
Special ATPG to Correlate Test Patterns for Low-Overhead
Mixed-Mode BIST

Madhavi Karkala Nur A. Touba

Computer Engineering Research Center
Dept. of Electrical and Computer Engineering

University of Texas, Austin, TX 787 12

Abstract
In mixed-mode BIST, deterministic test patterns

are generated with on-chip hardware to detect the
random-pattern-resistant (r.p.r.) faults that are missed
by the pseudo-random patterns. While previous work
in mixed-mode BIST has ,focused on developing
hardware schemes ,for more efficiently encoding a
given set of deterministic patterns (generated by a
conventional A TPG procedure), the approach taken in
this paper is to improve the encoding eficiency (and
hence reduce hardware overhead) by specially
selecting a set of deterministic test patterns for the
r.p.r. faults that can be efficiently encoded. A special
ATPG procedure is described for finding test patterns
for the r.p.r. faults that are correlated (have the same
logic value) in many bit positions. Such test patterns
can be efliciently encoded with one o f t h e many “bit-
fixing” schemes that have been described in the
literature. Results are shown f o r different bit-fixing
schemes which indicate dramatic reductions in BIST
overhead can be achieved by using the proposed ATPG
procedure to select which test patterns to encode.

1. Introduction

In built-in self-test (BIST), the test patterns that
are applied to the circuit-under-test are generated with
on-chip hardware. In order to minimize the overhead
for BIST, the test pattern generation hardware must be
compact. For this reason, pseudo-random testing is an
attractive approach for BIST because a linear feedback
shift register (LFSR), which has a simple compact
structure, can be used to generate the test patterns.
Unfortunately, however, the circuit-under-test may
contain random-pattern-resistant (r.p.r) faults which
have low detection probabilities and therefore limit the
fault coverage that can be obtained with pseudo-
random testing [Eichelberger 831.

One way to improve the fault coverage is to use
mixed-mode BIST in which some deterministic patterns
are generated with on-chip hardware to detect the

Hans-Joachim Wunderlich

Computer Architecture Lab
University of Stuttgart, Breitwiesenstr. 20-22

70565 Stuttgart, Germany

r.p.r. faults that the pseudo-random patterns miss.
This paper focuses on the problem of how to efficiently
encode the deterministic patterns on-chip in order to
minimize the overhead for mixed-mode BIST. Many
different schemes for encoding deterministic test
patterns on-chip have been developed. These schemes
can be broadly categorized as follows:

1. ROM-Based Schemes - The simplest way to
generate deterministic patterns on-chip is to store
them in a ROM, however, the size of the required
ROM is often prohibitive. Several compression
techniques have been developed for reducing the size
of the ROM [Agarwal 811, [Aboulhainid 831,
[Dandapani 841, [Edirisooriya 921, [Dufaza 931.
2. Reseeding Schemes - Instead of storing the
deterministic patterns themselves in a ROM,
techniques have been developed for storing LFSR
seeds that can be used to generate the deterministic
patterns [Koenemann 911, [Hellebrand 92, 95a],
[Venkataraman 931, [Zacharia 95, 961. The LFSR
that is used to generate the pseudo-random patterns is
also used to generate deterministic test cubes (test
patterns with unspecified inputs) by loading it with
computed seeds. The number of bits that needs to be
stored is reduced by storing a set of seeds instead of
the deterministic patterns themselves.
3. Counter-Based Schemes - Several different
techniques have been developed for designing a
special counter that generates a set of deterministic
patterns [Daehn 811, [Akers 891, [Dufaza 91, 951,
[Kangaris 96ab], [Wunderlich 961, [Kiefer 971.
4. Bit-Fixing Schemes - “Bit-fixing” involves
generating pseudo-random patterns and fixing the
logic value of certain bit positions to cause the pseudo-
random patterns to match deterministic test cubes. Bit-
fixing has been found to be a very effective approach
for generating deterministic test cubes for the r.p.r.
faults. Several different bit-fixing schemes have been
developed [Pateras 911, [Pomeranz 93a], [AlShaibi 94,
961, [Chatterjee 9.51, [Touba 95a, 95b, 961.

492
0-8186-8277-9198 $10.00 0 1998 IEEE

One characteristic that all of these schemes share
is that the overhead depends on the set of patterns that
is encoded. Some sets of patterns require less
hardware to encode than others. While most previous
work in mixed-mode BIST has focused on developing
different schemes for more efficiently encoding a
given set of deterministic patterns (generated by a
conventional ATPG procedure), another approach for
improving the encoding efficiency (and hence reduce
hardware overhead) is to develop new ATPG
procedures for specially selecting a set of deterministic
test patterns for the r.p.r. faults that can be efficiently
encoded with a particular hardware encoding scheme.
Each r.p.r. fault is typically detected by a number of
different test patterns. Thus, an additional degree of
freedom in minimizing the hardware for mixed-mode
BIST is in selecting which deterministic patterrl to
encode for each r.p.r. fault. How to make use of this
degree of freedom is the subject of this paper.

Some previous work has been done in the area of
developing ATPG procedures for improving encoding
efficiency. Several techniques exist for minimizing
the total number of deterministic test patterns that
need to be encoded [Tromp 911, [Pomeranz 9.3b1,
[Kajihara 931. These techniques are particul irly
effective for encoding schemes that involve storing the
patterns in a ROM. In [Hellebrand 95b1, a special
ATPG procedure was described for improving the
encoding efficiency for an encoding scheme where
deterministic test cubes are generated by reseeding a
multiple-polynomial LFSR. Decisions made during
ATPG are guided by heuristics aimed at generaihg
test cubes that have a large number of unspecified bits
while keeping the overall number of test cubes small.
Results show a dramatic improvement in the encoding
efficiency with this approach. In [Reeb 961, an ATPG
procedure was described for maximizing thc number
of unspecified bits in each detcrininistic test cube. In
general, increasing the number of unspecified bits
improves the encoding efficiency for most scheries,
but it is not necessarily the most effective approach for
improving the encoding efficiency.

This paper presents an ATPG procedure for
improving the encoding efficiency for bit-fixing
schemes such as those described in [Pateras 911,
[Pomeranz 93a], [AIShaibi 94, 961, [Chatterjee 951,
and [Touba 95a, 95b, 961. Bit-fixing is very efficient
for generating a set of test cubes that have the same
specified logic value in particular bit positions (this
will be referred to as “bit correlation”). For example,
the test cubes 11011, 11x00, and fXOX0, are
correlated in the lst, 2nd, and 3rd bit positions, but
not in the 4th and 5th. That is because all of the
specified bits in the 1st and 2nd bit positions are l’s,

and all of the specified bits in the 3rd position are 0’s.
However, the 4th and 5th bit positions have conflicts
because some of the specified values are 1’s and some
are 0’s. Note that the unspecified values (X’s) don’t
matter. For a set of test cubes that is correlated in
several bit positions, the correlated bit positions can be
fixed to a particular logic value while the rest of the
bits are pseudo-randomly generated. The amount of
hardware required for generating a set of test cubes in
a particular test length with bit-fixing depends on how
correlated the test cubes are. The set of test cubes can
be partitioned into subsets where the test cubes in each
subset are correlated in a sufficient number of bit
positions to enable them to be generated in a
reasonable test length with bit-fixing. The bit-fixing
hardware depends on how many such subsets there
are. This paper presents an ATPG procedure for
generating a set of test cubes for the r.p.r. faults in a
way that maximizes the bit correlation among the test
cubes. The set of test cubes obtained with this ATPG
procedure can be used to design efficient bit-fixing
hardware for detecting the r.p.r. faults.

Note that while the procedure in this paper is
described for bit-fixing schemes in particular, its
applications extend to other encoding schemes as well.
ROM-based “store-and-generate” schemes (e.g.,
[Agarwal 8 11, [Aboulhamid 831) store correlated test
cubes in memory and generate the remaining bits by
counters. Maximizing correlation reduces both
memory size and test length. Some counter-based
schemes work best for correlated patterns as well
(e.g., [Wunderlich 961, [Kiefer 971). In short, the
contribution of this paper is a general ATPG tool that
can be used to generate correlated test sets which are
useful in inany existing and potentially hture test
encoding schemes.

2. Partitioning Test Cubes for Bit-Fixing

The idea in bit-fixing is that for a set of test cubes
that is correlated in scveral bit positions, the correlated
bit positions can be fixed at a constant logic value
while the rest of the bits are pseudo-randomly
generated. Very little hardware is required to do this
since the pseudo-random generator is already
implemented in mixed-mode BIST, and bits can be
fixed by simply ANDing (for fixing to 0) or ORing
(for fixing to 1) them with a control signal. For a test
cube with n specified bits, if k of them are fixed, then
the probability of generating the test cube by randomly
specifying the remaining n-k bits is 2-(’‘-‘), Thus the
test length required to generate the test cube with bit-
fixing depends on how large n-k is. The value of n-k
must be small enough to allow the test cube to be

493

generated within an “acceptable” test length. What is
considered an acceptable test length depends on the
particular test environment.

Given a set of test cubes for the r.p.r. faults and a
constraint on the value of n-k, the test cubes can be
partitioned into subsets such that each subset is
correlated in a sufficient number of bit positions to
allow the value of n-k for each test cube to satisfy the
constraint. These subsets of test cubes will be referred
to as “bit-fixing groups” in this paper. The value of k
for each bit-fixing group is equal to the number of
correlated bit positions among the test cubes in the
bit-fixing group.

The amount of hardware required for bit-fixing
depends on how many bit-fixing groups there are. So
the task at hand is to find test cubes for the r.p.r. faults
that are correlated in a way that minimizes the number
of bit-fixing groups needed to satisfy a given
constraint on n-k. The proposed strategy for doing
this involves forming the bit-fixing groups one at a
time. When forming each bit-fixing group, an attempt
is made to maximize the number of test cubes that are
included in each bit-fixing group under the constraint
on n-k. The proposed procedure for forming each bit-
fixing group is described below:

Input: Undetected r.p.r. faults and constraint on n-k

Output: Bit-fixing group, BF-GROUP, that satisfies
constraint on n-k

Step 1: Perform ATPG for each r,p.r. fault using the
procedure in [Reeb 961 to maximize the number of
unspecified bits.

This step finds a test cube for each fault with a
minimal number of specified bits (smallest n).

Step 2: Select test cube with the largest number of
specified bits (largest n) as the initial test cube in the
BF- GRO UP.

Of the test cubes found in step 1, the one with the
largest number of specified bits (largest n) corresponds
to the hardest to encode. Thus, this test cube is used as
the initial test cube in the bit-fixing group.

Step 3: Initialize the value of k m d f l for each r.p.r.
fault. f. to infinity.

A variable k m a x m is associated with each r.p.r.
fault. It keeps track of the largest number of
correlated bit positions (largest k) that a test cube for
faultJ’currently has. Since no test cube for faultfhas
been found yet, this value is initialized to infinity.

Step 4: Identify the set K of correlated bit positions
a m o w the test cubes in the BF-GROUP

Identify the set of bit positions, K, where all the
test cubes in the bit-fixing group have compatible

values. This is the maximum set of bit positions that
can be fixed. Initially, there is only one test cube in
the bit-fixing group (the one added in step 2), thus
there are no conflicts so all bit positions are initially
contained in the set K. As additional test cubes are
added to the bit-fixing group, bit positions are
removed from K when conflicts are introduced.

Step 5: For the r.p.r. fault f that is not covered by the
BF-GROUP and has the largest value of kmaxrfl, use
the special ATPG procedure described in Sec. 3 to find
a test cube for it that differs in the fewest number of bit
positions from the set K of correlated bit positions.

The fault f which has the largest value of k m a x n ,
is the one whose test cube may minimize the number
of conflicts with the BF-GROUP. The value of
k m a x f l is only an upper bound, so ATPG must be
performed to find a test cube for the fault and compute
the exact number of correlated bit positions. The
special ATPG procedure in Sec. 3 is used to find the
test cube that maximizes the number of correlated bit
positions.

Step 6: If the number of correlated bit positions for
the test cube obtained for fault f i n Step 5 is equal to
k m m r f l , then add it to BF-GROUP, otherwise update
the vaiue of kmaxrfl and loop back to Step 5.

If the number of correlated bit positions, k, in the
test cube is in fact equal to k m a x m , then that test cube
will minimize the number of conflicts with the set K of
correlated bits in the current BF-GROUP, so it is
added to the BF-GROUP. However, if k is less than
krnmm, then it forms a new upper bound and thus the
value of k m a x m is set equal to k. The reason why the
current value of k forms an upper bound on hture
values of k is the fact that the number of correlated bit
positions between test cubes for a particular r.p.r. fault
and the BF-GROUP can only decrease (BF-GROUP
can only become less correlated when additional test
cubes are added to it). If the value of k is less than
k m a x n , then the test cube for another fault may be
more correlated, so the procedure loops back to step 5.
Step 7: If the BF-GROUP still satisfies the constraint
on (n-k), then loop back to step 4. Otherwise, remove
the last test cube added to the BF-GROUP and stop.

The procedure stops when no more test cubes can
be added to the bit-fixing group without violating the
constraint on n-k. When the last test cube added to the
bit-fixing group (in step 6) causes it to no longer
satisfy the constraint, then that test cube is removed
from the bit-fixing group so that the constraint is
satisfied once again and the procedure stops.

Once a bit-fixing group has been formed by this
procedure, bit-fixing hardware can then be designed

494

(using one of the many schemes described in the
literature) to fix the correlated bit positions in the bit-
fixing group. The hardware can be simulated to
determine the set of patterns that are applied to the
circuit-under-test. Fault simulation can then be clone
for the patterns to determine which r.p.r. faults reniain
undetected. The procedure can then be repeated for
those faults. This process continues until the desired
fault coverage is achieved.

The key step in the partitioning procedure is step 5
in which a special ATPG procedure (which will be
described in Sec. 3) is used to find a test cube that is
maximally correlated with the existing set of test cubes
in the bit-fixing group. By specially choosing the test
cubes in step 5 , as opposed to just using a given set of
test cubes, the procedure is able to find a bctter
partitioning of the test cubes resulting in reduced
bit-fixing hardware.

3. Correlating ATPG Procedure

In this section, the ATPG procedure for finding
correlated test cubes is presented. Given a se of
correlated bit positions, the problem being addressed is
to find a test cube for a particular fault that conf icts
with as few of the correlated bit positions as possible.
This ATPG task is different from dynamic compaction
[Goel 791 where an attempt is made to find a test cube
for a fault by specifjmg the don’t cares (X’s) in test
cubes for others faults. Dynamic compaction looks for
a test cube for a particular fault that has no conjicts
with other test cubes, whereas the problem of interest
here is to find a test cube for a particular fault that has
the fewest number of conflicts with other test cubes

3.1 Initial Input Assignments
The “Correlating ATPG’ procedure presented here

uses a PODEM [Goei 811 based algorithm in which
the inputs corresponding to the correlated bit positions
are assigned initial values. Normally the PODEM
algorithm begins with all inputs having unassigned
values (X’s). However, in the Correlating ATPG
procedure, the initial input assignments are made to
begin in the part of the search space that would y~eld
the most correlated test cube. If the fault can be
detected by making hrther inputs assignments without
backtracking on any of the initial input assignments
(i.e , the correlated bit positions), then a test cube can
be found with no conflicts in the correlated bit
positions. In general, however, some backtracking on
the initial input assignments will be necessary to
detect the fault. The key to maximizing the bit
correlation is to carehlly select the order of the

backtracking in order to minimize the number of
initial assignments that are reversed.

3.2 Backtracking
Normally, backtracking in the PODEM algorithm

is done in the reverse order in which the inputs are
assigned (i.e., the last input assignment made is the
one that is changed first). Backtracking in the
Correlating ATPG procedure is done in the same way
except for when backtracking on the initial input
assignments (i.e., the correlated bit positions). The
order in which backtracking is performed on the initial
input assignments is determined by using structural
heuristics aimed at minimizing the number of initial
input assignments that need to be reversed.

Backtracking on the initial input assignments is
required when one of the line values implied by the
initial input assignments must be complementcd in
order to allow the fault to be provoked or sensitized to
a primary output by subsequent input assignments. If
the value implied at the fault site is the same value as
the fault polarity (i.e., if a 1 (0) is implied at a stuck-at
1 (0) fault site), then one or more initial input assign-
ments must be reversed in order to either complement
the value implied at the fault site or to imply an X at
the fault site such that subsequent input assignment
can provoke the fault. Backtracing is done to
determine which initial input assignments to reverse.
When there is a choice on which gate input to set to a
controlling value, decisions are made based on
minimizing the total number of initial input
assignments that need to be reversed. If the fault site
cannot be sensitized to a primary output with
additional input assignments (i.e., no “X-path” exists
from the “D-frontier” to a primary output), then line
justification decisions for creating an X-path are again
based on minimizing the total number of initial input
assignments that need to be reversed. These decisions
can be quickly made using the controllability and
observability cost hnctions described in the next
subsection.

3.3 Controllability and Observability Cost
Functions

In the Correlating ATPG procedure, the goal is to
minimize the number of initial input assignments that
are reversed. Thus, the cost of justifylng a line to a
particular logic value or observing a line is the number
of initial input assignments that need to be reversed.
Controllability and observability values arc computed
to reflect this cost and used to guide line justification
decisions. These values are computed when the initial
input assignments are made and their implications are

495

determined. The controllability values are determined
by traversing the circuit from the primary inputs to the
primary outputs. If no value is implied on a line (i.e.,
it is an X), then both the 0-controllability and
I-controllability values for that line are 0 since it can
be justified to either logic value without reversing any
of the initial input assignments. If the value implied
on a line is a 0 (I) , then the 0-controllability
(1 -controllabilty) is set to 0 and the 1-controllability
(0-controllability) is set to the number of initial input
assignments that need to be reversed in order to
complement the value implied on the line or to imply
an X on the line. Once the controllability values have
been computed, then the observability values can be
determined by traversing the circuit from primary
outputs to primary inputs and using the controllability
values to determine the number of initial input
assignments that need to be reversed in order to make
the line observable. An example of computing
controllability and observability values is shown in
Fig. 1. CO, C / , and 0 denote the controllability-0,
controllability- 1, and observability values, respectively,
for each line. Note that there is no initial assignment
for the fourth input (i.e., it is an X) so there is no cost
for subsequent assignments to that input.

When making line justification decisions in
Correlating ATPG, the controllability and
observability values based on the number of initial
input assignments that need to be reversed are the
primary criteria. Of course, in many cases these
values will be 0 or multiple decisions will have the
same value. In those cases, the conventional ATPG
heuristics (to minimize ATPG runtime) or the
heuristics in [Reeb 961 (to maximize don’t cares, i.e.,
minimize n) can be used.

Consider the example in Fig. 2. The fault being
targeted is the output of gate G5 stuck-at 1.
Conventional ATPG would begin with all inputs

co=o
o=o

CO = o
o=o

CO = I

O = I

co=o
0 = 2

0 C I = l

0 C I = l

1 cI=o

x C I = O

+ co=o
C I = l
o=o 0

1

1 & CO=O
C I = l
0 - 0

CO = I
ci = o
0=1

+

Figure 1. Controllability and Observability Values

CO= I

o=o
CO= I

1 C I = O

1 C I = O
o=o

1 C I = O

x C I = O

CO= I

o=o
co=o

o = i

initially unassigned (X’s), however in Correlating
ATPG, the initial input assignments correspond to the
correlated bit positions. Implications based on the
initial input assignments are made, and the
controllability and observability values are computed
based on the number of initial input assignments that
need to be reversed as previously described. Since the
value implied at the fault site is the same as the fault
polarity, one or more of the initial input assignments
must be reversed to justify a 0 at the fault site.
Backtracing is done to determine which initial input
assignments to reverse. Backtracing can be done
through either gate G3 or gate G4. Since the
0-controllability at the output of gate G3 is less than the
0-controllability at the output of gate G4, backtracing
is done through gate G3. Next there is a decision
whether to backtrace through gate GI or gate G2. The
0-controllability values are equal for gate GI and gate
G2 because in either case, one input assignment will
need to be reversed. In this case, a secondary criteria
can be used in making the decision. For example, if
the secondary criteria was to maximize the don’t cares
(X’s), then backtracing would be done through gate
GI since going through gate G2 would require
assigning a value to a currently unassigned input (in
addition to reversing the input assigned to a 1).

& co=i

GI
C I = 0
o=o 1

1

& C O = I

G3 + C O = ~ r
G2 eo= I

C l = O Stuck-At I o=o
Fault

Cl -0
0 - 0

o=o x ::I;
co=o o=o 1 C I = O

1 C I = O
o=I

o = 1

CO= I

496

+ c0=2 X CAI: G6 C I = O
o=o

G4

3.4 Post-Processing
The last step after a test cube that detects the fault

has been found is to try to complement the valu,: of
any bit positions that conflict with the correlated bit
positions. For each bit position that conflicts wi1.h a
correlated bit position, the value is complemented and
the resulting test cube is simulated to see if the fault is
still detected. If the fault is no longer detected, then
the bit position is returned to its previous value.
Unlike the “maximal compaction” procedure described
in [Pomeranz 93b], if it is possible to complement the
bit, then the bit is left at the complemented value
rather than making it an X. This is done to maxiniize
the possibility of complementing other bits since thc
goal is to minimize the number of conflicts.

3.5 Backtracking Limit
The goal of the Correlating ATPG procedure i i to

maximize correlation as opposed to conventional
ATPG procedures whose goal is to minimize execui.ion
time. One potential problem is that thc heuristics used
in the Correlating ATPG procedure may result in more
backtracking. However, a limit can be placed on the
backtracking based on the minimum amount of
correlation that is acceptable. For the partitioning
procedure described in Sec. 2, the constraint that is set
on the value of n-k means that a test cube with icss
than a certain amount of bit correlation is not of
interest. Thus, if the Correlating ATPG procedure
backtracks on more than a certain number of initial
input assignments, the procedure can be stopped since
the fault will have to be covered by a different bit-
fixing group anyway.

Table 1. Comparison with Put

Bit-Fixing
Groups

1
1
1
5
4
4
3
2
1
7
6
5

Circuit

3-Gate Test
Modules Length

6 2048
1 4096
1 8192

71 6124
65 10240
63 20480
16 4096
3 6144
4 8192

165 8196
153 14336
144 24576

C880

C2670

C3540

C7552

Parameter

60

233

50

207

N
1024
2048
4096
1024
2048
4096
1024
2048
4096
1024
2048
4096

4. Experimental Results

Experiments were performed to compare “bit-
fixing” hardware designed using the ATPG procedure
described here with previous methods. Results are
shown for all of the benchmark circuits for which
previously published results exist. A comparison was
made for two different bit-fixing hardware encoding
schemes. The first bit-fixing hardware encoding
scheme is the one described in [Pomeranz 93a] which
uses “3-gate modules” for implementing the bit-fixing.
Table 1 shows the results published in [Pomeranz 93a]
compared with the results obtained using the proposed
ATPG procedure.

The parameter N is the number of patterns applied
in the pseudo-random test and also the number of
patterns applied for each bit-fixing group. Three
different values of N were used for each circuit. In
each case, the number of bit-fixing groups is shown
followed by the number of 3-gate modules required to
implement the bit-fixing. The total test length is
shown which is equal to the number of bit-fixing
groups plus one (for the pseudo-random test) times the
value of N. The fault coverage in all cases is 100% of
detectable faults. In [Pomeranz 93a], test cubes
obtained with COMPACTEST [Pomeranz 93b] (which
uses heuristics to minimize the total number of test
cubes) were used for selecting the bit positions to fix.
For the proposed method, test cubes obtained using the
Correlating ATPG procedure were used for selecting
the bit positions to fix. As can be seen, a dramatic
reduction in overhead is achieved by simply using
different test cubes for selecting the bit positions to fix.

ished Results in [Pomeranz 93a]

Pomeranz 93a

14 I 233 I 30675
65536

1 4096

48128
2137 73728

36 207 151552

3-Gate Mod. With Proposed ATPG
Num I Num I Total

497

Table 2. Comparison with Published Results in [Touba 961.

A comparison was also made for the bit-fixing
hardware encoding scheme described in [Touba 961
which selectively performs bit-fixing on a serial
sequence of bits that is shifted into a scan chain.
Table 2 shows the results published in [Touba 961
compared with the results obtained using the proposed
Correlating ATPG procedure. For each circuit, the
number of stages in the LFSR used to generate the
pseudo-random patterns is shown followed by the size
of the sequence ID register (which is equal to the
number of bit-fixing groups) and the literal count of
the multilevel bit-fixing sequence generation logic. In
all cases, the total test length is 10,000 patterns and
the fault coverage is 100% of detectable faults. The
results published in [Touba 961 were obtained using a
conventional ATPG procedure. By simply selecting a
different set of test cubes to embed using the proposed
Correlating ATPG procedure, a significant reduction
in hardware overhead can be achieved. Note that both
the amount of combinational logic (i.e., literal count)
and more significantly the number of flip-flops
required (i.e., Sequence ID Register Size) are reduced.

5. Conclusions

Traditional approaches for designing mixed-mode
BIST hardware use structural information only
indirectly in the form of identifylng bit correlations in
a given set of test cubes for the r.p.r. faults. The
ATPG procedure described in this paper directly
analyzes the circuit structure to find test cubes that

lead to more efficient mixed-mode BIST hardware.
The ATPG procedure described here can be used with
any bit-fixing hardware encoding scheme to reduce
BIST overhead. Results for two different bit-fixing
schemes indicate that dramatic reductions in overhead
can be achieved with the proposed ATPG procedure.

While the procedure in this paper is described for
bit-fixing schemes in particular, it can easily be
adapted for other test encoding schemes that benefit
from correlated test cubes.

Acknowledgements

This material is based on work supported in part by
the Defense Advanced Research Projects Agency
(DARPA) under Contract No. DABT63-94-C-0045, in
part by the National Science Foundation under Grant
No. MIP-9702236, and in part by the Texas Advanced
Research Program under Grant No. 1997-003658-369.

References
[Aboulhamid 831 Aboulhamid, M.E., and E. Cerny, “A

Class of Test Generators for Built-In Testing,” IEEE
Transactions on Computers , Vol. C-32, No. 10,

[AlShaibi 941 AIShaibi, M.F., and C.R. Kime, “Fixed-
Biased Pseudorandom Built-In Self-Test for Random
Pattern Resistant Circuits,” Proc. of lnternatroizal Test
Conference, pp. 929-938, 1994.

[AIShaibi 961 AIShaibi, M.F., and C.R. Kime, “MFBIST: A
BlST Method for Random Pattern Resistant Circuits,”
Proc. of International Test ConJ, pp. 176-1 85, 1996.

pp. 957-959, Oct. 1983.

498

[Agarwal 811 Agarwal, V.K., and E. Cerny, “Store and
Generate Built-In Testing Approach,” Proc. of FTCS-

[Akers 891 Akers, S.B., and W. Jansz, “Test Set Embedding
in a Built-In Self-Test Environment,” Proc. of
International Test Conference, pp. 257-263, 1989.

[Chatterjee 951 Chatterjee, M., and D.K. Pradhan, “A Novel
Pattern Generator for Near-Perfect Fault Coverage,”
Proc. of VLSI Test Symposium, pp. 417-425, 1995.

[Daehn 811 Daehn, W., and J. Muncha, “Hardware Test
Pattern Generation for Built-In Testing,” Proc. of
International Test Conference, pp. 1 10-1 13, 198 I .

[Dandapani 841 Dandapani, R., J. Patel, and J. Abraham,
“Design of Test Pattern Generators for Built-In Test,”
P roc. of International Test Con$, pp. 3 15-3 19, 1984.

[Dufaza 911 Dufaza, C., and G. Cambon, “LFSR based
Deterministic and Pseudo-Random Test Pattern
Generator Structures,” Proc. of European ?est
Conference, pp. 27-34, 1991.

[Dufaza 931 Dufaza, C., C. Chevalier, and L.F.C. Lew Yan
Voon, “LFSROM: A Hardware Test Pattern Generator
for Deterministic ISCAS85 Test Sets,” Proc. of As,;an
Test Symposium, pp. 160-165, 1993.

[Dufaza 951 Dufaza, C., H. Viallon, and C. Chevalier, “BIST
Hardware Generator for Mixed Testing Scheme,” Proc.
of European Design & Test Con$, pp. 424-430, 1995.

[Edirisooriya 921 Edirisooriya, G., and J.P. Robinson,
“Design of Low Cost ROM Based Test Generatots,”
Proc. of VLSI Test Symposium, pp. 6 1-66, 1992.

[Eichelberger 831 Eichelberger, E.B., and E. Lindbloom,
“Random-Pattern Coverage Enhancement and Diagnosis
for LSSD Logic Self-Test,’’ IBA4 Journal of Reseaxh
and Dev., Vol. 27, No. 3, pp. 265-272, May 1983.

[Goel 791 Goel, P., and B.C. Rosales, “Test Generation and
Dynamic Compaction of Tests,” Proc. of International
Test Conference, pp. 189-192, 1979.

[Goel 811 Goel, P., “An Implicit Enumeration Algorithrrl to
Generate Tests for Combinational Logic Circui. s,”
IEEE Transactions on Computers, Vol. C-30, No. 3,
pp. 2 15-222, Mar. 198 1.

[Hellebrand 921 Hellebrand, S., S. Tarnick, J. Rajski, iind
B. Courtois, “Generation of Vector Patterns Through
Reseeding of Multiple-Polynomial Linear Feedback
Shift Registers,” Proc. of International Yest
Conference, pp. 120-129, 1992.

[Hellebrand 95aj Hellebrand, S., J. Rajski, S. Tarnick. S.
Venkataraman and B. Courtois, ”Built-In Test for
Circuits with Scan Based on Reseeding of Multiple-
Polynomial Linear Feedback Shift Registers,” IEEE
Trans. Comput., Vol. 44, No. 2, pp. 223-233, Feb. 1995.

[Hellebrand 95b] Hellebrand, S., B. Reeb, S. Tarnick, ind
H.-J. Wunderlich, ”Pattern Generation for a
Deterministic BIST Scheme,” Proc. of International
Conference on Computer-Aided Design (ICCAD), 1995.

[Kajihara 931 Kajihara, S., I. Pomeranz, K. Kinoshita, S M.
Reddy. “Cost-Effective Generation of Minimal l’cst
Sets for Stuck-at Faults in Combinational Logic
Circuits,” Proc. of the 30th Design Automaiion
Conference, pp. 102- 106, 1993.

11, pp. 35-40, 1981.

[Kangaris 96a] Kangaris, D., S. Tragoudas, A. Majumdar,
“Deterministic Test Set Reproduction by a Counter,”
Proc. of Europ. Design & Test Con$, pp. 37-4 1, 1996.

[Kangaris 96b] Kangaris, D., and S. Tragoudas, “Generating
Deterministic Unordered Test Patterns with Counter,”
Proc. of VLSI Test Symposium, pp. 374-379, 1996.

[Kiefer 971 Kiefer, G., and H.-J. Wunderlich, “Using BIST
Control for Pattern Generation,” Proc. of International
Test Conference, 1997.

[Koenemann 911 Koenemann, B., “LFSR-Coded Test
Patterns for Scan Designs,” Proc. of European Test
Conference, pp. 237-242, 1991.

[Pateras 913 Pateras, S., and J. Rajski, “Cube-Contained
Random Patterns and Their Application to Complete
Testing of Synthesized Multi-level Circuits,” Proc. of
International Test Conference, pp. 473-482, 1991.

[Pomeranz 93a] Pomeranz, l., and S.M. Reddy, “3-Weight
Pseudo-Random Test Generation Based on a
Deterministic Test Set for Combinational and
Sequential Circuits,” IEEE Truns. on Computer-Aided
Design, Vol. 12, No. 7, pp. 1050- 1058, Jul. 1993.

[Pomeranz 93bl Pomeranz, I., L.N. Reddy, and S.M. Reddy,
“COMPACTEST: A Method to Generate Compact
Test Sets for Combinational Circuits,” IEEE
Transactions on Computer-Aided Design, Vol. 12,

[Reeb 961 Reeb, B., H.-J. Wunderlich, “Deterministic
Pattern Generation for Weighted Random Pattern
Testing,” Proc. of European Design & Test Conference,

[Touba 95a] Touba, N.A., and E.J. McCluskey,
“Transformed Pseudo-Random Patterns for BIST,”
Proc. of VLSI Test Symposium, pp. 4 10-41 6, 1995.

[Touba 95b] Touba, N.A., and E.J. McCluskey, “Synthesis
of Mapping Logic for Generating Transformed Pseudo-
Random Patterns for BIST,” Proc. of International Test
Conference, pp. 674-682, 1995.

[Touba 961 Touba, N.A., and E.J. McCluskey, “Altering a
Pseudo-Random Bit Sequence for Scan-Based BIST,”
Proc. of International Test ConJ, pp. 167-1 75, 1996.

[Tromp 911 Tromp, G., “Minimal Test Sets for
Combinational Circuits,” Proc. of International Test
Conference, pp. 204-209, 1991.

[Venkataraman 931 Venkataraman, S., J. Rajski, S.
Hellebrand, and S. Tarnick, “An Efficient BIST
Scheme Based on Reseeding of Multiple Polynomial
Linear Feedback Shift Registers,” Proc. of lnt. ConJ on
Computer-Aided Design (ICCAD), pp. 572-577, 1993,

[Wunderlich 961 Wunderlich, H.-J., and G. Kiefer, “Bit-
Flipping BIST,” Proc. of International Conference on
Computer-Aided Design (ICCAD), 1996.

[Zacharia 951 Zacharia, N., J. Rajski, and J. Tyszer,
”Decompression of Test Data Using Variable-Length
Seed LFSRs,” Rroc. VLSI Test Sym., pp. 426-433, 1995.

[Zacharia 961 Zacharia, N., J. Rajski, J. Tyszer, and J.A.
Waicukauski, “Two-Dimensional Test Data
Decompressor for Multiple Scan Designs,” Proc. of
International Test Conference, pp. 186- 194, 1996.

NO. 7, pp. 1040-1049, Jul. 1993.

pp. 30-36, 1996.

499

