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Abstract

In the past, test data volume reduction techniques
have concentrated heavily on scan test data content.

However, functional vectors continue to be utilized be-

cause they target unique defects and failure modes.
Hence, functional vector compression can help allevi-

ate the cost of functional test. Scan vector compression

techniques are generally unsuitable in the functional
domain and techniques specially tailored for functional

test compression are required. Additionally, it may be

possible to perform compression and decompression
using software techniques without incurring the over-

head of dedicated hardware. This paper proposes a set

of software techniques targeted towards functional test
compression.

1. Introduction

As circuit sizes scale with technology, manufactur-

ing test cost is contributing a larger share of the total

cost of manufacturing a chip [18]. One of the key con-

tributing factors to test cost is test time and test data

volume. Since a key measure of cost efficiency of a

manufacturing test process is tester throughput, it is 

imperative that we reduce the time a chip spends at the

tester. Most of the test time is spent loading the test 

data through a slow tester interface, though the design

is typically capable of supporting a higher tester

throughput. However, tester throughput cannot be in-

creased without a proportional increase in the cost of 

the tester itself (which usually runs in the millions).

Similarly, testers have a limited amount of memory

available to store test vectors. Test data could be parti-

tioned and then reloaded into tester memory one parti-

tion at a time, but tester reloads cost time as well. In-

creasing the tester memory is not a good option due to 

cost considerations. Thus, techniques are necessary to

reduce the Test Application Time (TAT) and Test Data

Volume (TDV).

Due to the criticality of TAT and TDV issues, there

has been abundant research in the area of scan test data

compression [3]-[25]. Test data compression techniques

primarily try to reduce the test data volume but many

techniques try to reduce the test time as well. For scan

vectors, the test data volume is dominated by the data

required to load and unload the scan chains (typically 3

bits per scan cell - 1 bit for stimulus, 1 bit for observa-

tion and 1 extra bit to specify which scan cells need to 

be masked out during observation).

A variety of test data compression techniques tar-

geted towards scan vectors have been proposed in the

literature. Some of them utilize general-purpose tech-

niques such as run-length encoding (RLE) [7][12][13].

RLE relies on representing a repetition of a certain 

symbol (0 or 1) with a codeword which denotes the

count of the repeated symbol and the symbol itself.

Golomb Codes are one such example of RLE. Tech-

niques utilizing LZW algorithm (the UNIX “compress”

and “gzip” utilities use a version of this algorithm) have

also been proposed [25]. 

The other set of techniques rely on utilizing linear

networks which have been widespread in the built-in

self-test (BIST) domain [2]. Such structures include lin-

ear feedback shift registers (LFSRs) [3] and phase

shifters. Phase shifters are XOR networks used to re-

duce the shift dependency amongst bit streams from 

different stages of an LFSR. XOR networks (which

include phase shifters) can be thought of as linear net-

works in the space domain whereas LFSRs can be

thought of as linear networks in the time domain. Thus,

the time behavior of an LFSR can be translated into an 

equivalent linear combinational network consisting of

XORs [14]. Linear networks are popular because their

behavior is well-understood and are amenable to

mathematical rigor.

Despite a body of research in the area of scan test 

data compression, there has been very little work in the

area of functional test compression. It should be noted

that software compression has been explored in the area

of embedded applications [26][27], where the code size

can impact utilization of on-chip resources needed to

store firmware and software programs. These tech-

niques also rely on dedicated on-chip hardware for de-

compression unlike the software-based techniques pro-

posed in this paper which entail no hardware overhead.

In this paper, we propose compression techniques

specially suited to a functional test environment. The

compression and decompression is performed using

software routines and without support from any dedi-

cated compression hardware. The proposed compres-

sion techniques can be used to compress either deter-

ministic functional tests or microprocessor self-test

programs that utilize random instructions (e.g., [28],

[31]-[35]).  Hence, the proposed techniques are com-

plementary to existing techniques and can be used in
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conjunction with them to reduce TAT and TDV. The

remainder of the paper is organized as follows: Section

2 details the underlying framework for the compression

scheme.  Section 3 discusses how to partition the func-

tional tests into blocks and order them to minimize test

time.  Section 4 lists the compression methods used in

this study followed by Sections 5 and 6 which provide

the experimental results and conclusions respectively.

2. Functional Test Framework

As shown in Fig. 1, we assume the functional test

patterns are applied using a low-cost tester (generally a 

structural tester) with limited pin access, similar to the 

scheme described in [28]. For the moment, assume the

vectors are not compressed. The test vectors are loaded

into the cache using an interface which is running at a

speed slower than the core clock frequency, usually at 

the front side bus (FSB) frequency. The functional tests

then execute from the cache at the core clock fre-

quency. At the end of the test session, the results are

deposited back in the cache and subsequently

downloaded by the tester. Thus, the speed of the tester-

die interface (the FSB) and the size of the cache deter-

mine the test time and the code size of the vectors

which can be applied in a test session. The impact of

the slow tester interface and cache size on test time and 

volume can be reduced greatly if the functional tests are

loaded in compressed form. The decompression of the

tests takes place on-chip at the core clock frequency

with very little impact on test time. Further, if the de-

compression is done on-the-fly and piece-meal as the 

vectors are needed, the cache can be utilized more ef-

fectively. This technique effectively increases the vir-

tual size of the cache and allows larger programs to be 

executed.

Figure 1. Test Application Framework

Figure 2 shows the cache image under the proposed

scheme. The data loaded from the tester includes two

components: a preamble which contains the compres-

sion and decompression routines followed by the main

portion which contains the compressed test data. Seg-

ments of the cache are reserved to store the decom-

pressed instruction/code streams, the uncompressed

response and the compressed response.

The execution flow is shown in Figure 3: a decom-

pression routine is executed to decompress a block of

test data and the resultant decompressed instruction

stream is stored in a reserved portion of the cache. Con-

trol is now transferred from the decompression routine

to the decompressed instruction stream. As a result of 

the execution of the instruction stream, response data is 

now deposited back in a reserved area of the cache and 

control is now transferred to a compression routine to 

compress the response data. The compressed data may

either be transferred immediately back to the tester or 

stored in a reserved area for transfer later. 

Figure 2. Cache Image

Figure 3. Execution Flow

The portion of the cache containing the decompressed

instructions and uncompressed response can now be

freed. Additionally, if the compressed response data has

been transferred to the tester, that area can be reclaimed

as well. Control now returns to the decompression pro-

gram where the same process is repeated for another

block of data. It should also be noted that the tester op-

erations and the operations internal to the core (com-

pression/ decompression/execution) can be overlapped

to hide some of the latencies.  This is explained further

in Sec. 3. 

From the discussion above, it is imperative that the

compression and decompression routine themselves

should occupy the minimum amount of space in the

cache. Additionally, the execution time for compression

and decompression should be insignificant compared to

the execution time for the test program itself. Based on 

this framework, we discuss different compression and

decompression schemes in Sec. 4.
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Tester Chip

Response Compression Program
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Decompressed Functional Tests
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3. Partitioning and Ordering Functional 

Test Blocks 

In order to overlap the time required to transfer the

compressed data from the tester to the cache with the

time required to decompress and execute the tests, the

functional tests are partitioned into blocks of instruc-

tions with as fine granularity as possible while allowing

each block to be executed independently of the others.

How small or large each block is will depend on the

overall structure of the tests. The key is that each block

of functional tests can be decompressed and executed

independent of the others.
For each block i: let transferi be the time required

to transfer the compressed block from the tester to the

cache;  let applyi be the time to apply the test which

involves decompressing the block, executing the block,

and compressing the response; and, let memoryi repre-

sent the amount of memory in the cache required for 

applying the block which includes both the memory for

storing the uncompressed code as well as the uncom-

pressed response.  Then it is possible to overlap the

time for transferring block i from the tester, transferi,

with the time for applying the previous b blocks

provided there is sufficient memory in the

cache for .

1i

bi kapply

1i

bi kmemory

The blocks should be optimally ordered to minimize

the overall test time.  If the sum of the tester transfer

time for all the blocks exceeds the sum of 

the time to apply the blocks  then the tester

transfer time is the bottleneck.  In that case, the blocks

should be ordered so that the tester is constantly trans-

ferring to the cache, and the block with the shortest 

application time should be ordered last to minimize the

delay beyond the last transfer.  However, if the sum of 

the application time for all the blocks  ex-

ceeds the sum of the time to transfer the blocks

then the application time is the bottleneck.

In that case, the blocks should be ordered so that the

block with the shortest transfer time is transferred first

(to minimize the latency before the microprocessor

begins execution), and the remaining blocks should be

ordered so that the microprocessor is never waiting for

a block to be transferred.

n

ktransfer
1

n

kapply
1

n

kapply
1

n

ktransfer
1

How easily the blocks can be ordered to minimize

test time will depend on how large the blocks are and

how much cache memory is available.  The more

blocks that can be stored in cache memory at one time,

the easier it is to ensure that the bottleneck, whether

tester transfer time or test application time, is not

stalled at any point.

In the next section, different encoding schemes will

be described which offer different tradeoffs between the

amount of cache memory required by the decompres-

sion program versus the amount of compression that is

provided.  If the tester transfer time is the bottleneck,

then encoding schemes that provide greater compres-

sion (thereby reducing the amount of data the tester has

to transfer) may be preferable.  However, if the limited

cache memory is resulting in a suboptimal ordering of

the blocks, then encoding schemes that use a smaller

decompression program and dictionary may be prefer-

able.

4. Compression Methods 

In this section, different compression schemes are 

studied that could be suitable for functional test com-

pression.  One main requirement of the functional test

framework is that the decompression should be done

fully in software. The decompression program size adds 

to the compressed data and hence the program size

should be minimized as much as possible.  Similar to 

scan data compression, the response of functional tests

can be compressed using lossy compression techniques.

However, the input tests need to be compressed in a 

lossless manner. Functional tests are programs which

mean they are fully specified unlike scan vectors that

can have unspecified bits. Three different compression

schemes have been investigated as part of this work.

They are discussed in detail in the following sections.

4.1 Run-Length Encoding

Run length encoding involves replacing the runs (or

repetitions) of different characters with fixed size code-

words. It is very effective in data sets where one or 

more characters are repeated a lot times together.  The 

decompression program is very simple and can be im-

plemented with a relatively small number of instruc-

ions in software.t

1   000 00001  100

01   001 000001  101

001   010 0000001  110

0001 011    00000001  111

Figure 4. 3-bit run length code for runs of 0’s

Figure 4 illustrates a 3-bit run length code. The data

appearing on the left side is coded with the codewords

given on the right hand side. In this code, runs of 0’s

are compressed.  Another option is to use an alternating

run-length code where both runs of 0s and runs of 1’s

are compressed.

4.2 Huffman Codes

Huffman coding [29] is a fixed to variable code.

The idea is to encode fixed size blocks of input data to

variable size codewords based on the frequency of oc-
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currence of the blocks. The blocks that appear more

frequently are encoded with fewer bits. This is illus-

trated in Fig. 5 that shows blocks and their frequency of

occurrence and their corresponding Huffman codes.

Block Frequency Code

000 15 1

001 12 10

010 10 1000

011 9 1001

100 8 1010

101 8 11110

110 5 111110

111 1 111111

Figure 5. Example of Huffman code

4.3 Liv-Zempel-Welch (LZW)

LZW codes fall under the larger category of sliding

window dictionary based Lempel-Ziv algorithms [30].

In the LZW variant, the dictionary is created dynami-

cally. If the symbol is not present in the dictionary, it is 

added. The old entries are automatically removed when

the window is filled.

4.4 Operand Factorization

The three compression techniques discussed above

are general compression techniques that can be used for

any data set. Hence, schemes that utilize the nature of 

the data to be compressed to further increase the com-

pression maybe useful. Functional tests are programs

that are run on the microprocessor. The programs or 

“code” are a series of instructions in the instruction set

format of the microprocessor. The instructions can be

said to roughly consist of operations that are performed

on a set of data. The basic idea of operand factorization

[26] is to separate out the operation part of the instruc-

tion (opcodes) and the operand part of the instruction

(registers and immediates). The two parts are then

compressed separately. During decompression, they are

put together to form the original program. The main

advantage of this type of partitioning is that the two 

parts will have more repetitions and hence more com-

pression can be achieved. On the other hand, the de-

compression process will be a little more complicated

than decompressing a single stream of compressed data.

In this work, experiments have been performed with

operand factorization to see how much improvement it 

provides.

5. Experimental Results 

The compression schemes discussed in the previous

sections were implemented. Experiments were per-

formed on the SPEC2000 benchmark programs com-

piled for an ARM microprocessor.  Table 1 shows the

size of the decompression program in bytes that is re-

quired for each of the compression schemes:  run-

length coding, Huffman coding, and LZW.  Three dif-

ferent types of run-length coding were used: 2-bit

codewords encoding runs of 0’s, 2-bit alternating

codewords encoding both runs of 0’s and 1’s, and 3-bit

codewords encoding runs of 0’s.  For Huffman coding,

three different symbol lengths were used:  8 bit, 10 bit

and 12 bit. For LZW, three different window sizes

were used:  256 bytes, 1024 bytes, and 4096 bytes.  The

results in Table 1 show the total amount of memory (in

bytes) required for decompression with a breakdown of

how much is for the decompression program and how

much is for the dictionary. As can be seen in Table 1,

run-length coding requires much less memory for de-

compression in comparison to the other two.  Huffman

coding is in the middle, and LZW requires the most

amount of memory for decompression.

Table 1. Memory (in bytes) required for decompression

Method Type
Code

Size

Dictionary

Size
Total

2 bit 96 0 96

alt. 2 bit 128 0 128RLE

3 bit 160 0 160

8 bit 832 256 1088

10 bit 832 1024 1856Huffman

12 bit 832 4096 4928

256 8172 256 8428

1024 8172 1024 9196LZW

4096 8172 4096 12268

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

alvinn art bzip2 equake gcc go gzip twolf

2-bit run Alt 2-bit 3-bit run

Figure 6. Compression obtained with run-length code

Figure 6 shows the amount of compression obtained

when using three different run-length codes on the

SPEC2000 benchmarks compiled for ARM. The y-axis

is the compression ratio defined as (compressed

data)/(original data).  As can be seen in Figure 6, run-

length coding does not provide much compression.

The alternating run-length code performed the worst.

The 3-bit run length code performed the best. We tried

4-bit and longer run lengths codes, but the results were 

much worse. The conclusion that can be drawn from

these results is that run-length codes, while requiring

very little memory for decompression, are simply not

effective for functional tests.  There are not enough

runs in the data to achieve significant compression.
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Figure 7. Compression obtained with Huffman coding

Figure 7 shows the amount of compression obtained

when using Huffman coding with three different sym-

bol lengths.  For Huffman coding, performing operand

factorization improves the compression.  The full size

of each bar is the compression without operand factori-

zation, and the solid portion of each bar is the compres-

sion with operand factorization.  Because some instruc-

tions occur more frequently than others, operand fac-

torization is beneficial as it allows the Huffman code to

better exploit this.  As can be seen in Figure 7, having a 

symbol length of 8 outperforms symbol lengths of 10

and 12 even though it uses a smaller dictionary.  The

reason for this is that a symbol length of 8 aligns the

symbols along word boundaries thus better exploiting

correlations between instructions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

alvinn go gzip gcc art equake bzip2 twolf

256 1024 4096

Figure 8. Compression obtained with LZW for ARM

Figure 8 shows the amount of compression obtained

when using LZW with three different dictionary sizes

for ARM code.  The amount of compression monotoni-

cally improves with larger dictionaries.  For a given

application, the dictionary could simply be set as large

as the available memory will allow.  To get an idea how

much the results varied for different instruction sets, we

also generated results for x86 code which is shown in

Figure 9.  The results and trends are similar. To get an

idea of the inherent compressibility of the ARM code,

we calculated the entropy for each of the benchmark

programs for a symbol size of 32 to find the theoretical

limit on the amount that the code could be compressed.

This is shown in Table 2 along with the best compres-

sion that we achieved for each of the different coding 

schemes.  As can be seen in Table 2, LZW gets fairly

close to the entropy limit. 

0

0.2

0.4

0.6

0.8

bzip2 crafty eon gap gcc gzip mcf parser twolf

256 1024 4096

0.1

0.3

0.5

0.7

Figure 9. Compression obtained with LZW for x86

Table 2. Comparison with entropy limit 

Benchmark RLE Huffman LZW Entropy

alvinn 0.920 0.706 0.542 0.395

art 0.919 0.698 0.534 0.391

bzip2 0.923 0.702 0.542 0.396

equake 0.923 0.706 0.520 0.393

gcc 0.936 0.559 0.427 0.372

go 0.909 0.681 0.541 0.392

gzip 0.923 0.702 0.546 0.396

twolf 0.939 0.697 0.461 0.385

6. Conclusions

This paper has presented a methodology for com-

pressing functional tests.  The decompression is per-

formed in software requiring no additional hardware.  It

can be used to compress both deterministic functional

tests as well as self-test programs.  Experimental results

show that while run-length codes require very small

decompression programs, they provide very little com-

pression for fully specified functional tests.  Huffman

coding where the symbol length aligns with word

boundaries provides a modest amount of compression.

Operand factorization can be used in conjunction with

Huffman codes to further improve the compression

(though not dramatically). LZW provides the most

compression, but also requires the largest decompres-

sion program.  Depending on the available memory for

a particular application, an appropriate coding tech-

nique can be selected.
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