
DIAGNOSING RESISTIVE BRIDGES USING ADAPTIVE TECHNIQUES

Jayabrata Ghosh-Dastidar and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin TX 78712-1084
Email: { dghosh, touba] @cat.ece.utexas.edu

Abstract
A systematic procedure for locating resistive bridges is

presented. Critical path tracing is used to identify a set of
“suspect” bridges whose presence could explain all of the
observed faulty behavior of the circuit for the original test
set. The set of suspects is then reduced by adaptively
applying additional tests derived from the failing vector pairs
in the original test set. Unlike other approaches, the
approach presented here is not based on any bridge fault
modeling and does not require any fault simulation.

1. Introduction
An increasing prevalent defect in current technologies is

resistive bridges. This is due to growing metal density and
number of layers of metal. A bridging fault between two
lines 1 , and 1, in a circuit occurs when the two lines are
unintentionally shorted during the manufacturing process.
When the two lines 1, and I , have opposite logic values the
gates driving the two lines will have a logic contention.
Depending on various factors including the strengths of the
gates driving the two lines, their input values, and the
resistance of the bridge, the bridged lines can have a range of
values. The logic gates at the fanout of a bridged node may
have varying threshold voltages and may interpret the
voltages at the bridged nodes differently. This effect is well
known as the Byzantine Generals problem [Acken 921,
[Maxwell 931. One of the factors that determines the
behavior of a bridge that is of growing importance and
interest is the resistance of the bridge. Various studies
[Renovell95], [Mandava 991, have shown that the resistance
of the bridge has a pronounce effect on the behavior of the
interconnect bridging defect. For low resistance values the
bridge behaves more as a static logic failure, i .e., one end of
the bridge doesn’t reach its correct logic value when logic
contention occurs. But as the bridge resistance increases, the
bridge fault start causing more speed failures rather than
logic failures. In the second case, both ends of the bridge
reaches their correct logic values when a logic contention
occurs but one of them gets delayed. As feature sizes are
scaled down, the metal pitch is reduced in tandem to increase
density. Reduced metal pitch in turn imposes limitations on
the height of metal interconnects which must also decrease to
improve manufacturability. Thus the line resistance goes up
nearly quadratically. So in future devices, we can expect to

see more speed failures caused by resistive bridges in
comparison to logic failures.

Several techniques have been proposed for diagnosing
bridges that cause logic failures. In [Millman 901, a method
to diagnose bridging faults using stuck-at dictionaries was
presented. [Chess 951 and [Lavo 961 further improved this
technique. These techniques are constrained to using a
reduced set of faults extracted from the layout as they
enumerate the bridging faults. [Chakravarty 931 proposed a
voltage-based algorithm that uses a wired-AND (wired-OR)
model and stuck-at fault dictionaries. All these methods are
based on using stuck-at fault dictionaries, the creation and
storage of which might be quite expensive. Also, as the
behavior of the bridging defect start diverging from stuck-at
behavior, the accuracy of such techniques can degrade. Any
method based on stuck-at fault dictionary will also have to
worry about the stated Byzantine Generals problem.
[Venkataraman 971 proposed a deductive strategy for
diagnosing bridging faults, but that method does not consider
the possibility that resistive bridges may cause delay failures.

In this paper, we present a new method based on critical
path tracing and adaptive generation of additional vectors to
improve the diagnostic resolution. The method presented
here takes into consideration the fact that a bridge defect can
behave as a delay fault. This is more general than the
previous approaches as the stuck-at behavior of a bridge
defect can be thought as a delay defect of infinite size. Since
the method here uses critical path tracing as a starting point,
there is no requirement for creating fault dictionaries or
explicit simulation of the faults. It is independent of the
faulty behavior of the bridge, i.e., there is no need to assume
a fault model like wired-OR or wired-AND at the logic level.

The method presented here uses critical path tracing to
identify a set of “suspect” bridges, whose presence would
explain all of the observed faulty behavior of the circuit for
the original test set. The set of suspects is then reduced by
adaptively applying additional tests that are derived from the
failing vector pairs in the original test set. Two strategies are
described for generating additional vectors that help reduce
the potential candidates for the bridging fault. These
techniques reduce the search space and help guide direct
probing which can save a lot of time during failure analysis.
Experimental results indicate that the number of suspect lines
can be greatly reduced.

5-3-1
0-7~03-5809-0/00/$10.00 0 2000 IEEE 2000 CUSTOM INTEGRATED CIRCUITS CONFERENCE 79

mailto:cat.ece.utexas.edu

In the remainder of the paper, it is assumed that bridges
will act as delay faults, but note that all the strategies
described here are valid even when the bridge causes static
logic errors since that is a special case of a delay fault where
the delay value is infinite.

2. Critical Path Tracing
A delay defect requires a two-pattern test for its

detection. So in our diagnosis procedure, we consider failing
vector pairs (VI , V2) instead of just the failing vectors
individually. For each failing vector pair (vector pair which
gave an erroneous output), a six-valued simulation is
performed and critical path tracing done starting from each
failing output. The idea of performing critical path tracing
using a 6-valued algebra to identify a set of suspects that may
explain an observed faulty output was proposed in
[Girard 921. For the original test sequence, each two-pattern
test for which the circuit-under-test produced a faulty output
is simulated using a 6-valued algebra based on the H6
algebra [Hayes 861. The symbols used are the following: SO
for static zero, S1 for static one, R1 for a rising transition, FO
for a falling transition, XO for static-0 hazard, and X1 for a
static-1 hazard. The advantage of using this 6-valued
algebra is that it does not depend on any gate propagation
delay or delay fault size. From each faulty output, critical
path tracing is performed to identify the suspects (i.e.,
critical lines) that may have caused the faulty value. A
suspect is a fault that if present could explain all of the
observed faulty behavior. For each failing vector pair (V,,
V,), for which the circuit-under-test (CUT) has produced an
erroneous output we construct two sets SUSPECT-0 and
SUSPECT-1. SUSPECT-0 denotes those suspect lines
obtained by critical path tracing from a failing output where
the correct logic value at that line for vector V, is zero.
Similarly we can define SUSPECT-1 as those critical lines
for which the correct logic value after vector V2 is applied is
one. We also define two additional sets LINE-0 and
LINE-I, where LINE-0 denotes those lines that are not part
of the critical lines and the logic value at that line after
application of vector V, is zero. LINE-I is similarly
defined. Given these four sets, the set of all possible bridge
faults are: any node in SUSPECT-0 bridged with any node in
SUSPECT-1 or LINE-1 and any node in SUSPECT-1
bridged with any node in SUSPECT-0 or LINE-0.

Figure 1. Six valued simulation for the failing vector pair
(1000,1001)

Figure 1 shows an example where the two lines I3 and I ,
have been shorted by a resistive bridge. Let as assume that
on application of the vector pair (1000, 1001) the logic value
1, is slow to rise, causing a erroneous output at 0,. We
perform 6-valued simulation for this vector pair, and do
critical path starting from output 0,. So SUSPECT-0 =
(L 5 } and SUSPECT-1 = { 0, , I d) . Now if we consider what
lines were at values 0 and 1 after application of vector 1001,
we obtain sets LINE-0 = {I2, 13] and LINE-1 = {L,, L2, L3,
L4, I ,] . So the possible bridges are any element of
SUSPECT-0 shorted to any element of SUSPECT-I or
LINEJ, or any element of SUSPECT-1 shorted to any
element of SUSPECT-0 or LINE-0. Note here that these are
the only possible bridges in the circuit consistent with the
observed behavior of the circuit when tested. Let us define
BRIDGE-SUSPECTS as the set of all suspect bridges in the
circuit in any step of the diagnosis process. By looking at
the suspect sets for each failing test, we can construct the set
BRIDGE-S USPECTS.

For each failing vector pair 6-valued simulation is
performed and the sets SUSPECT-0, SUSPECT-1, LINE-0,
LINE-1 are created. Any bridge {II, 1 2) in the set
BRIDGE-SUSPECTS has to satisfy one of the following
conditions for every failing vector pair.

1. 1, E SUSPECT-0 and 1, E (SUSPECT-I v LINE-1)
2. 1, E SUSPECT-1 and l2 E (SUSPECT-0 v LINE-0)
After constructing the set BRIDGE-SUSPECTS, if its

cardinality is small enough, the diagnosis is stopped.
Otherwise additional vectors are generated adaptively to
further narrow down the set of possible bridges. Two
techniques are described for generating the diagnostic
vectors in the next two sections. Both techniques take the
failing vector pairs as their starting point.

Note that it is very unlikely that two nodes far apart in the
layout of the circuit can ever be bridged. So if layout
information is available then the set BRIDGE-SUSPECTS
can be created more realistically by including only those
bridges that can occur given the circuit layout and the
possible defect sizes. The procedure remains the identically
the same just that the domain of bridges considered is
reduced by using layout information.

3. Deriving Minimum Input Transition Test
In this strategy the objective is to reduce the number of

suspect lines derived by critical path tracing. The idea
behind such a strategy is based on the fact that a node pair is
eliminated from the set BRIDGE-SUSPECTS if none of the
nodes in that pair are part of the suspect set derived by
critical path tracing of a faulty output. So if we can reduce
the size of the suspect sets derived by critical path tracing
then we can reduce the cardinality of BRIDGE-SUSPECTS.
The strategy here is to begin with an original two-pattern test
that failed and systematically reduce the number of

80 5-3-2

transitions as much as possible while still detecting the fault.
Given a two-pattern test , V2,0rig) in the original
sequence that failed, let DIFF_INPUTS(VI,f~r;,, V2,0r;g) be the
set of inputs whose values differ in and V2,f,rig (i.e., the
set of inputs on which there are transitions). If there are n
inputs in the set DIFF_INPUTS(V,,,ri,, V2,,rj8), then the first
step is to derive n two-pattern tests by simply removing one
of the input transitions in the original two-pattern test. This
is done by setting the corresponding input bit value in the V ,
pattern equal to that in the V2 pattern. One of the resulting
two-pattern tests that still produces a faulty output is then
chosen arbitrarily and the process repeats recursively until a
point is reached where none of the derived two-pattern tests
produces a faulty output. The two-pattern test with the
fewest number of input transitions, (Vl,min-trun , VZ,min-trcm),
that still produces a faulty output can then be used for critical
path tracing to generate the suspect set. The advantage of
using a minimum input transition test during diagnosis is that
if that test results in a faulty output value, then the set of
suspects derived by critical path tracing will be very small.
This is because there is a transition on a smaller number of
inputs, so the number of lines in the circuit which are tested
by the new test is relatively small which makes diagnosis
much easier. By deriving minimum input transition tests that
fail from the original tests that failed, we are able to get a
better resolution in diagnosing the resistive bridging faults.

4. Deriving Additional Tests
In the second technique for improving diagnostic

resolution, we modify the V, vector to a new vector V,,,,, ,
with the condition that the resulting vector pair (V I , V,,,,,)
still causes the CUT to. fail. The motivation behind
modifying the vector V, is that some nodes in the CUT will
have complementary values for vector V, and V,,,,,. So
those elements in the set BRIDGE-SUSPECTS that have one
node that has complementary values for vector V, and V,,,,,
will now fail the conditions 1 or 2 defined in Sec. 2 and will
be pruned out. This is because the error is still observed at
the output, but now both sides of the bridge have the same
value, so it cannot be the location of the defect. Let us
assume { l , , 1 ,) is a bridge fault in the set
BRIDGE-SUSPECTS, where the logic value at the two lines
after application of V, are logic(1,) = 0 and logic(/,) = 1. If
after application of vector V2,new, the logic values at the two
nodes are logic(ll) = 0 and logic(/,) = 0 then { I I , 1,) is no
longer a candidate of BRIDGE-SUSPECTS because it could
not have caused the observed faulty behavior.

The initial strategy for creating V2,new is based on finding
a minimum set of inputs for the vector Vz that has to be kept
unchanged in V,,,,, for the CUT to fail for the vector pair
(V I , V,,,,,). If the vectors are n bits wide, we first create n
vector pairs (V , , V,’) where each V2’ is created by

complementing one bit position in V,. The set of n vector
pairs is applied to the CUT. Among the vector pairs that
fail, we choose one and repeat the same process, till we
cannot create a vector pair that fails. This is a greedy
heuristic and is the same as the one described for deriving
minimum input transition test. We take all the vector pairs
for which the inputs were complemented and the CUT failed
and perform 6-valued simulation, critical path tracing and
pruning for them. Since input positions in each V,,,,, vector
was forced to differ from the V, vector, there will be many
nodes in the CUT will have complementary values for the
two vectors, and hence some node pairs will be eliminated
from the set BRIDGE-SUSPECTS. One advantage of our
diagnosis strategy is that in no step does it add anything to
the set BRIDGE-SUSPECTS. So in any step, it can only
decrease the cardinality of the set BRIDGE-SUSPECTS.
Additional (VI , V,,,,,) vector pairs can be generated by
choosing different failing vectors in each step of deriving

If after these steps, the cardinality of the set
BRIDGE-SUSPECTS is small enough, the diagnosis process
is stopped. Otherwise, a targeted approach can be used to
generate further two-pattern tests to reduce the set
BRIDGE-SUSPECTS. A new vector V2,x is created such that
V2,x and V,,,,, are same except all the bit positions in which
V, and V,,,,, differ are now made ‘X’ in V2,x. For all the
remaining node pairs in BRIDGE-SUSPECTS it is
determined whether any node in the pair has an X-path
through it for Vz,p Let us assume {I,, 1,) is such a pair, with
1 , having a X-path through it for V2,x. Also assume that the
logic value at 1 , for vector V, was 0. Then automatic test
pattern generation (ATPG) can be performed to justify a ‘1’
at 1, with V2,x as the initial input assignment. The ATPG is
not allowed to alter the initial input assignments, only assign
values to the X’s. All such nodes 1, that have X-paths
through them for Vz,x can be targets of additional vector
generation. The additional two-pattern tests that derived in
this manner can be used to prove that the targeted bridge is
not the cause of the faulty output. If the output response
when the new test is applied still is erroneous, then the
bridge where both lines now have the same logic value on
them cannot be the cause of the faulty output and can be
eliminated from the set BRIDGE-SUSPECTS.

V2,new

5. Experimental Results
Experiments using the adaptive techniques described in

this paper were performed for some of the ISCAS 85
benchmark circuits [Brglez 851. For the experiments, two
nodes were selected at random and a bridge fault was
inserted between them. Table 1 shows sample results for
the experiments. The first column shows the circuit, the
second column shows the number of test vectors generated

5-3-3
81

by the tool Soprano [Soprano 901. By just doing critical shown for the set of suspect lines after the adaptive
path tracing, the resulting number of suspect lines are shown. techniques have been applied. Note the significant
These are lines in the circuit which contain one of more improvement in diagnostic resolution that occurs by using
bridges in the set BRIDGE-SUSPECTS. For the suspect the adaptive techniques.
lines, the next column shows the average number of bridge
suspects that are associated with that line. Results are then

Table 1 . Experimental Results for Fault Diagnosis of Resistive Bridges causing Delay Fault

6. Conclusion
The diagnostic procedure described in this paper targets

resistive bridges. Both bridges that cause static logic faults
as well as those that cause delay faults can be handled. A
hill climbing strategy is used to continually decrease the
number of bridge suspects by deriving additional two-pattern
tests from the tests that failed in the original test set to further
prune the suspect set. The procedure presented in this paper
can be used to reduce the search space for direct probing and
better guide it towards finding resistive bridge defects. This
results in less time and lower cost for failure analysis.

References
[Acken 921 Acken J. M. and S . D. Millman, “Fault model Evaluation for

Diagnosis: Accuracy vs. Precision,” in Proc. of Custom Integrated
Circuits Con5 , pp. 13.4.1 - 13.4.4, 1992.

[Brglez 851 Brglez, F., and H. Fujiwara, “A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target Translator in
Fortan,” Proc. of Int. Symp. Circuits and Systems, pp. 663-698, 1985.

[Chakravarty 931 Chakravarty S. and Y. Gong, “An Algorithm for
Diagnosing Two Line Bridging Faults in CMOS Combinational
Circuits”, in Proc. of Design Automation Conf., pp. 520-524, June
1993.

[Chess 951 Chess B. D. B. Lavo, F. J. Ferguson, and T. Larrabee,
“Diagnosing of Realistic Bridging Faults with Stuck-at Information”,
in Proc. of the IEEUACM Intl. Conf. On Computer-Aided Design,
pp. 268-271, NOV. 1995.

[Girard 921 Girard, P., C. Landrault, S. Pravossoudovitch, “A Novel
Approach to Delay-Fault Diagnosis”, Proc. 29th Design Automation
Conference, pp. 357-360, 1992.

[Hayes 861 Hayes, J.P., “Digital Simulation with Multiple Logic Values”,
IEEE Trans. Computer-Aided Design, vol. 5, no. 2, pp. 274 -283,
Apr. 1986.

[Lavo 961 Lavo D. B. T. Larrabee, and B. Chess, “Beyond the Byzantine
Generals: Unexpected Behavior and Bridging Fault Diagnosis,” in
Proc. ofIntemationa1 Test Conference, pp. 61 1-619, Oct. 1996.

[Mandava 991 Mandava S., S. Chakravarty, S . Kundu, “On Detecting
Bridges Causing Timing Failures”, Proc. Of fnremational Con$ On
Computer Design (ICCDJ, 1999.

[Maxwell 931 P.C. Maxwell and R. C. Aitken, “Biased Voting: A Method
for Simulating CMOS Bridging Faults in the Presence of Variable
Gate Logic Thresholds”, Proc. of the IEEE Int. Test Con$, pp. 63-72,
Oct. 1993.

[Millman 901 Millman S. D., E. J. McCluskey, J. M. Acken, “Diagnosing
CMOS Bridging Faults with Stuck-At Fault Dictionaries”, Proc. of
International Test Conference, pp. 860-870, 1990.

[Renovell 951 Renovell M., P. Huc and Y. Bertrand, “The Concept of
Resistance Interval: A New Parametric Model for Realistic Bridging
Faults”, pp. 184-189, 1995.

[Venkataraman 971 Venkataraman S., and W. K. Fuchs, “A Deductive
Technique for Diagnosis of Bridging Faults”, in Proc. of the
IEEWACM Intl. Con$ On Computer-Aided Design, pp. 562- 567,
1997.

82 5-3-4

