
Matrix-Based Test Vector Decompression Using an
Embedded Processor

Kedarnath J. Balakrishnan and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712-1084
Email: {kjbala,touba}@ece.utexas.edu

Abstract

This paper describes a new compression/decompression methodology for using an
embedded processor to test the other components of a system-on-a-chip (SoC). The
deterministic test vectors for each core are compressed using matrix-based operations that
significantly reduce the amount of test data that needs to be stored on the tester. The
compressed data is transferred from the tester to the processor's on-chip memory. The
processor executes a program which decompresses the data and applies it to the scan chains
of each core-under-test. The matrix-based operations that are used to decompress the test
vectors can be performed very efficiently by the embedded processor thereby allowing the
decompression program to be very fast and provide high throughput of the test data to
minimize test time. Experimental results demonstrate that the proposed approach provides
greater compression than previous methods.

1. Introduction

Systems-on-a-chip (SoCs) have become ubiquitous nowadays because of the advances in
technology that make it possible to build complete systems containing different types of
components (called cores) on the same chip. Typically, these cores are pre-designed and pre-
verified by their vendors and the SoC designer has to just integrate them in the system. Each core
typically comes with its own set of test vectors and hence the SoC on the whole ends up with a
large set of test vectors. This translates into two major issues that can affect the testing of such
SoCs – (i) increase in tester memory requirements since the entire set of test vectors for all the
components need to be stored on the tester and transferred to the chip during testing and (ii)
longer test application times since the time required to test a chip depends on the amount of test
data that needs to be transferred and the bandwidth of the channel connecting the test to the chip.
These problems result in higher test costs. One solution to this problem is test data reduction by
compressing the test vectors. The compressed data is stored on the tester and transferred to the
SoC where an on-chip decompressor decodes the test data and applies it to the appropriate core.
The decompression can be done in hardware using a dedicated decoding circuitry or in software
by an embedded processor.

Several compression techniques based on lossless compression codes have been proposed in
the literature for reducing the test volume. The Burrows-Wheeler transformation and a modified
run length encoding are used in [Yamaguchi 97]. A modified version of Huffman encoding is
used in [Jas 99a] to compress deterministic test sets. The modification is made to minimize the
bits needed for the codewords so that the hardware required for decompression is simpler. In

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02)
1063-6722/02 $17.00 © 2002 IEEE

[Jas 98], a variable-to-block run length encoding is used to compress a fully specified test set,
and a cyclical scan chain is used to decompress the test data. Golomb codes were proposed in
[Chandra 00] to enhance the compression in the above scheme. A variable-to-variable-length
code called a frequency-directed run-length (FDR) code has been proposed in [Chandra 01].
Schemes that can be implemented using an embedded processor have been proposed in [Jas 99b]
and [Maleh 01]. In [Jas 99b], each test vector is divided into blocks and only those blocks that
are different from the preceding vector are stored. Test vectors are then constructed on the fly by
a program running on the embedded processor and sent to the appropriate core. In [Maleh 01],
encoding is done on optimally reordered test vectors based on geometric shapes. The decoding
algorithm required to get back the original test vectors by this method is very complex and is a
limitation of the approach.

This paper presents an efficient compression/ decompression scheme for test vectors with
unspecified bits based on matrix operations. The decompression algorithm is much simpler than
earlier works and an embedded processor present in the SoC can efficiently implement it with a
relatively fewer number of processor instructions.

2. Proposed Scheme

The proposed scheme is based on the decomposition of a matrix into two vectors based on a
relation that we define below. The operation A⊕⊕⊕⊕ �B between two Boolean vectors A = [a1, a2,
a3…an] and B = [b1, b2, b3… bn] where ai, bi ∈ {0,1} is defined as shown in Fig. 1. Note that
this is very similar to matrix multiplication except that the elements in the product matrix are
defined differently (ai⊕ bi instead of ai• bi). This helps increase the chances of decomposition
since the XOR operation puts less constraints on the inputs than AND by making the equations
linear.

a8

a7

a6

a5

a4

a3

a2

a1 b8b7b6b5b4b3b2b1

a8⊕b8a8⊕b7a8⊕b6a8⊕b5a8⊕b4a8⊕b3a8⊕b2a8⊕b1

a7⊕b8a7⊕b7a7⊕b6a7⊕b5a7⊕b4a7⊕b3a7⊕b2a7⊕b1

a6⊕b8a6⊕b7a6⊕b6a6⊕b5a6⊕b4a6⊕b3a6⊕b2a6⊕b1

a5⊕b8a5⊕b7a5⊕b6a5⊕b5a5⊕b4a5⊕b3a5⊕b2a5⊕b1

a4⊕b8a4⊕b7a4⊕b6a4⊕b5a4⊕b4a4⊕b3a4⊕b2a4⊕b1

a3⊕b8a3⊕b7a3⊕b6a3⊕b5a3⊕b4a3⊕b3a3⊕b2a3⊕b1

a2⊕b8a2⊕b7a2⊕b6a2⊕b5a2⊕b4a2⊕b3a2⊕b2a2⊕b1

a1⊕b8a1⊕b7a1⊕b6a1⊕b5a1⊕b4a1⊕b3a1⊕b2a1⊕b1

=A =⊕~ B

⊕~

Figure 1. Matrix Operation A⊕⊕⊕⊕ �B

1000000010000000

. . .

. . .

. . .

. . .

. . .

. . .

0000010000000001

0000001000000001

0000000100000001

=

b8

..

..

a3

a2

a1

v64

..

..

v3

v2

v1

Figure 2. Set of Linear Equations for the Decomposition

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02)
1063-6722/02 $17.00 © 2002 IEEE

In this way, an n×n matrix can be represented with the two vectors A and B and the operation
A⊕⊕⊕⊕ � B. This decomposition can be realized by solving a simultaneous set of equations in the
variables ai, bi. If and only if a solution of this set of equation exists, the given matrix can be
decomposed.

The set of equations is represented in the matrix format (Ax = b) as shown in Fig. 2. This is
derived by writing the coefficient for the variables ai,bi as 1 if those variable exists in the
constraint, otherwise as 0. For example, the element in the first row and first column of the
original matrix is a1⊕b1 (Fig. 1) and the corresponding equation for this is the first row in Fig. 2.

We propose a compression scheme for test vectors based on the above. This involves writing
n2 bits of the test vector as an n×n matrix M. The matrix M is then decomposed by solving the
set of linear equations. Although the decomposition in not always possible, the unspecified bits
in the test vectors increase the chances of decomposition. This is because only equations for the
specified bits of the test vector need to be satisfied. The more unspecified bits there are, the
fewer the number of equations and hence less constraints on the variables. Several different
heuristics can be applied to form the matrix M that needs to be decomposed from the given set of
test vectors. These vary according to the complexity of the decoding process. Three of these are
discussed below.

2.1 Single Size Decomposition (SSD)

This is the simplest method to form the matrix M and also the easiest to decode. The first n2

bits of the test vector are written as an n×n matrix with the first n bits being the first row of the
matrix and the next n bits the next row and so on and so forth as illustrated in Fig. 3.

0011X100001X11000100...Original Test Vector

0011
X100
001X
1100

M =

Figure 3. Formation of Matrix M with n = 4

The choice of the size of the matrix (i.e., n) would depend on the word size of the processor.
If the matrix M thus formed cannot be decomposed for the next n2 bits of the test vector, we
store the first n bits as they are (i.e. uncompressed) and then proceed with the algorithm for the
next n2 bits after that. Hence we need one bit at the start of every set of bits to indicate whether
the bits are compressed or not.

2.2 Multiple Size Decomposition (MSD)

A simple optimization of the method in Sec. 2.1 would be to try to form the matrix M with
three different sizes. The largest size is tried first since that gives the maximum compression. If
the matrix for the largest size is not decomposable, then the next size is tried and so on. If none
of the three sizes of the matrix are decomposable, then the next set of m bits are left
uncompressed and the algorithm is tried on the successive bits of the test vector. Two additional
bits are needed to encode the four cases that can occur indicating whether the succeeding bits
have been compressed by any of the three sizes or they are left uncompressed.

2.3 Multiple Vector Decomposition (MVD)

The matrix M can also be formed from multiple test vectors as illustrated in Fig. 4. In this
case, each row of the matrix would correspond to a different test vector. This is a better

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02)
1063-6722/02 $17.00 © 2002 IEEE

alternative than the earlier ones since there is usually a lot of similarity between test vectors due
to the structural relationship among the faults that are detected by these test vectors.
Furthermore, the test vectors can be ordered in an optimal way such that the chances of
decomposition of the matrix are increased.

0011 X100001X11000100...

M

Test Vector 1
X100 001X11000100X110...
0XX1 10X000100111X001...
110X 1110100000X00011...

Test Vector 2
Test Vector 3
Test Vector 4

Figure 4. Formation of Matrix M using MVD

For example, a hill climbing approach could be used to get a good ordering of test vectors for
compression. In the hill climbing approach, initially the given order of test vectors is used to
calculate the compression. Two vectors are then randomly exchanged and the new compression
calculated. If the compression is better, the new order is saved; else the old order maintained.
This process is continued until no better compression is obtained for a specific number of
exchanges. A limiting factor of this method is that the decoding is more complex and the partial
test vectors constructed after decoding each matrix cannot be directly applied to the core-under-
test until a sufficient number of matrices have been decoded to get the complete test vector.

3. Decompression Using an Embedded Processor

An embedded processor present in the SoC can be used to efficiently decompress the
compressed data and send it to the core-under-test (CUT). This is illustrated in Fig. 5. An
external tester supplies the compressed data while a simple software program running on the
embedded processor decodes the test data.

Tester Memory Embedded
Processor

M
em

or
y

I/
O

C
on

tr
ol

le
r

M
IS

R

Scan Chain N

Core 1

Scan Chain 1
Scan Chain 2

scan_enable
Core 2

Core 3
Core Under Test

Figure 5. Example of Test Architecture

The tester loads the test data into a specific set of addresses of the system memory through
the memory I/O controller. The tester also writes to a given location to indicate the end of the
current test vector. The processor reads the data from the corresponding locations in memory
and decompresses it accordingly. Depending on the number of scan chains in the core, the

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02)
1063-6722/02 $17.00 © 2002 IEEE

processor either sends the data directly to the core or stores it back to memory so that it can
apply the data to the core when it has a sufficient amount of decompressed test data. If the end of
the test vector is reached, it sends an instruction to apply a capture cycle to capture the response
into the scan chain. The response is shifted out into a multi-input shift register (MISR) for
compaction as the next test vector is shifted into the core.

In general, the speed at which test data is transferred to the SoC by the tester will be much
lower than the operating frequency of the embedded processor. Two potential problems could
arise because of this discrepancy. If the processor is able to process the written data before the
tester loads new data into the memory location, appropriate NOPs need to be inserted into the
decompression program to make sure that next time the processor reads the memory location it
has the new data. The second problem arises if the tester overwrites new data to a memory
location before the processor is able to process the old data in it. This can be taken care of by
inserting NOPs at appropriate places into the tester program to slow it down.

decoder() {

read number of test vectors (M)
read the three matrix sizes n1, n2, n3

read number of uncompressed bits m

while(vector_ processed < M){

read_memory_ location();
check the first two bits:
case 00:{

A[1..n] = next n1 bits
B[1..n] = next n1 bits
for(i = 1, n1){

M[i][0.. n1] = A[i]⊕B[0.. n1];
Write_Core(M[i][0.. n1]);

}
case 01:{

A[1.. n2] = next n2 bits
B[1.. n2] = next n2 bits
for(i = 1, n2){

M[i][0.. n2] = A[i]⊕B[0.. n2];
Write_Core(M[i][0.. n2]);

}
case 10:{

A[1.. n3] = next n3 bits
B[1.. n3] = next n3 bits
for(i = 1, n3){

M[i][0.. n3] = A[i]⊕B[0.. n3];
Write_ Core(M[i][0.. n3]);

}
case 11:{

M[0..m] = next m bits
Write_ Core (M[0..m]);

}
if end of test vector reached {

Write_ Core (Capture);
vectors_processed++;

}
}

}

Figure 6. Pseudo-Code for Decompression Algorithm

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02)
1063-6722/02 $17.00 © 2002 IEEE

In the case of multiple size decomposition (MSD), if the three different sizes, n1, n2, n3 and
the number of bits left uncompressed, m, are chosen carefully (i.e. depending on the word size of
the embedded processor and the number of scan chains in the core-under-test), the
decompression and the overall test time can be reduced considerably. The sizes should be such
that 2n1 + 2, 2n2 + 2, 2n3 + 2, and m + 2 are all multiples of the word size of the processor.
Figure 6 shows the pseudo code of the decompression algorithm for this heuristic. Since the first
two bits denote which of the four cases to apply to the next set of bits, we check for them and
proceed accordingly. The macro Write_Core will depend on the number of scan chains in the
core and the width of the bus connecting the processor to the core.

4. Experimental Results

The compression scheme proposed in this paper targets cores in a SoC. Experiments were
performed on the larger ISCAS-89 benchmark circuits [Brglez 89]. Test cubes with 100%
coverage of detectable faults were generated using an ATPG tool for each circuit. Unspecified
input assignments were left as X’s for better compression. Static compaction of the test cubes
was performed, and reverse fault simulation was done to remove superfluous test cubes. The
three heuristics described in Sec. 2 were used to compress the test set. The results obtained are
shown in Table 1. The percentage compression is computed as:

Percent Compression = (Original Bits – Compressed Bits)/ (Original Bits) x 100

Table 1. Compression Obtained on Benchmark Circuits

SSD MSD MVD
Circuit

Scan
Size

Test
Vectors

Origina
l

Bits
Comp.

Bits
Percent
Comp.

Comp.
Bits

Percent
Comp.

Comp.
Bits

Percent
Comp.

s5378 214 119 25466 14501 43.1 12254 51.9 10390 59.2
s9234 247 147 36309 22355 38.4 18234 49.8 16888 53.5
s13207 700 239 167300 62130 62.9 33038 80.3 33470 80.0
s15850 611 120 73320 33847 53.8 25112 65.8 23552 67.9
s38417 1664 95 158080 89063 43.7 69850 55.8 69556 56.0
s38580 1464 131 191784 92667 51.7 68812 64.1 66838 65.2

Table 2. Comparison with Other Techniques

[Jas 99b] [Maleh 01] Proposed Scheme
Circuit

Original
bits Compressed

Bits
Percent

Compression
Percent

Compression
Compressed

Bits
Percent

Compression
s5378 25466 14550 42.9 51.6 10390 59.2
s9234 36309 21303 41.3 43.5 16888 53.5

s13207 167300 26108 84.4 85.0 33470 80.0
s15850 73320 27171 62.9 60.9 23552 67.9
s38417 158080 103328 34.6 46.6 69556 56.0
s38580 191784 94840 50.55 - 66838 65.15

The first column is the circuit name. The next three columns show the number of scan
elements, the number of test vectors, and the total bits in the test set. The fifth and sixth columns
show the compressed test set size and the corresponding percentage compression when single

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02)
1063-6722/02 $17.00 © 2002 IEEE

size decomposition (with size n = 8) is used. The next two columns show the compression
obtained using multiple size decomposition with sizes n1 = 16, n2 = 8, n3 = 4 and m = 10. The last
two columns show the results of compression obtained using multiple vector decomposition with
n, the number of vectors taken at a time equal to 8. The hill climbing approach described in
Section 2.3 was used to optimally reorder the test vectors with the exchange limit set as 100.

From the results, it can be seen that the multiple vector decomposition scheme has the best
compression ratio but it is also the most complex to decode among the three methods discussed.
The test application time will be the longest in this case since the test vectors need to be
constructed completely and stored in the system memory before they can be applied to the core.
The multiple size decomposition heuristic obtains a good amount of compression and is
relatively simpler to decode. The choice of which method to apply will depend on the operating
conditions of the test architecture. If test application time is critical, multiple size decomposition
is a better alternative.

In Table 2, we compare our results with [Jas 99b] and [Maleh 01]. The results shown for
[Jas 99b] were calculated using their method for the same test set as ours. As seen from the
table, our method results in better compression for all the circuits except s13207.

5. Conclusions

In this paper, an efficient test vector compression method was proposed that utilizes the
power of an embedded processor present on the chip to help in testing the cores in the SoC. The
decompression is performed in software by a program running on the embedded processor.
Hence both test storage and test time is reduced. The compression scheme described in this paper
is very simple as compared to other methods proposed earlier.

Acknowledgements

This material is based on work supported in part by the National Science Foundation under
Grant No. MIP-9702236 and in part by the Texas Advanced Technology Program under Grant
No. 003658-0644-1999.

References

[Brglez 89] Brglez, F., D. Bryan, and K. Kozminski, “Combinational Profiles of Sequential Benchmark Circuits,”
Proc. of International Symposium on Circuits and Systems, pp. 1929-1934, 1989.

[Chakrabarty 97] Chakrabarty, K.,Murray, B. T., Liu, J., and Zhu, M., “Test Width Compression for Built-In Self-
Testing,” Proc. International Test Conference, pp. 328-337,1997.

[Chandra 00] Chandra, A., and Chakrabarty, K., “Test Data Compression for System-on-a-chip using Golomb
Codes,” Proc. of IEEE VLSI Test Symposium, pp. 113-120, 2000.

[Chandra 01] Chandra, A., and Chakrabarty, K., “Frequency-Directed Run-Length Codes with Application to
System-on-a-chip Test Data Compression,” Proc. IEEE VLSI Test Symposium, pp. 42-47, 2001.

[Jas 98] Jas, A., and Touba, N. A., “Test Vector Decompression via Cyclical Scan Chains and its Application to
Testing Core-Based Designs,” Proc. International Test Conference, pp. 458-464, 1998.

[Jas 99a] Jas, A., Dastidar, J. G., and Touba, N. A., “Scan Vector Compression/Decompression Using Statistical
Coding,” Proc. IEEE VLSI Test Symposium, pp. 114-120, 1999.

[Jas 99b] Jas, A., and Touba, N. A., “Using an Embedded Processor for Efficient Deterministic Testing of System-
on-a-Chip,” Proc. IEEE Int. Conf. on Computer Design (ICCD), 1999.

[Maleh 01] El-Maleh, A., Al-Zahir,S., and Khan, E., “A Geometric Primitives Based Compression Scheme for
Testing Systems-on-a-Chip,” Proc. IEEE VLSI Test Symposium, pp. 540-59,2001.

[Yamaguchi 97] Yamaguchi, T., Tilgner, M., Ishida, M., and Ha, D. S., “An Efficient Method for Compressing
Test Data,” Proc. International Test Conference, pp. 191-197, 1997.

Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’02)
1063-6722/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

