
Improving Memory Repair by Selective Row Partitioning 
 

Muhammad Tauseef Rab, Asad Amin Bawa, and Nur A. Touba 
 

Computer Engineering Research Center 
Department of Electrical and Computer Engineering 

University of Texas, Austin, TX  78712-1084 
Email: {mrab, bawa, touba}@ece.utexas.edu 

 
 

Abstract 
 
A new methodology for improving memory repair is presented which can be applied in 

either manufacture time repair or built-in self-repair (BISR) scenarios.  In traditional memory 
repair, one spare column can only replace one column containing a defective cell.  However, 
the proposed method allows a single spare column to be used to repair multiple defective cells 
in multiple columns.  This is done by selectively decoding the row address bits when generating 
the control signals for the column MUXes.  This logically segments the spare column allowing 
it to replace different columns in different partitions of the row address space.  The hardware 
is the same for all chips, but fuses are used to customize the row decoding circuitry on a chip-
by-chip basis.  An algorithm is described for choosing which row address bits to decode given 
the defect map for a particular chip.  This additional degree of freedom allows customization 
based on the defect map of a chip and increases the effectiveness of the proposed scheme in 
comparison to traditional memory repair.  Experimental results show that, when compared 
with traditional schemes of similar complexity, the proposed scheme achieves a higher 
probability of repairing defects. 

1.  Introduction 
 
Yield loss in integrated circuits (ICs) due to SRAM-based memory failures are expected to 

increase as transistor sizes shrink to smaller dimensions and voltage levels are reduced. Caches 
constitute in excess of 50% of modern SOC and processors’ area and account for more than 
80% of the transistor count [Roelke 07].  In addition to the fact that the SRAM cell is the most 
frequently used cell, it also uses the smallest geometry transistors to increase area utilization 
which makes it more susceptible to both device electrical and geometrical variation 
[Mukhopadhyay 05].  To reduce yield loss due to defects in memory cells, the conventional 
approach is to add spare rows and columns to a memory [Schuster 78], [Zorian 03].  A test 
procedure is used to generate a defect map which indicates which cells in the memory are 
defective.  Based on the defect map, the memory is reconfigured to use the spare rows and 
columns to bypass defective cells [Kuo 87], [Wey 87], [Hemmady 89].  If it is not possible to 
bypass all the defective cells, then the repair process fails.  The memory reconfiguration can be 
done either at manufacture time with fuses, or it can be done with a built-in self-repair (BISR) 
scheme [Kim 98]. 

Fig. 1 shows a small example of a 4x4 memory with a spare row and spare column.  Note 
that a spare column can only be used to repair a single defective memory cell unless there are 
multiple defective memory cells in the same column.  This paper proposes a way to enhance 
the repair capability of a memory with a given number of spare columns.  It allows a single 
spare column to be used to repair multiple defective cells in different columns. This is done by 

2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems

1550-5774/09 $26.00 © 2009 IEEE

DOI 10.1109/DFT.2009.20

211

2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems

1550-5774/09 $26.00 © 2009 IEEE

DOI 10.1109/DFT.2009.20

211

2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems

1550-5774/09 $26.00 © 2009 IEEE

DOI 10.1109/DFT.2009.20

211

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 14,2010 at 00:31:47 UTC from IEEE Xplore.  Restrictions apply. 



decoding a small number of row address bits when determining which column will be replaced 
by the spare column.  Effectively, this logically segments the spare column and increases the 
number of defective cells that it can repair.  The row address bits that are decoded are selected 
based on the defect map for the memory.  Given the defect map, an algorithm is described for 
selecting the best set of row address bits to decode in order to repair as many defective cells as 
possible.  The additional degree of freedom in selecting which row address bits to decode on a 
chip by chip basis greatly enhances the efficiency of the proposed method and increases the 
probability of being able to repair a memory and thereby improves overall yield.  The cost for 
the proposed method is some additional fuses and logic to select which row address bits to 
decode. 

The proposed method can be used for manufacture time reconfiguration as well as for BISR 
schemes.  The proposed method provides a way to deal with rapidly increasing defective bit 
rates as geometries are scaled down and voltage levels are reduced.  It also has applications in 
future nanoelectric technologies where defect rates are expected to be very high. 

This paper is organized as follows. In Sec. 2, an overview of the proposed scheme and how 
the memory segmenting is performed is given. In Sec. 3, the repair algorithm is explained. 
Experimental results are presented in Sec. 4, and Sec. 5 is a conclusion.  

 
 
 

 

 
Figure 1.  4 Rows x 4 Columns Memory Block 

 
 

212212212

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 14,2010 at 00:31:47 UTC from IEEE Xplore.  Restrictions apply. 



2.  Overview of Proposed Scheme 
 

The main motivation behind the proposed scheme is the inherent inefficiency of the 
conventional approach. Typically an additional spare column is used in its entirety when 
repairing a defective cell. This implies that in order to repair multiple defects, the SRAM 
memory should typically have as many number of spares available as there are defects in the 
memory. This is generally true unless a single column in the memory has more than one defect; 
in which case the spare, when swapped out with the faulty column, ends up repairing both of 
the defects. Such scenarios are rare, thus multiple spares are added to SRAMs when more 
defects need to be tolerated. This linear dependency will lead to excessive overhead as SRAMs 
continue to be scaled and have increasingly higher defect rates.  The proposed approach 
increases the effectiveness of spare columns by allowing a single spare column repair defects in 
multiple columns by partially decoding the row address when determining which column is 
replaced by the spare. 

The proposed approach makes use of existing chip repair methodologies. The new aspect is 
given the defect map, the proposed approach selects n row address bits to decode so as to allow 
all defective cells in the memory to be bypassed. Moreover, the proposed scheme requires the 
ability to store the information on-chip as to which row addresses to decode and which column 
to replace in each partition of the row address space.  This is illustrated in the high level block 
diagram of the proposed scheme given in Fig. 2.  

 

 

Figure 2.  Block Diagram 
 

3.  Repair Algorithm 
 

The memory is initially designed with a certain number of spare columns (maybe one, but 
can be more than one) and the ability to decode a certain number of row address bits (n).  This 
hardware is fixed for all chips.  Given the defect map for a particular chip, the proposed repair 
algorithm is used to configure the hardware to bypass the defective cells.  The algorithm first 
selects the n row address bits to decode based on the defect map and the number of spare 
columns available.   Decoding the n row address bits effectively partitions the row address 
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space into 2n different partitions.  The spare column can be used to replace one column in each 
of the 2n different partitions.  So the goal is to do the partitioning in such a way as to have only 
a single column in each partition having a defect.  So if there are multiple defects in different 
columns, the partitioning should be done such that each partition contains only one defect.  
This is done by representing each defect’s row address as a binary number, and then forming a 
matrix of the XORs of all the pairwise row address combinations. This is illustrated in Figure 3 
where the row addresses of four defects are {000, 010, 100, 111}.  Each of the 6 rows in the 
table correspond to one of the 6 pairwise combinations of the row addresses of the defects, and 
each column corresponds to a row address bit.  An entry in the matrix is a ‘1’ if the pair of row 
addresses of the defects differ in that bit, and a ‘0’ if they are the same.  For example, the row 
addresses for the defect at “000” and at “010” differ in bit 1, but not in bits 0 and 2.  The goal is 
to select n row address bits to decode such that each defect is in a different partition.  This 
corresponds to finding a column cover for the matrix in which a set of columns is selected such 
that it contains at least one ‘1’ in each row.  A column cover of this matrix ensures that the 
selected row address bits will distinguish every defective row such that no partition will contain 
more than one defect. If it is not possible to find a column cover with n or fewer columns, then 
the memory is irreparable.  Many efficient column covering algorithms exist [Beasley 87]. 

Once the n row address bits have been selected, The fuses are programmed to hardcode 
which row address bits to decode as well as the column that is replaced by the spare in each 
partition. This can be done by implementing a small ROM or fuse box. The ROM drives the 
select lines of the column muxes which do the actual swapping of the faulty cell(s) with the 
good cell(s) from the spare element.  

The repair procedure is now illustrated with a small example. Assume that n=2, so two row 
address bits are used to partition the spare column in a manner that it can map each defect in a 
unique partition of the spare column. The memory used in this example has 8 rows and 8 
columns (C). The row addresses for the defects are {D0, D1, D2, D3} -> {000, 010, 100, 111}. 
The XOR between each pair of the row addresses with defects is performed and stored in a 
matrix as shown in Fig. 3.   A column covering procedure is then performed which identifies a 
two bit column cover using bit 2 and bit 1.  Those two row address bits are connected (with 
fuses) to a ROM (fuse box).  The contents of the ROM are set so that columns 6, 4, 2, 1 are 
bypassed when the row address bits are 00, 01, 10, 11, respectively.  The output of the ROM 
goes to a decoder which decodes the column to bypass and generates the appropriate set of 
MUX select signals.  For example, if column 2 is to be bypassed, then the MUX select signals 
for leftmost 3 MUXes are set to select their right input, and the rest of the MUX select signals 
select their left input.  This uses the spare column and skips column 2. The additional circuitry 
required to implement the proposed scheme for the above example is illustrated in Fig. 3. The 
fuse box is 2n (n=2) by log2C (C=8) wide. Additionally a log2C to C (3 to 8) decoder is needed 
to generate the C (8) bit MUX select signals. 
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Row Address #  Bit  2   Bit 1  Bit  0  

(000  ⊕  010) 0  1  0  

(000  ⊕  100) 1  0  0  

(000  ⊕  111) 1  1  1  

(010  ⊕  100) 1  1  0  

(010  ⊕  111) 1  0  1  

(100  ⊕  111) 0  1  1  

 
 

 
 

Figure 3.  XOR Table and Example 
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4.  Experimental Results 

Several simulations were performed to evaluate yield improvements using the proposed 
selective row partitioning. For the first set of simulations, two, three and four random defects 
were injected across different memory block sizes and compared the traditional probability of 
repair with a single spare column versus the proposed scheme using a single spare column and 
two row address bits for decoding. Fig. 4, 5 & 6 show the results of these simulations.  These 
simulations were mainly done to see the effectiveness of the proposed scheme in fixing 
multiple defects, and also to investigate if the size of the memory had any impact on the 
effectiveness of the proposed scheme.  

As clearly seen from the results shown in Fig. 5 and Fig. 6 the proposed scheme is close to 
100% effective for two and three defects and there is almost no dependency on the memory 
block size.  However for four defects, shown in Fig. 6, the effectiveness of our approach is 
clearly dependent on the number of rows.  This result is understandable and expected since the 
more rows in a block, the more likely it is to find two row bits to partition the memory with one 
defect in each partition.   Note that for the case of a traditional single spare, the chance of 
repairing multiple defects is very low as it depends on the defects all being in the same column.  
The probability of this decreases as there are either more columns or more defects. 

Fig. 7 summarizes the comparison between the traditional and proposed scheme for a 9-row-
address-bit and 32-column-bits memory block using one spare column and 2-address bits for 
decoding (n=2). As can be seen below the proposed scheme is close to 100% effective for two 
or three defects, the reason it is not a 100% effective is due to the small chance of defects in the 
same row. Such defects can obviously not be distinguished using row address bits for decoding.  

For four defects the proposed scheme still achieves close to 80% probability of repair. This 
reduction in the probability of repair going from three to four defects is also expected since 
partitioning the memory using 2-row-address-bits requires that each of the four partitions have 
exactly one defect and there are cases where a solution does not exist.  
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Figure 4. Repairable Defects across Different Memory Block Sizes (2 Defects) 
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Figure 5. Repairable Defects across Different Memory Block Sizes (3 Defects) 
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Figure 6.  Repairable Defects across Different Memory Block Sizes (4 Defects) 
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Figure 7.  Repairable Defects Comparison Summary Decoding 2 Row Bits 
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Fig. 8 shows similar results Fig. 7 except in this case 2-spare columns are being used and an 
attempt is made to solve up to eight defects. This was done to show the scalability of the 
proposed scheme. Note that in this case, the same row address bit decoder is used for both 
spares.  Alternatively, one could use separate row address bit decoders for each spare, and in 
that case the effectiveness of each spare would be equivalent to what was shown in Figure 7. 
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Figure 8.  Repairable Defects Comparison Summary using 2 Spare Columns 
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Figure 9.  Repairable Defects using 2-Row-Bit Decoding with Wider Memory Block for 
Proposed Scheme 
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The first set of experiments, summarized in Fig. 7 clearly showed the effectiveness of the 
proposed scheme in fixing multiple defects, however there is an area overhead cost associated 
with implementing the proposed scheme since it requires extra logic to implement (fuses, 
muxes, etc). An alternative to the proposed approach for improving repair capability would be 
to simply use the traditional approach with more spares.  To compare these two alternatives, 
experiments were performed considering four memory blocks having 9-row-address-bits and 
16-column-bits in which the traditional approach has one spare for each block. For the 
proposed scheme we assumed a single memory block with 9-row-address-bits, 64-column-bits 
and one spare column.  The results are shown in Fig. 9. The probability of fixing defects with 
the proposed scheme is clearly better with less spare columns. The results for the traditional 
approach below can also be probabilistically calculated and confirm the numbers obtained 
through simulations. In this particular example, it has been shown that by reducing four spare 
columns down to one with the proposed approach, the probability of repairing defects is better. 
This advantage comes from the ability to select which row address bits to decode on a chip-by-
chip basis such that the hardware is effectively customized to the defect map for a particular 
chip. 
 
5.  Conclusions 

 
In this paper, a scheme was presented for selectively decoding row address bits to repair 

multiple defects using a single spare column. This approach is a logical extension to current 
approaches where a single spare column replaces another column that has a defect. The 
proposed scheme requires some additional logic and fuses to implement, however it was shown 
that when comparing the proposed scheme to the traditional approach of increasing the number 
of spare to tolerate more defects, for similar complexity, the proposed scheme achieves a 
higher probability of repairing defects (Fig. 9). The optimal number of row address bits to 
decode and memory block size to use would depend on the process, architecture, and defect 
rate.  
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