
Using Statistical Transformations to Improve Compression

for Linear Decompressors

Abstract

Linear decompressors are the dominant methodology used in commercial test data
compression tools. However, they are generally not able to exploit correlations in the test data,
and thus the amount of compression that can be achieved with a linear decompressor is directly
limited by the number of specified bits in the test data. The paper describes a scheme in which
a non-linear decoder is placed between the linear decompressor and the scan chains. The non-
linear decoder uses statistical transformations that exploit correlations in the test data to
reduce the number of specified bits that need to be produced by the linear decompressor.
Given a test set, a procedure is presented for selecting a statistical code that effectively
“compresses” the number of specified bits (note that this is a novel and different application of
statistical codes from what has been studied before and requires new algorithms). Results
indicate that the overall compression can be increased significantly using a small non-linear
decoder produced with the procedure described in this paper.

1. Introduction

Test data compression provides a means to reduce test costs by reducing tester storage, test

time, and test data bandwidth requirements. Compressing the output response is relatively easy

because lossy compression techniques can be employed, e.g., using a multiple input signature

register (MISR). However, compressing test vectors is much more difficult because lossless

compression techniques must be used.
A number of coding techniques for test cubes (i.e., deterministic test vectors where the

unassigned bit postions are left as don’t cares) have been investigated. These include run-

length codes [Jas 98], selective Huffman codes [Jas 99, 03], Golomb codes [Chandra 00],

frequency directed codes [Chandra 01], VIHC codes [Gonciari 02], LZ77 [Wolff 02], Mutation

codes [Reda 02], packet-based codes [Khoche 02], [Volkerink 02], and non-linear

combinational codes [Reddy 02], [Li 03], [Würtenberger 04]. A special class of test vector

compression schemes involves using a linear decompressor which uses only linear operations to

decompress the test vectors. This includes techniques based on linear feedback shift register

(LFSR) reseeding and combinational linear expansion circuits consisting of XOR gates. Linear

compression schemes are very efficient at exploiting don’t care values in the test cubes to

achieve large amounts of compression. All the commercial tools for compressing test vectors

that have been developed so far are linear compression schemes including TestKompress from

Mentor Graphics [Rajski 02], SmartBIST from Cadence [Könemann 01], DBIST from

Samuel I. Ward

IBM Systems &Technology Group

11400 Burnet RD

Austin TX 78758

E-mail: siward@us.ibm.com

Chris Schattauer, Nur A.Touba

Computer Engineering Research Center

Dept. of Electrical & Computer Eng.

University of Texas, Austin, TX 78712
E-mail: touba@ece.utexas.edu

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05)
0-7695-2464-8/05 $20.00 © 2005 IEEE

Synopsys [Chandramouli 03], and VirtualScan from SynTest [Wang 04]. This paper describes

a new technique that can be used in conjunction with linear compression schemes to

significantly improve the amount of compression. It is applicable to any linear decompressor

including both combinational and sequential.

The amount of compression that can be achieved with linear compression schemes depends

directly on the number of specified bits in the test cubes. While linear decompressors are very

efficient at exploiting don’t cares in the test set, they cannot exploit correlations in the test data,

and hence they cannot compress the test data to less than the total number of specified bits in

the test data. The idea in the proposed scheme is to perform statistical transformations on the

test cubes using non-linear hardware to reduce the number of specified bits that need to be

encoded by the linear decompressor by exploiting correlations in the test data. A diagram of

the proposed scheme is shown in Fig. 1. Some transformation hardware is added at the output

of the linear decompressor. Given the set of test cubes that needs to be applied in the scan

chains, this paper describes a systematic procedure for designing the transformation hardware

in such a way that the input stream to the transformation hardware has fewer specified bits than

the output stream (i.e., the test cubes) of the transformation hardware. Since the linear

decompressor is now producing the input stream for the transformation hardware instead of the

test cubes, the number of specified bits that need to be encoded by the linear decompressor has

been reduced thereby allowing greater compression.

Linear

Decompressor
From

Tester

Non-Linear

Transformation

Logic

Scan Chain 1

Scan Chain 2

Scan Chain n

b n

Figure 1. Diagram of Proposed Scheme

The proposed scheme is combining linear and non-linear coding together. There have been

two earlier papers ([Krishna 02] and [Sun 04]) that did this as well, but in a fundamentally

different way. In [Krishna 02], the inputs to the linear decompressor were encoded using a non-

linear code. The objective in [Krishna 02] was to select the seeds for the LFSR in such a way

that they could be effectively compressed by a non-linear code. In the proposed scheme, the

inputs to the scan chains are encoded with a non-linear code. The objective here is to reduce

the number of specified bits that need to be produced by the linear decompressor. Whereas the

method in [Krishna 02] is only applicable for LFSR reseeding where the seed is periodically

loaded, the proposed scheme is applicable for any linear decompressor including combinational

and sequential continuous-flow decompressors (for which the method in [Krishna 02] cannot be

used). In [Sun 04], dictionary coding and LFSR reseeding are combined such that either one or

the other is used to load each scan bit-slice. In the proposed method, statistical coding is

combined with a linear decompressor and both are used together for all scan bit-slices enabling

a continuous-flow decompression with greater efficiency.

2. Proposed Scheme

In scan testing, the n scan chains are loaded with one n-bit “block” of data at a time each

clock cycle (i.e., one bit-slice of the scan chain is loaded at a time). Given the test set, the set of

n-bit blocks (i.e., bit-slices of the scan chain) can be obtained. The objective here then is to

encode these blocks in a way that reduces the total number of specified bits. If the total number

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05)
0-7695-2464-8/05 $20.00 © 2005 IEEE

of specified bits across all the blocks is reduced, then the linear decompressor requires less data

from the tester thereby improving the compression (and hence reducing the number of bits that

need to be stored on the tester).

The basic strategy for encoding the blocks in the proposed scheme is to use statistical

coding. In conventional statistical coding, blocks that occur more frequently are encoded using

codewords with fewer bits and blocks that occur less frequently are encoded using codewords

with more bits in order to minimize the average length of a codeword. However, the problem

here is not to minimize the average length of a codeword, but rather to minimize the number of

specified bits. This is a novel problem that to the best of the authors’ knowledge has never

been studied before. It is more complicated than conventional statistical coding as will be seen.

In order to keep the decoder small, selective coding is employed similar to what was done in

[Jas 99, 03]. An extra bit is added to indicate whether a block is coded or not. Only a subset of

the blocks are coded while the rest are passed through unencoded. This allows the decoder to

be designed only for the blocks where it can have the most significant impact. In conventional

statistical coding the most significant impact would be encoding the most frequently occurring

blocks because this would maximally reduce the total number of bits. However, this is not

necessarily the case here where the goal is to minimize the number of specified bits and not the

total number of bits. For example, if the most frequently occurring blocks have few specified

bits, there may be a greater reduction in specified bits if another slightly less frequently

occurring block is targeted which has more specified bits. This will be illustrated in the

following example.

Consider the case where the set of blocks in the test set is shown in the first column of

Table 1. A set of blocks that do not conflict in any bit position can be grouped together and

represented by a group pattern that is compatible with every block in the group. Note that in

Table 1 there are 6 groups and each group pattern is shown in the second column. The

grouping is not unique (i.e., there are many different ways to group the blocks), however, it was

shown in [Jas 03] that if the largest possible group is formed first, and then the next largest

possible group, and so forth, that an optimal Huffman code can be constructed to obtain the

minimum total number of bits after coding. This was done in Table 1 assuming that only 3

groups would be encoded with all other groups being sent unencoded. If the first bit of the

codeword is 0, then the remaining bits in the codeword are the unencoded data itself. If the first

bit of the codeword is 1, then the remaining bits are encoded and need to be decoded. So in

Table 1, the three largest groups are encoded with the codewords 11, 101, and 100, all other

groups are not encoded and have the first bit set to 0 to indicate that. As can be seen in Table 1,

the total number of bits in all the blocks is equal to 108 before coding. The total number of bits

after encoding is 63. Thus the data was compressed from 108 bits to 63 bits. However, since

the proposed scheme involves using a linear decompressor to generate the codewords, the final

compression will depend on how many specified bits the linear decompressor needs to generate

and not the total number of bits. Thus, for the proposed scheme, the only thing that matters is

the total number of specified bits. In Table 1, we see that the total number of specified bits in

all the blocks is equal to 61 before coding. The total number of specified bits after encoding is

56. Thus the encoding used in Table 1 reduces the number of specified bits that need to be

generated by the linear decompressor from 61 to 56.

While the encoding in Table 1 is optimal for minimizing the total bits after coding, it is not

optimal for minimizing the total specified bits after coding. This can be seen by looking at

Table 2 where the exact same set of blocks is encoded differently. In this case, the forth largest

group from Table 1 (corresponding to group pattern 101110) is coded while the third largest

group from Table 1 (corresponding to group pattern 100100) is left unencoded. The reason

why this is better for minimizing specified bits is that the total number of specified bits is more

in the fourth largest group (12) compared with the third largest group (9) even though it has

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05)
0-7695-2464-8/05 $20.00 © 2005 IEEE

fewer blocks (2 compared to 3). Also note that the block xxxxx1 is not encoded with 101 even

though it is compatible with group pattern 010001. The reason for this is that if it is encoded

with 101 it requires 3 specified bits, however, if it is left unencoded (i.e., 0xxxxx1), it requires

only 2 specified bits. As can be seen, the code in Table 2 requires 71 total bits (compared with

63 in Table 1), but only 48 specified bits (compared with 56 in Table 1). For the proposed

scheme, the code in Table 2 is better because the resulting codewords can be more efficiently

compressed with the linear decompressor since they have fewer specified bits.

Table 1. Optimal Statistical Code with 3 Groups Encoded to Minimize Total Bits

Blocks Group

Pattern

Codeword Total Bits

Before Coding

Total Bits

 After Coding

Specified Bits

before Coding

Specified Bits

 after Coding

11x000 110000 11 6 2 5 2

11x000 6 2 5 2

11x0x0 6 2 4 2

11x00x 6 2 4 2

1x00xx 6 2 3 2

1xxxxx 6 2 1 2

x1xxxx 6 2 1 2

010x01 010001 101 6 3 5 3

01x0x1 6 3 4 3

x1x001 6 3 4 3

xxxxx1 6 3 1 3

10xx0x 100100 100 6 3 3 3

x00xxx 6 3 2 3

xxx1x0 6 3 2 3

101110 101110 0101101 6 7 6 7

101110 6 7 6 7

00xxx0 00xxx0 000xxx0 6 7 3 4

0xxxx1 0xxxx1 00xxxx1 6 7 2 3

 108 63 61 56

Table 2. Optimal Statistical Code with 3 Groups Encoded to Minimize Total Specified Bits

Blocks Group

Pattern

Codeword Total Bits

Before Coding

Total Bits

 after Coding

Specified Bits

before Coding

Specified Bits

 after Coding

11x000 110000 11 6 2 5 2

11x000 6 2 5 2

11x0x0 6 2 4 2

11x00x 6 2 4 2

1x00xx 6 2 3 2

1xxxxx 6 2 1 2

x1xxxx 6 2 1 2

010x01 010001 101 6 3 5 3

01x0x1 6 3 4 3

x1x001 6 3 4 3

xxxxx1 xxxxx1 0xxxxx1 6 7 1 2

10xx0x 10xx0x 010xx0x 6 7 3 4

x00xxx x00xxx 0x00xxx 6 7 2 3

xxx1x0 Xxx1x0 0xxx1x0 6 7 2 3

101110 101110 100 6 3 6 3

101110 6 3 6 3

00xxx0 00xxx0 000xxx0 6 7 3 4

0xxxx1 0xxxx1 00xxxx1 6 7 2 3

 108 71 61 48

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05)
0-7695-2464-8/05 $20.00 © 2005 IEEE

A systematic procedure for selecting a statistical code to minimize the total number of

specified bits after coding is described in Sec. 3. Once this code is obtained, the corresponding

non-linear decoder can be synthesized.

3. Selecting Encoding

An iterative procedure is described here for finding a statistical code that minimizes the total

number of specified bits. A flowchart for the procedure is shown in Fig. 2. There is a cyclical

dependency in that grouping the blocks depends on the codewords while selecting the

codewords depends on how the blocks are grouped. Thus, an iterative procedure is used where

an initial set of codewords is first assumed and then the grouping is done. Based on the

grouping, a new set of codewords is selected. Using the new set of codewords, the grouping is

then redone. This process repeats as long as the compression continues improving. Fairly

rapidly the procedure converges to a point where the compression no longer improves and the

procedure terminates at that point. Details of each step of the procedure follow. Note that it

does not guarantee optimality of the result because of the dependence on the initial code and the

use of a greedy procedure with limited lookahead for grouping blocks.

Step

Codewords

improvementimprovement
Group

Blocks

Compute

Compression Done

Select codewords with

Huffman Tree

NO

YES

START

Figure 2. Flowchart for Procedure to Selecting Encoding

3.1 Step-Tree

The procedure begins with an initial set of codewords corresponding to a “step-tree”. This is
a coding scheme in which the codewords “step up” by one specified bit for each consecutive
codeword. An example of a step-tree is shown in Fig. 3. Note that the codeword with only one
specified bit is reserved for blocks that will not be encoded and thus the shortest codeword
available for coded blocks has a length of two specified bits. Experiments indicated that the

dependence on the initial code was not very significant and that good results were obtained

using the step-code, hence this is used to initialize the procedure.

Figure 3. Example of Step-Tree for 6 bit blocks

10XXXXX
110XXXX
1110XXX
11110XX
111110X
1111110

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05)
0-7695-2464-8/05 $20.00 © 2005 IEEE

3.2 Group Blocks

The next step is to group the blocks. The grouping depends on the codewords because if the
number of specified bits in a block is less than the number of specified bits in the corresponding
codeword, then the block should not be coded because it would be equally or more efficient to
simply leave the block unencoded. Recall that this point was illustrated back in Table 2 where
the block xxxxx1 was compatible with the group pattern 010001 and thus could have been
coded with 101xxxx, however, it was more efficient to simply leave that block out of the group
and let it be encoded with 0xxxxx1 which requires fewer specified bits. So when forming the i-
th group corresponding to the i-th most specified codeword, if the number of specified bits in
the i-th most specified codeword is s, then no block with fewer than s specified bits should be
added to the group.

The groups are formed one at a time. When forming a group, one block is added at a time to
the group. All blocks that are compatible with the current group and have the same or more
specified bits than the group are candidates to add to the group (note that initially the group is
empty and thus all blocks are compatible with it). A lookahead procedure is used to decide
which candidate block to add to the group by considering how many blocks would remain
compatible with the group after each candidate block is added. The candidate block that would
preserve the most compatibility is added to the group. Blocks are added one by one to a group
until a point is reached where there are no more candidate blocks to add to the group. Then the
next group is constructed in the same manner.

3.3 Compute Compression

After the groups have been formed, then the compression with respect to the number of
specified bits is computed. The encoded groups are replaced by their corresponding codewords
and the unencoded blocks have the extra bit added to them to indicate that there are unencoded.
The total number of specified bits after coding is then computed. If the compression of
specified bits is the same as the last iteration, then the procedure terminates. If not, then the
procedure is repeated with a new set of codewords formed as described in the next subsection.

3.4 Select New Set of Codewords

For the next iteration of the procedure, a new set of codewords is selected. Using the groups
that were formed in the last iteration, the “frequency” of each group is used to construct a
Huffman tree [Huffman 52]. However, the “frequency” in this case is the frequency of
specified bits, which is equal to the total number of specified bits across all the blocks
contained in the group. In conventional statistical coding (e.g., what was used in [Jas 99, 03]),
the goal is to minimize the average number of bits in each codeword and hence “frequency” is
equal to the number of blocks in each group. However, here the goal is to minimize the
average number of specified bits in each codeword and hence “frequency” is equal to the
number of specified bits in all the blocks in each group. From the Huffman tree, the new set of
codewords are obtained (see [Huffman 52] for more details). Since selective coding is used,
only a certain number of groups are coded and not all. This is to keep the decoder size small as
was described earlier.

After the new set of codewords are selected, the procedure repeats the step described in Sec.
3.2 where the blocks are grouped again to better optimize them for the new codewords (since
the number of specified bits in each codeword may have changed from the last iteration).

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05)
0-7695-2464-8/05 $20.00 © 2005 IEEE

4. Improving Compression

In this section, some ideas are described for further improving the compression. Note that it
is possible for some individual test cubes in the test set to not achieve positive compression
(i.e., to end up with more specified bits) with the proposed scheme even though significant
compression is achieved on the overall test set. The reason for this is that for each unencoded
block an extra specified bit is added to indicate that it is unencoded, and thus if the proportion
of encoded blocks to unencoded blocks in a particular test cube is not sufficiently high, that test
cube may not achieve positive compression. For those test cubes, it is better to simply bypass
the non-linear decoder. This can be easily implemented by taking advantage of the fact that the
order in which the test cubes are applied in the scan chains doesn’t matter. Thus, the test cubes
can be ordered so that all the test cubes that do not achieve positive compression come at the
end. The non-linear decoder can then simply be bypassed for this last set of test cubes that do
not achieve positive compression. The only hardware required for this is an AND gate to
decode the pattern counter, a bypass activation flip-flop, and a bypass MUX for the non-linear
decoder.

Another way to improve the compression would be to modify the decoder so that it has two
(or more) modes in which it decodes the same codewords, but outputs different group patterns
depending on which mode it is in. This would allow different groups of blocks to be coded for
different test cubes. Essentially, the first mode would be used for the first so many test cubes,
and then the mode would be changed for the next set of test cubes and so on. This would
improve the compression by allowing more efficient encoding at the cost of the additional
hardware required to implement the extra modes for the decoder.

5. Experimental Results

Experiments were performed on the four largest ISCAS 89 circuits using a scan architecture
with 64 scan chains. A non-linear decoder for each of the circuits was designed using the
procedure described in Sec. 3. The decoder was designed with 2 modes and a bypass MUX as
described in Sec. 4. Table 3 shows the results. The third column shows the hardware overhead
that was required in terms of gate equivalents per scan chain. The gate equivalents were
computed as 0.5n for an n-input NAND/NOR gate and 0.5 for an inverter. The fourth column
shows the number of test vectors in the test set. The fifth column shows the original number of
specified bits without the non-linear decoder. The sixth column shows the number of specified
bits when the non-linear decoder is used. The last column shows the percent reduction in the
number of specified bits that is achieved by using the propose scheme. As can be seen,
significant reduction is achieved for all the circuits. This reduction in the specified bits is a
very powerful result because it means that in most cases, an additional 20% greater
compression can be achieved on top of the best possible compression that is currently available
for any linear decompression scheme. If the test data bandwidth is held constant, this translates
to a 20% reduction in test time.

Table 4 shows a comparison of different test data compression schemes in terms of their
tester storage requirements. The last two schemes use the sequential decompressor shown in
Fig. 4 where a 64-bit LFSR is used with a variable length shift (the shift length is loaded in the
first two clock cycles of each scan vector). The sequential decompressor alone is very
powerful, but when it is combined with the non-linear decompressor, the results are
significantly improved. As can be seen in Table 4, the results are similar to the seed
compression scheme in [Krishna 02] which is not unexpected since both schemes are
essentially combining a linear decompressor with a non-linear decoder (though in very different
ways). The advantage of the proposed scheme is that it can facilitate continuous-flow
decompression where the tester transfers the test data as fast as it can with a constant
bandwidth. The scheme in [Krishna 02] requires a more complicated non-linear decoder that

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05)
0-7695-2464-8/05 $20.00 © 2005 IEEE

does not allow continuous-flow decompression. The scheme in [Sun 04] which is also
combining linear and non-linear decompression reports similar results, but it uses a much larger
decoder that is effectively storing a lot of the test set on-chip (note that the compression with
the proposed scheme could also be improved by increasing the size of the decoder if that was a
desired result). Note that the scheme described in [Balakrishnan 04] that uses scan inversion to
improve compression could be used in conjunction with the proposed scheme to achieve even
better results.

Table 3. Results for Proposed Scheme

Circuit
Scan

Chains

Overhead

GE/chain

Test

Vectors

Original

Specified Bits

Compressed

Specified Bits

Percent

Reduction

s13207 64 5.81 266 9392 7499 20.2%

s15850 64 5.70 226 10869 8333 23.3%

s38417 64 6.64 105 30671 22277 27.4%

s38584 64 6.69 192 26187 23293 11.1%

Table 4. Comparison of Test Data for Different Encoding Schemes

Circuit
Name

Illinois Scan
Architecture

[Hamzaoglu 99]

FDR Codes
[Chandra 01]

Seed
Overlapping

[Rao 03]

Seed
Compression
[Krishna 02]

Sequential
Decompressor

Alone

Sequential
Decompressor
with Proposed

Decoder
Num.
Vect.

Total
Bits

Num.
Vect.

Total
Bits

Num.
Vect.

Total
Bits

Num.
Vect.

Total
Bits

Num.
Vect.

Total
Bits

Num.
Vect.

Total
Bits

s13207 273 109,772 236 30,880 272 17,970 266 11,285 266 14,301 266 10,810
s15850 178 32,758 126 26,000 174 15,774 269 12,438 269 14,391 269 12,405
s38417 337 96,269 99 93,466 288 60,684 376 34,767 376 48,612 376 32,154
s38584 239 96,056 136 77,812 215 31,061 296 29,397 296 34,012 296 31,000

Scan Chain 1 (m bits)

Scan Chain 2 (m bits)

Scan Chain n (m bits)

L

F

S

R

Comb.

Linear

Expand

b Channels

from Tester

Figure 4. Sequential Linear Decompressor

6. Conclusions

The proposed scheme combines linear decompressors with a non-linear decoder to provide

very high levels of compression for test data. Designing a non-linear decoder to reduce the

number of specified bits is a new problem quite different from conventional encoding problems.

This paper described a procedure for designing such a decompressor and showed that very good

results can be obtained. The proposed scheme provides a promising way to achieve greater

levels of test data compression than what conventional linear decompressors alone can achieve.

Linear decompressors alone cannot exploit correlations in the test set, and thus are limited by

the number of specified bits in the test set. The proposed scheme provides a way to get beyond

that limitation by exploiting correlations in the test set as well.

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05)
0-7695-2464-8/05 $20.00 © 2005 IEEE

Acknowledgements

This material is based on work supported in part by the Intel Corporation and in part by the

National Science Foundation under Grant No. CCR-0306238.

References

[Balakrishnan 04] Balakrishnan, K., and N.A. Touba, “Improving Encoding Efficiency for Linear Decompressors
Using Scan Inversion,” Proc. of International Test Conference, pp. 936-943, 2004.

[Chandra 00] Chandra, A., and K. Chakrabarty, “Test Data Compression for System-on-a-Chip Using Golomb
Codes,” Proc. of VLSI Test Symposium, pp. 113-120, 2000.

[Chandra 01] Chandra, A., and K. Chakrabarty, “Frequency-Directed Run Length (FDR) Codes with Application to
System-on-a-Chip Test Data Compression,” Proc. of VLSI Test Symposium, pp. 42-47, 2001.

[Chandramouli 03] Chandramouli, M., “How to Implement Deterministic Logic Built-In Self-Test (BIST),”
Complier: A Monthly Magazine for Technologists Worldwide, Synopsys, Jan. 2003.

 [Gonciari 02] Gonciari, P.T., B. Al-Hashimi, and N. Nicolici, “Improving Compression Ratio, Area Overhead, and
Test Application Time for System-on-a-Chip Test Data Compression/Decompression,” Proc. of Design
Automation and Test in Europe (DATE), pp. 604-611, 2002.

[Hamzaoglu 99] Hamzaoglu, I., and J.H. Patel, “Reducing Test Application Time for Full Scan Embedded Cores,”
Proc. of Int. Symposium on Fault Tolerant Computing, pp. 260-267, 1999.

[Huffman 52] Huffman, D.A., “A Method for the Construction of Minimum Redundancy Codes,” Proc. of IRE, Vol.
40, No. 9, pp. 1098-1101, Sep. 1952.

[Jas 98] Jas, A., and N.A. Touba, "Test Vector Decompression Via Cyclical Scan Chains and Its Application to

Testing Core-Based Designs", Proc. of Int. Test Conference, pp. 458-464, 1998.

[Jas 99] Jas, A., J. Ghosh-Dastidar, and N.A. Touba, "Scan Vector Compression/Decompression Using Statistical
Coding", Proc. of IEEE VLSI Test Symposium, pp. 114-120, 1999.

[Jas 03] Jas, A., J. Ghosh-Dastidar, M.-E. Eng, and N.A. Touba, “An Efficient Test Vector Compression Scheme
Using Selective Huffman Coding,” IEEE Trans. on CAD, Vol. 22, No. 6, pp. 797-806, Jun. 2003.

[Khoche 02] Khoche, A., E.H. Volkerink, J. Rivoir, and S. Mitra, “Test Vector Compression Using EDA-ATE
Synergies,” Proc. of VLSI Test Symposium, pp. 97-102, 2002.

[Krishna 02] Krishna, C.V., and N.A. Touba, "Reducing Test Data Volume Using LFSR Reseeding with Seed
Compression ", Proc. of IEEE International Test Conference, pp. 321-330, 2001.

[Könemann 01] Könemann, B., “A SmartBIST Variant with Guaranteed Encoding” Proc. of Asian Test Symposium,
pp. 325-330, 2001.

[Li 03] Li, L., and K. Chakrabarty, “Test Data Compression Using Dictionaries with Fixed-Length Indices,” Proc. of

VLSI Test Symposium, pp. 219-224, 2003.

[Rajski 02] Rajski, J., et al., “Embedded Deterministic Test for Low Cost Manufacturing Test,” Proc. of Int. Test

Conf., pp. 301-310, 2002.

[Rao 03] Rao, W., I. Bayraktaroglu, and A. Orailoglu, “Test Application Time and Volume Compression through
Seed Overlapping,” Proc. of Design Automation Conference, pp. 732-737, 2003.

[Reda 02] Reda, S., and A. Orailoglu, “Reducing Test Application Time Through Test Data Mutation Encoding”,
Proc. of Design, Automation, and Test in Europe, pp. 387-393, 2002.

[Reddy 02] Reddy, S., K. Miyase, S. Kajihara, and I. Pomeranz, “On Test Data Volume Reduction for Multiple Scan
Chain Designs”, Proc. of VLSI Test Symposium, pp. 103-108, 2002.

[Sun 04] Sun, X., L. Kinney, and B. Vinnakota, “Combining Dictionary Coding and LFSR Reseding for Test Data
Compression,” Proc. of Design Automation Conference, pp. 944-947, 2004.

[Volkerink 02] Volkerink, E.H., A. Khoche, and S. Mitra, “Packet-based Input Test Data Compression Techniques,”
Proc. of International Test Conference, pp. 154-163, 2002.

[Wang 04] Wang, L.-T., X. Wen, H. Furukawa, F.-S. Hsu, S.-H. Lin, S.-W. Tsai, K.S. Abdel-Hafez, and S. Wu,

“VirtualScan: A New Compression Scan Technology for Test Cost Reduction,” Proc. of International Test
Conference, pp. 916-925, 2004.

[Wolff 02] Wolff, F.G., and C. Papachristou, “Multiscan-based Test Compression and Hardware Decompression
Using LZ77,” Proc. of International Test Conference, pp. 331-339, 2002.

[Würtenberger 04] Würtenberger, A., C.S. Tautermann, and S. Hellebrand, “Data Compression for Multiple Scan
Chains Using Dictionaries with Corrections”, Proc. of International Test Conference, pp. 926-935, 2004.

Proceedings of the 2005 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05)
0-7695-2464-8/05 $20.00 © 2005 IEEE

