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Abstract 
In mixed-mode BIST, deterministic test patterns 

are generated with on-chip hardware to detect the 
random-pattern-resistant (r.p.r.) faults that are missed 
by the pseudo-random patterns. While previous work 
in mixed-mode BIST has ,focused on developing 
hardware schemes ,for more efficiently encoding a 
given set of deterministic patterns (generated by a 
conventional A TPG procedure), the approach taken in 
this paper is to improve the encoding eficiency (and 
hence reduce hardware overhead) by specially 
selecting a set of deterministic test patterns for  the 
r.p.r. faults that can be efficiently encoded. A special 
ATPG procedure is described for finding test patterns 
for  the r.p.r. faults that are correlated (have the same 
logic value) in many bit positions. Such test patterns 
can be efliciently encoded with one o f t h e  many “bit- 
fixing” schemes that have been described in the 
literature. Results are shown f o r  different bit-fixing 
schemes which indicate dramatic reductions in BIST 
overhead can be achieved by using the proposed ATPG 
procedure to select which test patterns to encode. 

1. Introduction 

In built-in self-test (BIST), the test patterns that 
are applied to the circuit-under-test are generated with 
on-chip hardware. In order to minimize the overhead 
for BIST, the test pattern generation hardware must be 
compact. For this reason, pseudo-random testing is an 
attractive approach for BIST because a linear feedback 
shift register (LFSR), which has a simple compact 
structure, can be used to generate the test patterns. 
Unfortunately, however, the circuit-under-test may 
contain random-pattern-resistant (r.p.r) faults which 
have low detection probabilities and therefore limit the 
fault coverage that can be obtained with pseudo- 
random testing [Eichelberger 831. 

One way to improve the fault coverage is to use 
mixed-mode BIST in which some deterministic patterns 
are generated with on-chip hardware to detect the 
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r.p.r. faults that the pseudo-random patterns miss. 
This paper focuses on the problem of how to efficiently 
encode the deterministic patterns on-chip in order to 
minimize the overhead for mixed-mode BIST. Many 
different schemes for encoding deterministic test 
patterns on-chip have been developed. These schemes 
can be broadly categorized as follows: 

1. ROM-Based Schemes - The simplest way to 
generate deterministic patterns on-chip is to store 
them in a ROM, however, the size of the required 
ROM is often prohibitive. Several compression 
techniques have been developed for reducing the size 
of the ROM [Agarwal 811, [Aboulhainid 831, 
[Dandapani 841, [Edirisooriya 921, [Dufaza 931. 
2. Reseeding Schemes - Instead of storing the 
deterministic patterns themselves in a ROM, 
techniques have been developed for storing LFSR 
seeds that can be used to generate the deterministic 
patterns [Koenemann 911, [Hellebrand 92, 95a], 
[Venkataraman 931, [Zacharia 95, 961. The LFSR 
that is used to generate the pseudo-random patterns is 
also used to generate deterministic test cubes (test 
patterns with unspecified inputs) by loading it with 
computed seeds. The number of bits that needs to be 
stored is reduced by storing a set of seeds instead of 
the deterministic patterns themselves. 
3. Counter-Based Schemes - Several different 
techniques have been developed for designing a 
special counter that generates a set of deterministic 
patterns [Daehn 811, [Akers 891, [Dufaza 91, 951, 
[Kangaris 96ab], [Wunderlich 961, [Kiefer 971. 
4. Bit-Fixing Schemes - “Bit-fixing” involves 
generating pseudo-random patterns and fixing the 
logic value of certain bit positions to cause the pseudo- 
random patterns to match deterministic test cubes. Bit- 
fixing has been found to be a very effective approach 
for generating deterministic test cubes for the r.p.r. 
faults. Several different bit-fixing schemes have been 
developed [Pateras 911, [Pomeranz 93a], [AlShaibi 94, 
961, [Chatterjee 9.51, [Touba 95a, 95b, 961. 
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One characteristic that all of these schemes share 
is that the overhead depends on the set of patterns that 
is encoded. Some sets of patterns require less 
hardware to encode than others. While most previous 
work in mixed-mode BIST has focused on developing 
different schemes for more efficiently encoding a 
given set of deterministic patterns (generated by a 
conventional ATPG procedure), another approach for 
improving the encoding efficiency (and hence reduce 
hardware overhead) is to develop new ATPG 
procedures for specially selecting a set of deterministic 
test patterns for the r.p.r. faults that can be efficiently 
encoded with a particular hardware encoding scheme. 
Each r.p.r. fault is typically detected by a number of 
different test patterns. Thus, an additional degree of 
freedom in minimizing the hardware for mixed-mode 
BIST is in selecting which deterministic patterrl to 
encode for each r.p.r. fault. How to make use of this 
degree of freedom is the subject of this paper. 

Some previous work has been done in the area of 
developing ATPG procedures for improving encoding 
efficiency. Several techniques exist for minimizing 
the total number of deterministic test patterns that 
need to be encoded [Tromp 911, [Pomeranz 9.3b1, 
[Kajihara 931. These techniques are particul irly 
effective for encoding schemes that involve storing the 
patterns in a ROM. In [Hellebrand 95b1, a special 
ATPG procedure was described for improving the 
encoding efficiency for an encoding scheme where 
deterministic test cubes are generated by reseeding a 
multiple-polynomial LFSR. Decisions made during 
ATPG are guided by heuristics aimed at generaihg 
test cubes that have a large number of unspecified bits 
while keeping the overall number of test cubes small. 
Results show a dramatic improvement in the encoding 
efficiency with this approach. In [Reeb 961, an ATPG 
procedure was described for maximizing thc number 
of unspecified bits in each detcrininistic test cube. In 
general, increasing the number of unspecified bits 
improves the encoding efficiency for most scheries, 
but it is not necessarily the most effective approach for 
improving the encoding efficiency. 

This paper presents an ATPG procedure for 
improving the encoding efficiency for bit-fixing 
schemes such as those described in [Pateras 911, 
[Pomeranz 93a], [AIShaibi 94, 961, [Chatterjee 951, 
and [Touba 95a, 95b, 961. Bit-fixing is very efficient 
for generating a set of test cubes that have the same 
specified logic value in particular bit positions (this 
will be referred to as “bit correlation”). For example, 
the test cubes 11011, 11x00, and fXOX0, are 
correlated in the lst, 2nd, and 3rd bit positions, but 
not in the 4th and 5th. That is because all of the 
specified bits in the 1st and 2nd bit positions are l’s, 

and all of the specified bits in the 3rd position are 0’s. 
However, the 4th and 5th bit positions have conflicts 
because some of the specified values are 1’s and some 
are 0’s. Note that the unspecified values (X’s) don’t 
matter. For a set of test cubes that is correlated in 
several bit positions, the correlated bit positions can be 
fixed to a particular logic value while the rest of the 
bits are pseudo-randomly generated. The amount of 
hardware required for generating a set of test cubes in 
a particular test length with bit-fixing depends on how 
correlated the test cubes are. The set of test cubes can 
be partitioned into subsets where the test cubes in each 
subset are correlated in a sufficient number of bit 
positions to enable them to be generated in a 
reasonable test length with bit-fixing. The bit-fixing 
hardware depends on how many such subsets there 
are. This paper presents an ATPG procedure for 
generating a set of test cubes for the r.p.r. faults in a 
way that maximizes the bit correlation among the test 
cubes. The set of test cubes obtained with this ATPG 
procedure can be used to design efficient bit-fixing 
hardware for detecting the r.p.r. faults. 

Note that while the procedure in this paper is 
described for bit-fixing schemes in particular, its 
applications extend to other encoding schemes as well. 
ROM-based “store-and-generate” schemes (e.g., 
[Agarwal 8 11, [Aboulhamid 831) store correlated test 
cubes in memory and generate the remaining bits by 
counters. Maximizing correlation reduces both 
memory size and test length. Some counter-based 
schemes work best for correlated patterns as well 
(e.g., [Wunderlich 961, [Kiefer 971). In short, the 
contribution of this paper is a general ATPG tool that 
can be used to generate correlated test sets which are 
useful in inany existing and potentially hture test 
encoding schemes. 

2. Partitioning Test Cubes for Bit-Fixing 

The idea in bit-fixing is that for a set of test cubes 
that is correlated in scveral bit positions, the correlated 
bit positions can be fixed at a constant logic value 
while the rest of the bits are pseudo-randomly 
generated. Very little hardware is required to do this 
since the pseudo-random generator is already 
implemented in mixed-mode BIST, and bits can be 
fixed by simply ANDing (for fixing to 0) or ORing 
(for fixing to 1)  them with a control signal. For a test 
cube with n specified bits, if k of them are fixed, then 
the probability of generating the test cube by randomly 
specifying the remaining n-k bits is 2-(’‘-‘), Thus the 
test length required to generate the test cube with bit- 
fixing depends on how large n-k is. The value of n-k 
must be small enough to allow the test cube to be 
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generated within an “acceptable” test length. What is 
considered an acceptable test length depends on the 
particular test environment. 

Given a set of test cubes for the r.p.r. faults and a 
constraint on the value of n-k, the test cubes can be 
partitioned into subsets such that each subset is 
correlated in a sufficient number of bit positions to 
allow the value of n-k for each test cube to satisfy the 
constraint. These subsets of test cubes will be referred 
to as “bit-fixing groups” in this paper. The value of k 
for each bit-fixing group is equal to the number of 
correlated bit positions among the test cubes in the 
bit-fixing group. 

The amount of hardware required for bit-fixing 
depends on how many bit-fixing groups there are. So 
the task at hand is to find test cubes for the r.p.r. faults 
that are correlated in a way that minimizes the number 
of bit-fixing groups needed to satisfy a given 
constraint on n-k. The proposed strategy for doing 
this involves forming the bit-fixing groups one at a 
time. When forming each bit-fixing group, an attempt 
is made to maximize the number of test cubes that are 
included in each bit-fixing group under the constraint 
on n-k. The proposed procedure for forming each bit- 
fixing group is described below: 

Input: Undetected r.p.r. faults and constraint on n-k 

Output: Bit-fixing group, BF-GROUP, that satisfies 
constraint on n-k 

Step 1: Perform ATPG for each r,p.r. fault using the 
procedure in [Reeb 961 to maximize the number of 
unspecified bits. 

This step finds a test cube for each fault with a 
minimal number of specified bits (smallest n).  

Step 2: Select test cube with the largest number of 
specified bits (largest n )  as the initial test cube in the 
BF- GRO UP. 

Of the test cubes found in step 1, the one with the 
largest number of specified bits (largest n )  corresponds 
to the hardest to encode. Thus, this test cube is used as 
the initial test cube in the bit-fixing group. 

Step 3: Initialize the value of k m d f l  for each r.p.r. 
fault. f. to infinity. 

A variable k m a x m  is associated with each r.p.r. 
fault. It keeps track of the largest number of 
correlated bit positions (largest k )  that a test cube for 
faultJ’currently has. Since no test cube for faultfhas 
been found yet, this value is initialized to infinity. 

Step 4: Identify the set K of correlated bit positions 
a m o w  the test cubes in the BF-GROUP 

Identify the set of bit positions, K, where all the 
test cubes in the bit-fixing group have compatible 

values. This is the maximum set of bit positions that 
can be fixed. Initially, there is only one test cube in 
the bit-fixing group (the one added in step 2), thus 
there are no conflicts so all bit positions are initially 
contained in the set K. As additional test cubes are 
added to the bit-fixing group, bit positions are 
removed from K when conflicts are introduced. 

Step 5: For the r.p.r. fault f that  is not covered by the 
BF-GROUP and has the largest value of kmaxrfl, use 
the special ATPG procedure described in Sec. 3 to find 
a test cube for it that differs in the fewest number of bit 
positions from the set K of correlated bit positions. 

The fault f which has the largest value of k m a x n ,  
is the one whose test cube may minimize the number 
of conflicts with the BF-GROUP. The value of 
k m a x f l  is only an upper bound, so ATPG must be 
performed to find a test cube for the fault and compute 
the exact number of correlated bit positions. The 
special ATPG procedure in Sec. 3 is used to find the 
test cube that maximizes the number of correlated bit 
positions. 

Step 6: If the number of correlated bit positions for 
the test cube obtained for fault f i n  Step 5 is equal to 
k m m r f l ,  then add it to BF-GROUP, otherwise update 
the vaiue of kmaxrfl and loop back to Step 5.  

If the number of correlated bit positions, k,  in the 
test cube is in fact equal to k m a x m ,  then that test cube 
will minimize the number of conflicts with the set K of 
correlated bits in the current BF-GROUP, so it is 
added to the BF-GROUP. However, if k is less than 
krnmm, then it forms a new upper bound and thus the 
value of k m a x m  is set equal to k. The reason why the 
current value of k forms an upper bound on hture 
values of k is the fact that the number of correlated bit 
positions between test cubes for a particular r.p.r. fault 
and the BF-GROUP can only decrease (BF-GROUP 
can only become less correlated when additional test 
cubes are added to it). If the value of k is less than 
k m a x n ,  then the test cube for another fault may be 
more correlated, so the procedure loops back to step 5. 
Step 7: If the BF-GROUP still satisfies the constraint 
on (n-k), then loop back to step 4. Otherwise, remove 
the last test cube added to the BF-GROUP and stop. 

The procedure stops when no more test cubes can 
be added to the bit-fixing group without violating the 
constraint on n-k. When the last test cube added to the 
bit-fixing group (in step 6) causes it to no longer 
satisfy the constraint, then that test cube is removed 
from the bit-fixing group so that the constraint is 
satisfied once again and the procedure stops. 

Once a bit-fixing group has been formed by this 
procedure, bit-fixing hardware can then be designed 
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(using one of the many schemes described in the 
literature) to fix the correlated bit positions in the bit- 
fixing group. The hardware can be simulated to 
determine the set of patterns that are applied to the 
circuit-under-test. Fault simulation can then be clone 
for the patterns to determine which r.p.r. faults reniain 
undetected. The procedure can then be repeated for 
those faults. This process continues until the desired 
fault coverage is achieved. 

The key step in the partitioning procedure is step 5 
in which a special ATPG procedure (which will be 
described in Sec. 3) is used to find a test cube that is 
maximally correlated with the existing set of test cubes 
in the bit-fixing group. By specially choosing the test 
cubes in step 5 ,  as opposed to just using a given set of 
test cubes, the procedure is able to find a bctter 
partitioning of the test cubes resulting in reduced 
bit-fixing hardware. 

3. Correlating ATPG Procedure 

In this section, the ATPG procedure for finding 
correlated test cubes is presented. Given a se of 
correlated bit positions, the problem being addressed is 
to find a test cube for a particular fault that conf icts 
with as few of the correlated bit positions as possible. 
This ATPG task is different from dynamic compaction 
[Goel 791 where an attempt is made to find a test cube 
for a fault by specifjmg the don’t cares (X’s) in test 
cubes for others faults. Dynamic compaction looks for 
a test cube for a particular fault that has no conjicts 
with other test cubes, whereas the problem of interest 
here is to find a test cube for a particular fault that has 
the fewest number of conflicts with other test cubes 

3.1 Initial Input Assignments 
The “Correlating ATPG’ procedure presented here 

uses a PODEM [Goei 811 based algorithm in which 
the inputs corresponding to the correlated bit positions 
are assigned initial values. Normally the PODEM 
algorithm begins with all inputs having unassigned 
values (X’s). However, in the Correlating ATPG 
procedure, the initial input assignments are made to 
begin in the part of the search space that would y~eld 
the most correlated test cube. If the fault can be 
detected by making hrther inputs assignments without 
backtracking on any of the initial input assignments 
(i.e , the correlated bit positions), then a test cube can 
be found with no conflicts in the correlated bit 
positions. In general, however, some backtracking on 
the initial input assignments will be necessary to 
detect the fault. The key to maximizing the bit 
correlation is to carehlly select the order of the 

backtracking in order to minimize the number of 
initial assignments that are reversed. 

3.2 Backtracking 
Normally, backtracking in the PODEM algorithm 

is done in the reverse order in which the inputs are 
assigned (i.e., the last input assignment made is the 
one that is changed first). Backtracking in the 
Correlating ATPG procedure is done in the same way 
except for when backtracking on the initial input 
assignments (i.e., the correlated bit positions). The 
order in which backtracking is performed on the initial 
input assignments is determined by using structural 
heuristics aimed at minimizing the number of initial 
input assignments that need to be reversed. 

Backtracking on the initial input assignments is 
required when one of the line values implied by the 
initial input assignments must be complementcd in 
order to allow the fault to be provoked or sensitized to 
a primary output by subsequent input assignments. If 
the value implied at the fault site is the same value as 
the fault polarity (i.e., if a 1 (0) is implied at a stuck-at 
1 (0) fault site), then one or more initial input assign- 
ments must be reversed in order to either complement 
the value implied at the fault site or to imply an X at 
the fault site such that subsequent input assignment 
can provoke the fault. Backtracing is done to 
determine which initial input assignments to reverse. 
When there is a choice on which gate input to set to a 
controlling value, decisions are made based on 
minimizing the total number of initial input 
assignments that need to be reversed. If the fault site 
cannot be sensitized to a primary output with 
additional input assignments (i.e., no “X-path” exists 
from the “D-frontier” to a primary output), then line 
justification decisions for creating an X-path are again 
based on minimizing the total number of initial input 
assignments that need to be reversed. These decisions 
can be quickly made using the controllability and 
observability cost hnctions described in the next 
subsection. 

3.3 Controllability and Observability Cost 
Functions 

In the Correlating ATPG procedure, the goal is to 
minimize the number of initial input assignments that 
are reversed. Thus, the cost of justifylng a line to a 
particular logic value or observing a line is the number 
of initial input assignments that need to be reversed. 
Controllability and observability values arc computed 
to reflect this cost and used to guide line justification 
decisions. These values are computed when the initial 
input assignments are made and their implications are 
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determined. The controllability values are determined 
by traversing the circuit from the primary inputs to the 
primary outputs. If no value is implied on a line (i.e., 
it is an X), then both the 0-controllability and 
I-controllability values for that line are 0 since it can 
be justified to either logic value without reversing any 
of the initial input assignments. If the value implied 
on a line is a 0 ( I ) ,  then the 0-controllability 
(1 -controllabilty) is set to 0 and the 1-controllability 
(0-controllability) is set to the number of initial input 
assignments that need to be reversed in order to 
complement the value implied on the line or to imply 
an X on the line. Once the controllability values have 
been computed, then the observability values can be 
determined by traversing the circuit from primary 
outputs to primary inputs and using the controllability 
values to determine the number of initial input 
assignments that need to be reversed in order to make 
the line observable. An example of computing 
controllability and observability values is shown in 
Fig. 1. CO, C / ,  and 0 denote the controllability-0, 
controllability- 1, and observability values, respectively, 
for each line. Note that there is no initial assignment 
for the fourth input (i.e., it is an X) so there is no cost 
for subsequent assignments to that input. 

When making line justification decisions in 
Correlating ATPG, the controllability and 
observability values based on the number of initial 
input assignments that need to be reversed are the 
primary criteria. Of course, in many cases these 
values will be 0 or multiple decisions will have the 
same value. In those cases, the conventional ATPG 
heuristics (to minimize ATPG runtime) or the 
heuristics in [Reeb 961 (to maximize don’t cares, i.e., 
minimize n )  can be used. 

Consider the example in Fig. 2. The fault being 
targeted is the output of gate G5 stuck-at 1. 
Conventional ATPG would begin with all inputs 
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Figure 1. Controllability and Observability Values 

CO= I 

o=o 
CO= I 

1 C I = O  

1 C I = O  
o=o 

1 C I = O  

x C I = O  

CO= I 

o=o  
co=o 

o = i  

initially unassigned (X’s), however in Correlating 
ATPG, the initial input assignments correspond to the 
correlated bit positions. Implications based on the 
initial input assignments are made, and the 
controllability and observability values are computed 
based on the number of initial input assignments that 
need to be reversed as previously described. Since the 
value implied at the fault site is the same as the fault 
polarity, one or more of the initial input assignments 
must be reversed to justify a 0 at the fault site. 
Backtracing is done to determine which initial input 
assignments to reverse. Backtracing can be done 
through either gate G3 or gate G4. Since the 
0-controllability at the output of gate G3 is less than the 
0-controllability at the output of gate G4, backtracing 
is done through gate G3. Next there is a decision 
whether to backtrace through gate GI or gate G2. The 
0-controllability values are equal for gate GI and gate 
G2 because in either case, one input assignment will 
need to be reversed. In this case, a secondary criteria 
can be used in making the decision. For example, if 
the secondary criteria was to maximize the don’t cares 
(X’s), then backtracing would be done through gate 
GI since going through gate G2 would require 
assigning a value to a currently unassigned input (in 
addition to reversing the input assigned to a 1). 
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3.4 Post-Processing 
The last step after a test cube that detects the fault 

has been found is to try to complement the valu,: of 
any bit positions that conflict with the correlated bit 
positions. For each bit position that conflicts wi1.h a 
correlated bit position, the value is complemented and 
the resulting test cube is simulated to see if the fault is 
still detected. If the fault is no longer detected, then 
the bit position is returned to its previous value. 
Unlike the “maximal compaction” procedure described 
in [Pomeranz 93b], if it is possible to complement the 
bit, then the bit is left at the complemented value 
rather than making it an X. This is done to maxiniize 
the possibility of complementing other bits since thc 
goal is to minimize the number of conflicts. 

3.5 Backtracking Limit 
The goal of the Correlating ATPG procedure i i  to 

maximize correlation as opposed to conventional 
ATPG procedures whose goal is to minimize execui.ion 
time. One potential problem is that thc heuristics used 
in the Correlating ATPG procedure may result in more 
backtracking. However, a limit can be placed on the 
backtracking based on the minimum amount of 
correlation that is acceptable. For the partitioning 
procedure described in Sec. 2, the constraint that is set 
on the value of n-k means that a test cube with icss 
than a certain amount of bit correlation is not of 
interest. Thus, if the Correlating ATPG procedure 
backtracks on more than a certain number of initial 
input assignments, the procedure can be stopped since 
the fault will have to be covered by a different bit- 
fixing group anyway. 

Table 1. Comparison with Put 

Bit-Fixing 
Groups 

1 
1 
1 
5 
4 
4 
3 
2 
1 
7 
6 
5 

Circuit 

3-Gate Test 
Modules Length 

6 2048 
1 4096 
1 8192 

71 6124 
65 10240 
63 20480 
16 4096 
3 6144 
4 8192 

165 8196 
153 14336 
144 24576 

C880 

C2670 

C3540 

C7552 

Parameter 

60 

233 

50 

207 

N 
1024 
2048 
4096 
1024 
2048 
4096 
1024 
2048 
4096 
1024 
2048 
4096 

4. Experimental Results 

Experiments were performed to compare “bit- 
fixing” hardware designed using the ATPG procedure 
described here with previous methods. Results are 
shown for all of the benchmark circuits for which 
previously published results exist. A comparison was 
made for two different bit-fixing hardware encoding 
schemes. The first bit-fixing hardware encoding 
scheme is the one described in [Pomeranz 93a] which 
uses “3-gate modules” for implementing the bit-fixing. 
Table 1 shows the results published in [Pomeranz 93a] 
compared with the results obtained using the proposed 
ATPG procedure. 

The parameter N is the number of patterns applied 
in the pseudo-random test and also the number of 
patterns applied for each bit-fixing group. Three 
different values of N were used for each circuit. In 
each case, the number of bit-fixing groups is shown 
followed by the number of 3-gate modules required to 
implement the bit-fixing. The total test length is 
shown which is equal to the number of bit-fixing 
groups plus one (for the pseudo-random test) times the 
value of N. The fault coverage in all cases is 100% of 
detectable faults. In [Pomeranz 93a], test cubes 
obtained with COMPACTEST [Pomeranz 93b] (which 
uses heuristics to minimize the total number of test 
cubes) were used for selecting the bit positions to fix. 
For the proposed method, test cubes obtained using the 
Correlating ATPG procedure were used for selecting 
the bit positions to fix. As can be seen, a dramatic 
reduction in overhead is achieved by simply using 
different test cubes for selecting the bit positions to fix. 

ished Results in [Pomeranz 93a] 

Pomeranz 93a 

14 I 233 I 30675 
65536 

1 4096 

48128 
2137 73728 

36 207 151552 

3-Gate Mod. With Proposed ATPG 
Num I Num I Total 
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Table 2. Comparison with Published Results in [Touba 961. 

A comparison was also made for the bit-fixing 
hardware encoding scheme described in [Touba 961 
which selectively performs bit-fixing on a serial 
sequence of bits that is shifted into a scan chain. 
Table 2 shows the results published in [Touba 961 
compared with the results obtained using the proposed 
Correlating ATPG procedure. For each circuit, the 
number of stages in the LFSR used to generate the 
pseudo-random patterns is shown followed by the size 
of the sequence ID register (which is equal to the 
number of bit-fixing groups) and the literal count of 
the multilevel bit-fixing sequence generation logic. In 
all cases, the total test length is 10,000 patterns and 
the fault coverage is 100% of detectable faults. The 
results published in [Touba 961 were obtained using a 
conventional ATPG procedure. By simply selecting a 
different set of test cubes to embed using the proposed 
Correlating ATPG procedure, a significant reduction 
in hardware overhead can be achieved. Note that both 
the amount of combinational logic (i.e., literal count) 
and more significantly the number of flip-flops 
required (i.e., Sequence ID Register Size) are reduced. 

5. Conclusions 

Traditional approaches for designing mixed-mode 
BIST hardware use structural information only 
indirectly in the form of identifylng bit correlations in 
a given set of test cubes for the r.p.r. faults. The 
ATPG procedure described in this paper directly 
analyzes the circuit structure to find test cubes that 

lead to more efficient mixed-mode BIST hardware. 
The ATPG procedure described here can be used with 
any bit-fixing hardware encoding scheme to reduce 
BIST overhead. Results for two different bit-fixing 
schemes indicate that dramatic reductions in overhead 
can be achieved with the proposed ATPG procedure. 

While the procedure in this paper is described for 
bit-fixing schemes in particular, it can easily be 
adapted for other test encoding schemes that benefit 
from correlated test cubes. 
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