
Hybrid BIST Using an Incrementally Guided LFSR

C.V. Krishna and Nur A. Touba
Department of Electrical and Computer Engineering

Computer Engineering Research Center
University of Texas, Austin, TX 78712-1084

E-mail: {krishna, touba}@ece.utexas.edu

Abstract

 A new hybrid BIST scheme is proposed which is based on using an “incrementally guided
LFSR.” It very efficiently combines external deterministic data from the tester with on-chip
pseudo-random BIST. The hardware overhead is very small as a conventional STUMPS
architecture [1] is used with only a small modification to the feedback of the LFSR which
allows the tester to incrementally guide the LFSR so that it can embed patterns that detect the
random-pattern-resistant faults in the pseudo-random sequence. Compared with external
testing, the proposed approach achieves dramatic reductions in tester storage requirements
while using very simple on-chip hardware. Results indicate that the proposed approach
provides very attractive tradeoffs between test length and tester storage requirements.

1. Introduction

 The test data volume required for testing increasingly complex system-on-chip (SOC)
designs continues to grow rapidly and is outstripping the capabilities of ATE (automated test
equipment). One well-known solution to this problem is to use built-in self-test (BIST). BIST
involves performing test pattern generation and output response compaction on the chip. The
most economical BIST schemes are based on pseudo-random pattern testing. The problem with
pseudo-random pattern testing, however, is that it generally does not provide high enough fault
coverage due to the presence of random-pattern-resistant (r.p.r.) faults [5]. There are two
solutions to this problem. One is to modify the circuit to eliminate the random pattern resistance
by inserting test points [5], and the other is to modify the test pattern generator by adding
additional hardware to generate patterns that detect the hard faults [6, 10, 11, 15]. Both
approaches have significant drawbacks. Test point insertion requires modifying the function
logic which can degrade system performance, and modifying the test pattern generator can
require large amounts of additional silicon area.
 In order to reduce the hardware overhead for BIST, a hybrid approach between external
testing and BIST can be taken. A “hybrid BIST” scheme is one in which some external data
from the tester is combined with the BIST hardware to achieve the desired fault coverage. A
hybrid BIST scheme reduces the test data stored on the tester compared with full external testing,
but it does not require as much hardware overhead as full stand-alone BIST.
 A simple hybrid BIST scheme is to use a STUMPS architecture [1] to apply pseudo-random
patterns to detect the random pattern testable faults, and then use deterministic vectors from the
tester to detect the random pattern resistant (r.p.r.) faults. Results for using this scheme on large
industrial designs have shown that it only achieves around a 30-50% reduction in tester storage
requirements compared with conventional external testing [8, 14]. More sophisticated hybrid
BIST schemes have been developed including using hybrid patterns [2], folding counters [7], two-
dimensional compression [13], weighted pattern testing [9], and RESPIN [3, 4].

Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’03)

1063-6722/03 $17.00 © 2003 IEEE

 In this paper, a new hybrid BIST scheme is proposed which is based on using an
“incrementally guided LFSR.” The hardware overhead is very small. A conventional STUMPS
architecture is used with only a small modification to the feedback of the LFSR which allows the
tester to incrementally guide the LFSR so that it can embed patterns that detect the r.p.r. faults in
the pseudo-random sequence. Compared with external testing, the proposed approach achieves
dramatic reductions in tester storage requirements while using very simple on-chip hardware.
Results indicate that the proposed approach provides very attractive tradeoffs between test length
and tester storage requirements.

2. Overview of Proposed Scheme

 The proposed scheme embeds deterministic test cubes (test vectors where the unspecified bits
are left as don’t cares) that detect the r.p.r. faults in the pseudo-random sequence generated by an
LFSR. The architecture of the proposed scheme is shown in Fig. 1. A conventional STUMPS
[1] architecture is used except that an extra exclusive-or (XOR) gate is added in the feedback of
the LFSR. The extra exclusive-or gate is controlled by the tester and allows the tester to
incrementally guide the LFSR. Some control logic is required to obtain data from the tester only
during the first few clock cycles of every test vector generation. In order to be able to generate
the test cubes with a high degree of probability, the LFSR length, r, is at least smax+ 20 where
smax is the maximum number of specified bits in any test cube. The r-bit LFSR can be initialized
with a starting r-bit state, or it can start from the reset state. Since the length of the scan chains
is m-bits, the LFSR needs m clock cycles to generate a test vector within the scan chains. During
the first clock cycle while a test vector is being shifted into the scan chains from the LFSR, one
bit of deterministic data is obtained from the tester and XORed with the feedback of the LFSR.
During the remaining m-1 clock cycles while the LFSR is filling the scan chains with the test
vector, the tester does not shift any data into the LFSR. This process is repeated for all the test
vectors that are generated by the LFSR. So the test data storage requirement is one bit per test
vector applied to the CUT. While the LFSR shifts in the test vector, the output response
contained in the scan chains is shifted out into a multiple-input signature register (MISR).
 The one deterministic bit coming in from the tester for each test vector can be chosen to be
either a zero or a one. It is essentially a “free-variable” whose value can be chosen in a way that
incrementally guides the LFSR towards a state in which it will produce a required test cube. The
impact of each free-variable on the subsequent test vectors that are applied to the CUT can be
determined by symbolic simulation of the LFSR.

Figure 1. Architecture for Pseudo-Random BIST with Incrementally Guided LFSR

Scan Chain 1 (m bits)

Scan Chain 2 (m bits)

Scan Chain (m bits)

L
F
S
R

M
I
S
R

Chip

Phase
ShifterTester

Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’03)

1063-6722/03 $17.00 © 2003 IEEE

 Consider the example in Figs. 2-4. Assume that the LFSR starts in state 1011, and one bit
comes in from the tester which is represented by the free-variable a. The LFSR then runs in
autonomous mode to fill the scan chains with the first test vector. The first test vector is
computed by symbolic simulation and is shown in Fig. 3. Then the next bit comes in from the
tester which can be represented by the free-variable b. The LFSR is then symbolically simulated
to determine the second test vector (which now is in terms of both free-variables a and b). This
process continues as more and more free-variables are introduced. At some point, it may be
possible to embed a test cube for an r.p.r. fault by assigning values to some of the free-variables.
For example, the test cube X1XX, X1X0, 1X01 could be embedded in the third test vector by
assigning the values a=1 and b=0. Note that the equations for each bit in the test vector are
linear (sum modulo 2), so finding an assignment to the free-variables to embed the test cube can
be solved very efficiently using a linear equation solver [12]. By using the computed values for
the free-variables, the data from the tester incrementally guides the LFSR into a state in which
the test cube for the hard fault gets applied to the CUT. This process of adding more free-
variables and embedding additional test cubes for hard faults can be repeated until sufficiently
high fault coverage is achieved. This is the basic approach for BIST based on an incrementally
guided LFSR.

a

1

0

1

1

Figure 2. LFSR Configuration for Example

Vector 1

a’ 1 1 a
1 1 a 1
1 a 1 0

Vector 2

b a 0 a’+b
a 0 a’+b a’
0 a’+b a’ 1

Vector 3

a’+c a+b a a’+b+c
a+b a a’+b+c b

a a’+b+c b a

Figure 3. Symbolic Simulation of LFSR in Fig. 2

Vector 1

0 1 1 1
1 1 1 1
1 1 1 0

Vector 2

0 1 0 0
1 0 0 0
0 0 0 1

Vector 3

c 1 1 c
1 1 c 0
1 c 0 1

Figure 4. Vectors after Assignment of a=1 and b=0.

 The approach is very efficient because there are a lot of degrees of freedom for embedding
the test cubes for the r.p.r. faults. The degrees of freedom are the following: selecting the values
of the free-variables, selecting which test cube to embed, and selecting which test vector in which
to embed the test cube.

So far we have been assuming that only one bit of data will come in from the tester for each
test vector. However, this may result in too long of a test length for this BIST scheme. The test
length for this BIST scheme can be reduced by increasing the number of channels by which data

Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’03)

1063-6722/03 $17.00 © 2003 IEEE

is brought in from the tester. For example, if we used 3 channels, we could bring in 3 bits of
data from the tester during the first clock cycle each time a test vector is shifted into the scan
chains. This would increase the rate at which free-variables are introduced and hence reduce the
overall BIST test length because the test cubes for the hard faults could be embedded sooner.
The degree of freedom in choosing which test vector in which to embed each test cube would be
reduced since the test length is reduced, and hence the encoding efficiency would be slightly
degraded. However, this provides a very easy way for trading off test data bandwidth
requirements, test data storage requirements, and test length.
 Note that the proposed scheme can also be used to implement traditional “stand-alone” BIST
where no data comes from the tester. In this case, a ROM would be used. The ROM would
supply the deterministic data to guide the LFSR instead of having that data coming from an
external tester.

3. Determining Data on Tester

Given the set of test cubes for the r.p.r. faults and the maximum allowable test length (L), this
section describes how to obtain the data that is stored on the tester. Since the test cubes will be
embedded within a pseudo-random sequence of test vectors, only the test cubes for the r.p.r.
faults are required.

An important parameter that needs to be determined for the proposed scheme is the number of
bits of data that will come in from the tester for each test vector. If n bits of data need to be
brought from the tester for each test vector, then n channels are required between the tester and
the LFSR in order to XOR these n bits of data with the contents of the LFSR during the first
clock cycle. These n bits can be XORed with the contents of the LFSR at regularly spaced tap
points within the LFSR.

The amount of storage required on the tester for storing the test data can be obtained from the
test length and the number of channels from the tester. For a test length of L vectors with n bits
coming from the tester per vector, the number of bits that need to be stored on the tester is L*n.
This provides an upper bound on the amount of tester storage. If the test cubes can be embedded
in less than L vectors, then the amount of tester storage is reduced.

Given the set of test cubes T and the test length L, an initial estimate can be found for the
number of bits n to be used per test vector. Given the total number of specified bits within the
set of test cubes, the initial estimate of n is given by:

n = Max[Total number of specified bits / Test Length , 1]
 Based on this initial estimate of n, the proposed scheme tries to embed the test cubes for the
r.p.r. faults within the maximum allowable test length L. If the test cubes cannot be embedded
within the test length L, then more data needs to be introduced per vector in order to embed the
given test cubes. Thus the value of n has to be increased, and this process is repeated with the
higher value of n. If the test cubes can be embedded within L test vectors, then fault simulation
is done in order to ensure that this sequence of vectors with embedded test cubes provides
sufficient fault coverage. If the fault coverage is not satisfactory, then automatic test pattern
generation (ATPG) can be performed on the undetected faults to obtain a set of top-up cubes.
The T test cubes and the top-up cubes are then together embedded within the given test length L.
Once this is done, the amount of test data that needs to be stored on the tester is given by L*n.
 The steps of this procedure are as follows:

1. Fault simulate L pseudo-random vectors
2. Do ATPG for faults not detected by thepseudo-random vectors to obtain set of test cubes, T
3. Embed test cubes T with n channels to obtain embedded vectors, L’

Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’03)

1063-6722/03 $17.00 © 2003 IEEE

4. If |L’| > |L|, then increment n and go to step 3
5. Fault simulate L’ embedded vectors
6. If the fault coverage is satisfactory, then the procedure is done.
7. Do ATPG for faults not detected by L’ and add the resulting test cubes to the set T
8. Go to step 3

 The procedure iterates until the fault coverage is satisfactory. Generally this requires only one
iteration.

4. Improving Compression Using Lookahead

The compression achieved using the basic hybrid BIST scheme described earlier can be
improved further by performing a lookahead while generating the test data. The idea is that the
data from the tester is used to guide the LFSR towards a test cube in a manner that also
facilitates the embedding of subsequent test cubes. Thus once a test cube has been embedded,
the subsequent test cube can be embedded within fewer cycles than the previous approach. The
previous approach is equivalent to using a lookahead of 0, since none of the subsequent test
cubes are considered while generating the current test cube. A lookahead of k means that the
equations for the subsequent k test cubes are considered while solving the equations for the
current test cube.

With this feature, the degrees of freedom in the solution space of the linear equations for a test
cube ti are used to help solve for a subsequent test cube ti+1 since the free-variables occurring in
the equations of ti are used to ease the problem of finding a solution for ti+1. Since the
subsequent test cube is being embedded using fewer cycles, fewer bits have to be stored on the
tester to guide the LFSR towards ti+1. This helps to improve the compression achieved using this
BIST scheme.

This procedure for a lookahead of k is described as follows. As explained in Fig. 4, each test
vector is determined by a symbolic simulation of the LFSR using the free-variables from the
tester. After it is determined that a test cube ti can be embedded by solving the linear equations,
an assignment of values to the free-variables is not done immediately. Instead, more free-
variables are introduced until another k test cubes can be embedded within the vectors generated
by the LFSR. This is done by concatenating the equations for the k test cubes with the equations
for ti to form a system of linear equations. A solution to this system of equations indicates that it
is possible to embed the subsequent k test cubes using all the free-variables introduced until then.
Based on this solution, an assignment of values is done to only the free-variables that occur in
the equations for ti. The values assigned to these free-variables are then used to update the
equations for the subsequent k test cubes as well as the state of the LFSR. Thus the assignment
of values to the free-variables occurring in ti is done in a manner that helps to solve for the next k
test cubes.

The concept behind this can be shown with a simple example. Let a and b be two free-
variables occurring in the equations for test cube ti, and {01,10} be two possible assignments to
these variables. For a lookahead of 0, either of these two assignments can be used. But if a
lookahead greater than 0 is used, it is possible that assigning 01 to the variables might help to
embed test cube ti+1 earlier than would have been possible by using the assignment 10. This
degree of freedom is utilized by concatenating and solving together the equations of ti and ti+1.
This ensures that the variables in ti are assigned values which also help to solve the equations of
ti+1 and thus guide the LFSR towards generating ti+1 earlier than would have been possible with a
lookahead of 0.

Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’03)

1063-6722/03 $17.00 © 2003 IEEE

5. Experimental Results
Experiments were performed on the largest ISCAS 89 benchmark circuits. Given different

values of n (the number of bits that are used per vector), the proposed hybrid BIST scheme was
used to embed test cubes in a pseudo-random sequence to detect all non-redundant faults. The
resulting test length and tester storage requirements are graphed in Fig. 5 in a log-log plot. A
lookahead of 0 was used in generating these results. As can be seen, the proposed scheme
provides a tradeoff between test length and tester storage requirements. As the test length
increases, the tester storage requirements are reduced. As n is increased, the test length reduces
towards that of conventional external deterministic testing. As n is decreased, the tester storage
requirements drop and if the test length were made long enough to detect all faults, the tester
storage requirements would go to zero as in conventional stand-alone BIST. A designer can
determine what test length is desired and use the proposed scheme to minimize the tester storage
requirements for that test length. This is achieved with very little hardware overhead beyond
what is needed for a STUMPS architecture.

Number of Bits per Vector (n)

Te
st

 L
en

g
th

0.05 0.1 0.2 0.3 0.5 1 2 3 5 10 20
100

200

300

500

1000

2000

3000

5000

10000

20000

Tester Storage
Test Length
Tester Storage
Test Length

T
es

te
r

S
to

ra
g

e

1000

2000

3000

4000

5000

s13207

Number of Bits per Vector (n)

Te
st

 L
en

g
th

s15850

0.05 0.1 0.2 0.3 0.5 1 2 3 5 10 20
200

300

500

1000

2000

3000

5000

10000

20000

30000

50000

100000

70000Tester Storage
Test Length

70000Tester Storage
Test Length

Te
st

er
 S

to
ra

g
e

2000

3000

4000

5000

7000

10000

Number of Bits per Vector (n)

Te
st

 L
en

g
th

s38417

0.05 0.1 0.2 0.3 0.5 1 2 3 5 10 20
1000

2000

3000

5000

10000

20000

30000

50000

100000

200000

500000

300000

400000Tester Storage
Test Length300000

400000Tester Storage
Test Length

T
es

te
r

S
to

ra
g

e

20000

30000

40000

50000

Number of Bits per Vector (n)

T
es

t
L

en
g

th

s38584

0.05 0.1 0.2 0.3 0.5 1 2 3 5 10 20
100

200

300

500

1000

2000

3000

5000

10000

20000

50000

30000

40000Tester Storage
Test Length30000

40000Tester Storage
Test Length

Te
st

er
 S

to
ra

g
e

2000

3000

4000

5000

Figure 5. Graphs of Tester Storage and Test Length Versus Number of Bits from Tester
Used per Vector for ISCAS Benchmark Circuits

Table 1 shows results for the proposed scheme for different values of lookahead. The
number of scan elements is shown for each circuit. The next column shows the different number
of bits per vector (n) that are used for each circuit. If n is less than 1, it indicates that a single bit

Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’03)

1063-6722/03 $17.00 © 2003 IEEE

is received from the tester every (1/n) test vectors. Thus the value n=0.25 means that at the
beginning of every fourth test vector, a single bit from the tester is XORed with the contents of
the LFSR. For each circuit, results are shown for three different values of n using a lookahead
of 0, 1, and 4. For each combination of n and the lookahead factor, the test length (L) required
to embed the top-up cubes is shown, followed by the amount of data that needs to be stored on
the tester. As can be seen, using a lookahead of 1 and 4 did reduce the storage requirements for
some of the circuits, though not significantly.

Table 1. Results for Proposed Scheme using different values for lookahead

Circuit lookahead = 0 lookahead = 1 lookahead = 4

Name
Scan

Elements

Bits per
Vector

(n)
Test Len

 (L)
Tester

Storage
Test Len

(L)
Tester

Storage
Test Len

 (L)
Tester

Storage

s13207 700
0.25

1
4

6,104
1,856
553

1,526
1,856
2,212

6,078
1,818
545

1,519
1,818
2,180

6,078
1,818
537

1,519
1,818
2,148

s15850 611
0.25

1
4

15,216
4,124
1,103

3,804
4,124
4,412

14,985
4,115
1,096

3,746
4,115
4,384

14,985
4,115
1,096

3,746
4,115
4,384

s38417 1664
0.25

1
4

85,093
21,855
5,623

21,273
21,855
22,492

85,093
21,846
5,598

21,273
21,846
22,392

85,093
21,846
5,582

21,273
21,846
22,328

s38584 1464
0.25

1
4

9,906
2,592
685

2,476
2,592
2,740

9,816
2,562
676

2,454
2,562
2,704

9,816
2,562
674

2,454
2,562
2,696

Table 2. Comparison of Results for Proposed Scheme with other Methods

Circuit
Proposed Hybrid BIST Scheme

(lookahead = 0)

Name
 Scan

Elements

BIST
followed by

Top-up Vectors

RESPIN
[3]

RESPIN
+

ATPG
[4]

Bits per
Vector (n)

Test Len
(L)

Tester
Storage

%
Compress

S13207 700 109,900 1,963 1,672
0.25

1
4

6,104
1,856
553

1,526
1,856
2,212

98.6
98.3
97.9

S15850 611 102,037 5,244 2,872
0.25

1
4

15,216
4,124
1,103

3,804
4,124
4,412

96.3
95.9
95.7

S38417 1664 565,760 31,656 8,412
0.25

1
4

85,093
21,855
5,623

21,273
21,855
22,492

96.2
96.1
96.0

S38584 1464 90,768 3,466 2,927
0.25

1
4

9,906
2,592
685

2,476
2,592
2,740

97.3
97.1
96.9

Table 2 shows a comparison of four different techniques. The first is simply using normal
pseudo-random BIST to apply 10,000 pseudo-random patterns followed by top-up vectors (to
detect the remaining undetected faults). The number shown is the storage requirements for the

Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’03)

1063-6722/03 $17.00 © 2003 IEEE

deterministic top-up vectors. The second and third are the results for RESPIN which were taken
directly from [3] and [4]. In [3], no special ATPG is used, however, in [4], a special ATPG
tailored for RESPIN is used. Note that the test length and test storage for RESPIN are the same.
Lastly, results are shown for the proposed scheme with a lookahead of 0. For each value of n,
the test length (L) required to embed the top-up cubes is shown, followed by the amount of data
that needs to be stored on the tester. Lastly, the percentage compression that is achieved using
the proposed scheme compared with normal pseudo-random BIST followed by top-up vectors is
shown. As can be seen, the storage required for the proposed scheme is less than the storage
required for the basic RESPIN architecture in [3] for all the cases. When compared with the
RESPIN plus tailored ATPG technique in [4], the proposed scheme shows better results for some
of the circuits. One of the advantages of RESPIN is that it facilitates the use of a tailored
ATPG, however, the runtime for that ATPG can be longer than that of conventional ATPG. The
results for the proposed scheme were for using conventional ATPG.

6. Conclusions
The proposed hybrid BIST scheme provides a range of options in the continuum between

external testing and stand-alone BIST for the designer to choose from. Based on tester storage
requirements and the desired test length, the designer can select the one that best fits the
particular test environment. The proposed scheme can also be used to implement conventional
stand-alone BIST by storing the deterministic data in an on-chip ROM instead of on the tester.

Acknowledgements
 This material is based on work supported in part by the Intel Corporation and in part by the
National Science Foundation under Grant No. CCR-0306238.

References
[1] Bardell, P.H., and W.H. McAnney “Self-Testing of Multichip Logic Modules,” Proc. of International Test

Conference, pp. 200-204, 1982.
[2] Das, D., and N.A. Touba, “Reducing Test Data Volume Using External/LBIST Hybrid Test Patterns,” Proc. of

International Test Conference, pp. 115-122, 2000.
[3] Dorsch, R., and H.-J. Wunderlich, “Reusing Scan Chains for Test Pattern Decompression,” Proc. of European

Test Workshop (ETW), May 2001.
[4] Dorsch, R., and H.-J. Wunderlich, “Tailoring ATPG for Embedded Testing,” Proc. of International Test

Conference, pp. 530-537, 2001.
[5] Eichelberger, E.B., and E. Lindbloom, “Random-Pattern Coverage Enhancement and Diagnosis for LSSD

Logic Self-Test,” IBM Journal of Research & Development, Vol. 27, No. 3, pp. 265-272, May 1983.
[6] Fagot, C., P. Girard, and C. Landrault, “On Using Machine Learning for Logic BIST,” Proc. of International

Test Conference, pp. 338-346, 1998.
[7] Hellebrand, S., H.-G. Liang, and H.-J. Wunderlich, “A Mixed Mode BIST Scheme Based on Reseeding of

Folding Counters,” Proc. of International Test Conference, pp. 778-784, 2000.
[8] Hetherington, G., T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan and J. Rajski, “Logic BIST for Large

Industrial Designs: Real Issues and Case Studies,” Proc. of International Test Conference, pp. 358-367, 1999.
[9] Jas, A., C.V. Krishna, and N.A. Touba, “Hybrid BIST Based on Weighted Pseudo-Random Testing: A New

Test Resource Partitioning Scheme,” Proc. of VLSI Test Symposium, pp. 2-8, 2001
[10] Kiefer, G., and H.-J. Wunderlich, “Deterministic BIST with Multiple Scan Chains,” Proc. of International

Test Conference, pp. 1057-1064, 1998.
[11] Kiefer, G., H. Vranken, E.J. Marinissen, and H.-J. Wunderlich, “Application of Deterministic Logic BIST on

Industrial Circuits,” Proc. of International Test Conference, pp. 105-114, 2000.
[12] Könemann, B., “LFSR-Coded Test Patterns for Scan Designs,” Proc of European Test Conf., pp. 237-242, 1991.
[13] Liang, H.-G., S. Hellebrand, and H.-J. Wunderlich, “Two-Dimensional Test Data Compression for Scan-Based

Deterministic BIST,” Proc. of International Test Conference, pp. 894-902, 2001.
[14] Pressly, M., D. Das, and C. Hunter, “LBIST for PowerPCTM Embedded Core Microprocessors: Feasible or

Not?,” International Workshop on Microprocessor Test and Verification, 1999.
[15] Touba, N.A., and E.J. McCluskey, "Altering a Pseudo-Random Sequence of Bits for Scan-Based BIST", Proc.

of International Test Conference, pp. 167-175, 1996.

Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’03)

1063-6722/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

