a valid USB transaction during the test, but this

is not required for the verification) and trusted. The information flow policy is

encoded as the satisfiability question: ”Does the shadow bit for the data to a

trusted device ever become 1, i.e. untrusted?”. To decide this, we simulate the

89

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

USB
Area (number of gates) Verifica�on Time (sec)

Base L0 L1 L2 Base L0 L1 L2

TDMA Host 692 6242 9392 11852 1.3 11.01 14.23 17.53

Device 472 4282 6580 8140 1.2 7.79 10.19 11.96

Figure 3.9: Verifying USB Host and Device Controllers for three label lattices:
Size of each controller grows with lattice complexity (L0 to L2), but these aug-
mented designs are for verification purposes only. It takes less than 30 seconds to
synthesize and simulate the controllers through one time schedule of the TDMA
schedule super-imposed on the shared bus.

abstract machine representation in ModelSim and stop when we have completed

one loop of the USB traffic scheduler.

3.5.2 Experimental Results

We executed our test scenario, where a trusted known Host communicates with

an unspecified and untrusted Device 1. Specifically, we have the Host perform a

write transaction with the Device which consists of first sending an OUT request

packet, followed by data, and then completed by a handshake acknowledgement

packet from Device 1. This test scenario was executed and untrusted information

from Device 1 does in fact flow to Device 2 even though they are not physically

on the same bus. Since Device 1 is untrusted, the Host’s entire state becomes

completely untrusted when it attempts to receive an acknowledgement from De-

vice 1. Subsequent transactions between the Host and Device 2 cause the Host’s

now untrusted state to flow to Device 2, making Device 2 untrusted as a result.

90

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

To solve this problem, it is critical to restore the Host back to a trusted state

prior to communicating with Device 1. To do this, we implement a time-division

multiple accesses (TDMA) scheme enforced by the Host following a trusted sched-

ule. This TDMA based scheme arbitrates between untrusted and trusted states

for Device 1 and Device 2 respectively. If the time slot expires when executing

in an untrusted state, the state is restored back to a trusted one so that commu-

nication between Device 2 can be completed without any untrusted information

flows.

Simulating the design for a complete TDMA time slot shows that in fact

all unintended information flows are eliminated, and that no information leaks

from Device 1 to Device 2. We simulate a complete transaction, where the Host

completes a full round of communication with Device 1 with all transmitted values

from Device 1 to the host being unknown. Once this transaction completes, the

Host returns back to a trusted state. Thus on a subsequent transaction with

Device 2, the data bit has a shadow value of 0 (trusted) and thus no information

from the untrusted Device 1.

In the end, for a system with one Host and 2 Devices, we were able to verify

the Host for one particular time schedule in less than 30 seconds for all lattices.

In the process, we are only required to specify 692 of the total 1636 gates in the

91

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

system. Further, the amount of concretely specified state does not increase with

the number of devices.

3.5.3 Discussion

As shown by our evaluation, one of the main advantages of ∗-logic is that it

integrates directly within existing hardware design flows. The hardware designer

has to only initialize the augmented design with some known firmware and the

security labels, and after simulating the augmented system, check to ensure that

no trusted output or memory region is labeled as untrusted.

∗-logic can potentially scale well with increasing design sizes, as the size of

the augmented design only increases linearly with the increasing design size. This

linear growth is possible because ∗-logic relies on a very coarse abstraction, i.e. a

bit can be 0, 1, or ∗, and tracks information flows at a very coarse granularity.

Due to this, it requires the designs themselves to very carefully manage the flow

of bits, and some such design techniques have been demonstrated by prior work in

dynamic GLIFT [70]. Such techniques, proposed to control the flow of untrusted

information, can also be used to manage the flow of unknown information, and in

the end design a system that meets information flow policies even in the presence

of unknown and untrusted bits.

92

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

Our primary future work is to integrate ∗-logic with more sophisticated verifi-

cation tools that rely on finer grained abstractions (e.g. that understand integer

arithmetic) to prove that a set of designs are secure. For example, ∗-logic requires

instantiating a bus controller with a particular time slot for verification purposes.

With finer grained abstractions, we could prove that the controller is secure for

any time slot value.

3.6 Conclusions

Many high assurance systems are built around small components that are re-

sponsible for maintaining the integrity or confidentiality of the overall system. In

this paper we describe how arbitrary information-flow properties of such hardware-

firmware components can be statically verified using a set of digital design trans-

forms and traditional design tools. Towards this end, we propose a new verification

technique that abstracts out all parts of a given system that is irrelevant for in-

formation flow security, enumerates all states of this abstract design, and verifies

that a trusted signal is never affected by untrusted ones.

Embedded systems are trusted by people to do everything from stopping their

cars to controlling the beating of their hearts, yet all too often these systems are de-

signed with security as an afterthought at best. Our hope is that by transforming

93

Chapter 3. Theoretical Foundations of Gate-Level Information Flow Tracking

security constraints into functional verification constraints these types of problems

will be more understandable and tractable to practicing hardware/software engi-

neers. In this paper we have taken a tangible step towards this vision with respect

to information flow security, however this cannot be the end of the story. More

work is needed to understand how cryptographic and other label-modifying func-

tions can be properly integrated, how these hardware/software-level methods can

be more suitably married to the many powerful language level techniques already

known, and how engineers may most effectively be informed of security issues

early in their design process, just to name a few. However, even with these open

problems, we believe the tools developed herein are useful in and of themselves as

demonstrated by our work verifying a USB bus controller.

94

Chapter 4

Execution Leases: A
Hardware-Supported Mechanism
for Enforcing Strong
Non-Interference

We introduce Execution Leases, an architectural mechanism that makes infor-

mation flows explicit to the programmer, including timing, covert and implicit

flows through control/architectural state. The basic idea behind a lease is that

control of a portion of the machine is given over to an untrusted entity for a fixed

amount of time and within a fixed range of addresses. After the lease expires,

control is yanked back to the trusted code and any remnants of the untrusted

actions are purged from the critical machine state such as the PC (registers and

main memory are not part of the critical machine state and retain their values and

their security labels even after a lease expires). The hard part is performing this

operation with reasonable overheads and in a way that can be demonstrated to be

95

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

correct through inspection of the gate-level implementation alone. Because of the

relative freedom provided by Execution Leases (as opposed to the past approach

of ensuring there is never any way for untrusted or sensitive code to effect the

program counter), the resulting code can be a 100x faster in some cases, several

factors smaller, and far easier to program. Specifically, our contributions include:

• The introduction of Execution Leases, both as a programming model in the

abstract and as implemented by a specific ISA for high assurance systems.

•New methods for verifiable architectural information-

containment by design, including a description of the various microarchitecture

modifications needed to bound information flows in our processor.

• The evaluation of a complete Execution Leases implementation, including a new

Lease-based ISA, a small language and compiler that target this ISA, a fully syn-

thesizable prototype, a complete gate-level information flow analysis of the final

design, and results from experiments with several hand-written applications.

We begin with the specifics of the architecture, along with details of its im-

plementation and application, in Sections 4.1 and 4.2. Following this, we describe

experimental results in Section 4.3 and conclude with Section 4.4.

96

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

4.1 Architecture

To understand the reasons behind Execution Leases, we begin by describing

the many ways in which information can leak in a traditional processor, and the

lengths that the original GLIFT processor went to in order to prevent them.

4.1.1 The Problem with Overprotecting Critical State

Constructing an efficient architecture that can strongly contain the flow of

information, yet still maintains a good level of programmability is difficult, and

the philosophy for dealing with this problem in the original GLIFT work was

simply to ensure that critical machine state could never become tainted. While

this sounds straight forward, it is quite a bit harder than it sounds. It means

that the architecture has to be constructed in such a way that it is impossible for

any data in the system (which could then turn out to be tainted) to ever effect

the program counter, the instruction memory, or the address of a store. If any of

these were to be tainted, the entire state of the machine would quickly (in one or

two cycles) end up marked as tainted, and there would be no way to undo that

damage.

As an example: the original GLIFT architecture ensured that it was impos-

sible for the program counter to ever be influenced by the the result of some

97

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

computation (and thus risk being tainted). This, of course, means no conditional

jumps of any sort, and in fact ensures that programs will always execute a set

fixed number of instructions at every invocation. While the machine would no

longer be Turing-complete, in many cases the complete lack of conditional jumps

could be compensated for by predication. Because predication transforms control

dependencies into data dependencies, almost all of the instructions in the orig-

inal GLIFT-enhanced architecture could be executed conditionally without ever

effecting the program counter (with the obvious exception of jumps).

Likewise, the architecture had to prevent the execution of indirect loads and

stores. Consider the information flow in the statement M[x] = 1. In this statement,

there is clearly a flow of information from x to M[x], but there is also a much more

subtle implicit flow of information from x to M[y] where x 6= y. Why? Because

by observing that M[y] 6= 1, we have now gained some information about x. If a

store is to be executed and the target address of the store is tainted, information

flows from that store the every single piece of memory in the system (in other

words every possible value of y). If we think about the flow of information at

the gate level, this becomes very clear. The tainted bits of the address flow into

the memory decoder, and as a result all of bit-lines are tainted. When the write

actually happens, we have to assume that any of those bit-lines could have been

active and thus the write could have happened to any of the possible memory

98

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

addresses. To deal with this problem, the original GLIFT architecture prevented

any indirect loads and stores, instead enforcing that all of the loads and store

used an address that was a constant offset from some untaintable counters (kept

untaintable in much the same way as the PC was above).

The final, and perhaps most obvious step to keeping the core architectural

state from becoming tainted in the original GLIFT architecture is to never allow

the execution of tainted code. Tainted code, will always end up tainting the PC,

the load and store address, and any other state effected by the execution of that

code (i.e. everything), as shown in Figure 4.1.

The ramifications of this philosophy of never allowing any of the processor

critical processor state to become tainted are enormous. For example to do a table

lookup (a very common operation in AES and many other crypto algorithms), due

to a lack of indirect loads, the original GLIFT architecture would have to loop over

all of the entries and predicate out all of the loads that were not the one specific

index that was to be looked up – a slow and code intensive prospect. It also

lead to an inability to have functions, and to bound the effect of an execution of

tainted code1. The approach we take in this paper is far less constrained, allowing

all of this critical state to become tainted over bounded periods of time, while

1If you are considering a confidentiality policy where secrets are tainted rather than untrusted
data, this ability would be particularly useful because it means that code itself could be secret
and there would be no way to learn either what the code is or the results of its computations
without observing bits marked as tainted (secret)

99

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

PC

+1

through decode

is jump?

jump target

Reg

File

PRegs

0

1

Instr Mem

Data Mem

Figure 4.1: Figure shows the basic GLIFT processor running tainted code. The
taint (in gray) spreads to the entire system state and makes it practically useless
to track information flows.

always keeping the minimal trustworthy control necessary to return the machine

to a fully untainted state.

4.1.2 Bounding and Cleaning up Tainted State with Ex-

ecution Leases

To understand how an Execution Lease helps to solve this problem, let us first

consider the execution of arbitrary tainted code. This case, where the bits of

the actual instruction are tainted, is the most difficult to bound. An untainted

function foo (e.g. some trusted function), wishes to call a tainted function bar

(e.g. some arbitrary code). On a traditional machine, this could be implemented

with a call and return. The problem is that once the PC jumps to tainted code,

everything that code does is tainted, even the eventual return instruction.

100

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

Instead we need a way to jump into that tainted code such that a) we can get

back to foo without learning anything about what happened inside bar, and b)

we need a way to bound all the state that can be changed by bar so that foo

can’t learn about bar by observing things that bar did not do (i.e. bound the

implicit flows). Because confidentiality and integrity are different forms of the

same problem we can phrase the exact same property by just changing the way

“taint” is interpreted after the analysis is complete.

The idea behind an Execution Lease is to grant access to a limited amount of

state of the machine (including the PC and a portion of the memory) for a fixed

and predetermined amount of time in such a way that i) enforcement of the lease

can never by affected by tainted data, ii) the critical tainted state (e.g. the PC)

can be scrubbed leaving no residue of tainted data behind, and iii) that it is clear

through a gate-level analysis of the flow of information that properties (i) and (ii)

hold (e.g. it does not depend on some property of the software or some semantics

of some state to show that (i) and (ii) hold). We implement these execution leases

with special instructions settimer and setbounds that enforce a bound on the

number of instructions that can be executed before control is restored back to the

caller and a bound on the accessible memory region respectively. However, to see

why and how these semantics keep provably tight control over the flow information

we need to explain the implementation of the mechanisms behind these semantics.

101

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

4.2 Mechanism

To make sure that the called context (the leasee) does not interfere with the

calling context (the leaser), an Execution Lease must enforce a bound on the

control flow of the leasee. This ensures that control is returned to the leaser

in a manner that is in no way dependent on the leasee. In contrast, during a

typical function call, the callee determines when (and if) to return to the caller.

Additionally, the leaser must enforce a bound on the address space accessible to

the leasee to prevent information from being written explicitly throughout the

entirety of the machine. Finally, we need to ensure that both control and address

bounding can be performed without ever making an architectural decision based

on the taint values. This is a subtle but very important point. If we use the

taint values in determining whether to “admit” or “deny” a particular action,

the fact that the status of that action (admit/deny) is visible to the architecture

implies that a dangerous flow of information has taken place. In such a case

it may be possible to, for example, try writing to particular addresses to see if

those writes are permissible, thus learning something about the values written

there. In a very real sense, if the architecture is not separated from the GLIFT

logic, the GLIFT logic becomes part of the architecture logic, and would then

be subject to same potential for covert channels and implicit flows as any other

102

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

PC

+1

through decode

is jump?

jump target

Reg

File

PRegs

restore PC

timer expired?

0

1

0

1

Untainted

> start

< end

Data Mem

Instr Mem

Memory Address

Bounds

Figure 4.2: Execution Lease Architecture: Lease logic (dashed) bounds tainted
programs in both time and space, and prevents the entire system state from be-
coming tainted. PC is restored to an untainted restorePC value when an untainted
timer expires. Lease logic is also used to bound the memory regions the tainted
code can access.

architecture logic. Later in this section, we show how this tangling of GLIFT logic

and architecture could happen when propagating information flow for an untrusted

store instruction. Instead, we need to build an architecture that handles space

and time isolation both cleanly (so we can see it to be true at the gate level) and

inherently (to avoid the tangling data and taint bits).

4.2.1 Inherent Enforcement of Time-Bounds

Instead of a call-and-return, we can ensure that control will be restored to the

leaser context using a timer. In essence, one leases the program counter out to

the leasee (which may or may not be tainted and where that taint might either

indicate secret or untrusted code) for a fixed amount of time. Once the timer

103

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

PC Timer

cur_lease

== 0?

Rest.

PC

Rest.

SP

Rest.

Mode

timer expired? restore PC/SP/mode

Memory

Bounds

00000000

cur_bound

current

mem bound

0001111111

0000000000

0000111111

0000011111

1000 ****

10001 ***

100011 **

Figure 4.3: Figure shows the information that has to be stored as part of a stack
of successively nested execution leases. Note that a restore SP (here, the cur lease
and cur bound registers are the stack pointers) is stored with each stack because
we do not want to compute the next SP from the current (possibly tainted) SP
when a lease expires.

expires, control is automatically restored back to a return PC value that was

provided by the leaser when it invoked the lease. Figure 4.2 shows the Lease

architecture, and a scenario where untainted code leases the CPU to some tainted

code. The timer value itself and the restore PC are untainted, and when the

timer expires, a MUX is used to reset the PC to the restore PC. Correspondingly,

the GLIFT-logic observes that the MUX output is dependent solely on untainted

values (i.e the old tainted PC has no effect), and marks the PC as untainted. Of

course nothing is ever this simple, and here the complexity lies in the fact that

we need to support multiple nested leases to support multi-level procedure calls.

The need for multiple nested leases naturally suggests maintaining a stack of

lease records that stores the time the lease is active for and the PC value that the

control must return to when the lease expires. We have to implement a stack that

104

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

D
e

m
u

x

Sub 1

0xabcd

0
1
2
3

settimer ?

Add 1

newtimer_val

00011111

PC Timer stack PC Timer stack

Cur Timer

Instrn

00011110

0

D
e

m
u

x

00001111

0xabcd

0
0
1
2
3

settimer?

Add 1

newtimer_val

00011111

PC Timer stack PC Timer stack

Cur Timer

Instrn

Rt Shift

Bit Mask 0000 1111

Figure 4.4: Preventing taint explosion through timers: Figure shows two pos-
sible timer implementations in a situation where some tainted code is executing
under time bounds set by untainted code. On the left, using an intuitive timer
implementation, the taint (gray lines) spreads through the logic and marks the
previously untainted timer value as tainted (shaded gray). However, the figure on
the right shows that by using a bit-mapped timer encoding and by masking off
the leading 0-valued bits from the tainted new timer value, we can ensure that the
tainted select input to the MUX can only choose between two identical untainted
values for the leading 0-valued bits. This makes it explicit at the gate level that
the tainted new timer cannot affect the existing lease timer bounds.

stores these attributes, but where the information flow containment is inherent in

its gate-level implementation.

With each lease entry in the stack, its leaser’s location on the stack is also

recorded as part of the lease entry (restoreSP in Figure 4.3). The restoreSP

thus carries the taint of the leaser, and this allows the Lease-CPU to pop leases

by setting the cur lease register to its restoreSP value without having to com-

pute the next cur lease value from its current value following the usual stack

semantics. If we always use the current value of cur lease to compute the next,

once the cur lease register is tainted, it will prevent itself from ever being reset

to untainted.

105

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

To implement successively nested timers, we encode the timers as a bit-vector

where each bit represents a minimum time unit. For instance, a timer of value

00...0111 will execute for three time units. Decrementing these timers then re-

quires shifting the register to the right once every time unit with a 0 entered at

the MSB. Nesting of successive timers is enforced at the bit level by using the 0s

in the right-shifted current timer value as the prefix of the next timer. Figure 4.4

(right side) shows how this mechanism provides gate-level guarantees as opposed

to an intuitive scheme that used subtractors to decrement the timers (left side

in Figure 4.4). Using the intuitive scheme, an untrusted select input to a MUX

decides the next timer value from among the decremented current timer or a

new timer value provided by the settimer instruction. Even though the decre-

mented timer is trusted, its bit-values could differ from the new, tainted timer

value, and because the select itself is tainted, GLIFT logic will mark the MUX

output as tainted. As a result, even though we can manually observe that the

intuitive implementation is functionally correct, its semantics are not inherent in

its gate and bit-level implementation. Using our scheme, masking off the trusted,

leading bits (0s) ensures that a tainted select chooses between two trusted 0s for

the leading bits of the next timer value. As a result, the 0s in a timer value can

be shown to increase monotonically until it expires completely. On each cycle,

106

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

the processor logic detects if the current timer has reached 0 (expired) and if it

has, the processor’s PC is assigned the current restore PC from the stack.

The timers are bit-encoded in such a way that a few very small sizes are

supported in addition to the largest function being covered. In general, since

leases require the timing behavior of functions to be specified statically, there

is going to be a correlation between the timer encoding and the execution time

overhead as compared to a general-purpose version of the program, and as our

application suite grows, developing encodings with a wide range will become more

important. Since very small leases are often used for small functions and indexing

into arrays, in our prototype, we chose to assign two bits each for time granularities

of 4 and 32 instructions, and four bits each for 256, 2K, 4K, and 8K instructions.

This simple encoding allows lease durations from 4 to 58440 instructions, and is

sufficient to cover our application suite.

Finally, we note that the stack of timers come into play only when at least

one lease has been set. The processor begins execution in GLIFT mode in a base

context that has no corresponding timer, which allows for trusted programs that

execute in never-ending loops. We expect that the processor will begin execution

in trusted mode in this base context, and because of this the first lease entry

on the PC stack is expected to always be trusted. We have already discussed

mechanisms used to implicitly reset the taint values for important processor state

107

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

like the PC, (and thus the Instruction word) and the cur lease register. Now we

discuss our mechanisms to precisely enforce memory bounds for loads and stores,

and the reason behind a power-of-2 aligned memory bounds field.

4.2.2 Inherent Enforcement of Memory Accessibility

Consider a scheme for enforcing memory bounds that allows a store to go

through to memory only if it is within the specified bounds, and some tainted

code executing a store instruction. One intuitive option to build such a memory

controller would be to use comparators to check if the store address is within

bounds, and forward the store instruction to memory only if it is. Figure 4.5

(left) shows how GLIFT logic will propagate the taint through such a bounds-

enforcing logic. Since the address itself as well as the memory’s chip-enable is

tainted, GLIFT logic for the memory decoder marks all the wordlines as tainted.

Instead, in our architecture (right side of Figure 4.5), memory bounds are

stored in ternary format where trailing “∗”s represent the desired memory bounds

(for e.g. setting bounds register to 10** enforces bounds from 1000 to 1011). A

memory controller then composes the address that is actually sent to memory

by taking the high bits that are set to either 1 or 0 from the memory bounds

register and concatenating the lower bits from the incoming address generated by

(potentially untrusted) code. Through such a concatenation, the address sent to

108

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

0b10

0b11

>=

<=

0b00

EN

ADDR

Store value

BL BL

WL

…

…

Mem Bound Start

Mem Bound End

Tainted Store Addr

Decoder

Address

Comparators

0b1*

0b00

BL BL

WL

…

…

1

ADDR

Mem Bound Range

Tainted Store Addr

EN

Store value

Decoder

Address

Bit-Mask

0b10

Figure 4.5: Figure shows (on the left) the problem of implementing memory
bounds in a naive fashion, where a tainted address causes all the Word Lines and
thus the entire memory to be marked as tainted. On the right, with a bit-masked
memory address bound, only the currently accessible memory range is marked as
tainted by the GLIFT logic.

memory will always be within the bounds, and the isolation is handled cleanly.

Further, this concatenation will create a new address that is partially untainted

(the bits that came from the untainted bounds) and only partially tainted (the

remaining lower bits extracted from the tainted address). By sending this address

and its taint simply to the GLIFT-generated shadow memory decoder, the shadow

AND-gates inside the decoder will automatically taint only the address range

indicated by the tainted “∗” bits. Thus, information flow containment through

leases is made inherent at the bit level.

To ensure that a setbound instruction creates successively nested memory

bounds, the bounds are stored as a combination of address and its mask and

are thus restricted to be power-of-2 aligned. Each successive bound is composed

using the current bounds’ most significant unmasked bits and concatenating the

remaining bits from the setbound instruction. In the next section, we show how

memory bounds are used in our benchmark programs for function calls as well as

109

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

for making protected indirect memory accesses. Since these happen independently,

we provide independent stacks for the PC and memory bounds (i.e. memory and

PC bounds have independent timers). Further, we realized that allowing for two

concurrent memory bounds makes it convenient for programs to share memory

though global memory regions while also working in their local frames. As a result,

we have two stacks that enforce two concurrent memory bounds in addition to the

stack of PC timers.

4.2.3 Executing General Purpose Code

We can use the gate-level timing and memory bound guarantees that leases

offer to execute general purpose code, specifically conditional jumps and indirect

memory accesses, within a lease. For the leasee to be able to use general-purpose

instructions, the leaser must set the Mode bit for the lease, indicating a general-

purpose lease. The mode in which the current lease is executing (GLIFT or

General Purpose) forms part of the current context (as shown in Figure 4.2).

The leaser’s mode is also stored along with each entry in the PC stack so that

the current mode register can be restored to a trusted leaser’s mode when a

lease expires. An interesting feature of our architecture is that once a lease is

set in general purpose mode, no further leases can be set until the lease expires.

Leases can only be set in GLIFT mode to ensure that the fixed size lease stack

110

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

cannot be used to leak information covertly, while within a general purpose lease,

conventional call-and-return semantics can be used to implement functions.

Conditional jumps help performance because they can allow the lease time to

be limited to the maximum of the two conditional paths at an if − else branch

instead of executing both sides of the branch. Similarly, indirect memory accesses

allow programs to index into arrays arbitrarily without having to iterate over the

entire array and predicating out the desired index. In the next section, we present

the Lease ISA and how it can be used to implement a high level language.

4.3 Evaluation

Now that we have described the basic microarchitectural structures in our

Execution Lease prototype, we provide more details of how these structures are

exposed to the programmer and compiler. To demonstrate that such an approach

can lead to a correct and relatively easy to program secure microcontroller, we

have built a fully synthesizable prototype instantiated on an FPGA and a compiler

that translates high-level constructs like functions, loops, and array accesses into

machine code with lease instructions, jumps and indirect memory accesses. In this

section we present performance and area results for this prototype and describe

111

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

several of the more important features of the design through code examples and

comparisons to the original GLIFT work.

4.3.1 A New ISA for Execution Leases

The original GLIFT architecture uses predication to prevent tainted data

from ever affecting the PC, while a special countjump instruction allowed a

fixed number of unconditional jumps to support fixed-length loops, and special

load-looprel and store-looprel instructions allowed programs to access a fixed

range of memory addresses in the loop (by using an immediate value for the base

address).

In contrast, our Execution Lease ISA allows the caller of the lease to set

explicit bounds on the range of memory addresses that the callee is allowed to

access (using setmembound-hi or setmembound-lo), and the time the callee will

execute for (using settimer). The setbounds instructions set the address bounds

for a given time duration and along a given power-of-2 aligned boundary, while the

settimer instruction sets a timer, the general-purpose mode, and automatically

stores a PC to be restored when the lease expires.

Function calls in the new assembly: We have chosen to implicitly record

the third instruction after settimer (i.e. PC +3) as the restore-PC, allowing for

one instruction in the middle for an unconditional jump to the callee and another

112

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

instruction that spins in an infinite loop to wait out any remaining time on the

lease if the callee finishes early. The address of this infinite-loop instruction is

suggested as a return address to the callee as part of the calling convention. Note

that even if the callee disregards the return PC and is still executing some code

when the lease timer expires, the PC will be yanked back to the restore PC that

was recorded when the lease timer was set. The return PC is suggested so that

if a lease duration is longer than required, the callee need not be concerned with

waiting out their leases or completing the lease precisely without spilling over into

others’ code. If the time is insufficient, leases will still ensure that the effects of an

unusual code-path do not propagate outside the current time and space bounds.

A function call looks like the snippet of assembly code in Figure 4.6 (that calls

an I2C bus initialization function).

Accelerated array accesses: The setbounds and settimer instructions

are also used to enable indirect memory accesses (used for accessing array ele-

ments). Since the GLIFT ISA allowed only direct memory addressing, indexing

into an array required using a loop that iterated over the entire array. The chosen

address was accessed by using a predicated load (or store) that is set to True at

the desired index.

For example, consider a code snippet of the SubBytes function for an imple-

mentation of the AES [23] encryption algorithm in the original ISA (Figure 4.7).

113

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

#[Pred] Instruction Operands

[1] setboundg 1000000**, 72 #bounds for global memory

[1] ... #copy args, ret-addr to callee function

[1] setboundl 1010100***, 72 #bounds for local stack frame

[1] settimer 1, 72 #timer := 72. mode := 1 (general purpose)

#restorePC := PC + 3

[1] jmp i2c_init #jump to callee function

label13: #function returns here: an infinite loop

[1] jmp label13 #to wait out remaining lease time

[1] load-direct r0, 0x29f #arrive here when lease expires

Figure 4.6: Figure shows the assembly instructions generated to implement a
lease called by a programmer in the high-level language. The setboundg and
setboundl instructions set the address bounds for all subsequent memory accesses
for the next 72 instructions. The settimer instruction then initializes the next
lease with a mode (general-purpose or GLIFT), a timer and a restore PC, and the
following unconditional jump sets the PC to that of the callee function. The PC
is expected to return to jmp label3, where it will spin until it is restored to the
load-direct instruction once the PC timer has counted 72 instructions. Note
that the actual function required 42 instructions, and the corresponding local and
global timers would be 43 and 50 respectively. Using our bit-encoding of the
timers, the timers are set to 72 instructions.

The function substitutes the value in the state matrix with values in the SBox.

The code in Figure 4.7 loads the value in the state matrix (which in this example

is stored at address starting at 0x100) and every element serves as an index to

the SBox and is substituted by the value in the SBox (which is stored at address

0x300). The SBox is a 256 entry table, correspondingly the countjump instruction

0x05 loops back 255 times just to read a single value from the SBox table [70].

In Lease ISA, the setbound instructions set a memory access bound for a lim-

ited amount of time. In Figure 4.7, the lease lasts 1 instruction which allows the

114

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

C code GLIFT - Base Asm Lease Asm

state[i] = sbox [state[i]];

/*sbox : int [256] */

0x00 [1] load - looprel R0 := [0x100 + C0] # R0 = state[i]

0x01 [1] init - counter C1 := 0 # start the loop. j = 0

0x02 [1] cmpeq P1 := C1, R0 # if (j == R0)

0x03 [P1] load - looprel R1 := [0x300 + C1] # R1 = SBox [j]

0x04 [1] increment - counter C1 := 1 # j++

0x05 [1] countjump 0x02, 255 # loop back 255 times

[1] load -indirect R0 := [0x100 + R2]

[1] setmembndlo 00000011***, 1
[1] load -indirect R1 := [0x300 + R0]

Figure 4.7: Execution Leases allow indirect memory accesses within bounded
memory regions. In comparison, the base GLIFT ISA performs table lookups
by iterating over the entire array and predicating out the desired index. For
many cryptography algorithms, table lookups are numerous and each base GLIFT
lookup adds performance overhead in proportion to the table sizes.

program to perform a bounded indirect memory access (as shown in an unopti-

mized snippet from AES in Figure 4.7). In fact our compiler conservatively inserts

bounds before every memory access, but merges adjacent leases of setbounds that

have the same address range and creates a longer lasting lease.

Executing General Purpose Code Safely :Leases allow us to execute con-

ditional jump instructions safely. By enforcing a tight time and memory bound,

a lease ensures that there is no untracked side-effect of the general purpose code.

As mentioned in Section 4.1, general purpose code cannot set any further leases.

Lease instructions (that set timers and bounds), if executed in general purpose

mode, will not commit and will be equivalent to a no-op. In this mode, functions

can use the conventional memory-based stack to implement function calls, and the

ISA includes an instruction to load the current PC into a register that is used to

compute return addresses for callee functions. Finally, the instruction set includes

the usual 2-operand single-destination ALU-ops to execute arithmetic, shift, and

115

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

Mode Instruction Information Flow Properties

setTimer The lease caller’s taint value is assigned to the callee’s lease state

(like timers, restore PC, restore SP etc). Since the cpu starts o! with

trusted code, the "rst timer on the stack is always trusted (i.e

untainted).
setBound g/l

jump If RegZero If jump target or condition Reg is tainted, the PC is marked tainted

(following which, all registers and the entire leased memory becomes

tainted too).jump To RegValue

load Immediate The destination register gets the taint value of the PC

load/store Direct
The destination gets the taint value of the PC or - d with that of the

source memory address.

load PC To Reg Taint value of PC is assigned to destination Reg.

load/store Indirect -global
A tainted memory address will mark the entire leased memory as

tainted.
load/store Indirect -local

countJump

The PC gets the taint value of the instruction word.

directJump

and, or, not, xor, shl , shr , add,

sub, cmpeq, cmplt

Destination reg untrusted if either operand is untrusted.

For AND and OR, the trust value is tracked precisely

General Purpose

only

GLIFT only

Both Modes

Figure 4.8: An overview of the ISA of our prototype architecture, and the in-
formation flow tracking policies that are extracted from the actual logic level
implementation.

compare instructions. Table 4.8 shows the complete list of instructions supported

by our Execution Lease ISA.

4.3.2 A Prototype Processor that implements Execution

Leases

We have built a prototype microcontroller that implements all the mechanisms

described in Section 4.1 to support execution leases. The Lease CPU is a 5-cycle,

in-order, unpipelined processor with 64Kb of Instruction and Data Memory, 8

general purpose registers and 8 registers to store the loop counters (that count

down the number of iterations for countjmp instructions).

Most importantly, the CPU maintains three independent lease stacks (one

each for the PC, global and local memory bounds) with each stack allowing upto

116

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

8 nested leases. Each lease stack includes registers to store the timers, the return

stack pointers for the entry, the current stack pointer, and the restore PC and

restore mode for the PC stack, and memory bounds in ternary format for the

global and local memory stacks.

The Lease CPU is implemented in Verilog as a structural composition of gates

and instantiations along with registers for processor state and block RAMs for

Instruction and Data Memory. This structural composition of logic allows us to

automatically extract the gate-level taint tracking logic for the entire processor by

shadowing all registers and wires, and connecting together the shadow gates and

modules in the same manner as their original processor counterparts, resulting in

a full shadow machine that operates on taint bits instead of data.

We have used Altera’s QuartusII v8.0 to synthesize the Glift-Lease CPU onto

a Stratix II FPGA with synthesis settings that balance both area and timing.

These area and timing numbers are then compared against the basic Glift CPU

presented in [70], and with Altera’s Nios RISC processor. We chose Nios-standard

core as a point of comparison as it has a simple ISA, is reasonably well-optimized,

and is targeted to the same family of FPGAs.

Figure 4.9 shows the area and timing results from synthesizing all the proces-

sors under test. This includes the Nios processor as a general purpose baseline,

the basic Glift processor and its version augmented with shadow logic as the Glift

117

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

 0

 1000

 2000

 3000

 4000

 5000

Nios std

Glift base

Glift base_sh

Lease
Lease_sh

 0

 50

 100

 150

 200

A
re

a
(in

 A
LU

T
s)

F
m

ax
 (

in
 M

H
z)

Area
Fmax

Figure 4.9: Quantifying the area and timing overhead of Execution Leases in a
Glift CPU. The left Y-axis compares the number of FPGA lookup tables(ALUTs)
required to implement a Glift Lease processor with that for the Glift base processor
and a general purpose RISC micro-processor by Altera. The graph also shows the
number of lookup tables to implement versions of both Glift processors augmented
with shadow logic for information flow tracking. The right Y-axis compares the
Fmax for same set of processors.

baseline, and the Lease CPU (with and without shadow logic) as the processors

under evaluation. The left Y-axis shows the area in number of ALUTs (black bar)

while the maximum operating frequency values are presented on the right Y axis

(gray bar). One important result is that in absolute terms, all these processors

are very small in size. Even on the outdated Stratix II EP2S15F67263 FPGA

that was used for evaluation, the smallest Nios processor required only 5% of the

combinational ALUT resources, while the largest Lease CPU required 35% of the

ALUTs. The largest FPGAs are over 10X larger than EP2S15F67263, and so the

area of these CPUs is probably of little concern.

The second result is that in relative terms, the Lease CPU requires 50% more

ALUTs than the Glift baseline CPU. Augmenting this Lease CPU with the in-

formation flow tracking logic adds an additional 2X ALUTs. This jump from the

Lease processor to “Lease sh”, its shadowed version, is much larger than the 70%

118

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

increase from Glift base to Glift base sh. Not surprisingly, the main overhead

of implementing leases arises from the MUXes and deMUXes required to read

and write back to the set of 8 timers, restore PC, restore SP and other lease

state. The auto-generated shadow MUXes then account for the overhead of the

Lease sh CPU. Since the lease behavior of a program is known statically, compiler

optimizations could potentially bring down the number of hardware stack entries

required.

The Fmax of the synthesized CPUs, on the other hand, show that the Glift

and Lease CPUs at 120-130 MHz are only slightly slower than the Nios processor

at 160 MHz. This difference in frequency is mainly because Glift and Lease

processors support barrel shifts while Nios supports only 1-bit shifts. With 1-

bit shifts, the Lease CPU can also operate at 160 MHz. In relative terms, the

synthesized Lease sh CPU at 108 MHz also runs slightly slower than the Lease

CPU (120 MHz).

4.3.3 Programming with Execution Leases

To code up our benchmarks, we have designed a simple high level language with

constructs that capture the functionality of the Lease CPU. The lexical and gram-

mar definition of Lease compiler is generated using Antlr, and all other parts of

the compiler are written in Java. We demonstrate various aspects of our language

119

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

through an encryption library modeled after the privilege separated OpenSSH.

Our library uses an I2C bus interface for I/O and implements a public-key RSA

encryption function to exchange symmetric keys and followed by AES for all sub-

sequent communication. This library models a scenario where the I2C bus drivers

are untrusted (e.g. imported as a commercial binary) and also implemented as

a general purpose program with a potentially unbounded loop. The aim is to

completely isolate the untrusted drivers and prevent them from ever affecting the

encryption functions or accessing any information illegally (for e.g., the symmetric

key for a transaction).

The lease statement is the most important new idea of this language. Its

syntax is: lease(timer, memorysize, Function(arg0, ...), returnvalue); and it

allows a programmer to lease a bounded area of memory, jump to a location, and

execute a bounded number of instructions. Each function also has an execution

mode, GLIFT or general purpose, which has to be specified statically.

Estimating Execution Time: The timer argument to a lease statement

conveys the number of instructions that the jumpToFunction is allowed to ex-

ecute. If left at 0 for a GLIFT mode function, the compiler can automatically

fill the timer value by statically analyzing the jumpToFunction and computing

the total time required to execute both sides of conditional branches, fixed size

loops, and some extra instructions to pass in arguments, set appropriate memory

120

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

bounds, and retrieve the return value. Further research is required to make the

compiler capable of estimating execution times for general purpose functions and

provide useful suggestions to the programmer of the GLIFT mode caller func-

tion. On one hand, many security functions that operate on streaming data are

easy to estimate, as they already take a fixed amount of time (e.g. AES, RSA,

md5 etc). In cases where the function is accessing some peripheral device (or in

general waiting for some asynchronous communication) the lease bounds will be

governed by system-level timing constraints. For instance, aircraft require some

critical computation every N ms, and the non-critical functions will work around

this constraint.

Setting memory bounds: The memorysize is used to bound the local

memory accesses jumpToFunction will make, and can either be determined stat-

ically for GLIFT mode programs or (as is the case for peripheral interface drivers)

be fixed to an arbitrary size based on the system designer’s discretion. In addition

to local memory bounds, global memory bounds have to be set in case the caller

wants to allow the callee restricted access to some additional region of memory.

For instance, the I2C transmit function can be allowed access to the encrypted

message in addition to its local frame. The callee can use the load/store-global

instructions to access these out-of-frame addresses. One concern might be that

putting arrays into power-of-2 aligned memory regions might prove prohibitively

121

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

hard for the programmer. While more research is definitely required to place ar-

rays in the most compact manner possible and to minimize data movement, our

compiler has a simple algorithm whereby it determines all the constraint sets for

arrays that need to be adjacent, places them along aligned boundaries as far as

possible, and moves arrays around for when all constraints cannot be met. The

caller has to specify using the @ symbol (as in int [2] @arr) if a function call

argument requires to be accessed using the global load/store instructions.

Another very useful optimization the compiler performs relates to the problem

of setting the memory bounds before every load or store, especially in loops. For

such cases, the compiler begins by inserting a setbounds instruction before every

memory access, but in a later pass discovers all adjacent setbound instructions

that use the same bounds and coalesces them into a single setbound instruction

with the common bound.

Execution Modes: Every function declaration requires an @GLIFT or

@General prefix that states the mode the function will execute in. In Glift mode,

the Lease ISA only allows a countjump instruction to jump to a PC a fixed num-

ber of times. The language thus supports fixed size loops of the form for i in

range(start,end,step) { block }. The usual if − else statements are com-

piled down to predicated blocks of code, and function definitions and statements

resemble similar constructs in other imperative languages. In General-purpose

122

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

mode, conditional jumps are allowed, and if-else statements need not both exe-

cute, but the lease instructions (settimer and setbounds) are no longer available.

General purpose functions can use the conventional in-memory stack to execute

function calls, and use general-purpose registers as stack and frame pointers.

In Figure 4.10, we show a snippet from our encryption library. Execution

begins in the main() function in GLIFT mode. This sets a lease for initializing

the I2C bus driver, transmitting the start signal and device address, and reads

in input from the serial bus. In the example, we show the serial clock (SCL)

and data (SDA) bus lines using the memory mapped addresses (scl da[] and

scl da in[]). Once the input has been read in, either RSA or AES is invoked

conditionally, but since the function is in general-purpose mode, it only needs to

set a lease of max(aes, rsa) (unlike the Glift-base assembly that would require

both AES and RSA to execute on every iteration). It is interesting that even

though the I2C receive function has a loop that queries a device for an ACK and

can do so indefinitely, once the lease expires, control will be restored to the main

function.

End-to-end property: This example shows how leases can be used by pro-

grammers to explicitly manage the flow of all tainted information through the CPU

and memory, and thus ensure the integrity of some critical function (the encryp-

tion library) in the presence of untrusted functions (the bus drivers). Considered

123

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

@GLIFT

void main()
{

int [2] scl_da; /* i2c clk and data addresses */
int [2] sclda_in;
int [100] rd_buf;
int rd_val;
...
lease(40, 8, i2c_init(), null);
...
loop { /* while (1) */

lease (19, 8, i2c_start (scl_da), null);
lease (666, 16, i2c_tx(1, scl_da, scl_da_in), tx_ack); /* i2c read: Tainted*/
for i in range (0,99,1) { /* Bounded loop */

lease (513, 16, i2c_rx(1, scl_da, scl_da_in), rd_val);
rd_buf[i] = rd_val;

}
lease (513, 16, i2c_rx(0, scl_da, scl_da_in), rd_val);
rd_buf[5] = rd_val;
lease (16, 8, i2c_stop(scl_da), null);
…
lease (0, 0, encrypt(rd_buf), error_code); /* Encryption code: Untainted*/

/* Compiler sets lease parameters : Lease size = MAX(AES, RSA)*/
…

} /* while 1*/
} /* main GLIFT-mode function*/

@ General

int i2c_rx (int send_ack, int [2] @ scl_da, int [2] @scl_da_in)
/* Global array arg*/{

int d = 0;
scl_da[1] = 1;
...
for i in range(0,32,1) {

d = d << 1;
scl_da[0] = 1;
i2c_delay(); /* function call in general purpose mode */
while(scl_da_in[0] == 0) /* potentially unbounded loop*/

scl_da[0] = 1;
d = d | scl_da_in[1];
scl_da[0] = 0;

}
return d;

}

@General

void encrypt (int[100] @ rd_buf)
{

int[16] out;
if (rd_buf[0] == 1) /* conditional jump */

AES(rd_buf, out); /* aes in general purpose mode */
else

out = RSA(rd_buf[1],...); /* rsa in general purpose mode */
}
@General

void AES (int[100] @ rd_buf, int[16] out)
{

int[240] RoundKey;
int[4][4] state;
KeyExpansion(RoundKey);
Cipher(rd_buf, out, state, RoundKey);

}

Gen -Purpose Tainted Code

Gen -Purpose Untainted CodeGLIFT Untainted Code

Figure 4.10: Programming using Execution Leases: Execution begins in trusted
(untainted) GLIFT mode. Function calls can be made to general-purpose func-
tions that operate within a fixed time and memory lease. Within a lease, gen-
eral purpose code can execute conditionals (without predication), potentially un-
bounded loops, and communicate through protected memory regions, while the
CPU implementation guarantees that no tainted code can ever interfere with out
of bounds memory or execution time.

in a secrecy context, leases could be used to show that the only transfer of infor-

mation between a secret library and the unclassified bus drivers is the encrypted

buffer.

4.3.4 Quantitative Differences in the Resulting Code

While Execution Leases provide the program with a completely new ability, the

option to provably contain the flow of information even when tainted code is exe-

cuting (where that code is tainted either because it is secret or it is untrusted), it

124

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

also provides quantifiable differences in the performance of applications. We com-

pare the execution time of several different kernels running on the NIOS processor,

on the original GLIFT microprocessor, and on the Execution Lease machine. The

NIOS code was generated from gcc with level 2 optimizations enabled. The code

targeting the original GLIFT machine is hand written assembly. The code target-

ing the the Execution Lease machine is generated by our custom compiler which

performs no optimization other than the lease bound merging discussed above.

As can be seen in Figure 4.11, the static code size between the different ma-

chines are all relatively close (for example MM is 83 instructions instead of the 73

from in the original GLIFT machine) with only a few glaring exceptions (AES is

2X bigger and BSort is 5X bigger). However, even though AES is 2X bigger, it is

approximately 68X faster using Leases instead of the original GLIFT ISA. BSort

is also interesting because, on the original GLIFT machine, this was really the

only practical way to do sort – because random indexed lookups took O(n) time

instead of O(1). On that machine, bubble sort takes O(n2) time while merge sort

takes on the order of O(n3) time. On our new architecture, merge sort would take

O(nlog(n)) time which means that even though bubble sort is larger and takes

longer, in fact “fastest worst-case sort” would be a more appropriate benchmark.

Measured against the general purpose NIOS CPU, the dynamic instruction counts

125

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

in a Lease-CPU are comparable, mainly because most of the security kernels are

very regular and easy to estimate tightly.

In terms of performance it is worth noting that excluding the two best per-

forming applications, the average speedup is still 32%, while the two best per-

forming applications (FSM and AES) each are running 8.1X and 68X faster re-

spectively. FSM and AES are each so much faster because they are dominated by

table lookups, FSM to find the next state, and AES to perform the sbox opera-

tion. While this shows the potential of Execution Leases to drastically reduce the

time to perform some of the most fundamental computations, Leases allow us to

compose together larger programs such as the encryption library that would be

extremely hard without function calls and extremely slow without table lookups.

4.4 Conclusions

Architectural support for Execution Leases has the potential to be a powerful

new tool for the designers of high assurance systems. The idea that execution

resources are leased out to regions of code with fixed bounds on the time and

memory addresses is both a model of execution that a programmers can under-

stand, yet can be implemented in such as way that safety is verifiable all the way

down to the gate level. In implementing a full prototype of an Execution Lease

126

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

St
at

ic
 In

st
ru

ct
io

n
Co

un
t (

NI
O

S)

St
at

ic
 In

st
ru

ct
io

ns

(o
rig

in
al

 G
LI

FT
)

St
at

ic
 In

st
ru

ct
io

ns

(E
xe

cu
tio

n
Le

as
e)

Dy
na

m
ic

 In
st

ru
ct

io
ns

 (N

IO
S)

Dy
na

m
ic

 In
st

ru
ct

io
ns

 (o

rig
in

al
 G

LI
FT

)

Dy
na

m
ic

 In
st

ru
ct

io
ns

 (E

xe
cu

tio
n

Le
as

e)

Kernel Description

FSM CSMA-CD state machine with with 6 states
and 4 inputs. Many table lookups 123 190 130 441 3322 410

BSort Perform bubble sort on a fixed size
list of integers 26 21 126 20621 30358 43518

RSA
Montgomery multiplication and
exponentiation from RSA public key
cryptography

256 143 95 44880 39297 26329

AES Block Cipher, involves extensive table
lookups and complex control structures 781 1100 2113 12807 1082207 15785

Md5 Core of the cryptographic hash function,
involves mostly ALU and logical operations 769 1386 951 1226 1431 1012

MM Matrix Multiplication 108 73 83 9043* 17035 10094

Figure 4.11: A comparison between the static instruction counts and dynamic
instruction counts between a traditional processor (the Altera NIOS), the original
GLIFT based microcontroller, and our Execution Lease based processor. As we
have not implemented a multiply instruction yet in our prototype, the Matrix
Multiply result for the NIOS does not make use of native multiply instructions
either. Excluding the two best performing applications, the average speedup is
32%, with the two best performing applications (FSM and AES) each running
8.1X and 68X faster respectively.

machine, we came upon several challenges. For example, execution leases can

themselves invoke further leases and the processor has to enforce that successive

leases are nested in both time and address space. Bounding all memory accesses

within the latest bounds requires constructing the memory address in a unique

manner from the bounds and the incoming address, while also requiring a special

tag memory that can mark a range of addresses as tainted in parallel. However,

we describe a series of techniques for overcoming these challenges, and we show

that the resulting machine is both far easier to program and capable of executing

far more powerful code than prior GLIFT based processors (it is not limited to

127

Chapter 4. Execution Leases: A Hardware-Supported Mechanism for Enforcing

Strong Non-Interference

GLIFT-ISA from [70]). While there is still more work to do in further refining the

ISA, optimizing the hardware implementation, fleshing out the language features,

and improving the code generated by the compiler, even now the Execution Lease

machine is the only design we are aware of that is capable of demonstrating the

non-interference of two or more general purpose software components all the way

down to the level of gates.

128

Chapter 5

Making Gate-Level Verified
Systems Practical

Systems requiring the highest levels of trust are often designed and built using

waterfall principles, modeled at a high-level in a theorem proving system, coaxed

through said theorem proving system by hand, documented to an tremendous

degree throughout the entire process, and then evaluated by a trusted third party

or evaluation board [3]. It is estimated that the entire process costs over $10,000

per line of code [6] and takes over 10 years to complete [4]. In the end, there is

more evaluation of the development process than the final end artifact, and formal

properties are shown to hold only for hand-written high-level models of the system

rather than for the actual implementation [33]. The ultimate goal of our work is to

create full system implementations (including both hardware and software) with

security properties that can be directly measured and verified.

129

Chapter 5. Making Gate-Level Verified Systems Practical

The restrictive systems presented in previous chapters leave numerous chal-

lenges with regards to the creation of real systems. The hard nature of an Execu-

tion Lease programming model does not naturally support performance enhancing

micro-architectural features such as caches, pipelining, branch predictors, or TLBs

because of the timing variabilities they introduce; it lacks sufficient support for

software behaviors that cannot be bounded and divided into fixed regular sized

chunks of work, it does not provide any easily verifiable mechanisms by which dif-

ferent trust domains can communicate safely; and it makes handling the inherently

dynamic nature of I/O very difficult. Furthermore, information flow security is

provided using additional analysis logic that adds substantial area-delay overheads

to the deployed system. In this chapter, we present our experiences building a full

system that removes all of the above restrictions yet is still verifiably information

flow secure, i.e. conforms to a specified information flow policy.

Our method for overcoming this challenge is two-fold: first, we create a thin

skeleton of hardware, that when configured and operated by a small piece of

software, describes a minimal functionality with which the information flow of

the rest of the machine can be governed. In essence, this minimal slice of

the hardware is to the entire processor core, as a microkernel is to a

full operating system. This strict structure is then enhanced by a runtime

system that delivers more dynamic or non-information-flow-critical services (e.g.

130

Chapter 5. Making Gate-Level Verified Systems Practical

PC Lease

Stack

Mem Lease

Stack

$ Par!!on

Logic

Kernel

Mode
I/O Master

Controller

Pipe

Flush
Fetch

Decode

Execute

Commit

Instr Cache

Data Cache

Other u-arch

structures

Untrusted

Device

VDD

SDA
SCL

I/O Bus

I/
O

 A
d

a
p

te
r

I/
O

 A
d

a
p

te
r

Trusted

Device

set PC !mer set mem bounds set par!!onID in/out

Context Switch Scheduling IPC I/O

Separa!on Kernel

Trusted Untrusted Unclassified Secret

runtime runtime

C
P

U

S
o

ft
w

a
re

IS

A

lastPC

On Chip

Memory

Figure 5.1: The proposed architectural skeleton (shaded black in the CPU) that
allows explicit software control over the entire processor state. The processor in-
cludes dynamic micro-architectural features such as caches and pipelining. This
hardware skeleton is used by a separation kernel to manage execution time, mem-
ory, and I/O devices among multiple security partitions. We also introduce trusted
adapters for secure I/O. Here, an I2C master controller on the CPU manages a
shared bus among off-the-shelf I2C devices with different trust levels. In the end,
we verify that the hardware and kernel together enforce a desired information flow
policy such as non-interference.

communication interfaces and context swapping). Because these operations are

decoupled from the information flow properties of the skeleton, they do not add

complexity to the verification of the system as a whole.

To make this idea more concrete, consider the process by which a context is

saved and restored. To be a correct context switch, the registers and PC (along

with other things) need to be saved off to a region of memory, and then restored

when the process is scheduled again. However, to verify the information flow

131

Chapter 5. Making Gate-Level Verified Systems Practical

properties of such a system, we need only to verify that the context is saved and

restored in a way that does not leak data and violate policy.

To demonstrate these principles we have created a synthesizable full-system

prototype, complete with a pipelined CPU, a micro-kernel that enables isolation

and communication by explicitly controlling all micro-architectural state, and an

I/O subsystem that allows off-the-shelf I2C devices to be connected to a single

shared bus. Our system can provide caches, pipelines, and support for the micro-

kernel in only 1/4th the area and with double the clock frequency as more restric-

tive prior work. Finally, for a system of size 50K logic gates (approximately) and

with only 3264b out of 133kB state specified concretely, we can statically verify

that the entire hardware-software stack conforms to a specified information flow

policy all the way down to its gate level implementation.

5.1 A Secure Architectural Skeleton

Our architectural skeleton, working in conjunction with the micro-kernel, must

deliver each of the following capabilities in a way that can be verified to be side-

channel free.

1. Verifiable Common Case Optimizations in the CPU: Techniques such

as caches and pipelining are taken for granted in the non high-assurance

132

Chapter 5. Making Gate-Level Verified Systems Practical

systems but pipeline stalls and cache evictions can easily introduce side-

channels. While countermeasures for these side-channels exist, we must be

able to formally prove their absence.

2. Verifiable Context Switches, Scheduling, and Communication in

the kernel: Because timing channels are part of our threat model, the

micro-kernel, working in conjunction with the skeleton, must have a way to

bound the behavior of a software partition. Furthermore, it must have a way

to save and restore process contexts without leaking information about those

contexts, to schedule these processes or partitions at arbitrarily fine gran-

ularities, and to allow inter-partition communication in a tightly-controlled

manner.

3. Verifiable I/O: We must be able to construct a system that is able to

communicate with the outside world. In particular we must allow software

partitions measured access to I/O, and this access must be able to exploit

simple off-the-shelf I/O protocols. While both authentication and physical

attacks are beyond the scope of this paper, we must ensure that, if necessary,

information flow can be limited to a subset of the parties connected on the

I/O network.

133

Chapter 5. Making Gate-Level Verified Systems Practical

Memory Bound

Addr

 01 00 11 11 11 11

Par!!on ID

MSB

Cache Addr

* * * * 1 0

 00 00 11 11
* * 0 0

 : 1 1

0 : 0 0

1 : 0 1

*

0110

0010

MSB

Figure 5.2: Implementing caches: The processor-generated memory address is
first masked off used the memory bounds register. This creates a physical address
that is within the currently active execution lease bounds. Most significant bits of
this address are then further masked off using the trusted partition ID register to
generate the address for the cache. As a result, information flow from a potentially
untrusted memory access is limited to the currently enabled portion of the cache.
Since trusted bits from the partition ID register control the MUXes, information
flow control can be verified precisely.

Understanding our approach to the problem can be difficult at first because our

design method and verification method are intimately linked. The verification

method works because our designs exhibit incredibly tight control over

the flow of information, and our design method is useful because designs

can be verified easily. Later, in Section 5.2, we will describe how we verified a

specific incarnation of our system, but for now we can think at a high level about

the two primary methods of managing the information flow in our skeleton.

The first method for information flow control is to ensure that certain critical

portions of the machine and kernel are always kept with high integrity, i.e. trusted.

134

Chapter 5. Making Gate-Level Verified Systems Practical

If we can verify that the system will never breach this invariant, then these critical

bits can be used as the root of trust for the rest of system.

The second method is carefully time-multiplexing the rest of the state between

multiple security levels. There are two parts to this second method. Because these

time multiplexed bits, for example the hardware’s program counter or the kernel’s

current process ID, will change labels over time, we must bound the effect that

these bits can have on the system. Then, after we have finished a unit of time, we

must always be certain to “clean-up” any of these bits remaining in multiplexed

parts of the system (as controlled by trusted bits).

In short, our minimal skeleton working with the separation kernel ensures

that “trusted bits stay trusted” and that “untrusted bits always get cleaned up”.

Both these methods can then be verified to be implemented correctly through

a gate-level analysis. Cleaning up untrusted bits in a verifiable manner is best

understood using a multiplexer (MUX): if the select input to a MUX is trusted,

and it selects a trusted value, the result can be trusted no matter what that actual

value is, even when the other input is untrusted. A MUX can thus be thought

of as a gatekeeper for trust, and is used to implement logic that resets critical

system state to a trusted value or masks out untrusted signals. Together, both

these methods allow, for example, the kernel bits that store the partition schedule

135

Chapter 5. Making Gate-Level Verified Systems Practical

4

Memory Stall

PC <= PC

!mer <= !mer - 1

Lease_On

PC <= PC + 1 or jmp_tgt

!mer <= !mer - 1

!mer_expired !mer_expired

mem_stall == 0

$ miss

Start kernel

PC <= PC + 1 or jmp_tgt

!mer <= 0

timer > 0

mem_stall

Pipeline flush

Memory

Stall

Lease On

Start Kernel

101011

Timer_stack [0]

1

Timer_on [0] Stall?

0

Stall?

100001

Timer_stack [0]

0

Timer_on [0]

1

PC <= PC + 1

Timer_stack [0]

Timer_on [0] Stall?

0 0

000000

Figure 5.3: Secure Pipelines: The state machine shows the Program Counter
update logic for a pipelined CPU. From all untrusted states (in gray), there is
a transition to a trusted state that is triggered by a trusted timer, and hence
the PC is always reset verifiably. The pipeline flush requires 4 cycles since our
prototype CPU has a 4-stage pipeline. The dashed line from start to memory
stall is to indicate that while a memory stall is possible, kernel code ensures that
no memory access misses in the cache.

to always stay trusted and control the MUXes to reset the program counter from

an untrusted state.

In the rest of this section we will show how the combination of bit-level iso-

lation and trusted time-multiplexing allows us to first implement a skeleton that

addresses the four requirements listed above and then formally verify that the

entire system conforms to a desired information-flow policy.

136

Chapter 5. Making Gate-Level Verified Systems Practical

5.1.1 CPU: Using Caches, Pipelines, and Other Micro-

architectural Structures

Caches. Side-channels through caches have been shown to leak information

about private keys [9, 76]. These attacks exploit the ability of an attacker to learn

the memory accesses of a secret process by first filling the cache, yielding to the

secret process, and then inspecting which of its own memory accesses miss in the

cache. The fundamental problem is that the cache controller uses both secret and

unclassified information to decide which cache lines to evict. Counter-measures

to this attack include pinning secret lines in the cache [76] (which was first shown

to be vulnerable [40] and then fixed [41]), and proposed secure caches may still

be vulnerable to collision-based timing-driven attacks [40].

To implement an information flow secure cache, we design the cache controller

to only use trusted values to control the cache contents: i.e. by partitioning

the cache or by clearing the cache based on trusted parameters after untrusted

or secret code has finished executing. This ensures that untrusted information is

confined to its partition, while trusted information can flow to untrusted partitions

(or unclassified to secret).

To implement partitioned caches that are verifiably isolated at the bit-level, we

allow only power-of-2 aligned cache partitions that are configured by the kernel

137

Chapter 5. Making Gate-Level Verified Systems Practical

through a partition ID register (as shown in Figure 5.2). The partition ID

register represents currently enabled cache partition(s) and uses two bits for each

bit of the cache address. Of these two bits, if the MSB is 1 the cache address

uses the processor-generated memory address else the LSB of the partition ID

register is used. For example, for a 4b cache address, a partition ID of 00 00 11 11

implies that the two most significant bits of the cache address will be 00, and the

two lower bits will be used from the address generated by the processor. The

partition ID register set to all 1s will indicate that the entire cache is available

for use. The kernel sets the partition ID register before jumping to untrusted

code using the instruction set partitionID immediate. The cache controller

also communicates with a memory controller in case of a read-miss or write-evict,

and squashes an outstanding memory request when the execution time slot for

some untrusted code ends.

This cache controller logic can be verified to be secure at the bit level because

the MUXes that select the final cache address are controlled by the trusted par-

tition ID register (Figure 5.2). While prior work has proposed that unclassified

code pre-load AES tables into locked cache lines or clear the entire cache after

secret execution [41], we are able to implement the mechanism and verify it at the

gate-level.

138

Chapter 5. Making Gate-Level Verified Systems Practical

Pipelining. Pipelines are challenging to implement in an information flow se-

cure manner since they introduce unpredictable dynamic behavior through mem-

ory stalls, branch prediction, register forwarding etc. Our key insight is that such

dynamic behavior can be allowed as long as untrusted programs’ effects do not

spill over into trusted space and time slots.

Figure 5.3 shows the state machine that controls the program counter (PC)

in our CPU. The state machine begins in a start state where no PC lease is

currently on and trusted kernel code is expected to execute. It can set a timer

and transition to the lease on state. This state is typically used to run untrusted

or secret programs, but the transition to this state is based on a trusted jump

instruction. On a cache miss, the state machine can transition to memory stall

state. From an untrusted instruction, this transition will be untrusted and the

memory stall state will be untrusted too. When the PC timer expires, however,

both lease on and memory stall states transition to a sequence of 4 states,

one for each stage of the pipeline, where the PC is first restored to a trusted

value (and then incremented each cycle). The logic to implement this sequence is

hardwired instead of using the jump instruction because general purpose registers

may themselves be untrusted at the end of a lease to untrusted code. Since

the restore PC is stored in the trusted lease unit, computing the next PC from

139

Chapter 5. Making Gate-Level Verified Systems Practical

this maintains the PC as trusted. Further, since the lease timer has expired, no

instructions are committed during this sequence of states.

Other micro-architectural features can also be employed safely through a com-

bination of trusted partitioning and time-multiplexing. While we do not imple-

ment a branch predictor or prefetcher, implementing these would require their

state to be either partitioned using trusted parameters or flushed at the end of

every security context by the kernel.

5.1.2 Micro-Kernel: Context Switches, Scheduling and Com-

munication

A kernel partition encapsulates all computational resources required by a secu-

rity level, comprising of time, memory, and optionally I/O interfaces. A portion

of instruction and data memory are reserved for each security level, and when a

partition is actually scheduled to run, it gains control over part of the machine

such as execution units and register files for a trusted amount of time. To pre-

vent information leaks to untrusted programs, kernel parameters such as time

and memory slots allocated to each partition and the overall number of parti-

tions depend only on trusted constants assigned at boot time. As a result, the

kernel scheduler implements a statically determined schedule which can act as a

coarse-grain first level scheduler, while each partition implements a second-level

140

Chapter 5. Making Gate-Level Verified Systems Practical

scheduler to optimize performance within their own time bounds (as proposed

before for real-time [60] and highly secure [37] systems).

Precise Context Switches: The kernel ensures continuous unbounded op-

eration by saving and restoring user programs’ state on every context-switch. To

support precise control over timing in the presence of caches and pipelines, we

introduce two unique features in our micro-kernel. The kernel explicitly manages

all micro-architectural state in the processor, e.g. through the partition ID reg-

ister to enforce cache partitions, and has perfectly imperturbable execution time

for each kernel function, e.g. by never having a memory access miss in the cache.

To demonstrate these ideas, we step through the context switch routine that is

triggered each time a set timer expires. After a pipeline-length delay to flush the

entire pipeline state, the first kernel instruction to commit is a set partitionID

immediate. This activates the kernel partition which stores complete context in-

formation for all partitions. The kernel then stores general purpose registers in

trusted addresses specifically earmarked for the partition’s context. This is possi-

ble since the number of partitions is a trusted kernel parameter. The kernel also

stores the last PC that entered the commit stage when the timer expired, access-

ing it through the (last PC Mem[reg]) instruction. Once the current context is

saved, the kernel loads the general purpose registers for the new partition. It then

sets the cache partition available for the next partition (using set partition),

141

Chapter 5. Making Gate-Level Verified Systems Practical

sets memory bounds (set membounds global/local and finally sets a time limit

for the new partition to execute (set timer). The mode argument to set timer

indicates whether the new context will execute in kernel or user mode (since the

partitionID register can only be set in kernel mode). Finally, once the new par-

tition’s context is loaded and the bounds are set, the kernel loads the user-space

PC and jumps to it.

Since the kernel has its own reserved partition in the cache, each of its memory

accesses is a cache hit, and because there are no branches in its code, the kernel

never has a pipeline stall. Thus context switches always complete within a fixed

execution time. Further, the kernel explicitly controls the state of all micro-

architectural features, using partitionID register for the cache, and relying on the

processor skeleton to reset the state of the pipeline, memory controller and the

I/O bus-controller when a lease timer expires. Finally, while not implemented in

our prototype, the kernel can optionally save and restore the entries on the lease

stack. Saving the lease stack for each partition allows schedulers that run inside

partitions to use different scheduling granularities than that of the kernel, without

being aware of the time bounds that they themselves run within.

Fine-grained Scheduling. We propose a novel hardware stack implementa-

tion that allows execution time and memory bounds to have arbitrary durations

and yet is verifiably secure at the bit level. The time and space bounds for each

142

Chapter 5. Making Gate-Level Verified Systems Practical

partition are stored in a hardware stack in the CPU skeleton. This stack has

to verifiably ensure that code inside a partition cannot over-write its own lease

bounds, i.e. the current stack pointer should never affect any stack entry below

the top of stack. The implementation in Execution Leases [69] protects lower

stack entries by bit-encoding the timer values (e.g. each bit represents 32 cycles),

and constructing each timer entry to have less time units than the previous entry.

This restricts scheduling granularities to be aligned with the bit-encoding and

introduces artificial performance overheads.

We provide a more flexible stack implementation by encoding the safety prop-

erty in the logic for the stack pointer instead of the timer values (Figure 5.4). By

choosing the stack pointer as the critical state, we free up the timers themselves

to be assigned arbitrary values. We encode the stack pointer so that each bit cor-

responds to a stack entry, and on every clock cycle, the value assigned to each bit

of the stack pointer is predicated upon all the lower stack pointer bits being true;

i.e. a stack entry is valid only if all timers lower than itself are still active. Thus

while information clearly flows from lower stack pointer bits to higher ones, higher

bits never affect the lower ones. Our two information flow control techniques can

be observed here: while timer[0] is permanently trusted, the rest of the stack is

time-multiplexed between both security levels.

143

Chapter 5. Making Gate-Level Verified Systems Practical

Figure 5.4: Implementing flexible timers with bit-level isolation. Isolation: Un-
trusted code (in gray) does not taint the lowest stack entry (1), and when the timer
expires, the current timer value becomes trusted (path 2-3-4-6). A timer, when
it expires, resets all timers above itself (5) and thus enforces nested leases. Flexi-
bility: Instead of timer values, the stack pointer is encoded to ensure bit-level
isolation. Hence the actual timers can be assigned arbitrary values.

We modified the set timer instruction to receive arbitrary values as the time

limit, and added a mode bit that a caller can use to specify whether the callee

executes in kernel or user mode. This bit is set to 0 by the kernel when it sched-

ules a user-space code in order to protect the partition ID register. Our CPU

implementation has three separate lease stacks of 2 entries each, one for execution

time (PC) and one each for local and global memory bounds.

Read/Write Protection: Information flow policies such as non-interference [31],

Biba [17], and Bell & La Padula [16] allow information to flow along one direc-

tion in a security lattice, e.g trusted parameters can be read but not tampered

with. In order to support security policies that allow uni-directional informa-

144

Chapter 5. Making Gate-Level Verified Systems Practical

tion flow, we modify the lease implementation to support read-only, write-only,

or read-write control over memory bounds. In contrast, the original implemen-

tation of Leases allowed complete access to memory regions that are specified as

part of the lease and could only support isolation in memory. The kernel uses

the instruction setmembound global/local, timer, addr range, RO/WO/RW to

specify whether the memory region is Read-Only, Write-Only, or Read-Write, and

the memory controller enforces these permissions at run-time.

To enforce isolation, we specify non-overlapping memory bounds for the par-

titions1. To implement communication, one option is for two communicating

partitions to share a memory region. This requires the partitions to be initialized

so that communicating partitions are adjacent. Since our CPU implements two

distinct memory regions per partition, one partition can share memory areas with

a maximum of four other partitions to facilitate zero-copy communication. For

more complex communication patterns, the microkernel has to move data into

partition “inboxes”.

1Embedded systems typically operate exclusively on physical memory, eliminating channels
associated with both aliasing and dynamic allocation

145

Chapter 5. Making Gate-Level Verified Systems Practical

5.1.3 I/O: Using Off-The-Shelf Protocols and

Devices Securely

We complete our embedded system by implementing an I/O protocol to con-

nect the CPU and separation kernel system to peripheral devices. I2C is a serial

two-wire bus protocol that is commonly used in many embedded systems, for e.g.

to configure RF tuners, video decoders and encoders and audio processors. It

is also present on chipsets designed by Philips, National Semiconductor, Xicor,

Siemens, and many others [35]. We show, for the first time, that it is possible to

implement a provably secure I2C master controller that can then interface with

commodity I2C devices.

Implicit information leaks occur when, for example, the I2C bus master first

communicates with an untrusted slave, and then with a trusted slave. The mas-

ter’s current state will first depend on information received from the untrusted

slave, and appear as a covert channel underneath the ISA to software, where the

untrusted slave affects the timing of trusted communication. At the gate-level,

this implicit flow takes the form of an explicit ACK message from the untrusted

slave to the trusted master’s state machine, causing the master’s state machine

to be labeled untrusted. Thus even if the bus master seems to be behaving “cor-

146

Chapter 5. Making Gate-Level Verified Systems Practical

rectly” and the devices are not snooping on the bus, there are still information

flows between devices on the bus.

Trusted Bus Adapter: To restrict these implicit flows, we propose to overlay

a time division multiplexed (TDMA) schedule over an I2C bus, and introduce

adapters to connect external devices to the shared system bus (Figure 5.1). Each

adapter’s time slot is a trusted kernel parameter, and the adapters enforce that

for each slot only the currently addressed device has access to the bus while the

remaining adapters disconnect their corresponding slave devices. When a lease

timer expires, the bus master state machine is reset to a trusted state to eliminate

the implicit flows mentioned earlier. We implement the adapters to not only

impose a TDMA schedule on the bus but also conform to the I2C specification.

The adapters do so by driving the clock signal to a device low when its slot has

expired, and since the I2C protocol doesn’t rely on wall-clock time, the devices

hold on to data until the I2C clock goes high again. As a result, we can use

unmodified I2C-compliant devices in our I/O subsystem.

The CPU - I/O Interface: The I2C Bus Master state machine is imple-

mented in hardware as part of the CPU. Programs in each partition (device drivers

local to each partition) use two instructions in dest reg, dev addr and out

dev addr, src reg to transfer a 32b value between a register and an I2C device

that the partition is allowed to address. Since peripheral devices are typically

147

Chapter 5. Making Gate-Level Verified Systems Practical

slower than a CPU, a device driver can use the instruction i2c on dest reg to

record into dest reg whether the I2C bus is currently in the middle of a trans-

mission.

We have described a system that manages the flow of unknown and untrusted

bits such that arbitrary untrusted computation is tightly bounded by trusted bits.

The challenge now is to verify that an implementation of the high-level description

correctly enforces an information flow policy.

5.2 Results

Figure 3.2 shows our toolchain to analyze hardware designs written in behav-

ioral Verilog or VHDL (so that hardware designers can use their tools of choice

for design entry). Verilog/VHDL designs are synthesized using Synopsys Design

Compiler into a gate-level netlist using the and or.db library. The result of this

synthesis is a netlist that consists of just AND, OR, and NOT gates along with

registers and memory. This netlist is input to our abstraction tool, which replaces

gates and bits of the netlist with their abstract counterparts and outputs the ab-

stract netlist. The abstract netlist is then input to our augmentation tool that

148

Chapter 5. Making Gate-Level Verified Systems Practical

generates information flow tracking logic for the abstract design to create the final

netlist. Finally, the augmented design is simulated using hardware synthesis and

simulation tools such as Altera Quartus.

5.2.1 CPU Implementation

This section presents implementation details of our CPU (Star-CPU) and com-

pares its functionality and area-delay with prior work. We implemented the Star-

CPU in Verilog, generated a gate-level netlist using Synopsys Design Compiler,

and synthesized this using QuartusII v9.1 with Altera EP2S15F48C43 FPGA as

the target device. The Star-CPU pipeline is single-issue, executes in-order, and

has 4 stages (fetch, decode, execute, and commit/write-back). It has 8 general

purpose registers, a mode bit to indicate kernel/user mode, and a partition ID

register to record the current security context. The memory hierarchy includes

a 2kB direct-mapped data cache, and 64kB each of instruction and data mem-

ory. The data cache is implemented on the FPGA using comparator logic and

registers and requires one cycle if a memory access is a hit, while the memory is

implemented using on-chip block RAMs that take two cycles to service a memory

request. To emulate memory access latency in an ASIC implementation of the

system, the memory controller is implemented to introduce an additional delay

of 100 cycles. Without micro-architectural features such as branch predictors,

149

Chapter 5. Making Gate-Level Verified Systems Practical

TLBs, and Out-of-Order execution, the Star-CPU pipeline stalls on each cache

miss and requires the compiler to ensure that a register used in a conditional jump

instruction has the desired value at least 4 instructions before it is used.

Area-Delay Comparison. Figure 5.6 quantifies the size and performance ad-

vantages of the Star-CPU against the Execution Lease CPU and against the Star-

CPU with dynamic GLIFT logic (Star-GLIFT). The Star-CPU provides caches,

pipelining, and kernel support beyond the Lease CPU in equivalent area and

clock-frequency, and provides static security guarantees compared to Star-GLIFT

in almost 1/4 the logic, 1/2 the memory, and 2X the clock-frequency.

The Star-CPU’s base functionality is implemented in 5756 ALUTs (Adaptive

Look-Up Tables in an Altera FPGA, where 1 ALUT corresponds very approxi-

mately to 9-12 gates), and while the base functionality in the Lease CPU requires

only 1511 ALUTs, it requires 5040 ALUTs when the dynamic analysis logic is

factored in [69]. Thus the Star-CPU replaces analysis logic overhead with a cache

and pipeline logic. In terms of performance, the Star-CPU and Lease CPU have

similar frequencies (99 MHz vs. 104MHz), but the unpipelined Lease CPU only

commits one instruction every 5 cycles. Further, without a cache, every memory

access in the Lease CPU goes to main memory.

Comparing the verified Star-CPU to Star-GLIFT, we observe that the Star-

GLIFT CPU requires 23,956 ALUTs for logic and 2×133kB for state and state

150

Chapter 5. Making Gate-Level Verified Systems Practical

Instruction Description

set_�mer

R1,

R2, R3

 Set PC lease. Arguments R#: register or immediate.

 R1: �mer, R2: restore PC, R3: kernel/user mode

set_membound

R1, R2, R3
 Set local or global memory bounds.

 R1: memory range, R2: �mer, R3: read/write mode

set_par��onID Immediate If mode == kernel, then par��onID = Immediate

last_PC [R1] Mem[R1] = PC in commit stage when the last �mer expired

jgtz /jump R2, R1 Jump if R1 >= 0 or uncondi�onally. PC = R2 or Memory[R2]

load/store/mov R2, R1 Immediate and register direct addressing modes

add,sub,lsh,rsh

and,or,not,cmplt

ALU instruc�ons. Register arguments

in/out R1, dev_addr Read and write to I C transfer register

io_on R1 R1 = 1 if I C transac�on is ongoing

no-op No-op instruc�on

R1, R2, R3

2

2

Figure 5.5: Figure shows the ISA for the Star-CPU

0

20

40

60

80

100

120

0

10000

20000

30000

40000

50000

60000

Lease Star-GLIFT Star-Verified

Base Area Analysis Logic Max. Freq. MHz ALUTs

Figure 5.6: Area and Frequency comparison among secure CPUs.

151

Chapter 5. Making Gate-Level Verified Systems Practical

labels, whereas the Star-CPU only requires 5756 ALUTs and 133kB for state.

Adding dynamic tracking logic for the complex control logic of the CPU introduces

substantial delays and reduces the maximum operating frequency of the Star-

GLIFT CPU to 55MHz (from 99MHz for the verified Star-CPU). In summary,

the verified Star-CPU provides better functionality than the Lease CPU, and

static verification in comparison to Star-GLIFT CPU with much lesser area and

delay.

5.2.2 Kernel Implementation

Our full-system prototype is representative of a high assurance avionics sys-

tem [2]. Each trust domain in the system is assigned a partition, and a micro-

kernel manages these partitions’ access to the CPU, physical memory, and pe-

ripheral devices. The kernel implements an ARINC 653 scheduler (a standard in

avionics systems) which requires that all partitions be statically defined at compile

time in the form of a major frame period that repeats forever. Within a major

frame, the schedule specifies one or more execution time slots for each partition,

leaving the partitions free to implement standard, priority-based schedulers within

their time slots.

Specifically, our prototype instantiates 4 partitions: the first partition to run

programs responsible for controlling trusted avionics functions, the second parti-

152

Chapter 5. Making Gate-Level Verified Systems Practical

tion for untrusted programs such as passenger internet and non-critical diagnos-

tics, the third partition for a trusted cross-domain guard responsible for one-way

communication among the above two partitions, and the fourth partition reserved

for trusted kernel functions that require hardware access such as a context switch.

To effect a context switch, the kernel partition gets one time slot after each of

the other partitions’ slots. In actual systems, the partitions are sized so that

they meet hard real-time guarantees demanded by critical application; we opt

for arbitrary durations for each partition in order to demonstrate how to verify

non-interference between the trusted and untrusted partitions.

To verify non-interference, we instantiate the trusted kernel scheduler and the

context switch partition with concrete values, while the other three partitions are

instantiated as unknown (∗). The cross-domain guard partition overlaps a read-

only memory region with the trusted avionics partition and a write-only partition

with the untrusted partition. This ensures that information can only flow in one

direction from trusted to untrusted. Note, however, that cross-domain guards

can also be required to impose restrictions on the type of information that can be

transferred. Enforcing such rules requires verifying the guard program logic using

alternative formal verification techniques; bit-level information flow analysis is too

coarse-grained to provide such guarantees.

153

Chapter 5. Making Gate-Level Verified Systems Practical

 Context Switch 1: // from par��on 0 to 1

 // save current state: 10 cycles

 set_partitionID KERNEL_ID;

 store ctxt_arr [PID0][0], gen_reg [0]; …

 store ctxt_arr [PID0][7], gen_reg [7];

 last_PC ctxt_arr [PID0][8];

 // restore incoming state: 9 cycles

 load gen_reg [0], ctxt_arr [PID1][0]; …

 load gen_reg [7], ctxt_arr [PID1][7];

 set_partitionID PID1;

Kernel Scheduler 1: // uses reserved registers R1 and R2

 // set bounds and �mers for par��on 1: 10 cycles

 load R1, PID1_BOUNDS_G; load R2, PID1_TIME_G;

 set memboundsg R1, R2, PID1_RW_G;

 load R1, PID1_BOUNDS_L; load R2, PID1_TIME_L;

 set memboundsl R1, R2, PID1_RW_L;

 load R1, PID1_TIMER; load R2, Context Switch2_PC;

 settimer R1, R2, USR_MODE;

 jump ctxt_arr [PID1][8];

 // returns to context switch2 () in kernel mode

Context switch time = 2 x pipeline depth + context save + context restore + kernel scheduler = 37 cycles

Figure 5.7: Kernel scheduler and context switch functions in assembly. Security
policies are expressed through the values of partition parameters for memory and
time bounds. The functions are small since the ISA and CPU are designed for
information flow control.

The scheduler is small; the trusted, concretely specified scheduler and context

switch code only requires 87 assembly instructions. This is primarily because

the ISA in Figure 5.5 is explicitly designed for information flow control. The time

required to switch contexts is an important performance metric for a kernel. In our

system prototype, it takes the kernel partition 37 cycles to switch one partition

and schedule another: 4 cycles each to flush and re-fill the pipeline, 19 to save and

restore partition ID, general purpose registers and the last executed PC, 10 to set

new memory and time bounds and to jump to the PC for the restored context.

5.2.3 I/O Implementation

The I2C devices and adapters are also processed using the verification flow

mentioned above (note that the CPU and kernel can be verified independently

of the I/O by treating the I/O interface in the CPU as trusted and unknown).

Our experiment use a single master and three slaves connected to the bus using

154

Chapter 5. Making Gate-Level Verified Systems Practical

adapters. Each adapter synthesized individually requires 49b of state and the

slave requires 21b. We wish to verify that information does not flow from the

untrusted slave to any other device, and set up a test where the master is trusted

and known, communicates with an untrusted slave that is unknown (∗U). The

I2C bus has two trusted slaves, one specified and one unknown.

5.2.4 Verification Results

We simulate the augmented designs of the CPU and the I/O system for one

loop of the kernel scheduler, come back to the initial state, and verify that all

security labels for memory and outputs follow the desired policy for every state of

the system. Figure 5.8 shows a screenshot of verifying that the I2C adapter state

is reset to trusted once an untrusted time slot has ended. We simulate a complete

I2C transaction, letting transmitted data values be unknown, and verify that no

untrusted value ever appears on the adapter outputs to the trusted slave devices.

This experiment used 3 slaves and 3 adapters with a total of 184 state bits, and

if we assume that the hardware modules’ contributions are proportional to their

individual sizes, our technique can verify the 184b system by specifying ∼128b

concretely and evaluating all combinations of the rest in a single execution of the

augmented system.

155

Chapter 5. Making Gate-Level Verified Systems Practical

The ∗-logic verification technique scales to handle large embedded system de-

signs, as shown in Figure 5.6. Of the total 133kB state for the Star-CPU, only

3264b are required to specify the micro-kernel’s scheduler, context switch code,

and partition bounds. The verification scales because its complexity grows lin-

early with the size of the design under test, as each module is replaced by its

augmented module.

Total verification time includes the time for both synthesizing the design and

simulating it for a kernel scheduler loop. The augmented logic takes considerably

longer to synthesize as compared to the basic design under test. The augmented

Star-CPU, with 48093 ALUTs, required 14 hours to synthesize with QuartusII

v9.1 as compared to just 7 minutes for the basic design with 5756 ALUTs. Once

synthesized, simulating one loop of the kernel scheduler only takes a few seconds.

All measurements were made on a 1GHz AMD Athlon 64 X2 Dual Core Processor

with 1MB cache and 2.7GB RAM.

In the future, we will integrate ∗-logic with other formal techniques that can

work with richer abstractions. While such techniques do not readily scale to

large systems, these can complement ∗-logic to verify that the system is secure

for a set of implementations or kernel parameter values instead of one specific

implementation.

156

Chapter 5. Making Gate-Level Verified Systems Practical

Figure 5.8: Figure shows how to check for a safe reset of the I2C adapter to a
trusted state (based on a trusted signal time valid). The Modelsim simulation
waveform begins with the adapter in an untrusted time slot (time valid = 1).
During the untrusted communication, the adapter’s state bit stays unknown (as
indicated by the MSB of ad state being 1) and untrusted (ad state shadow

= 1) until the time slot expires (indicated by the time valid signal). At that
point, the adapter’s state machine is reset to a trusted state (indicated by the
ad state shadow signal going low).

5.3 Conclusions

Embedded systems are trusted by people to do everything from stopping their

cars to controlling the beating of their hearts, yet all too often these systems com-

promise strong security for rich functionality. We have shown, for the first time,

that complete statically verifiable information flow security is compatible with

the convenience of continuous, unbounded operation and dynamic optimizations

– even when we consider timing channels and other hardware/software leaks as

part of our threat model. Our system is designed around an architectural skele-

ton that allows a micro-kernel to safely multiplex mixed-trust programs on the

hardware, and can do so in 1/4th the area and with double the clock frequency as

more restrictive prior work. These advances are due in part to the development of

a tool that can statically verify information flows through full systems at the bit

level, allowing us to verify a 133kB system by specifying only 3264b concretely,

157

Chapter 5. Making Gate-Level Verified Systems Practical

and leaving behind the hardware dynamic flow tracking considered in prior work.

While more work is required to examine the broad applicability and scalability of

this approach, by implementing and verifying a full-system prototype (including

a CPU, a micro-kernel, and I2C based I/O) we have demonstrated that a useful

balance between flexibility and hardware information leakage is not only possible

but can even be relatively efficient.

158

Chapter 6

Conclusion

We conclude this dissertation by summarizing our key contributions and dis-

cussing the utility and trade-offs in gate-level information flow analysis.

Information flow security is a very versatile security model and captures the

requirements of many high assurance systems where it is important to preserve the

confidentiality of secret information or the integrity of critical system programs.

In addition to information flow control, and not addressed in this dissertation,

systems rely on encryption to preserve confidentiality while using an unclassified

communication channel or even declassification functions to make some aggregated

or outdated secret information available to an unclassified observer.

This work is a significant step towards realizing truly information flow secure

systems. While information flows through application level logic and even oper-

ating system abstractions have been well-studied in the past, in the presence of a

deliberately malicious program, identifying and closing all information leaks – be

159

Chapter 6. Conclusion

they through timing of observable events or through obscure low-level hardware

state – becomes critical to achieve high assurance. This dissertation presents the

first method to provably analyze all digital information flows and then presents

system level abstractions for realistic embedded systems to be built and verified

as being completely information flow secure.

6.1 Contributions

Our first insight is that analyzing information flows at the lowest level of digital

abstraction is the key to accounting for all explicit, implicit, and timing channels.

By operating at the gate level, the entire computing system is brought under the

purview of the information flow analysis and even leaks through obscure state or

timing become observable to the security analysis.

A further insight, that makes this gate-level analysis become practical by not

categorizing every mixed-trust system as being insecure, is recognizing that we can

be more precise in propagating security labels through gates than for a generic

system with mixed trust inputs. For example, labeling the output of an AND gate

as trusted if a trusted input is 0 makes the information flow analysis precise and

thus automatically recognize when a multiplexer is being used to reset some state

back from untrusted to trusted. As a result, systems designed around a small

160

Chapter 6. Conclusion

trusted kernel can be verified automatically if the kernel relies on multiplexers to

safely manage the remaining state among various trust levels.

To complement this verification technique, we present two system-level ab-

stractions that can be used to design and implement complete systems. The first

abstraction – Execution Leases – is for the system programmer, where the hard-

ware exports precise control over all information flows to the system programmer

through specific instructions for bounding the space (all physical registers and

memory) and time that are visible to the currently executing code. Using these

set timer and set memory bound instructions, a caller program can set up precise

space-time sandboxes for the callee program to run in. The second abstraction is

for the hardware designer to construct a system that allows performance enhancing

features while still not leaking information through timing channels. We propose

a small, trusted Architectural Skeleton that is used by a software micro-kernel to

manage the entire remaining system state. The micro-kernel can use this skeleton

to either partition all performance enhancing micro-architectural features such

as caches and branch predictors or to overwrite all untrusted information before

using the shared state for trusted programs.

In the end, we propose that a system designer use these abstractions to design

the hardware-software root of trust and then verify the final gate-level implemen-

tation automatically using the ∗-logic tool. This would ensure that the formal

161

Chapter 6. Conclusion

model of information flow security is applied systematically to the entire system

state and the final bit-level system implementation conforms to a desired high-

level security policy like non-interference. In the rest of this section, we discuss

subtler issues that arise when using gate level analysis to verify practical systems.

6.2 Discussion 1: Utility of ∗-logic Verification

Technique

∗-logic is well suited for many high assurance systems, such as a router in an

aircraft or a controller in automobiles, where the security requirements and the

root of trust are known statically to a system designer.

A typical Integrated Modular Avionics system has to multiplex functions rang-

ing from on-board diagnostics to navigation and control to passenger internet to

possibly even some confidential data collection on one shared compute and com-

munication infrastructure. The root of trust in such a system is some trusted

program such as a real time operating system like Integrity or VxWorks running

on a commodity CPU such as PPC 750, and this root of trust is responsible

for enforcing a statically defined round-robin schedule, preserve the integrity of

the navigation and control programs, and maintain the confidentiality of mission-

related data. To verify such a system, the system designer has to concretely

162

Chapter 6. Conclusion

specify its root of trust (including the kernel and the processor) and label rest

of the state as unknown. The designer also specifies some parts of the state as

untrusted (the passenger internet related programs), some other state as classified

(programs related to a confidential mission), and even some state as “untrusted

and unclassified” such as the on-board diagnostics that a ground mechanic can

access for maintenance but not to sabotage the overall aircraft or to leak clas-

sified information. In effect, the entire system state has three additional labels

(unknown, untrusted, and secret) to represent the three types of information that

has to be tracked explicitly. Given such a specification, ∗-logic will work very well

to verify whether the entire bit-level implementation of the system conforms to a

desired security policy such as non-interference.

One important aspect of ∗-logic that concerns large scale system verification is

the ability to specify some state as “unknown and trusted”. This aspect is useful

when a designer responsible for only a part of the system wishes to verify her

subsystem for information flow security. For example, the I/O master controller

may not be known to the person verifying the rest of the CPU and micro-kernel.

In such cases, the designer can label the I/O controller as trusted and known,

design her subsytem to be independent of the rest at the bit level, and then verify

that the kernel and CPU are non-interfering for all possible values of the trusted

163

Chapter 6. Conclusion

but unknown I/O controller state. Thus the system can be verified to be secure

at the bit level in an incremental or distributed manner.

Another practically beneficial aspect of GLIFT is that the analysis allows a

system to be verified (or augmented with dynamic analysis logic) even when a

hardware or software design vendor only provides a gate-level netlist or binary to

their customers. So for a designer assembling a System-On-Chip using multiple

third-party hardware designs or a system with third-party software for less critical

tasks (such as a web server), GLIFT can still guarantee security for the final system

implementation. In contrast, techniques that analyze the source code statically

(aur augment the code under test with dynamic analysis code) are unsuitable

when systems are implemented using off-the-shelf netlists and binaries.

Weaknesses: ∗-logic requires trusted system constants that are required for

information flow control, such as the execution time schedule of different trust

domains, to be known concretely. Ideally, we would like the system to be verified

as secure independently of the exact schedule values, but ∗-logic requires these

values to be concrete since these are used as the select signal to multiplexers that

in turn reset system state back to trusted values. Due to the simple three-level

abstraction used for each bit (0, 1, or ∗), the analysis cannot reason about integer

arithmetic and recognize that a ∗ counter value when decremented is bound to

reach 0. Hence, to be verified as secure, the microkernel has to be specified

164

Chapter 6. Conclusion

concretely including all system constants. If the kernel parameters such as the

schedule is changed, the designer has to re-verify the system. In order to resolve

this issue, further work is required to integrate ∗-logic with static analyses that

can reason about higher levels of abstraction such as integers.

6.3 Discussion 2: Higher Level Design with Gate-

level Verification

The core idea behind GLIFT is that all information flows are captured when

all digital behaviors are observable, for example by representing the entire system

design as a synchronous state machine. Both the GLIFT dynamic analysis and

verification techniques use this insight to directly analyze a gate level system

description. An alternative method for analyzing information flows would be to

work at the level of a higher level hardware description language (HDL) instead

of a gate-level description.

The benefit of working at the HDL level is that all flows can still be captured

but the designer can use higher level language features such as procedural blocks,

if-else and case statements, or even state machine level descriptions, instead of

designing hardware tediously using only combinatorial logic. Using a compiler

that verifies information flow properties through an HDL design, the designer

165

Chapter 6. Conclusion

gets quick design time feedback and can iterate amongst different system design

options that balance performance and area overheads while being verifiably se-

cure. Further, the compiler can employ advanced program analysis techniques

and speed up the design process through precise debugging hints. In contrast, the

current analysis tool requires the design to be synthesized and simulated before

the security vulnerabilities can be analyzed. The second version of our toolchain,

which takes high level HDL desriptions as input and uses Synopsys Design Com-

piler to generate a gate-level description, allows for convenient design but still

leaves debugging as a hard problem in case information flow violations are found.

In our design experience, we have found two design patterns (either assigning

state and signals statically amongst trust domains or leasing them to untrusted

domains with a trusted reset) to be used in different combinations for all the

designs we implemented. As a result, we have begun looking into providing these

patterns as a domain specific language over a popular HDL like Verilog and thus

to aid the design of verifiably secure hardware designs.

As our first step we have designed Caisson [50], a domain specific language

that combines the state machine abstraction for hardware designs with insights

from type-based techniques used in secure programming languages. Specifically,

Caisson allows a designer to represent the Execution Lease mechanism as a state

machine where the trusted kernel state (the “master” state) can schedule the

166

Chapter 6. Conclusion

machine-state bits among different trust domains (each in their own “slave” states)

with no bits of information leaking between any pair of slave states.

This first version of a secure HDL proved to be useful because once the design

patterns are formalized, the language allows a designer to quickly iterate through

multiple system designs. For example, we designed a CPU where the pipelined

stages are not leased for a longer length of time, but are scheduled among different

trust domains on a per-cycle basis. In this design, every pipeline stage alternates

between executing trusted and untrusted inputs and storing to trusted and un-

trusted outputs. While such a design is reminiscent of how many multi-threaded

systems manage individual hardware threads (here, each thread here represents a

unique trust domain), such fine-grained sharing of hardware resources in a verifi-

ably secure pipelined processor is a first.

The drawbacks of this HDL based approach is that this does not account for

software, such as the kernel, that is responsible for managing multi-trust func-

tionality in most practical systems. Static verification of only the hardware is

limited to computing systems that have fixed functionality, and such systems are

increasingly becoming rare even in avionics and automobile domains. Further,

in many large scale systems, a designer may not have access to all the hardware

modules’ source code. GLIFT and ∗-logic, on the other hand, can verify gate-level

netlists without requiring access to source code. Finally, an HDL level technique

167

Chapter 6. Conclusion

add adds the synthesis tool into the trusted computing base. This is a significant

drawback for systems that have to be certified for high assurance use, since it adds

the complexity of verifying that the compiler itself does the verification and code

generation tasks correctly.

Ideally, we aim to have both ease of design and low cost of verification while

being completely information flow secure. Towards this end, we anticipate that a

designer will create hardware and software using a high level tool and get quick

feedback, and then verify the final gate-level implementation using GLIFT or ∗-

logic without having to trust the compiler from high level code to a gate level

netlist.

6.4 Discussion 3: On Static vs Dynamic Verifi-

cation

Fundamentally, complete information flow security precludes conditional ac-

tions based on an untrusted predicate (outside of any Lease, that is) as the effects

of such conditional actions would label the entire system as untrusted. How-

ever, complete information flow security can be obtained by systems that require

dynamic actions to only be performed by trusted programs. In practice this flex-

ibility is sufficient for systems that rely on a trusted kernel to take interrupts at

168

Chapter 6. Conclusion

arbitrary times, instead of polling for interrupts according to a fixed schedule,

and also for systems that require the security label lattice to be updated based

on some trusted intructions.

Based on this observation and the two discussions above, the ideal analysis

technique would use dynamic analysis to enable maximum flexibility in security

policies and system design, while using static analysis to reduce the area and

run-time performance overhead of the dynamic analysis. We envisage the system

to comprise of hardware that only provides mechanisms for efficient label storage

and propagation, e.g. by implementing an efficient label store [72, 68] and pro-

grammable label propagation logic as a look-up table [72, 24] respectively, while

the software is responsible for setting the labels and policies and taking appropri-

ate action in case of a security violation. To reduce the overhead of dynamic track-

ing logic, the hardware designer can explicitly specify the Architectural Skeleton

(Chapter 5) using an HDL for which precise GLIFT logic is generated automat-

ically, while for the remaining system, an imprecise and conservative but much

smaller tracking logic is employed. Further, the hardware designer can specify the

programmer visible state (registers and memory) for which the information flow

policies actually have to be enforced. Finally, to make the design phase efficient,

the designer can use a variant of Caisson that allows her to work at a high level

of abstraction and get quick design time feedback. Together, these techniques

169

Chapter 6. Conclusion

will allow the designer to efficiently construct systems that add little additional

overhead for tracking and enforcement of security policies, allow operating system

and application level security policies to be guaranteed down to the bits, and im-

pose no restrictions on system functionality beyond the ones imposed by complete

information flow security.

170

Bibliography

[1] 90nm generic cmos library , synopsys university program, syn opsys inc.,
available at.

[2] Arinc 653. http://www.lynuxworks.com/solutions/milaero/arinc-653.php.

[3] Common criteria for information technology security evaluation.
http://www.commoncriteriaportal.org/cc/.

[4] The integrity real-time operating system.
http://www.ghs.com/products/rtos/integrity.html.

[5] This car runs on code. http://news.discovery.com/tech/toyota-recall-
software-code.html.

[6] What does cc eal6+ mean? http://www.ok-labs.com/blog/entry/what-does-
cc-eal6-mean/.

[7] James Newsome and Dawn Song. Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity software.
In 12th Annual Network and Distributed System Security Symposium (NDSS
’05), February 2005.

[8] O. Accigmez, J. pierre Seifert, and C. K. Koc. Predicting secret keys via
branch prediction. In Cryptology, The Cryptographers Track at RSA, pages
225–242. Springer-Verlag, 2007.

[9] O. Acicgmez. Yet another microarchitectural attack: Exploiting i-cache. In
14th ACM Conference on Computer and Communications Security (ACM
CCS), 2007.

[10] O. Aciiçmez, Çetin Kaya Koç, and J.-P. Seifert. Predicting secret keys via
branch prediction. In The Cryptographers Track at RSA Conference, pages
225–242, 2007.

171

Bibliography

[11] T. Alves and D. Felton. TrustZone: Integrated Hardware and Software Se-
curity, July 2004.

[12] A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box mitigation of
timing channels. In Proceedings of the 17th ACM conference on Computer
and communications security, CCS ’10, pages 297–307, New York, NY, USA,
2010. ACM.

[13] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-enforced de-
terministic parallelism. In Proceedings of the ACM/USENIX Symposium on
Operating System Design and Implementation (OSDI), 2010.

[14] J. Barnes. High integrity software: The SPARK approach to safety and se-
curity. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,
2003.

[15] G. Barthe, D. Naumann, and T. Rezk. Deriving an information flow checker
and certifying compiler for java. In 27th IEEE Symposium on Security and
Privacy, 2006.

[16] D. Bell and L. LaPadula. Secure computer systems: Mathematical founda-
tions. Technical report, Technical Report MTR-2547, 1973.

[17] K. Biba. Integrity considerations for secure computer systems, 1977.

[18] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards automatic
generation of vulnerability-based signatures. In Proceedings of the 2006 IEEE
Symposium on Security and Privacy, 2006.

[19] H. Chen, X. Wu, L. Yuan, B. Zang, P. chung Yew, and F. T. Chong. From
speculation to security: Practical and efficient information flow tracking using
speculative hardware. isca, 0:401–412, 2008.

[20] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint analysis
framework. In ISSTA ’07: Proceedings of the 2007 international symposium
on Software testing and analysis, pages 196–206, New York, NY, USA, 2007.
ACM.

[21] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and
P. Barham. Vigilante: end-to-end containment of internet worms. In SOSP
’05: Proceedings of the twentieth ACM symposium on Operating systems prin-
ciples, pages 133–147. ACM Press, 2005.

172

Bibliography

[22] J. R. Crandall and F. T. Chong. Minos: Control Data Attack Prevention
Orthogonal to Memory Model. In MICRO 37: Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitecture, pages 221–232,
Washington, DC, USA, 2004. IEEE Computer Society.

[23] J. Daemen and V. Rijmen. The design of rijndael: Aes - the advanced en-
cryption standard. 2002.

[24] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A Flexible Information
Flow Architecture for Software Security. In 34th Intl. Symposium on Com-
puter Architecture (ISCA), June 2007.

[25] D. E. Denning and P. J. Denning. Certification of programs for secure infor-
mation flow. Commun. ACM, 20(7):504–513, 1977.

[26] D. Federal Aviation Administration (FAA). Boeing model 787-8 airplane;
systems and data networks security–isolation or protection from unauthorized
passenger domain systems access. http://cryptome.info/faa010208.htm.

[27] X. Feng, Z. Shao, Y. Dong, , and Y. Guo. Certifying low-level programs with
hardware interrupts and preemptive threads. In PLDI, pages pages 170–182,
2008.

[28] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou and
Youfeng Wu. LIFT: A Low-Overhead Practical Information Flow Tracking
System for Detecting General Security Attacks. In Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, December 2006.

[29] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis: Concrete
Results. In Cryptographic Hardware and Embedded Systems, volume 2162 of
Lecture Notes in Computer Science, pages 251–261. Springer-Verlag, 2001.

[30] S. Gianvecchio and H. Wang. Detecting covert timing channels: an entropy-
based approach. In Proceedings of the 14th ACM conference on Computer
and communications security, CCS ’07, pages 307–316, New York, NY, USA,
2007. ACM.

[31] J. A. Goguen and J. Meseguer. Security policies and security models. Security
and Privacy, IEEE Symposium on, 0:11, 1982.

[32] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, andW. H. Maisel. Pacemakers and implantable
cardiac defibrillators: Software radio attacks and zero-power defenses. In

173

Bibliography

Proceedings of the 2008 IEEE Symposium on Security and Privacy, pages
129–142, Washington, DC, USA, 2008. IEEE Computer Society.

[33] D. Jackson. A direct path to dependable software. Commun. ACM, 52(4):78–
88, 2009.

[34] T. Jaeger, R. Sailer, and Y. Sreenivasan. Managing the risk of covert infor-
mation flows in virtual machine systems. In s. ACM Symposium on Access
Control Models and Technologies (SACMAT), France, June 2007.

[35] D. Kalinksy and R. Kalinsky. Introduction to i2c.
Embedded Systems Programming, 14(8), August 2001.
http://www.embedded.com/story/OEG20010718S0073.

[36] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn.
A retrospective on the vax vmm security kernel. IEEE Trans. Softw. Eng.,
17(11):1147–1165, 1991.

[37] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. sel4: formal verification of an os kernel. In SOSP ’09: Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating systems princi-
ples, pages 207–220, New York, NY, USA, 2009. ACM.

[38] P. Kocher, J. J. E, and B. Jun. Differential power analysis. In Advances in
Cryptology, pages 388–397. Springer-Verlag, 1999.

[39] P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In CRYPTO ’96: Proceedings of the 16th Annual
International Cryptology Conference on Advances in Cryptology, pages 104–
113, London, UK, 1996. Springer-Verlag.

[40] J. Kong, O. Aciiçmez, J.-P. Seifert, and H. Zhou. Deconstructing new cache
designs for thwarting software cache-based side channel attacks. In Proc.
of the 2nd ACM workshop on Computer security architectures, pages 25–34,
2008.

[41] J. Kong, J. pierre Seifert, and H. Zhou. Hardware-software integrated ap-
proaches to defend against software cache-based side channel attacks. In 15th
IEEE International Symposium on High Performance Computer Architecture,
2009.

174

Bibliography

[42] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. Mc-
Coy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Eoxperimental
Security Analysis of a Modern Automobile. In Proceedings of the IEEE Sym-
posium on Security and Privacy, 2010.

[43] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. Mc-
Coy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental
security analysis of a modern automobile. In Proceedings of the 2006 IEEE
Symposium on Security and Privacy, 2010.

[44] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and
R. Morris. Information flow control for standard os abstractions. SIGOPS
Oper. Syst. Rev., 41(6):321–334, 2007.

[45] L. C. Lam and T. cker Chiueh. A general dynamic information flow tracking
framework for security applications. In ACSAC ’06: Proceedings of the 22nd
Annual Computer Security Applications Conference on Annual Computer Se-
curity Applications Conference, pages 463–472, Washington, DC, USA, 2006.
IEEE Computer Society.

[46] U. E. Larson and D. K. Nilsson. Securing vehicles against cyber attacks. In
Proceedings of the 4th annual workshop on Cyber security and information
intelligence research: developing strategies to meet the cyber security and
information intelligence challenges ahead, CSIIRW ’08, pages 30:1–30:3, New
York, NY, USA, 2008. ACM.

[47] G. le Guernic and T. Rezk. A security-preserving compiler for distributed pro-
grams: From information-flow policies to cryptographic mechanisms. In ACM
Conference on Computer and Communications Security (CCS’09), 2009.

[48] R. B. Lee, P. C. S. Kwan, J. P. Mcgregor, J. Dwoskin, and Z. Wang. Archi-
tecture for protecting critical secrets in microprocessors. In Proceedings of
the 32nd International Symposium on Computer Architecture (ISCA), 2005.

[49] J. Lewis. Cryptol: specification, implementation and verification of high-
grade cryptographic applications. In Proceedings of the 2007 ACM workshop
on Formal methods in security engineering, page 41. ACM, 2007.

[50] X. Li, M. Tiwari, J. Oberg, V. Kashyap, F. T. Chong, T. Sherwood, and
B. Hardekopf. Caisson: a hardware description language for secure informa-
tion flow. In PLDI, pages 109–120, 2011.

175

Bibliography

[51] W. Martin, P. White, F. Taylor, and A. Goldberg. Formal construction of the
mathematically analyzed separation kernel. Automated Software Engineering,
International Conference on, 0:133, 2000.

[52] A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java information
flow. Software release. http://www.cs.cornell.edu/jif, July 2001.

[53] S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood. Understanding and
Visualizing Full Systems with Data Flow Tomography. In ASPLOS-XIII:
Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems, March 2008.

[54] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[55] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures:
the case of aes. In Topics in Cryptology - CT-RSA 2006, pages 1–20. Springer-
Verlag, 2006.

[56] F. Pottier and V. Simonet. Information flow inference for ML. ACM Trans-
actions on Programming Languages and Systems, 25(1):117–158, Jan. 2003.

[57] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of
my cloud: exploring information leakage in third-party compute clouds. In
CCS ’09: Proceedings of the 16th ACM conference on Computer and com-
munications security, pages 199–212, New York, NY, USA, 2009. ACM.

[58] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of
my cloud: exploring information leakage in third-party compute clouds. In
CCS ’09: Proceedings of the 16th ACM conference on Computer and com-
munications security, pages 199–212, New York, NY, USA, 2009. ACM.

[59] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel. Laminar:
Practical fine-grained decentralized information flow control. In Proceedings
of ACM SIGPLAN 2009 Conference on Programming Language Design and
Implementation (PLDI 2009), Dublin, June 2009.

[60] J. Rushby. Partitioning for avionics architectures: Requirements, mecha-
nisms, and assurance. NASA Contractor Report CR-1999-209347, NASA
Langley Research Center, June 1999. Also to be issued by the FAA.

[61] O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachandran, S. Chen,
M. Kozuch, and M. Ryan. Parallelizing dynamic information flow tracking.

176

Bibliography

In SPAA ’08: Proceedings of the twentieth annual symposium on Parallelism
in algorithms and architectures, pages 35–45, New York, NY, USA, 2008.
ACM.

[62] A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21:2003, 2003.

[63] K. Shimizu, H. P. Hofstee, and J. S. Liberty. Cell broadband engine processor
vault security architecture. IBM J. Res. Dev., 51(5):521–528, 2007.

[64] O. Sibert, P. A. Porras, and R. Lindell. An analysis of the intel 80x86 se-
curity architecture and implementations. IEEE Transactions on Software
Engineering, 22(5):283–293, 1996.

[65] G. Smith. Principles of secure information flow analysis. In Malware Detec-
tion, pages 297–307. Springer-Verlag, 2007.

[66] G. Suh, C. O’Donnell, and S. Devadas. Aegis: A single-chip secure processor.
Design and Test of Computers, IEEE, 24(6):570–580, Nov.-Dec. 2007.

[67] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure Program Execution
via Dynamic Information Flow Tracking. In ASPLOS-XI: Proceedings of
the 11th international conference on Architectural support for programming
languages and operating systems, pages 85–96, New York, NY, USA, 2004.
ACM Press.

[68] M. Tiwari, B. Agrawal, S. Mysore, J. K. Valamehr, and T. Sherwood. A small
cache of large ranges: Hardware methods for efficiently searching, storing, and
updating big dataflow tags. In Proceedings of the International Symposium
on Microarchitecture (Micro), 2008.

[69] M. Tiwari, X. Li, H. Wassel, F. Chong, and T. Sherwood. Execution leases:
A hardware-supported mechanism for enforcing strong non-interference. In
Proceedings of the International Symposium on Microarchitecture (MICRO),
2009.

[70] M. Tiwari, H. Wassel, B. Mazloom, S. Mysore, F. Chong, and T. Sherwood.
Complete information flow tracking from the gates up. In Proceedings of
the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2009.

177

Bibliography

[71] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome,
G. A. Reis, M. Vachharajani, and D. I. August. Rifle: An architectural frame-
work for user-centric information-flow security. In MICRO 37: Proceedings of
the 37th annual IEEE/ACM International Symposium on Microarchitecture,
pages 243–254. IEEE Computer Society, 2004.

[72] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic. Flexitaint:
A programmable accelerator for dynamic taint propagation. In Four-
teenth International Symposium on High Performance Computer Architecture
(HPCA), pages 196–206, New York, NY, USA, 2008. ACM.

[73] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.
Cross site scripting prevention with dynamic data tainting and static analysis.
February 2007.

[74] M. Völp, C.-J. Hamann, and H. Härtig. Avoiding timing channels in fixed-
priority schedulers. In Proceedings of the 2008 ACM symposium on Infor-
mation, computer and communications security, ASIACCS ’08, pages 44–55,
New York, NY, USA, 2008. ACM.

[75] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2-3):167–187, 1996.

[76] Z. Wang and R. B. Lee. New cache designs for thwarting software cache-based
side channel attacks. SIGARCH Comput. Archit. News, 35(2):494–505, 2007.

[77] M. Wolf, A. Weimerskirch, and T. Wollinger. State of the art: Embedding
security in vehicles. EURASIP Journal on Embedded Systems, 2007.

[78] B. Xin and X. Zhang. Efficient online detection of dynamic control depen-
dence. In ISSTA, pages 185–195, 2007.

[79] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: A
practical approach to defeat a wide range of attacks. In 15th USENIX Security
Symposium, Vancouver, BC, Canada, August 2006.

[80] J. Yang and C. Hawblitzel. Safe to the last instruction: Automated verifica-
tion of a type-safe operating system. In PLDI, 2010.

[81] H. Yin, D. Song, E. Manuel, C. Kruegel, and E. Kirda. Panorama: Cap-
turing system-wide information flow for malware detection and analysis. In
Proceedings of the 14th ACM Conferences on Computer and Communication
Security (CCS’07), October 2007.

178

Bibliography

[82] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making informa-
tion flow explicit in histar. In USENIX’06: Proceedings of the 7th conference
on USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, 2006.

179

