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Abstract 
A systematic procedure for locating resistive bridges is 

presented. Critical path tracing is used to identify a set of 
“suspect” bridges whose presence could explain all of the 
observed faulty behavior of the circuit for the original test 
set. The set of suspects is then reduced by adaptively 
applying additional tests derived from the failing vector pairs 
in the original test set. Unlike other approaches, the 
approach presented here is not based on any bridge fault 
modeling and does not require any fault simulation. 

1. Introduction 
An increasing prevalent defect in current technologies is 

resistive bridges. This is due to growing metal density and 
number of layers of metal. A bridging fault between two 
lines 1 ,  and 1, in a circuit occurs when the two lines are 
unintentionally shorted during the manufacturing process. 
When the two lines 1, and I ,  have opposite logic values the 
gates driving the two lines will have a logic contention. 
Depending on various factors including the strengths of the 
gates driving the two lines, their input values, and the 
resistance of the bridge, the bridged lines can have a range of 
values. The logic gates at the fanout of a bridged node may 
have varying threshold voltages and may interpret the 
voltages at the bridged nodes differently. This effect is well 
known as the Byzantine Generals problem [Acken 921, 
[Maxwell 931. One of the factors that determines the 
behavior of a bridge that is of growing importance and 
interest is the resistance of the bridge. Various studies 
[Renovell95], [Mandava 991, have shown that the resistance 
of the bridge has a pronounce effect on the behavior of the 
interconnect bridging defect. For low resistance values the 
bridge behaves more as a static logic failure, i .e.,  one end of 
the bridge doesn’t reach its correct logic value when logic 
contention occurs. But as the bridge resistance increases, the 
bridge fault start causing more speed failures rather than 
logic failures. In the second case, both ends of the bridge 
reaches their correct logic values when a logic contention 
occurs but one of them gets delayed. As feature sizes are 
scaled down, the metal pitch is reduced in tandem to increase 
density. Reduced metal pitch in turn imposes limitations on 
the height of metal interconnects which must also decrease to 
improve manufacturability. Thus the line resistance goes up 
nearly quadratically. So in future devices, we can expect to 

see more speed failures caused by resistive bridges in 
comparison to logic failures. 

Several techniques have been proposed for diagnosing 
bridges that cause logic failures. In [Millman 901, a method 
to diagnose bridging faults using stuck-at dictionaries was 
presented. [Chess 951 and [Lavo 961 further improved this 
technique. These techniques are constrained to using a 
reduced set of faults extracted from the layout as they 
enumerate the bridging faults. [Chakravarty 931 proposed a 
voltage-based algorithm that uses a wired-AND (wired-OR) 
model and stuck-at fault dictionaries. All these methods are 
based on using stuck-at fault dictionaries, the creation and 
storage of which might be quite expensive. Also, as the 
behavior of the bridging defect start diverging from stuck-at 
behavior, the accuracy of such techniques can degrade. Any 
method based on stuck-at fault dictionary will also have to 
worry about the stated Byzantine Generals problem. 
[Venkataraman 971 proposed a deductive strategy for 
diagnosing bridging faults, but that method does not consider 
the possibility that resistive bridges may cause delay failures. 

In this paper, we present a new method based on critical 
path tracing and adaptive generation of additional vectors to 
improve the diagnostic resolution. The method presented 
here takes into consideration the fact that a bridge defect can 
behave as a delay fault. This is more general than the 
previous approaches as the stuck-at behavior of a bridge 
defect can be thought as a delay defect of infinite size. Since 
the method here uses critical path tracing as a starting point, 
there is no requirement for creating fault dictionaries or 
explicit simulation of the faults. It is independent of the 
faulty behavior of the bridge, i.e., there is no need to assume 
a fault model like wired-OR or wired-AND at the logic level. 

The method presented here uses critical path tracing to 
identify a set of “suspect” bridges, whose presence would 
explain all of the observed faulty behavior of the circuit for 
the original test set. The set of suspects is then reduced by 
adaptively applying additional tests that are derived from the 
failing vector pairs in the original test set. Two strategies are 
described for generating additional vectors that help reduce 
the potential candidates for the bridging fault. These 
techniques reduce the search space and help guide direct 
probing which can save a lot of time during failure analysis. 
Experimental results indicate that the number of suspect lines 
can be greatly reduced. 
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In the remainder of the paper, it is assumed that bridges 
will act as delay faults, but note that all the strategies 
described here are valid even when the bridge causes static 
logic errors since that is a special case of a delay fault where 
the delay value is infinite. 

2. Critical Path Tracing 
A delay defect requires a two-pattern test for its 

detection. So in our diagnosis procedure, we consider failing 
vector pairs (VI ,  V2) instead of just the failing vectors 
individually. For each failing vector pair (vector pair which 
gave an erroneous output), a six-valued simulation is 
performed and critical path tracing done starting from each 
failing output. The idea of performing critical path tracing 
using a 6-valued algebra to identify a set of suspects that may 
explain an observed faulty output was proposed in 
[Girard 921. For the original test sequence, each two-pattern 
test for which the circuit-under-test produced a faulty output 
is simulated using a 6-valued algebra based on the H6 
algebra [Hayes 861. The symbols used are the following: SO 
for static zero, S1 for static one, R1 for a rising transition, FO 
for a falling transition, XO for static-0 hazard, and X1 for a 
static-1 hazard. The advantage of using this 6-valued 
algebra is that it  does not depend on any gate propagation 
delay or delay fault size. From each faulty output, critical 
path tracing is performed to identify the suspects (i.e., 
critical lines) that may have caused the faulty value. A 
suspect is a fault that if present could explain all of the 
observed faulty behavior. For each failing vector pair (V,, 
V,), for which the circuit-under-test (CUT) has produced an 
erroneous output we construct two sets SUSPECT-0 and 
SUSPECT-1. SUSPECT-0 denotes those suspect lines 
obtained by critical path tracing from a failing output where 
the correct logic value at that line for vector V, is zero. 
Similarly we can define SUSPECT-1 as those critical lines 
for which the correct logic value after vector V2 is applied is 
one. We also define two additional sets LINE-0 and 
LINE-I, where LINE-0 denotes those lines that are not part 
of the critical lines and the logic value at that line after 
application of vector V, is zero. LINE-I is similarly 
defined. Given these four sets, the set of all possible bridge 
faults are: any node in SUSPECT-0 bridged with any node in 
SUSPECT-1 or LINE-1 and any node in SUSPECT-1 
bridged with any node in SUSPECT-0 or LINE-0. 

Figure 1. Six valued simulation for the failing vector pair 
(1000,1001) 

Figure 1 shows an example where the two lines I3 and I ,  
have been shorted by a resistive bridge. Let as assume that 
on application of the vector pair (1000, 1001) the logic value 
1, is slow to rise, causing a erroneous output at 0,. We 
perform 6-valued simulation for this vector pair, and do 
critical path starting from output 0,. So SUSPECT-0 = 
( L 5 }  and SUSPECT-1 = { 0, , I d ) .  Now if we consider what 
lines were at values 0 and 1 after application of vector 1001, 
we obtain sets LINE-0 = {I2,  13] and LINE-1 = {L,, L2, L3, 
L4, I , ] .  So the possible bridges are any element of 
SUSPECT-0 shorted to any element of SUSPECT-I or 
LINEJ,  or any element of SUSPECT-1 shorted to any 
element of SUSPECT-0 or LINE-0. Note here that these are 
the only possible bridges in the circuit consistent with the 
observed behavior of the circuit when tested. Let us define 
BRIDGE-SUSPECTS as the set of all suspect bridges in the 
circuit in any step of the diagnosis process. By looking at 
the suspect sets for each failing test, we can construct the set 
BRIDGE-S USPECTS. 

For each failing vector pair 6-valued simulation is 
performed and the sets SUSPECT-0, SUSPECT-1, LINE-0, 
LINE-1 are created. Any bridge {II, 1 2 )  in the set 
BRIDGE-SUSPECTS has to satisfy one of the following 
conditions for every failing vector pair. 

1. 1, E SUSPECT-0 and 1, E (SUSPECT-I v LINE-1) 
2. 1, E SUSPECT-1 and l2 E (SUSPECT-0 v LINE-0) 
After constructing the set BRIDGE-SUSPECTS, if its 

cardinality is small enough, the diagnosis is stopped. 
Otherwise additional vectors are generated adaptively to 
further narrow down the set of possible bridges. Two 
techniques are described for generating the diagnostic 
vectors in the next two sections. Both techniques take the 
failing vector pairs as their starting point. 

Note that it is very unlikely that two nodes far apart in the 
layout of the circuit can ever be bridged. So if layout 
information is available then the set BRIDGE-SUSPECTS 
can be created more realistically by including only those 
bridges that can occur given the circuit layout and the 
possible defect sizes. The procedure remains the identically 
the same just that the domain of bridges considered is 
reduced by using layout information. 

3. Deriving Minimum Input Transition Test 
In this strategy the objective is to reduce the number of 

suspect lines derived by critical path tracing. The idea 
behind such a strategy is based on the fact that a node pair is 
eliminated from the set BRIDGE-SUSPECTS if none of the 
nodes in that pair are part of the suspect set derived by 
critical path tracing of a faulty output. So if we can reduce 
the size of the suspect sets derived by critical path tracing 
then we can reduce the cardinality of BRIDGE-SUSPECTS. 
The strategy here is to begin with an original two-pattern test 
that failed and systematically reduce the number of 
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transitions as much as possible while still detecting the fault. 
Given a two-pattern test , V2,0rig) in the original 
sequence that failed, let DIFF_INPUTS(VI,f~r;,, V2,0r;g) be the 
set of inputs whose values differ in and V2,f,rig (i.e., the 
set of inputs on which there are transitions). If there are n 
inputs in the set DIFF_INPUTS(V,,,ri,, V2,,rj8), then the first 
step is to derive n two-pattern tests by simply removing one 
of the input transitions in the original two-pattern test. This 
is done by setting the corresponding input bit value in the V ,  
pattern equal to that in the V2 pattern. One of the resulting 
two-pattern tests that still produces a faulty output is then 
chosen arbitrarily and the process repeats recursively until a 
point is reached where none of the derived two-pattern tests 
produces a faulty output. The two-pattern test with the 
fewest number of input transitions, (Vl,min-trun , VZ,min-trcm), 
that still produces a faulty output can then be used for critical 
path tracing to generate the suspect set. The advantage of 
using a minimum input transition test during diagnosis is that 
if that test results in a faulty output value, then the set of 
suspects derived by critical path tracing will be very small. 
This is because there is a transition on a smaller number of 
inputs, so the number of lines in the circuit which are tested 
by the new test is relatively small which makes diagnosis 
much easier. By deriving minimum input transition tests that 
fail from the original tests that failed, we are able to get a 
better resolution in diagnosing the resistive bridging faults. 

4. Deriving Additional Tests 
In the second technique for improving diagnostic 

resolution, we modify the V,  vector to a new vector V,,,,, , 
with the condition that the resulting vector pair ( V I ,  V,,,,,) 
still causes the CUT to.  fail. The motivation behind 
modifying the vector V, is that some nodes in the CUT will 
have complementary values for vector V,  and V,,,,,. So 
those elements in the set BRIDGE-SUSPECTS that have one 
node that has complementary values for vector V,  and V,,,,, 
will now fail the conditions 1 or 2 defined in Sec. 2 and will 
be pruned out. This is because the error is still observed at 
the output, but now both sides of the bridge have the same 
value, so it cannot be the location of the defect. Let us 
assume { l , ,  1 , )  is a bridge fault in the set 
BRIDGE-SUSPECTS, where the logic value at the two lines 
after application of V, are logic(1,) = 0 and logic(/,) = 1. If 
after application of vector V2,new, the logic values at the two 
nodes are logic(ll) = 0 and logic(/,) = 0 then { I I ,  1,) is no 
longer a candidate of BRIDGE-SUSPECTS because it could 
not have caused the observed faulty behavior. 

The initial strategy for creating V2,new is based on finding 
a minimum set of inputs for the vector Vz that has to be kept 
unchanged in V,,,,, for the CUT to fail for the vector pair 
( V I ,  V,,,,,). If the vectors are n bits wide, we first create n 
vector pairs (V ,  , V,’) where each V2’ is created by 

complementing one bit position in V,. The set of n vector 
pairs is applied to the CUT. Among the vector pairs that 
fail, we choose one and repeat the same process, till we 
cannot create a vector pair that fails. This is a greedy 
heuristic and is the same as the one described for deriving 
minimum input transition test. We take all the vector pairs 
for which the inputs were complemented and the CUT failed 
and perform 6-valued simulation, critical path tracing and 
pruning for them. Since input positions in each V,,,,, vector 
was forced to differ from the V,  vector, there will be many 
nodes in the CUT will have complementary values for the 
two vectors, and hence some node pairs will be eliminated 
from the set BRIDGE-SUSPECTS. One advantage of our 
diagnosis strategy is that in no step does it add anything to 
the set BRIDGE-SUSPECTS. So in any step, it can only 
decrease the cardinality of the set BRIDGE-SUSPECTS. 
Additional (VI , V,,,,,) vector pairs can be generated by 
choosing different failing vectors in each step of deriving 

If after these steps, the cardinality of the set 
BRIDGE-SUSPECTS is small enough, the diagnosis process 
is stopped. Otherwise, a targeted approach can be used to 
generate further two-pattern tests to reduce the set 
BRIDGE-SUSPECTS. A new vector V2,x is created such that 
V2,x and V,,,,, are same except all the bit positions in which 
V, and V,,,,, differ are now made ‘X’ in V2,x. For all the 
remaining node pairs in BRIDGE-SUSPECTS it is 
determined whether any node in the pair has an X-path 
through it for Vz,p  Let us assume {I,, 1,) is such a pair, with 
1 ,  having a X-path through it for V2,x. Also assume that the 
logic value at 1 ,  for vector V, was 0. Then automatic test 
pattern generation (ATPG) can be performed to justify a ‘1’ 
at 1, with V2,x as the initial input assignment. The ATPG is 
not allowed to alter the initial input assignments, only assign 
values to the X’s. All such nodes 1, that have X-paths 
through them for Vz,x can be targets of additional vector 
generation. The additional two-pattern tests that derived in 
this manner can be used to prove that the targeted bridge is 
not the cause of the faulty output. If the output response 
when the new test is applied still is erroneous, then the 
bridge where both lines now have the same logic value on 
them cannot be the cause of the faulty output and can be 
eliminated from the set BRIDGE-SUSPECTS. 

V2,new 

5. Experimental Results 
Experiments using the adaptive techniques described in 

this paper were performed for some of the ISCAS 85 
benchmark circuits [Brglez 851. For the experiments, two 
nodes were selected at random and a bridge fault was 
inserted between them. Table 1 shows sample results for 
the experiments. The first column shows the circuit, the 
second column shows the number of test vectors generated 
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by the tool Soprano [Soprano 901. By just doing critical shown for the set of suspect lines after the adaptive 
path tracing, the resulting number of suspect lines are shown. techniques have been applied. Note the significant 
These are lines in the circuit which contain one of more improvement in diagnostic resolution that occurs by using 
bridges in the set BRIDGE-SUSPECTS. For the suspect the adaptive techniques. 
lines, the next column shows the average number of bridge 
suspects that are associated with that line. Results are then 

Table 1 .  Experimental Results for Fault Diagnosis of Resistive Bridges causing Delay Fault 

6. Conclusion 
The diagnostic procedure described in this paper targets 

resistive bridges. Both bridges that cause static logic faults 
as well as those that cause delay faults can be handled. A 
hill climbing strategy is used to continually decrease the 
number of bridge suspects by deriving additional two-pattern 
tests from the tests that failed in the original test set to further 
prune the suspect set. The procedure presented in this paper 
can be used to reduce the search space for direct probing and 
better guide it towards finding resistive bridge defects. This 
results in less time and lower cost for failure analysis. 
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