
Synthesis of Efficient Linear Test Pattern Generators

Avijit Dutta and Nur A. Touba
Computer Engineering Research Center

Department of Electrical and Computer Engineering
University of Texas, Austin, TX 78712

Abstract
This paper presents a procedure for Synthesis of LINear test pattern Generators called

SLING. SLING can synthesize linear test pattern generators that satisfy constraints on area,
speed, internal fanout, and randomness properties and outperform existing linear test pattern
generator designs including linear feedback shift registers (LFSRs) and cellular automatons
(CAs). SLING is a constraint-driven synthesis procedure that takes as input a set of constraints
and then synthesizes a test pattern generator that satisfies those constraints. SLING uses a set
of linear transformations that it applies iteratively to evolve a linear test pattern generator.
Because of the way the transformations are chosen and constraints are set, a high degree of
phase shift is maintained between every pair of linear sequences generated at different bit
positions of the generator and cross and auto correlations are highly minimized. Hardware
overhead in terms of XOR gates is also minimized. Comparative analysis and experimental
results show the effectiveness of the proposed synthesis scheme.

1. Introduction
An efficient test pattern generator (TPG) is an essential component for built-in self-test

(BIST) of digital integrated circuits. As suggested in [Mrugalski 03], to be effective, TPGs
should fulfill the requirements of modular design, low area, fewer logic levels on the critical
path, and reduced internal fan-out. In a multiple scan chain environment, in order to minimize
test application time, different scan chains are fed by different stages of the TPG. If the outputs
of successive stages of the TPG are highly correlated, then neighboring scan chains will contain
correlated data which might result in reduced fault coverage. To alleviate this problem, the
output sequences need to be de-correlated by a carefully designed phase shift network (PSN)
[Rajski 98]. Linear feedback shift registers (LFSRs) [Bardell 87] are extensively used for
random pattern generation in a BIST environment. However, while functioning in two
dimensional (2D) mode where individual scan chains are driven by individual flip-flop of the
generator, LFSRs display poor randomness properties. The output sequences generated at
individual bit positions are highly correlated and a large PSN is required to achieve desired
phase shift and reduce cross-correlation. Moreover, for external LFSRs (ELFSR) the depth of
the linear logic could be large depending on the density (number of non-zero terms) of the
polynomial being implemented. For internal LFSRs (ILFSR), the linear logic depth is 1, but the
internal fan-out could be large depending on the polynomial being implemented. Another
alternative is cellular automata (CA) [Chaudhuri 97] which display good randomness
properties. Linear hybrid cellular automata (LHCA), which implement a combination of simple
automata rules, have even better randomness due to reduced correlation [Rajski 99] between
successive output values. However CA based TPGs suffer from high hardware overhead.
Several variations of the basic LFSR based generators have been proposed in the literature to
either improve speed or randomness. These include windmill machines [Warlick 80] which
consist of multiple generators sharing a common stage, T-flipflop based LFSRs [Arvillias 79],
hybrid designs [Wang 88], and more recently ring generators [Mrugalski 03], [Mrugalski 04]
which apply m-sequence preserving transformations to attain a fast and highly modular
implementation. In [Pradhan 99], generalized linear feedback shift registers (GLFSRs) were

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

proposed which use a Galois field GF(2δ) where δ > 1. However, GLFSRs and their variants
suffer from high hardware overhead.

In [Kagaris 03], a built-in test pattern generation mechanism was proposed that can enforce
an exact set of phase-shifts on the bit sequences produced at the successive stages while still
maintaining low hardware overhead. The reduction in hardware was achieved by merging the
original cellular automata (CA) logic with the required PSN. The synthesis procedure does not
target all randomness properties and does not maintain any bound on the delay of the critical
paths as well as the number of internal fan-outs.

In [Mrugalski 04], a planar high performance ring generator was proposed that uses an
optimized structure called a dense ring generator to alleviate the problem of routing congestion
and large logic depth associated with the linear logic used to construct phase-shifters. Ring
generators implementing dense polynomials with good phase-shift properties are used for this
purpose. However to drive n scan chains, this requires approximately 1.33n flip-flops. The
number of flip-flops can be reduced at the cost of relaxing some of the other bounds on the
design properties.

 In this paper, we propose a novel procedure for Synthesis of LINear test pattern Generators
called (SLING) to design test pattern generators while satisfying several design constraints and
randomness properties. The primary contribution in this work is that we describe a new class of
linear generators that are formed by partitioning a TPG into equi-sized blocks and applying
different transformations to all or some of the blocks. Depending on which set of
transformations are applied to each block, many different linear generators can be obtained.
Next a search procedure for obtaining a linear generator from this new class of linear generators
that satisfies specified design constraints while optimizing area, delay, and/or randomness is
described. The proposed synthesis procedure, SLING, provides the user a lot of flexibility to
synthesize linear test pattern generators that meet the needs for a particular application. The
highly equi-distributed patterns generated by SLING-synthesized generators ensure less
correlated output sequences and large phase-shift while functioning as a 2D generator. In
addition, an n-bit SLING synthesized generator can drive n or more than n scan chains in
parallel depending on the transformations chosen. SLING is also amenable for applications
requiring large-sized generators. A comprehensive analysis of different randomness properties
is given, and we compare several different TPGs with respect to those properties.

2. Description of the SLING Procedure
In this section, we describe the SLING procedure in detail. We first provide an overview and

then describe the different steps in a top-down fashion.

2.1 Overview
Any linear generator can be described by the following general linear recurrence (modulo 2):

Xi+1 = AXi (1)
 In the above equation, Xi = (xi,0,…,xi,k-1)T is k-bit state. A is the k×k state transition matrix.

All the operations are performed in Galois field modulo 2, GF(2). The period length of the
recurrence has an upper bound 2k-1 which is achieved when the characteristic polynomial
corresponding to the state transition matrix A is a primitive polynomial over GF(2). If this
condition is satisfied, then the generator is said to have the maximal period property. The
proposed scheme involves partitioning the linear generator into blocks. If the size of the
generator is k, then k flip-flops are required to represent the state of the generator. We partition
k into m-bit blocks such that there are n such blocks, i.e., the state vector denoted by Xi is
partitioned such that Xi = (Wi,0,…,Wi,n-1)T and (|Wi,j| = m). Then different transformations are
applied on the m-bit blocks to construct the generator. The transformations that are used involve
inexpensive binary operations like bit-shift, xor, bit-mixing, etc. The transformations are

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

described in detail in Sec. 2.4. Many different generators can be constructed depending on
which set of transformations is used for each block.

SLING selects the particular generator based on the criteria the user specifies. The input to
SLING consists of a set of design and randomness constraints that must be satisfied. The
generator is constructed from a selected set of transformations that are combined using the
proposed state transition matrix (STM). The design constraints include a bound on the number
of 2-input XOR gates, a bound on the internal fan-out, and a bound on the depth of linear logic.
The randomness properties of linear generators functioning in 2D mode also depend on the
STM. The maximum logic depth in terms of 2-input XOR gates for the generator is
log2(maximum number of 1’s in any row) rounded to the next integer. The maximum internal
fan-out is the maximum number of 1’s in any column. The total number of 2-input XOR gates
is #rows(number of 1’s in each row minus 1). By efficiently designing the STM, the user
provided constraints on design properties are met (if possible). If the constraints are not
satisfied within a specified search limit then no generator is returned. The randomness
properties are checked by simulating the generator and analyzing the sequences generated at
every bit position. For all the experiments, it is assumed that the generator functions in 2D
mode where individual scan chains are driven by individual state-bit of the generator. The
targeted randomness properties are cross-correlation, auto-correlation, equidistribution, phase-
shift between pair of sequences generated at different bit positions, and dispersion capacity (i.e.
average hamming distance between successive states).

2.2 State Transition Matrix
The state transition matrix (STM) is the most important design aspect for a 2D linear test

pattern generator. While functioning in the 2D mode, the various randomness properties of the
generated sequence depend on the STM. Moreover, the design properties are also determined
by the STM. For an n×n STM, there are 2n^2 possible choices of matrices. Not all of them are
useful. Firstly we are only interested in the primitive matrices, i.e., for which the corresponding
characteristic polynomial is primitive. Also we want the STM to be as sparse as possible since a
denser STM leads to more hardware overhead. Since there are competing choices of matrices
(one matrix does not satisfy all the requirements), we should leave some scope for search while
designing a STM so that we can search a limited but useful space for matrices and choose the
best STM in terms of several randomness and design goals. The proposed STM template that is
used to seed the search is shown in equation (2). The state vector is partitioned into n-blocks
(n=8) where each block is m-bits. The Mi’s in the STM are m × m sub-matrices corresponding
to the different transformations chosen from the set of transformations T0 through T7 (described
later). 0 is the all zero m × m sub-matrix, and I is the m × m identity matrix. From the STM
template, it can be seen that if the sub-matrices M4, M5, M24 are full-rank (full row-rank and full
column-rank), then the STM itself is full-rank irrespective of the other sub-matrices (Mi’s). The
easiest way to observe this is to set each Mi to all-zero matrices except M4, M5 and M24 which
should be full-ranked. For a generator to be primitive, the corresponding STM must have full-
rank (necessary but not sufficient). Our design of the STM satisfies this necessary condition by
appropriately choosing only 3 sub-matrices. Also the Number of 0 sub-matrices is maximized
to make the STM as sparse as possible. However there is a limit as to how sparse the STM can
be. The sparseness impacts the randomness properties of the generator. A very sparse STM
implies very few bit operations from one state to the next and hence there will very less bit-
mixing and high degree of correlation between the generated sequences. Considering all these
conflicting requirements, we propose the STM template as shown in the equation (2). Our
experiments show that this particular STM template facilitates search in a limited but very
effective space out of the space of all possible matrices and that targets a sufficiently large
number of primitive matrices that can meet design and randomness goals. For all our

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

experiments, we used n = 8. Note that shift-induced cross correlation can be eliminated by
appropriately choosing the linear transformations. This further provides an opportunity to use
some of the intermediate transformed outputs to increase the number of scan chains that can be
driven by the SLING synthesized generators. Next we discuss the search strategy that we
employed to find primitive generators which satisfy several design and randomness properties.

0M000000
0MI00000
0MMI0000
0MMMI000
0MMMMI00
0MMMMMI0
0M0M0M0M

MM0M0M0M

24

23

2221

201918

17161514

131211109

8765

43210

 (2)

2.3 Search Strategy
First the shift registers representing the state vector of the generator are partitioned into equi-

sized blocks. Next linear transformations are chosen randomly for each Mi from the set of
predefined hardware efficient linear transformations (T0 through T7 described in Sec. 2.4) and
applied on the block outputs. Next they are combined using the STM template shown in Eqn. 2.
It is ensured that the transformations M4, M5 and M24 are full-ranked. This helps in reducing the
search space for primitive generators. The characteristic polynomial for the state transition
matrix (A) of the generator is given by the following general equation:

P(u)=det(A-uI)=uk-β1uk-1-…-βk-1u-βk (3)
Where I is the identity matrix and βI ∈ GF(2). Maximal period is achieved if the characteristic
polynomial corresponding to Eqn. 3 is primitive over GF(2). Once the STM is computed based
on the chosen transformations, the characteristic polynomial can be computed based on Eqn. 3.
Next the polynomial is tested for primitivity. We used the algorithm proposed in [Bardell 82]
and [Lidi 86] to verify whether the computed characteristic polynomial in GF(2) is primitive or
not. In this paper, we consider only primitive generators. The non-primitive generators are
discarded during the search procedure. For each primitive generator found, we check whether
the user defined design and randomness constraints are met or not. The design constraints
include an upper bound on the number of 2-input XOR gates (C1), an upper limit on the logic
depth on any critical path (C2), and an upper bound on internal fanout (C3) for any of the
memory elements. The randomness requirements include a lower bound on the measure of
equidistribution (R1), a lower bound on uniformity (R2), a lower bound on dispersion capacity
(R3), a lower bound on phase-shift between every pair of sequences (R4), an upper bound on
average magnitude of auto (R5) and cross (R6) correlation coefficients for a chosen set of
sequence pairs generated at different bit positions. For every generator found during search the
cost function shown in Eqn. 4 is computed.

cost =i=1..3 fi(di-Ci) +i=1..4 gi(Ri-ri) + i=5..6 gi(ri-Ri) (4)
where fi corresponds to a linear function that is a normalized representation of its arguments for
the i-th design constraint and gi corresponds to a linear function that is a normalized
representation of its arguments for the i-th randomness constraint. For every generator, the cost
function is evaluated. For the randomness properties the generator is simulated and the bit
sequences are analyzed. Generators for which the cost function evaluates to a non-zero positive
value are removed from consideration as for those one or more of the constraints are not met.
Only primitive generator with cost ≤ 0, are chosen.

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

2.4 Transformations
Here we present the various transformations used to construct the generators. Several fast

bitwise transformations involving minimal hardware are used. The list of transformations that
we apply on the different m-bit blocks is given below. Figure 1 shows some of the
implementations of the transformations in hardware and the corresponding transformation
matrices. All the transformations are linear and can be represented by m× m. matrices. The
transformations were chosen keeping in mind the randomness and design constraints. All the
transformations are highly area efficient and at the same time are designed to meet several
randomness requirements. The matrices corresponding to the transformations can be analyzed
(beyond the scope of this paper) to characterize their contribution to the overall randomness of
the generated sequences. Their rank, eigenvalue, and other properties affect the period, phase-
shift between different sequences generated at different bit positions, bit-mixing, uniformity,
equidistribution, and correlation of the generated sequences.

T0: Y=0
T1: Y=X
T2(t) (t≥0): Y=(X<<t)
T2(t) (t<0): Y=(X>>-t)
T3(t) (t≥0): Y=X⊕(X<<t)
T3(t) (t<0): Y=X⊕ (X>>-t)
T4: Y=(X<<1)

T5: Y=(X>>1)
T6(t) (t≥0): Y=(X>>t)⊕(X<<(m-t))
T7(t1,t2) (t1≥0, t2≥0):Y=(X<<t1)⊕(X<<t2)
 (t1≥0, t2<0):Y=(X<<t1)⊕(X>>-t2)
 (t1<0, t2≥0):Y=(X>>-t1)⊕(X<<t2)
 (t1<0, t2<0):Y=(X>>-t1)⊕(X>>-t2)

Table 1. 2-input XOR gate requirement for each transformation
Transformations T0 T1 T2(t) T3(t) T4 T5 T6 T7(t1,t2)
2-input XOR count 0 0 0 m-|t| 0 0 0 m-(t1-t2)

0100
0010
0001
1000

1000
0100
1010
0101

1100
0110
0011
0001

⊕ ⊕

⊕
⊕

⊕

T6(3)

T7(0,1))

T3(-2)

Figure 1. Hardware Implementation of Linear Transformations
Transformations T0 sets the output to 0 irrespective of the state of the m-bit block. T1 is the

identity transformation. T2(t) is the left or right shift by t bits operation. T3(t) performs the xor
of current state with a shifted version of the same. The number of XOR gates required for this
transformation is (m-|t|) where m is the block width. T4 and T5 are left shift by one bit position
and right shift by one bit position respectively. T6(t) shuffles the current state by first shifting it
right by t-bit positions and then shifting it left by (m-t)-bit positions and finally performing xor
of the two shifted versions of the current state. T7(t1,t2) performs xor of the two shifted version

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

of the current state. The direction of the shift depends on the polarity of the arguments. Table 1
shows the XOR gate requirements for each of the transformations.

3. Comparing Randomness Properties
In this section, we compare the randomness properties of different types of linear TPGs. For

a random sequence, any arbitrarily extracted subsequence should satisfy randomness properties.
The behavior of a generator must be consistent across starting values (seeds). To ensure
scalability and consistency, all the tests were performed on multiple sequences starting from
randomly selected seed values.

3.1 Chaotic State Evolution
The evolution of the output sequences of finite state machines can be exemplified by means

of time-state diagrams where each cell of the pattern generator is represented with a black pixel
if the corresponding bit is a logical 1. Figure 2 shows the time-state diagrams for different 64-
bit maximal-period generators. The diagrams correspond to an external LFSR (ELFSR)
implementing a dense polynomial (29 non-zero coefficients), an internal LFSR (ILFSR)
implementing the same polynomial, a sparse ILFSR, a linear hybrid cellular automaton (LHCA)
with null boundary condition and implementing combinations of rule 90 and 150, and the
SLING-synthesized generator corresponding to Table 3 (row 2). In each case, over 300 time
steps were used with the same initial state having only a single bit set to 1. The LHCA was
implemented using rule: (2E635C255ABB8628)H where 0 and 1 stand for CA rule 90 and 150
respectively. As can be seen, the state evolution of the SLING-synthesized generator is most
chaotic. Dense ILFSR also have chaotic state evolution, but the internal fanout is unacceptably
high.

Figure 2. Evolution of States

3.2 Uniformity, Bit Mixing and Equidistribution
For a good pseudo-random TPG, the generated patterns should be equi-distributed. The

average hamming distance between successive states should be close to the half of the size of
the generator. A high dispersion capacity (i.e., a large hamming distance between successive
states) ensures good bit-mixing. Figure 3 shows the average hamming distance for a set of 32-
bit generators over 500 clock cycles starting from a skewed initial state. Clearly, the output
sequence of the proposed generator is the most uniform and close to the optimal value (16 in
this case). Due to high dispersion capacity (i.e., large hamming distance between successive
states) the SLING-synthesized generator requires the least number of clock cycles to reach the
uniform stage starting from a skewed state. This can be attributed to the fact that a large number
of bit operations are performed from one state to the next when compared to other generators.
Also the SLING-synthesized generators showed excellent equi-distribution properties when
compared to the other generators.

ELFSR (dense)

LHCA

ILFSR (sparse)

SLING

ILFSR (dense)

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

0

2

4

6

8

10

12

14

16

18

clock cycles
av

er
ag

e
ha

m
m

in
g

di
st

an
ce

ELFSR LHCA SLING ILFSR

Figure 3. Average Hamming Distance

3.3 Correlation and Phase Difference
Auto-correlation and cross-correlation are two important measures of randomness. Auto-

correlation is a measure of how well a sequence can differentiate between itself and a time-
shifted variant of itself. Cross-correlation is defined as the correlation between two different
sequences. Cross-correlation for TPGs can be measured by observing sequences generated at
different bit positions of the generators. The correlation measure lies in the range [-1, 1] and the
magnitude is bounded by the range [0, 1]. The cross-correlation between two sequences can be
defined as (#agreements – #disagreements)/length of sequence. The more the magnitude of
correlation deviates from zero, the higher the linear dependence.

Experiments were performed to compare the properties of different generators. Results are
shown in Tables 2, 3, and 4 for generators of size 32, 64, and 128, respectively. Column 4 in
Tables 2, 3 and 4 shows several cross-correlation measures. The average cross-correlation is
measured in the following way. Every pair of sequences is time shifted by a random amount
and then their cross-correlation is computed. In the first sub-column, the random amounts of
time shift range from 0 to the generator size, and for the second sub-column, the random
amounts of time shift ranges from 0 to 1000. This process is repeated 100 times and the
average value is reported. In each case, the number of pairs across each trial for which the
cross-correlation exceeded 0.04 is reported. In all cases, the SLING synthesized generators
have the least number of sequence pairs exceeding the upper-bound on cross-correlation and
have the minimum average cross-correlation.

4. Comparing Design Properties
In this section, we compare area in terms of 2-input XOR gates, maximum logic depth, and

maximum internal fanout for several primitive generators. In [Kagaris 05], the different
techniques presented in [Mrugalski 00] and [Rajski 98] are generalized and a unified approach
is proposed for designing a PSN to achieve a precomputed phase-shift between every pair of
sequences for any LFSM. Using this technique, a PSN can be designed for each of the
generators to achieve similar randomness properties in terms of phase-shift (>=10000) and
cross-correlation. The last column of Tables 2, 3, and 4 shows the number of 2-input XOR
gates that are required for each generator including the required PSN. As can be seen, the
SLING synthesized generators require the least amount of hardware in all cases for achieving a
particular level for randomness. Moreover, the comparative hardware efficiency increases as
the size of the generator increases. The operational speed of the generators is determined by the
number of XOR gate delays on the feedback path and also the internal fanout of the memory
elements. For ILFSRs and ring generators, the XOR gates are interspersed between the memory

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

elements and hence the maximum logic depth is 1. For an ELFSR with a balanced binary tree
implementation of the external gate, the number of logic levels in the feedback path is log2d
where d is the number of non-zero coefficients of the characteristic polynomial. The maximum
internal fanout for an ELFSR is 2. ILFSRs suffer from large internal fanout specially when
implementing a dense polynomial. While operating in 2D mode, the operational speed of
LFSRs is limited by the maximum of the logic depth or the depth of the PSN. Columns 2 and 3
of Table 2, 3, and 4 shows the logic depth and internal fanout of several standalone (without
PSN) generators. Note that in all cases an n-bit generator drives n scan chains in parallel. The
dense ring generator proposed in [Mrugalski 04] displays better design properties but to drive n
scan chains in parallel on average 1.33n flip-flops are required. Note that the sparse ELFSR and
ILFSR in Table 2 implements a primitive polynomial with 3 non-zero coefficients and the
dense LFSRs implements a primitive polynomial with 27 non-zero coefficients. The LHCAs
implement primitive rules: (rule1: 4609BBD5H) and (rule2: 6030E230H). The sparse ELFSR
and ILFSR in Table 3 implement a primitive polynomial with 3 non-zero coefficients and the
dense LFSRs implements a primitive polynomial with 45 non-zero coefficients. The LHCAs
implement primitive rules: (rule1: 2E635C255ABB8628H) and (rule2:
1461DD5AA43AC674H). The dense ELFSR and ILFSR in Table 4 implements a primitive
polynomial with 73 non-zero coefficients. The LHCA implement primitive rule:
(48882FBD67031A7A7A79C0E6BDE41112H).

Table 2. Comparing 32-bit Generators
Generator Max Max Time Shift Num.
 Logic Internal 0 to SIZE(32) 0 to 1000 2-Input
 Depth Fanout Avg Cor > 0.04 Avg. Cor > 0.04 XOR
SLING 2 4 .0081 6 .0079 0 60
SLING 2 4 .0080 5 .0078 1 74
ELFSR (sparse) 2 2 .0264 479 .0091 32 96
ELFSR (dense) 5 2 .0248 452 .0080 22 92
ILFSR (sparse) 1 3 .0139 147 .0083 6 90
ILFSR (dense) 1 27 .0085 11 .0080 3 72
LHCA (rule1) 2 3 .0082 7 .0080 2 78
LHCA (rule2) 2 3 .0081 6 .0080 1 64

Table 3. Comparing 64-bit Generators
Generator Max Max Time Shift Num.
 Logic Internal 0 to SIZE(128) 0 to 1000 2-Input
 Depth Fanout Avg Cor > 0.04 Avg. Cor > 0.04 XOR
SLING 2 5 .0082 12 .0079 3 162
SLING 2 4 .0083 15 .0078 5 176
ELFSR (sparse) 2 2 .0180 1028 .0092 88 210
ELFSR (dense) 6 2 .0179 998 .0080 72 198
ILFSR (sparse) 1 3 .0158 918 .0078 70 208
ILFSR (dense) 1 45 .0079 49 .0074 6 180
LHCA (rule1) 2 3 .0080 13 .0079 7 188
LHCA (rule2) 2 3 .0082 19 .0079 11 180

Table 4. Comparing 128-bit Generators
Generator Max Max Time Shift Num.
 Logic Internal 0 to SIZE(32) 0 to 1000 2-Input
 Depth Fanout Avg Cor > 0.04 Avg. Cor > 0.04 XOR
SLING 2 5 .0079 32 .0079 22 302
ELFSR 7 2 .0132 2153 .0087 409 456
ILFSR 1 73 .0094 606 .0080 390 360
LHCA 2 3 .0080 36 .0080 27 376

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

5. Conclusions
By choosing the design and randomness constraints appropriately, highly effective and

application specific test pattern generators can be designed using SLING. The block-based
approach can also be exploited for highly regular design and efficient routing.

Acknowledgements
This material is based on work supported in part by the National Science Foundation under

Grant No. CCR-0306238 and CCR -0426608.

References
[Arvillias 79] Arvillias, A., and D. Maritsas, “Toggle-Registers Generating in Parallel kth Decimations of m-

sequences,” in IEEE Trans. Computers, Vol. 28, No. 2, pp. 89-101, 1979.
[Bardell 87] Bardell, P.H., W. H. McAnney, and J. Savir, “Built-in Test for VLSI: Pseudorandom

Techniques,” John Wiley & Sons, 1987.
[Chaudhuri 97] Nandi, S., and P.P., D. Chowdhury, “Additive Cellular Automata as an on Chip Test Pattern

Generator,” Proceedings of 2nd Asian Test Symposium, pp. 166-171, 1997.
[Kagaris 03] Kagaris, Dimitri., “Built-In TPG with Designed Phase Shifts,” Proc. of VLSI Test Symposium, pp.

365–370, 2003.
[Kagaris 05]] Kagaris, Dimitri., “A Unified Method for Phase Shifter Computation,” ACM Trans. on Design

Automation of Electronic Systems, Vol. 10, No. 1, pp. 157-167, January, 2005.
[Lempel 71] Lempel, A., and W. Eastman, “High Speed Generation of Maximal Length Sequences,” IEEE

Trans. Computers, Vol. 20, No. 2, pp. 227-229, 1971.
[Lidi 86] Lidi, R., and H. Neiderreiter, “Introduction to Finite Fields and Their Applications,” Cambridge

University Press, 1986.
[Mrugalski 00] Mrugalski, G., J. Rajski, and J. Tyszer,. “Cellular Automata Based Test Pattern Generators

with Phase Shifters,” IEEE Trans. on Computer-Aided Design, Vol. 19, No. 8, pp. 878-893, 2000.
[Mrugalski 03] Mrugalski, G., J. Rajski, and J. Tyszer, “High Speed Ring Generators and Compactors of Test

Data,” Proc. of VLSI Test Symposium, pp. 57–62, 2003.
[Mrugalski 04] Mrugalski, G., J. Rajski, and J. Tyszer, “Planar High Performance Ring,” Proc. of VLSI Test

Symposium, pp. 193–198, 2004.
[Pradhan 99] Pradhan, D., and M. Chatterjee, “GLFSR: a New Test Pattern Generator for Built-In-Self-Test,”

IEEE Trans. on Computer-Aided Design, Vol.18, No. 2, pp. 238–247, 1999.
[Rajski 98] Rajski, J., N. Tamarapalli, and J. Tyszer, “Automated Synthesis of Large Phase Shifter for Built-in

Self-test,” Proc. of International Test Conference, pp. 1047–1056, 1998.
[Rajski 99] Rajski, J., G. Mrugalski, and J. Tyszer, “Comparative Study of CA-Based PRPGs and LFSRs with

Phase Shifters,” Proc. of VLSI Test Symposium, pp. 236–245, 1999.
[Wang 88] Wang, L.-T., and E. McCluskey, “Hybrid Designs Generating Maximum-length Sequences,” IEEE

Trans. on Computer-Aided Design, Vol. 7, No. 1, pp. 91–99, 1988.
[Warlick1 80] Warlick, W., and J. Hershey, “High speed m-sequence generators,” IEEE Trans. Comput., Vol.

29, No. 5, pp. 398–400, 1980.
[Wohl 03] Wohl, P., and J.A., Waicukauski, S. Patel, and M.B. Amin, “Efficient Compression and Application

of Deterministic Patterns in a Logic BIST Architecture,” Proc. of Design Automation Conference, pp.
566–569, 2003.

Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT'06)
0-7695-2706-X/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

