
Using Statistical Transformations to Improve Compression  

for Linear Decompressors 

Abstract

Linear decompressors are the dominant methodology used in commercial test data 
compression tools.  However, they are generally not able to exploit correlations in the test data, 
and thus the amount of compression that can be achieved with a linear decompressor is directly 
limited by the number of specified bits in the test data.  The paper describes a scheme in which 
a non-linear decoder is placed between the linear decompressor and the scan chains.  The non-
linear decoder uses statistical transformations that exploit correlations in the test data to 
reduce the number of specified bits that need to be produced by the linear decompressor.  
Given a test set, a procedure is presented for selecting a statistical code that effectively 
“compresses” the number of specified bits (note that this is a novel and different application of 
statistical codes from what has been studied before and requires new algorithms).  Results 
indicate that the overall compression can be increased significantly using a small non-linear 
decoder produced with the procedure described in this paper. 

1.  Introduction 

Test data compression provides a means to reduce test costs by reducing tester storage, test 

time, and test data bandwidth requirements.  Compressing the output response is relatively easy 

because lossy compression techniques can be employed, e.g., using a multiple input signature 

register (MISR).  However, compressing test vectors is much more difficult because lossless 

compression techniques must be used. 
A number of coding techniques for test cubes (i.e., deterministic test vectors where the 

unassigned bit postions are left as don’t cares) have been investigated.  These include run-

length codes [Jas 98], selective Huffman codes [Jas 99, 03], Golomb codes [Chandra 00], 

frequency directed codes [Chandra 01], VIHC codes [Gonciari 02], LZ77 [Wolff 02], Mutation 

codes [Reda 02], packet-based codes [Khoche 02], [Volkerink 02], and non-linear 

combinational codes [Reddy 02], [Li 03], [Würtenberger 04]. A special class of test vector 

compression schemes involves using a linear decompressor which uses only linear operations to 

decompress the test vectors.  This includes techniques based on linear feedback shift register 

(LFSR) reseeding and combinational linear expansion circuits consisting of XOR gates.  Linear 

compression schemes are very efficient at exploiting don’t care values in the test cubes to 

achieve large amounts of compression.  All the commercial tools for compressing test vectors 

that have been developed so far are linear compression schemes including TestKompress from 

Mentor Graphics [Rajski 02], SmartBIST from Cadence [Könemann 01], DBIST from 
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Synopsys [Chandramouli 03], and VirtualScan from SynTest [Wang 04].  This paper describes 

a new technique that can be used in conjunction with linear compression schemes to

significantly improve the amount of compression. It is applicable to any linear decompressor 

including both combinational and sequential.

The amount of compression that can be achieved with linear compression schemes depends 

directly on the number of specified bits in the test cubes.  While linear decompressors are very 

efficient at exploiting don’t cares in the test set, they cannot exploit correlations in the test data, 

and hence they cannot compress the test data to less than the total number of specified bits in 

the test data.  The idea in the proposed scheme is to perform statistical transformations on the 

test cubes using non-linear hardware to reduce the number of specified bits that need to be 

encoded by the linear decompressor by exploiting correlations in the test data.  A diagram of 

the proposed scheme is shown in Fig. 1.  Some transformation hardware is added at the output 

of the linear decompressor.  Given the set of test cubes that needs to be applied in the scan 

chains, this paper describes a systematic procedure for designing the transformation hardware 

in such a way that the input stream to the transformation hardware has fewer specified bits than 

the output stream (i.e., the test cubes) of the transformation hardware.  Since the linear 

decompressor is now producing the input stream for the transformation hardware instead of the 

test cubes, the number of specified bits that need to be encoded by the linear decompressor has 

been reduced thereby allowing greater compression.

Linear 

Decompressor
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Tester

Non-Linear
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Scan Chain 1

Scan Chain 2
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Figure 1.  Diagram of Proposed Scheme 

The proposed scheme is combining linear and non-linear coding together.  There have been 

two earlier papers ([Krishna 02] and [Sun 04]) that did this as well, but in a fundamentally 

different way.  In [Krishna 02], the inputs to the linear decompressor were encoded using a non-

linear code.  The objective in [Krishna 02] was to select the seeds for the LFSR in such a way 

that they could be effectively compressed by a non-linear code.  In the proposed scheme, the 

inputs to the scan chains are encoded with a non-linear code.  The objective here is to reduce 

the number of specified bits that need to be produced by the linear decompressor.  Whereas the 

method in [Krishna 02] is only applicable for LFSR reseeding where the seed is periodically 

loaded, the proposed scheme is applicable for any linear decompressor including combinational 

and sequential continuous-flow decompressors (for which the method in [Krishna 02] cannot be 

used).  In [Sun 04], dictionary coding and LFSR reseeding are combined such that either one or 

the other is used to load each scan bit-slice.  In the proposed method, statistical coding is 

combined with a linear decompressor and both are used together for all scan bit-slices enabling 

a continuous-flow decompression with greater efficiency. 

2. Proposed Scheme 

In scan testing, the n scan chains are loaded with one n-bit “block” of data at a time each 

clock cycle (i.e., one bit-slice of the scan chain is loaded at a time).  Given the test set, the set of 

n-bit blocks (i.e., bit-slices of the scan chain) can be obtained.  The objective here then is to 

encode these blocks in a way that reduces the total number of specified bits.  If the total number 
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of specified bits across all the blocks is reduced, then the linear decompressor requires less data 

from the tester thereby improving the compression (and hence reducing the number of bits that 

need to be stored on the tester). 

The basic strategy for encoding the blocks in the proposed scheme is to use statistical 

coding.   In conventional statistical coding, blocks that occur more frequently are encoded using 

codewords with fewer bits and blocks that occur less frequently are encoded using codewords 

with more bits in order to minimize the average length of a codeword.  However, the problem 

here is not to minimize the average length of a codeword, but rather to minimize the number of 

specified bits.  This is a novel problem that to the best of the authors’ knowledge has never 

been studied before.  It is more complicated than conventional statistical coding as will be seen. 

In order to keep the decoder small, selective coding is employed similar to what was done in 

[Jas 99, 03].  An extra bit is added to indicate whether a block is coded or not.  Only a subset of 

the blocks are coded while the rest are passed through unencoded.  This allows the decoder to 

be designed only for the blocks where it can have the most significant impact.  In conventional 

statistical coding the most significant impact would be encoding the most frequently occurring 

blocks because this would maximally reduce the total number of bits.  However, this is not 

necessarily the case here where the goal is to minimize the number of specified bits and not the 

total number of bits.  For example, if the most frequently occurring blocks have few specified 

bits, there may be a greater reduction in specified bits if another slightly less frequently 

occurring block is targeted which has more specified bits.  This will be illustrated in the 

following example. 

Consider the case where the set of blocks in the test set is shown in the first column of 

Table 1.  A set of blocks that do not conflict in any bit position can be grouped together and 

represented by a group pattern that is compatible with every block in the group.  Note that in 

Table 1 there are 6 groups and each group pattern is shown in the second column.  The 

grouping is not unique (i.e., there are many different ways to group the blocks), however, it was 

shown in [Jas 03] that if the largest possible group is formed first, and then the next largest 

possible group, and so forth, that an optimal Huffman code can be constructed to obtain the 

minimum total number of bits after coding.  This was done in Table 1 assuming that only 3 

groups would be encoded with all other groups being sent unencoded.  If the first bit of the 

codeword is 0, then the remaining bits in the codeword are the unencoded data itself.  If the first 

bit of the codeword is 1, then the remaining bits are encoded and need to be decoded.  So in 

Table 1, the three largest groups are encoded with the codewords 11, 101, and 100, all other 

groups are not encoded and have the first bit set to 0 to indicate that.  As can be seen in Table 1, 

the total number of bits in all the blocks is equal to 108 before coding.  The total number of bits 

after encoding is 63.  Thus the data was compressed from 108 bits to 63 bits.  However, since 

the proposed scheme involves using a linear decompressor to generate the codewords, the final 

compression will depend on how many specified bits the linear decompressor needs to generate 

and not the total number of bits.  Thus, for the proposed scheme, the only thing that matters is 

the total number of specified bits.  In Table 1, we see that the total number of specified bits in 

all the blocks is equal to 61 before coding.  The total number of specified bits after encoding is 

56.  Thus the encoding used in Table 1 reduces the number of specified bits that need to be 

generated by the linear decompressor from 61 to 56. 

While the encoding in Table 1 is optimal for minimizing the total bits after coding, it is not 

optimal for minimizing the total specified bits after coding.  This can be seen by looking at 

Table 2 where the exact same set of blocks is encoded differently.  In this case, the forth largest 

group from Table 1 (corresponding to group pattern 101110) is coded while the third largest 

group from Table 1 (corresponding to group pattern 100100) is left unencoded.  The reason 

why this is better for minimizing specified bits is that the total number of specified bits is more 

in the fourth largest group (12) compared with the third largest group (9) even though it has 
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fewer blocks (2 compared to 3).  Also note that the block xxxxx1 is not encoded with 101 even 

though it is compatible with group pattern 010001.  The reason for this is that if it is encoded 

with 101 it requires 3 specified bits, however, if it is left unencoded (i.e., 0xxxxx1), it requires 

only 2 specified bits.  As can be seen, the code in Table 2 requires 71 total bits (compared with 

63 in Table 1), but only 48 specified bits (compared with 56 in Table 1).  For the proposed 

scheme, the code in Table 2 is better because the resulting codewords can be more efficiently 

compressed with the linear decompressor since they have fewer specified bits. 

Table 1.  Optimal Statistical Code with 3 Groups Encoded to Minimize Total Bits

Blocks Group 

Pattern 

Codeword Total Bits 

Before Coding 

Total Bits 

 After Coding

Specified Bits 

before Coding 

Specified Bits 

 after Coding 

11x000 110000 11 6 2 5 2 

11x000   6 2 5 2 

11x0x0   6 2 4 2 

11x00x   6 2 4 2 

1x00xx   6 2 3 2 

1xxxxx   6 2 1 2 

x1xxxx   6 2 1 2 

010x01 010001 101 6 3 5 3 

01x0x1   6 3 4 3 

x1x001   6 3 4 3 

xxxxx1   6 3 1 3 

10xx0x 100100 100 6 3 3 3 

x00xxx   6 3 2 3 

xxx1x0   6 3 2 3 

101110 101110 0101101 6 7 6 7 

101110   6 7 6 7 

00xxx0 00xxx0 000xxx0 6 7 3 4 

0xxxx1 0xxxx1 00xxxx1 6 7 2 3 

   108 63 61 56 

Table 2.  Optimal Statistical Code with 3 Groups Encoded to Minimize Total Specified Bits

Blocks Group 

Pattern 

Codeword Total Bits 

Before Coding 

Total Bits 

 after Coding 

Specified Bits 

before Coding 

Specified Bits 

 after Coding 

11x000 110000 11 6 2 5 2 

11x000   6 2 5 2 

11x0x0   6 2 4 2 

11x00x   6 2 4 2 

1x00xx   6 2 3 2 

1xxxxx   6 2 1 2 

x1xxxx   6 2 1 2 

010x01 010001 101 6 3 5 3 

01x0x1   6 3 4 3 

x1x001   6 3 4 3 

xxxxx1 xxxxx1 0xxxxx1 6 7 1 2 

10xx0x 10xx0x 010xx0x 6 7 3 4 

x00xxx x00xxx 0x00xxx 6 7 2 3 

xxx1x0 Xxx1x0 0xxx1x0 6 7 2 3 

101110 101110 100 6 3 6 3 

101110   6 3 6 3 

00xxx0 00xxx0 000xxx0 6 7 3 4 

0xxxx1 0xxxx1 00xxxx1 6 7 2 3 

   108 71 61 48 
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A systematic procedure for selecting a statistical code to minimize the total number of 

specified bits after coding is described in Sec. 3.  Once this code is obtained, the corresponding 

non-linear decoder can be synthesized.

3.  Selecting Encoding 

An iterative procedure is described here for finding a statistical code that minimizes the total 

number of specified bits.  A flowchart for the procedure is shown in Fig. 2.  There is a cyclical 

dependency in that grouping the blocks depends on the codewords while selecting the 

codewords depends on how the blocks are grouped.  Thus, an iterative procedure is used where 

an initial set of codewords is first assumed and then the grouping is done.  Based on the 

grouping, a new set of codewords is selected.  Using the new set of codewords, the grouping is 

then redone.  This process repeats as long as the compression continues improving.  Fairly 

rapidly the procedure converges to a point where the compression no longer improves and the 

procedure terminates at that point.  Details of each step of the procedure follow.  Note that it 

does not guarantee optimality of the result because of the dependence on the initial code and the 

use of a greedy procedure with limited lookahead for grouping blocks.

Step 

Codewords

improvementimprovement
Group 

Blocks

Compute 

Compression Done

Select codewords with 

Huffman Tree

NO

YES

START

Figure 2.  Flowchart for Procedure to Selecting Encoding 

3.1 Step-Tree 

The procedure begins with an initial set of codewords corresponding to a “step-tree”.  This is 
a coding scheme in which the codewords “step up” by one specified bit for each consecutive 
codeword. An example of a step-tree is shown in Fig. 3. Note that the codeword with only one 
specified bit is reserved for blocks that will not be encoded and thus the shortest codeword 
available for coded blocks has a length of two specified bits.   Experiments indicated that the 

dependence on the initial code was not very significant and that good results were obtained 

using the step-code, hence this is used to initialize the procedure. 

Figure 3.  Example of Step-Tree for 6 bit blocks 

10XXXXX
110XXXX
1110XXX
11110XX
111110X
1111110
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3.2 Group Blocks 

The next step is to group the blocks.  The grouping depends on the codewords because if the 
number of specified bits in a block is less than the number of specified bits in the corresponding 
codeword, then the block should not be coded because it would be equally or more efficient to 
simply leave the block unencoded.  Recall that this point was illustrated back in Table 2 where 
the block xxxxx1 was compatible with the group pattern 010001 and thus could have been 
coded with 101xxxx, however, it was more efficient to simply leave that block out of the group 
and let it be encoded with 0xxxxx1 which requires fewer specified bits. So when forming the i-
th group corresponding to the i-th most specified codeword, if the number of specified bits in 
the i-th most specified codeword is s, then no block with fewer than s specified bits should be 
added to the group. 

The groups are formed one at a time.  When forming a group, one block is added at a time to 
the group.  All blocks that are compatible with the current group and have the same or more 
specified bits than the group are candidates to add to the group (note that initially the group is 
empty and thus all blocks are compatible with it).  A lookahead procedure is used to decide 
which candidate block to add to the group by considering how many blocks would remain 
compatible with the group after each candidate block is added.  The candidate block that would 
preserve the most compatibility is added to the group.  Blocks are added one by one to a group 
until a point is reached where there are no more candidate blocks to add to the group.  Then the 
next group is constructed in the same manner. 

3.3 Compute Compression 

After the groups have been formed, then the compression with respect to the number of 
specified bits is computed.  The encoded groups are replaced by their corresponding codewords 
and the unencoded blocks have the extra bit added to them to indicate that there are unencoded.  
The total number of specified bits after coding is then computed.  If the compression of 
specified bits is the same as the last iteration, then the procedure terminates.  If not, then the 
procedure is repeated with a new set of codewords formed as described in the next subsection.

3.4 Select New Set of Codewords 

For the next iteration of the procedure, a new set of codewords is selected.  Using the groups 
that were formed in the last iteration, the “frequency” of each group is used to construct a 
Huffman tree [Huffman 52].  However, the “frequency” in this case is the frequency of 
specified bits, which is equal to the total number of specified bits across all the blocks 
contained in the group.  In conventional statistical coding (e.g., what was used in [Jas 99, 03]), 
the goal is to minimize the average number of bits in each codeword and hence “frequency” is 
equal to the number of blocks in each group.  However, here the goal is to minimize the 
average number of specified bits in each codeword and hence “frequency” is equal to the 
number of specified bits in all the blocks in each group.  From the Huffman tree, the new set of 
codewords are obtained (see [Huffman 52] for more details).  Since selective coding is used, 
only a certain number of groups are coded and not all.  This is to keep the decoder size small as 
was described earlier. 

After the new set of codewords are selected, the procedure repeats the step described in Sec. 
3.2 where the blocks are grouped again to better optimize them for the new codewords (since 
the number of specified bits in each codeword may have changed from the last iteration). 
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4.  Improving Compression 

In this section, some ideas are described for further improving the compression.  Note that it 
is possible for some individual test cubes in the test set to not achieve positive compression 
(i.e., to end up with more specified bits) with the proposed scheme even though significant 
compression is achieved on the overall test set.  The reason for this is that for each unencoded 
block an extra specified bit is added to indicate that it is unencoded, and thus if the proportion 
of encoded blocks to unencoded blocks in a particular test cube is not sufficiently high, that test 
cube may not achieve positive compression.  For those test cubes, it is better to simply bypass 
the non-linear decoder.  This can be easily implemented by taking advantage of the fact that the 
order in which the test cubes are applied in the scan chains doesn’t matter.  Thus, the test cubes 
can be ordered so that all the test cubes that do not achieve positive compression come at the 
end.  The non-linear decoder can then simply be bypassed for this last set of test cubes that do 
not achieve positive compression.  The only hardware required for this is an AND gate to 
decode the pattern counter, a bypass activation flip-flop, and a bypass MUX for the non-linear 
decoder. 

Another way to improve the compression would be to modify the decoder so that it has two 
(or more) modes in which it decodes the same codewords, but outputs different group patterns 
depending on which mode it is in.  This would allow different groups of blocks to be coded for 
different test cubes.  Essentially, the first mode would be used for the first so many test cubes, 
and then the mode would be changed for the next set of test cubes and so on.  This would 
improve the compression by allowing more efficient encoding at the cost of the additional 
hardware required to implement the extra modes for the decoder. 

5. Experimental Results 

Experiments were performed on the four largest ISCAS 89 circuits using a scan architecture 
with 64 scan chains.  A non-linear decoder for each of the circuits was designed using the 
procedure described in Sec. 3.  The decoder was designed with 2 modes and a bypass MUX as 
described in Sec. 4.  Table 3 shows the results.  The third column shows the hardware overhead 
that was required in terms of gate equivalents per scan chain.  The gate equivalents were 
computed as 0.5n for an n-input NAND/NOR gate and 0.5 for an inverter.  The fourth column 
shows the number of test vectors in the test set.  The fifth column shows the original number of 
specified bits without the non-linear decoder.  The sixth column shows the number of specified 
bits when the non-linear decoder is used.  The last column shows the percent reduction in the 
number of specified bits that is achieved by using the propose scheme.  As can be seen, 
significant reduction is achieved for all the circuits.  This reduction in the specified bits is a 
very powerful result because it means that in most cases, an additional 20% greater 
compression can be achieved on top of the best possible compression that is currently available 
for any linear decompression scheme.  If the test data bandwidth is held constant, this translates 
to a 20% reduction in test time. 

Table 4 shows a comparison of different test data compression schemes in terms of their 
tester storage requirements.  The last two schemes use the sequential decompressor shown in 
Fig. 4 where a 64-bit LFSR is used with a variable length shift (the shift length is loaded in the 
first two clock cycles of each scan vector).  The sequential decompressor alone is very 
powerful, but when it is combined with the non-linear decompressor, the results are 
significantly improved.  As can be seen in Table 4, the results are similar to the seed 
compression scheme in [Krishna 02] which is not unexpected since both schemes are 
essentially combining a linear decompressor with a non-linear decoder (though in very different 
ways).  The advantage of the proposed scheme is that it can facilitate continuous-flow 
decompression where the tester transfers the test data as fast as it can with a constant 
bandwidth.  The scheme in [Krishna 02] requires a more complicated non-linear decoder that 
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does not allow continuous-flow decompression.  The scheme in [Sun 04] which is also 
combining linear and non-linear decompression reports similar results, but it uses a much larger 
decoder that is effectively storing a lot of the test set on-chip (note that the compression with 
the proposed scheme could also be improved by increasing the size of the decoder if that was a 
desired result).  Note that the scheme described in [Balakrishnan 04] that uses scan inversion to 
improve compression could be used in conjunction with the proposed scheme to achieve even 
better results.

Table 3.  Results for Proposed Scheme 

Circuit 
Scan 

Chains 

Overhead 

GE/chain 

Test 

Vectors 

Original 

Specified Bits 

Compressed 

Specified Bits 

Percent 

Reduction 

s13207 64 5.81 266 9392 7499 20.2% 

s15850 64 5.70 226 10869 8333 23.3% 

s38417 64 6.64 105 30671 22277 27.4% 

s38584 64 6.69 192 26187 23293 11.1% 

Table 4.  Comparison of Test Data for Different Encoding Schemes  

Circuit 
Name

Illinois Scan 
Architecture 

[Hamzaoglu 99] 

FDR Codes 
[Chandra 01] 

Seed  
Overlapping 

[Rao 03] 

Seed  
Compression 
[Krishna 02] 

Sequential 
Decompressor 

Alone 

Sequential 
Decompressor 
with Proposed 

Decoder 
Num. 
Vect. 

Total 
Bits

Num. 
Vect. 

Total 
Bits

Num. 
Vect. 

Total 
Bits

Num. 
Vect. 

Total 
Bits

Num. 
Vect. 

Total 
Bits

Num. 
Vect. 

Total 
Bits

s13207 273 109,772 236 30,880 272 17,970 266 11,285 266 14,301 266 10,810 
s15850 178 32,758 126 26,000 174 15,774 269 12,438 269 14,391 269 12,405 
s38417 337 96,269 99 93,466 288 60,684 376 34,767 376 48,612 376 32,154 
s38584 239 96,056 136 77,812 215 31,061 296 29,397 296 34,012 296 31,000 

Scan Chain 1 (m bits)

Scan Chain 2 (m bits)

Scan Chain n (m bits)

L

F

S

R

Comb.

Linear

Expand

b Channels

from Tester

Figure 4.  Sequential Linear Decompressor 

6.  Conclusions 

The proposed scheme combines linear decompressors with a non-linear decoder to provide 

very high levels of compression for test data.  Designing a non-linear decoder to reduce the 

number of specified bits is a new problem quite different from conventional encoding problems.  

This paper described a procedure for designing such a decompressor and showed that very good 

results can be obtained.  The proposed scheme provides a promising way to achieve greater 

levels of test data compression than what conventional linear decompressors alone can achieve.  

Linear decompressors alone cannot exploit correlations in the test set, and thus are limited by 

the number of specified bits in the test set.  The proposed scheme provides a way to get beyond 

that limitation by exploiting correlations in the test set as well. 
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