
Reliable Network-on-Chip Using a Low Cost Unequal Error Protection Code

Avijit Dutta and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712

Abstract

The network-on-chip (NoC) paradigm is seen as a way of facilitating the integration of a large number of
computational and storage blocks on a chip to meet several performance and power constraints. However due
to continued scaling of process technologies, the devices and interconnects have become more susceptible to
single event upsets. This paper presents a low cost error correcting code based technique to protect NoC
routers against single event upset induced soft errors. An unequal protection error correcting code based
methodology is provided for the most commonly used store-and-forward routing strategy. The proposed codes
have the same check bit overhead as the conventional single error correcting (SEC) code. The
encoding/decoding overhead and latency are also similar to the conventional low cost SEC code. The
proposed codes belong to the class of unequal error protection codes as they provide different levels of error
correction capability for different portions of the same packet with more protection for the important parts of
the data.

1. Introduction

The advent of nanometer technologies has facilitated huge numbers of transistors in a single die. Reduced
feature sizes along with increasing transistor densities have transformed the on-chip interconnect into the
deciding factor in meeting the performance and power consumption budgets of a design. Several
interconnection schemes are currently in use, including crossbars, rings, buses, and network-on-chip (NoC’s)
[Krewell 05]. The bus and NoC based architectures are the most prominent and have been widely studied in the
research community. However, buses suffer from poor scalability. As the number of cores increases, the
performance of bus based architectures degrades dramatically. This has led to increased adoption of packet
based interconnection networks known as network-on-chip. The NoC architectures offer a variety of
advantages. A well designed NoC uses wires more efficiently and uses the same wires for multiple purposes.
The reduced requirement of global wires improves power dissipation, signal integrity, less silicon area and
better physical routability. The NoC topology can be tuned to the application leading to little arbitration, less
wait states, and lower power utilization than a bus. The packet based architecture provides better scalability.

For NoC, the underlying network must meet quality of service requirements (such as reliability, guaranteed
bandwidth/latency), and deliver energy efficiency [Park 06]. And all these should be achieved under the
limitation of intrinsically unreliable signal transmission media. These limitations are caused by the increased
likelihood of timing and data errors [Rossi 05], the variability of process parameters, crosstalk and
environmental factors e.g., electro-magnetic interference (EMI) and radiation induced soft errors. The
increased sensitivity to soft errors is caused by the reduction in transistor dimensions and the reduction of
supply voltage. Ionizing radiation from high-energy neutrons and alpha particles can cause a single-event upset
(SEU) [Nicolaidis 05] that may alter the state of the system resulting in a soft error. Radiation induced single
event upsets can cause bit-flips in the sequential logic elements such as the router buffers, memories, and
registers.

Some work has been done to protect on-chip interconnects against crosstalk [Rossi 05], [Nieuwland 05],
[Bertozzi 02]. In [Nicolaidis 05], [Kastensmidt 05], [Bertozzi 02], and [Lajolo 01], several techniques were
proposed to protect the on-chip sequential elements against single event upsets under the assumption that the
links are not affected by soft errors. For NoC architectures, both the links as well as the router buffers can be
affected by soft errors. In [Frantz 06], a new technique was proposed that can simultaneously deal with SEU
and crosstalk effects in the NoC routers. A combination of error correcting codes (ECC) and hardware and
time redundancy were used for this purpose. In [Park 06], another method was proposed to address

22nd IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems

1550-5774/07 $25.00 © 2007 IEEE
DOI 10.1109/DFT.2007.20

3

simultaneously the problem of link errors due to crosstalk, capacitive loading, and SEUs in router buffers. A
flit-based hop-by-hop retransmission scheme and corresponding retransmission architecture were proposed.

The routing mode influences the buffer size needed in the routers and the performance of the system, e.g.,
packet latency. In packet switching networks, data items have to be buffered at each router before it is sent
over. There are two basic types of routing modes commonly used in NoC architectures: store-and-forward
routing and wormhole routing. In wormhole routing, messages are sent as worms. The packet is split into flits
and the flits are sent in contiguous fashion. The first flit contains the destination address and it reserves the
channel through which the subsequent flits are sent. This routing architecture facilitates smaller router buffers
but this routing strategy may lead to high data contention and consequently lead to higher message latency.
The rest of the paper focuses only on the store-and-forward type of routing.

In store-and-forward routing, the entire packet is stored in the router buffer before it can be forwarded to the
next router or the destination core. In this paper, we propose an unequal error protection code to protect data
packets from SEUs and crosstalk induced link errors. Recent studies characterizing different bit errors arising
from an SEU suggest that 1–5% of the SEUs can cause multiple bit upsets (MBUs) [Maiz 03]. Recent studies
show that the most likely multiple-bit-upsets (MBUs) are the adjacent double-bit errors [Maiz 03], [Makihara
00]. Since the life span of a packet in the buffer is small, the likelihood of the same packet being affected by
multiple independent SEUs is negligible. Hence the probability of random double-bit upsets is also negligible.
The conventionally used codes such as SEC or SEC-DED codes can correct only single-bit errors and hence
may result in data loss and data corruption in the presence of single event induced adjacent double-bit errors.
The proposed code provides more protection for the bits in the header portion and therefore can prevent data
loss. The proposed code can correct all single bit errors and detect all double adjacent bit errors in the entire
codeword and additionally can correct all double adjacent errors in the header part. If the header is decoded
correctly, then if there is uncorrectable error in the data part, a retransmission can be requested thereby
preventing data loss.

2. Store-and-Forward Routing

The most active component of a network is the router and hence is key to achieving reliability and
performance standards. The router can also be equipped with logic to send and receive retransmission requests
upon detection of unrecoverable errors. The packet while residing in the router buffer can be affected by single
event upsets. The packet can also be affected by link errors resulting from crosstalk, coupling noise, and
transient faults during transmission.

In store-and-forward routing, the entire packet is stored in the router buffer. During the lifetime of the
packet inside the router buffer, the data can be corrupted due to an SEU which can cause either a single-bit flip
or double adjacent bit flips. The data can also be corrupted during transmission from one link to the next. This
could be due to crosstalk, coupling noise, or transient faults. The error correcting code encodes the data before
it is stored in the router buffer. Next it is decoded to enable router arbitration logic to fetch the destination
address and port-id for the packet. Next the data is again encoded before it is transmitted to the next link. This
ECC organization allows protection against link failures. The basic ECC scheme is shown in Fig. 1. In Fig. 1,
the “D + E” block refers to the decoding and encoding of the incoming packet. This stage addresses link error
induced data corruption. Note that if the packet is not modified by the routing arbitration unit then the
additional encoder is not required. The check bit computed using the previous encoder in the same router can
be simply reused.

Figure 1. ECC scheme for NoC router

 D+E

Router
Buffer

D

E

Router
Unit

4

3. Proposed Code

 The proposed code falls in the category of unequal error protection codes (UEP) [Masnick 67], [Morelos
94], [Hayashi 00]. These codes provide different levels of protection to different bits of the same word. This is
achieved by conditioning the linear dependencies in the parity check matrix (H-matrix) of the code. In general,
these codes have the property that some of the digits in a codeword will be decoded correctly only if J2 or
fewer errors occur and others will be decoded correctly only if J1 or fewer errors occur where J1 >J2.. In
[Fujiwara 98], several two-level UEP codes were proposed. These codes were designed as to provide b-bit
burst error correction capability in one b-bit portion of the codeword and either SEC or SEC-DED capability in
the remaining portion of the codeword. Another variation of these types of codes was proposed in [Namba 01].
However the check-bit requirement for these codes is high. The proposed single-error-correcting, double-
adjacent-error-detecting, selective-double-adjacent-error-correcting (SEC-DAED-SDAEC) code has the
following properties:
1) All single-bit errors can be corrected.
2) All double adjacent bit errors can be detected.
3) All adjacent double-bit errors in the header of the packet and the one at the intersection of the header and

data part can be corrected.
 In a store-and-forward routing scheme, a data packet typically has a header portion followed by a data
section which contains both the data and the check bits. Figure 2 shows the basic layout of a packet in the
context of the store-and-forward routing.

Figure 2. Packet structure for store-and-forward routing

For a (p+q,k) SEC-DAED-SDAEC code, the codeword length n = p+q and message length is k, and the
number of check bits r = p+q-k. An upper bound on the maximum possible codeword length can be obtained
for the proposed code as follows:

 2r − 1 ≥ 2p + q
 2r − 1 ≥ p + n

 n ≤ 2r − 1 − p (1)
  )1(log2 ++= pnr (2)

Equation 1 is derived from the fact that the least number of unique syndromes required for the proposed
code is (n+p), n for the single-bit errors, and p for the double adjacent errors in the header. Note that this is a
lower bound on the number of unique syndromes required for the proposed code. If the number of check bits is
r then the maximum number of unique syndromes is 2r − 1. This number should be more than or equal to the
minimum number of unique syndromes required for the code. The characteristics of a linear block code are
completely determined by its H-matrix. Table 1 shows the check bit requirement for different header and data
sizes.

Table 1. Check bit requirements
Header, data,

check bit
Bound on r Min r

8,24,r  )932(log2 ++= rr 6
8,56,r  )964(log2 ++= rr 7

16,48,r  )1764(log2 ++= rr 7

For the proposed systematic binary linear unequal error protection block code, the H-matrix can be viewed
as follows: H = [H1 | H2 | I] (3)

Where H1 is a r×p sub-matrix, H2 is a r×(q-r) sub-matrix, and I is a r×r identity matrix.

Header Data + Check Bits

 p q

5

To detect and correct all single-bit errors, the corresponding error syndromes should be unique. Note that
the syndrome for a single-bit error at the i-th bit position is the same as the i-th column of the H-matrix. To
uniquely identify all the single-bit errors, all the columns of the H-matrix must be unique.

To detect all the adjacent double-bit errors, the corresponding syndromes should be different from all the
single-bit error syndromes. The syndrome for a double-bit error is given by the exclusive-or (XOR) of the
corresponding columns of the H-matrix. So there cannot be any 3-cycle involving adjacent columns in the H-
matrix. A k-cycle refers to a set of k linearly dependent columns of the parity check matrix, i.e., when XOR-ed
together, the output is an all-zero column. To be able to correct all the adjacent double-bit errors in the header
portion (H1 sub-matrix) the syndromes for the adjacent double-bit errors should be different from each other
and also different from all the single-error syndromes as well as from all the double adjacent error syndromes
in the H2 part. Next we define the conditions that must be satisfied by the H-matrix for the proposed code:
1) No all 0 columns.
2) All columns are distinct.
3) No linear dependency involving columns Ci,Cj,Ck where k>j>i, such that j=i+1 or k=j+l or both.
4) No linear dependency involving columns Ci,Cj,Ck,Cm where m>k>j>i and j<p+1, such that j=i+1 and

m=k+l and p is the header size. This condition implies that the double adjacent error syndromes in the
header portion are unique.
Condition 1 ensures that no single-bit error case matches the error-free case.
Condition 2 ensures that all the single error syndromes are unique. Every single error syndrome matches one

of the columns of the H-matrix. Since all the columns of the H-matrix are distinct, the single-bit errors are
uniquely identifiable and hence correctable. Additionally, this condition ensures that there are no pairs of
double errors of the form (i,j) and (j,k) such that the corresponding syndromes are the same. Assume that such
double errors exist, then (Ci ⊕ Cj)⊕(Cj ⊕ Ck)=0, i.e., (Ci⊕ Ck)=0 but that contradicts the fact that all the
columns of the H-matrix are distinct. This ensures that syndromes for adjacent errors of the form (i,i+1) and
(i+1,i+2) are different.

Condition 3 ensures that the syndromes for all adjacent double-bit errors are different from that of the
single-bit errors. Hence all the adjacent double-bit errors can be detected.

Condition 4 along with condition 2, ensures that a syndrome for an adjacent double-bit error in the header
portion is different from all other adjacent double-bit error syndromes. If we assume that the only errors are
single-bit errors or adjacent double-bit errors then with an H-matrix satisfying conditions 1 through 4, we can
uniquely identify the syndromes for all single-bit errors and adjacent double-bit errors in the header portion.
Hence we can correct all single-bit errors and detect all adjacent double errors in the whole codeword.
Additionally all double adjacent bit errors in the header can be corrected.

Figure 3. Error profiles

Figure 3 shows the bit-error profile and the error detection/correction capability of the proposed code with
respect to those errors. Note that the non-adjacent errors may not always be detectable as they might alias with
single-bit error or double adjacent bit errors and hence may lead to miscorrection. However the probability of
non-adjacent error is negligible.

 p q

X corrected

 X corrected

X X corrected

 X X detected

 X X corrected

X X Uncorrectable Error

6

Note that in our discussion we are considering only the SEU induced soft errors and hence the only possible
errors are either a single-bit error or an adjacent double-bit error. This ensures correct decoding of the header
portion in the presence of such an error.

We call the 3-cycles of the type given by condition 3, forbidden 3-cycles (3FC). We call the 4-cycles of the
type given by condition 4, forbidden 4-cycles (4FC). While designing the H-matrix, additional constraints can
be imposed to reduce the encoding and decoding overhead. This can be achieved by limiting the number of 1’s
in any row and column of the H-matrix.

4. Code Design Procedure

Input: n(codeword length), maxIter, maxBacktrack, r(number of check bits), p(header size)
Output: H-matrix
avail_col = Set of all non-zero columns of weight > 1
usedSyndromePool = {}
currentCol = r(starts after identity matrix I);
backtrack = 0
while (currentCol < n-p) {
 Iter = 0
 validColPool[currentCol] = {}
 while (iter < maxIter) {
 Iter++
 C = An untried column from avail_col
 Check for existence of forbidden 3-cycles
 if (! 3FCfound) {
 validColPool[currentCol] =
 validColPool[currentCol] ∪ C
 } }
 if (empty(validColPool[currentCol])) {
 backtrack++
 if (backtrack > maxBacktrack) {
 return // no code found
 } else {
 currentCol--
 if (currentCol < 0) currentCol = 0;
 continue;
 } } else {
 sCol=selectMinSynUsage(ColPool[currentCol]))
 add sCol to H-matrix
 add sCol and adjacent double error syndrome corresponding to sCol to usedSyndromePool.
 currentCol++
 backtrack=0; } }

Figure 4. Algorithm to construct H2

Figure 4 shows the outline of the algorithm used to construct the H2 submatrix. All the columns of the H2
matrix should be unique. While adding any new column forbidden 3-cycles (3FC) cannot be allowed as that
will lead to an aliasing of a single error with a double adjacent error in the data part. At the same time, the
algorithm tries to maximize the sharing of double adjacent error syndromes. This helps in reducing the number
of used up syndromes and leaves more flexibility while designing the H1 matrix. The algorithm maintains a list
of syndromes for the single and the double adjacent errors in the constructed code space. A column is a
candidate for the next position as long as it does not introduce a 3FC. From a list of candidates, the one that
minimizes the number of double adjacent error syndromes in the constructed code space is chosen.

To construct submatrix H1, whenever a column is added, a check is to be made so that it does not introduce
any forbidden 3-cycles (3FC) and forbidden 4-cycles (4FC). This ensures that every single error and double
adjacent errors in the header portion have unique syndrome and hence are correctable. This step is different

7

from the H2 submatrix construction algorithm. Also selectMinSynUsage should be replaced by selectRandCol
because no forbidden 4-cycles are allowed in the H1 submatrix.
 Figure 5 shows an H-matrix for a (8, 24, 6) (header, data, check-bit) code. Here the only double adjacent
error syndromes used for I and H2 are (110000) and all its circular shifts, (100111), (011101), (101100),
(001111) i.e.,10 distinct syndromes out of 29 (worst case) possibilities. This is achieved by minimizing the
number of unique double adjacent error syndromes in the H2 portion. This leaves more flexibility while
searching for the H1 matrix. After designing I and H2, the number of available columns for the columns of H1
and its adjacent error syndromes is (63-30-10) = 23 out of which 8 columns and 8 adjacent error syndromes
have to be chosen while avoiding 3FCs and 4FCs.

Figure 5. H-matrix for proposed (8,24,6) code

Figure 6. H-matrix for proposed (16,48,7) code

Table 2. Comparison of proposed SEC-DAED-SDAEC code with other codes
Header

+
Data

Codes

2-Input
XOR
Gates

Max
Logic
Depth

Forbidden
3-Cycles

(3FC)

Forbidden
4-Cycles

(4FC)

Check
bits

SEC-DBED [Bodnar 03] 100 5 3 40 6
SEC 114 5 30 143 6
(B2EC)8-(SEC)24 [Namba 01] 98 5 15 0 6
DAEC [Abramson 59] 132 6 0 0 7

(8+24)
= 32

Proposed SEC-DAED-SDAEC Code 104 5 0 0 6
SEC-DBED (extended) 231 6 0 263 7
SEC 204 6 68 316 7
(B2EC)16-(SEC)48 [Namba 01] 222 6 27 0 7
DAEC [Abramson 59] 296 7 0 0 8

(16+48)

= 64

Proposed SEC-DAED-SDAEC Code 240 6 0 0 7

Figure 6 shows the H-matrix for the (16,48,7) code. Note that the H2 matrix of a higher
dimensional code can be constructed from the H2 matrix of a lower dimensional code. This can
save considerable amount of search time. We illustrate this with the example of the H2 matrix
for the (16,48,7) code which can be obtained from the H2 matrix of the (8,24,6) code. The H2
matrix of the (8,24,6) code is a 6×24 matrix which is free of 3FC. In fig. 7, 32H2 denotes the H2
matrix for the (8,24,6) code where each Ri denotes each row of the matrix. The 32H c

2 denotes
the same matrix as 32H2 except that the last row is complemented. An all zero row is added to
32H2 and an all one row is added to 32H c

2. A column vector CI is introduced at the boundary of

 H1 H2 I

01010111 010100010000110110001111 000001
10111010 100111111000010010010001 000010
01110011 111111110101011100100010 000100
00110110 001111001010111111000100 001000
01101010 110001000001111111111000 010000
11000010 001101100110000111111111 100000

 H1 H2 I
 CI

0111100101000101 10100011000110110001111 1 010100011000110110001111 0000001
1010110010101110 00111111000010010010001 0 100111111000010010010001 0000010
1001110101111001 11111111101011100100010 1 111111111101011100100010 0000100
1110011000010110 01111000010111111000100 1 001111000010111111000100 0001000
0010011101101000 10001001001111111111000 0 110001001001111111111000 0010000
1010001110110111 01101101110000111111111 1 110010010001111000000000 0100000
0010101001011011 00000000000000000000000 1 111111111111111111111111 1000000

8

32H2 and 32H c
2 to avoid any 3FC at the boundary. The resultant H2 matrix is free of 3FC by

construction. Note that the submatrix constructed this way has one extra column. Any column
can be removed as long as no 3FC is introduced. The easiest choice for removal is the leftmost
column. This method can be generalized to construct the H2 matrix of any higher dimensional
code from a lower dimensional code. Note that the H2 matrix predominantly contains odd-
weighted columns and the H1 submatrix predominantly contains even weighted columns. The
row complementation is performed to maintain this property of the H2 matrix. Note that any
row can be chosen for complementation but a good choice is the one where the resultant
complemented row has the least number of 1’s.

The number of the 2-input XOR gates required for the encoding/decoding can be computed
from the H-matrix. It is equal to ∑#rows (row weight − 1). The encoding and decoding delays are
determined by the maximum logic-depth of the encoder and the decoder circuit which is equal
to log2 (max. 1’s in any row).

Figure 7. Constructing H2-matrix for proposed (16,48,7) code

Table 1 shows the number of XOR gates and maximum logic depth for the syndrome
generator, number of forbidden 3-cycles and forbidden 4-cycles, and the number of check bits
for a set of different relevant codes.

The first set codes are for packets with 8 bit header and 24 bit data. The SEC-DBED code
proposed in [Bodnar 03] can correct all single-bit errors in the packet and can detect all the
double adjacent errors in the 8-bit nibbles but cannot detect the double adjacent errors at the
nibble boundaries. The 3FCs corresponds to these cases. This code cannot correct double
adjacent errors in the header portion. It has a very large number of 4FCs. The SEC code can
only correct single-bit errors. It has a large number of 3FCs and 4FCs. The (B2EC)8-(SEC)24
code derived using the method proposed in [Namba 01] can correct all single-bit errors and
additionally can correct adjacent double-bit errors in the header part. But it cannot detect all the
double adjacent bit errors in the data part because it has some 3FCs. The hardware overhead is
also larger than the proposed code. The proposed code, along with the DEC and DAEC codes
are the only ones which meet all the requirements for the targeted application as they don’t have
any 3FC or 4FC. However the check bit overhead for the DEC and the DAEC codes are larger
than the proposed code and hence they are less suitable for the router memories where memory
area is a major performance constraint. For the DEC code the check bit requirements for
protecting the 32-bit (8+24) and 64-bit (48+16) packets are 11 and 14 respectively which are
almost twice the requirements for the proposed codes.

For a 64 bit packet with a 16-bit header, a minimum of 7 check bits are required. The SEC-
DBED code proposed in [Bodnar 03] was extended for 64 bit and the derived code has a large
number of 4FCs. The code cannot correct the double adjacent errors in the header portion. The
SEC code also has a large number of 3FCs and 4FCs. The (B2EC)16-(SEC)48 code derived from
[Namba 01] has some 3FCs. The proposed code is free of all 3FC and 4FCs and hence meets all

 R1
 R2
 32H2 = R3
 R4
 R5
 R6

 CI

 32H2 32Hc
2

 64H2 =
 00…0 11…1

 R1
 R2
32Hc

2 = R3
 R4
 R5
 R6c

9

the requirements for the targeted application. One nice feature for the proposed code is that the
overhead varies almost linearly with the header size. Next we discuss the encoding and
decoding strategy for the proposed code.

5. Encoding/Decoding Algorithm
The proposed code is systematic. During encoding, the data bits can be directly copied and

the check bits are generated using an XOR network corresponding to the G-matrix. The
decoding algorithm is as follows:

1) Generate the syndrome using an XOR network corresponding to the H-matrix.
2) If the syndrome is the all zero vector, then no error is detected, otherwise one or more

errors occurred.
3) If the syndrome matches any of the H-matrix columns then a single error is detected and

the error position is the corresponding column position. The corresponding bit should be
flipped to correct the error.

4) Else if the syndrome matches any of the (header_size-1) adjacent double error syndromes
or the double error syndrome for the error at the boundary of the header and the data
parts, then a double adjacent error is detected and the corresponding bit positions are
generated using the error correction logic.

5) Else an uncorrectable error (UE) (i.e., a double non-adjacent error or more than two
errors) has occurred.

If an uncorrectable error is encountered then it is assumed that the error occurred in the data
part of the packet since the header errors are always correctable. When the UE signal is high a
retransmission is requested. The header provides the address of the source and destination.
Figure 8 shows the basic error detection and correction block diagram. If a non-zero syndrome
is encountered, then the OR gate flags an error indication. If the syndrome matches any of the
single error syndromes then the syndrome decoder generates a 1 in the erroneous bit position.
Otherwise, if the syndrome matches any of the adjacent double error syndromes in the header
portion, then the decoder generates 1’s at the erroneous adjacent bit positions. Otherwise the
output of the syndrome decoder is the all zero output. The syndrome decoder output (for the
header part) consists of 3-input OR gates whose inputs are driven by outputs of r-input AND
gates. The i-th output of the decoder is 1 if and only if a single error occurred at the i-th bit or a
double-adjacent error occurred at <i,i+1> bits or <i-1,i> bits. For the remaining part, only an r-
input AND gate is required to generate the i-th signal. The outputs of the decoder are used to
generate the corrected word, by using n 2-input XOR gates. If the syndrome is non-zero and
does not match any of the single or double-adjacent error syndromes, then an uncorrectable
error (UE) is encounter and the UE signal is flagged.

6. Conclusions

The ECC methodology described in this paper provides the ability to correct all single-bit
errors and detect all double adjacent error in a packet while correcting all adjacent errors in the
header portion of the packet at a very little cost. The presented code provides a very low cost
option to protect the packets against the most likely errors in the NoC environment by allowing
different levels of protection to different parts of the packet.

10

Figure 8. Error detection and correction block diagram

References

[Abramson 59] Abramson N. M., ”A Class of Systematic Codes for Non-Independent Errors”, Proc. IRE Trans. on Information Theory, Vol.
IT-5, pp. 150-157, Dec. 1959.

[Bertozzi 02] Bertozzi, D. L. Benini, G. De Micheli, “Low power error resilient encoding for on-chip data buses”, Proc. of Design
Automation and Test in Europe Conference and Exhibition, pp. 102-109, 2002.

[Bodnar 03] Bodnar, L. and G. Chapelle,”A single error correctiondouble burst error detection code”, Proc. of Asilomar Conference on
Signals, Systems and Computers, Vol. 1, pp. 1118-1121, 2003.

[Frantz 06] Frantz, A. P., F.L. Kastensmidt, L. Carro, and E. Cota, “Exploiting ECC redundancy to minimize crosstalk impact”, Proc. of 19th
Annual Symposium On Integrated Circuits and Systems Design, pp. 202-207, 2006

[Fuziwara 98] Fujiwara, E., T. Ritthongpitak and M. Kitami,”Optimal Two-Level Unequal Error Control Codes for Computer Systems”,
IEEE Trans. on Computers, Vol. 47, No. 12, pp. 1313- 1325, Dec. 1998.

[Hayashi 00] Hayashu, T., and E. Fujiwara,”Bit and Byte Error Protection Codes with Two Protection Levels,” Trans. IEICEA, Vol. J83-A,
No. 2, pp. 196-207, 2000.

[Kastensmidt 06] Kastensmidt, F., L. Carro, R. Reis, Fault-Tolerance Techniques for SRAM-based FPGAs, Series: Frontiers in Electronic
Testing, Springer, Vol. 32, pp. 180-185, 2006.

[Krewell 05] Krewell.,”Multicore Showdown”, Microprocessor Report, Vol. 19, pp. 41-45,2005.
[Lajolo 01] Lajolo, M.; “Bus guardians: an effective solution for online detection and correction of faults affecting system-on-chip buses”,

IEEE Trans. on Very Large Scale Integration (VLSI) Systems, Vol. 9, Iss. 6, pp. 974–982, 2001.
[Maiz 03] Maiz, J., S. Hareland, K. Zhang, and P. Armstrong, “Characterization of Multibit Soft Error Events in Advanced SRAMs”, Proc. of

IEEE Int’l Electronic Device Meeting, pp. 519-522, Dec. 2003.
[Makihara 00] Makihara, A., et al., “Analysis of Single-Ion Multiple-Bit Upset in High-Density DRAMS”, Proc. IEEE Trans. on Nuclear

Science, Vol. 47, No. 6, Dec. 2000.
[Masnick 67] Masnick, B., and J.K. Wolf, “On Linear Unequal Error Protection Codes,” IEEE Trans. Inf. Theory, Vol. IT-13, No. 4, pp.

600-607, Oct. 1967.
[Morelos-Zaragoza 94] Morelos-Zaragoza, R.H., and S.Lin,” On a Class of Optimal Nonbinary Linear Unequal-Error-Protection Codes for

Two Sets of Messages,” IEEE Trans. Inf. Theory, Vol. IT-40, No. 1, pp. 196-200, Jan. 1994.
[Namba 01] Namba, K., and E. Fujiwara,”Unequal Error Protection Codes with Two-Level Burst and Bit Error Correcting Capability”, IEEE

International Symposium on Defect and Fault Tolerances, Vol. 47, No. 12, pp. 1313- 1325, Dec. 1998.
[Nicolaidis 05] Nicolaidis, M, “Design for soft error mitigation’’, IEEE Trans. on Device and Materials Reliability, Vol. 5, Iss. 3, pp. 405-

418, Sept. 2005.
[Nieuwland 05] Nieuwland, A.K.; A. Katoch, D. Rossi, C. Metra, “Coding techniques for low switching noise in fault tolerant busses”, Proc.

of IEEE International On-Line Testing Symposium, pp. 183-189, 2005.
[Park 06] Park, D., C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C.R. Das, “ Exploring Fault-Tolerant Network-on-Chip Architectures”,

Proc. of International Conference on Dependable systems and Networks (DSN 06), pp. 93-104, 2006.
[Rossi 05] Rossi, D., C. Metra, A.K. Nieuwland, and A. Katoch, “Exploiting ECC redundancy to minimize crosstalk impact”, IEEE Design

and Test of Computers, Vol. 22, Iss. 1, pp. 59-70, Jan 2005.

 r-bit Syndrome

 1 2 ….. r

 Syndrome
Decoder

OR

N
O
R

A
N
D

 Word Corrected
 Read Word

(n 2-input xor gates)

Error
Detected

UE

 1 2 ….. n

 i –th
 syndrome

i-th (i<=header)
output

 & & &

 +

 <i-1,i> i <i,i+1>

 i-th (i> header)
 output

 &

11

