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Abstract 
The paper proposes a scheme by which an Orthogonal Latin Square code (OLS) can be modified to correct 

burst-errors of specific length. The method discussed in this paper models it as a graph coloring problem where the 
goal is to resolve conflicts in the existing OLS code in order for it to correct burst-errors. Conflicts are resolved by 
reordering and/or reorganizing existing parity relations by inclusion of extra check bits. The graph coloring 
approach tries to minimize the number of additional check bits required. The final OLS code after reordering and/or 
reorganizing would be capable of correcting burst-errors of specific length in addition to its original error 
correction capabilities. 
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1. Introduction 

 

Single event upsets (SEU) and soft errors generated by ionizing particles or neutron interactions with 
semiconductor devices have been identified as a critical and possibly dominant failure mechanism in modern CMOS 
circuits. Error detection and correction schemes in memories and microprocessor caches are common and drastically 
reduce the externally observable error rate.  

A key consideration for these protection schemes is the treatment of multiple bit errors that can be generated 
when adjacent bits fail as a result of a single strike. Studies have shown that 1-5% of single event upsets (SEUs) can 
cause multiple-bit errors (MBUs) [Satoh 00], [Makihara 00], [Kawakami 04].  Most MBUs will affect nearby cells. 

These events can prevent the detection of an error in parity protected circuits, or make an error uncorrectable in 
spite of the use of Error Correction Codes (ECC). Bit interleaving is commonly used to minimize the error rate 
contribution of multi-bit errors. It refers to a memory layout architecture in which physically adjacent bits belong to 
different logic words. The result is that from an error detection and correction standpoint, two adjacent failing bits 
appear as two single bit errors rather than as a double bit error in the logic word. Bit interleaving rules are often 
defined as the minimum physical distance separating two bits belonging to the same logic word. The quantification 
of their effectiveness requires a detailed understanding of the multi-bit failure probabilities and operating parameter 
sensitivities which are generally not available in the open literature [Maiz 03]. However bit interleaving would be 
limited by the width of the memory bus. 

Moreover with continuous voltage scaling multiple-bit errors pose an important challenge, especially for memory 
sub-systems. A dramatic increase in MCU rates relative to SBU is projected for geosynchronous orbits, where direct 
ionization by heavy-ions dominates [Seifert 08].  

In the non-volatile memory space, multilevel cell (MLC) NAND flash memories, which are widely used in 
mobile and wireless systems, have inferior data retention times compared to single bit cell (SLC) NAND flash. 
Although multi-leveling cell (MLC) improves memory density and performance of memory storage systems in 
general, they would also be prone to a greater number of errors caused due to shift of threshold voltage during cell 
programming operations [Micheloni 06] [Chen 08]. Such systems would require stronger ECC than traditional 
single error correction codes. Therefore, the data reliability has become an important issue in most communication 
and storage systems for high speed operation and mass data process. 

In this paper, a novel method is proposed for designing a multiple error correcting code specifically targeted 
towards correcting burst errors. This paper shows how, given an Orthogonal Latin Square code, it can be converted 
into a code capable of correcting burst errors of a specific length in addition to its original capacity with minimal 
overhead.  
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The paper is organized as follows, section two talks about other knows methods of multi-bit error detection., 
section three explains OLS codes, section four explains our proposed methodology followed by the results in section 
five. Finally section six concludes the paper along with experimental results. 

 
2. Related Work 
 

For high defect rates, memory repair schemes based on spare rows and columns are not effective.  Much higher 
levels of redundancy are required that can tolerate multi-bit errors. The two-dimensional ECC proposed by [Kim 07] 
tolerates multiple bit errors due to non-persistent faults, but is slow and complicated to decode.  

Conventional SEC-DED codes can only detect, but not correct, double-bit errors.  In [Dutta 07], it was shown 
that by carefully selecting and ordering the columns in the H-matrix for an SEC-DED code, it is possible to correct 
all adjacent double-bit errors in addition to correcting all single bit errors thereby creating an SEC-DAEC code.  
Since the most likely double-bit errors will be adjacent, this is very useful.  The limitation of SEC-DAEC codes is 
that they may not detect all non-adjacent double-bit errors. While scaling up conventional parity check code for 
correcting multi-bit errors requires less check bits, the additional number of syndromes that needs to be stored for 
correction purposes makes parity check matrices an unattractive solution for multi-bit errors. 

In some cases, check bits are used along with spare rows and columns to get combined fault-tolerance. In 
[Stapper 92], interleaved words with redundant word lines and bit lines are used in addition to the check bits on each 
word. [Su 05] proposes an approach where the hard errors are mitigated by mapping to redundant elements and ECC 
is used for the soft errors. Such approaches will not be able to provide requisite fault tolerance under high bit error 
rates when there are not enough redundant elements to map all the hard errors. 

[Micheloni 06] proposed a scheme that uses Bose- Chaudhuri-Hocquenghem (BCH) codes to correct multiple 
errors in NAND flash. However, NAND flash memory systems process with a large size of data such as a page or a 
block unit. Hence, BCH codes may not be appropriate for a NAND flash controller [Chen 08]. [Kim 10] proposed a 
product code using a Reed-Solomon code scheme for NAND flash memories, capable of correcting multiple bit 
errors. Although Reed-Solomon codes are good for burst errors, the decoding time would be enormous (> 500 clock 
cycles) [Kim 10]. 

The application of OLS codes for handling the high defect rates in low power caches as described in [Christi 09] 
provides a more attractive solution.  While OLS codes require more redundancy than conventional ECC, the one-
step majority encoding and decoding process is very fast and can be scaled up for handling large numbers of errors 
as opposed to BCH codes, which while providing the desired level of reliability requires multi-cycles for decoding 
[Lin 83]. 

Since most multi-bit errors are likely to result in adjacent bit failures, a burst error code seems like an optimal 
solution. In this paper we show how a regular OLS code can be converted to correct burst errors of specific lengths. 
This way we can combine the single-step decodable facet of OLS codes along with its high error correction 
capability. The capability of OLS codes to correct multiple errors in a single cycle is synergistic with a high 
performance memory system, in particular MLC NAND. This way even in the presence of multiple errors, a likely 
scenario in MLC NAND systems [Micheloni 06], the error detection and correction step would not be a bottleneck 
in the way of improved memory performance. Our proposed solution preserves this property of OLS codes while 
enabling it to correct burst errors with minimal overhead. 

 
3. Orthogonal Latin Square Codes 
 

A Latin square [Hsiao 70] of order (size) m is an m x m square array of the digits 0, 1, . . . , m - 1, with each row 
and column a permutation of the digits 0,1, … , m - 1. Two Latin squares are orthogonal if, when one Latin square is 
superimposed on the other, every ordered pair of elements appears only once. 

In general, a t-error correcting majority decodable code works on the principle that 2t + 1 copies of each 
information bit are generated from 2t + 1 independent sources. One copy is the bit itself received from memory or 
any transmitting device. The other 2t copies are generated from 2t parity relations involving the bit. By choosing a 
set of h Latin squares that are pair-wise orthogonal, one can construct a parity check matrix such that the number of 
1’s in each column is 2t = h + 2. The orthogonality condition ensures that for any bit d, there exists a set of 2t parity 
check equations orthogonal on di, and thus makes the code self-orthogonal and one-step majority decodable. One-
step majority decoding is the fastest parallel decoding method. The t-error correcting codes generated by OLS codes 
[Hsiao 70] have m2 data bits and 2tm check bits per word. 

Let the m2 data bits be denoted by a vector: 
[ ]
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m
dddD …………………… (1) 

 

368



Then the 2tm check-bit equations for t-error correcting are obtained from the following parity check matrix H: 
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I2tm is an identity matrix of order 2tm and M1, . , M2t are submatrices of size m x m2. These submatrices M1….M2t 
have the form 
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The matrices M1….M2t are derived from the existing set of orthogonal Latin squares L1, L2, . . . , L2t-2 of size m x 

m. Denote the set of Latin squares as, 
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Figure 1. Decoding Data Bit di with Majority Voter 

 
Once the H-matrix is constructed, the decoding for each data bit is done using a majority voter as illustrated in 

Fig. 1.  When decoding data bit di, the set of bits in each of the 2t H-matrix rows that di is present in are XORed 
together and serve as an input to a majority voter along with di itself giving a total of 2t+1 inputs.  Since the set of 
inputs to the XOR gates are orthogonal, the OLS code will provide the correct output as long as the number of errors 
is less than half the number of inputs to each voter, i.e., t or less.  Note that OLS coding does not need to generate a 
syndrome, but can “correct” errors directly from majority voting.  

As an example, a single error correcting OLS code for 16 data bits is shown below. For 16 data bits, m = 4. Also, 
since this is a single error correcting code, t = 1. Therefore the total number of check bits will be 2*t*m = 8. The H-
matrix for the resulting (24, 16) code is shown below. 
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As can be seen from the above matrix, each data bit, from d0 to d15 can be reconstructed from two independent 

parity equations. For example, bit d0 can be regenerated by XORing, d1, d2, d3, c0 and also d4, d8, d12, c4. These two 
independent equations along with bit d0 itself would be the three inputs to the voter. Using such a scheme bit d0 can 
be correctly decoded in the presence of one error. This shows the above H-matrix can tolerate a single error 
anywhere in the code. 
 
4. Proposed Scheme 
 

The proposed scheme is based on the fact that for decoding OLS codes, as long as each bit has requisite number 
of inputs feeding into the majority voter, multiple-bit errors can be corrected using a much smaller code. Say, for 
example bits dx, dx+1, dx+2 are in error. If each row of the OLS matrix contains at most only one of dx, dx+1, dx+2 and 
each of these bits occur in at least 2t different, orthogonal rows of the OLS matrix, then the OLS code is capable of 
handling any t error pattern and also a burst error pattern on the bits dx, dx+1, dx+2. Moreover since by definition all 
rows of an OLS matrix are mutually orthogonal, each particular conflict can occur only once in the code. This helps 
limit the number of conflicts that needs to be resolved. To summarize, in this example, if the parity relations are 
chosen carefully then 2t + k bits should be sufficient to detect all t-bit error patterns and any burst of length at most 
three. So, for a OLS code to correct all burst error patterns of length b, no parity relation should be comprised of bits 
adjacent by a distance b or less.  

As part of our scheme we try to resolve all “conflicts” in a given OLS code and convert it into one capable of 
correcting all burst errors of length b. “Conflicts” here are defined as any row in the original OLS matrix where any 
combination of b adjacent bits appear together. The OLS matrix cannot correct all burst errors as long as even one 
such row is present. The problem has been modeled as a graph coloring problem. All the bits which cause conflicts 
are modeled as graph nodes. Once the set of nodes have been determined, the next step is to formulate the 
constraints that would dictate which bits can be grouped together. So, here we have a problem where a set of nodes 
needs to be grouped into as few sets as possible while adhering to some specific rules. If, now, we think of the set of 
nodes as a set of vertices in a graph whose edges are the specific rules binding their grouping, the problem then 
almost perfectly lends itself as a graph coloring problem.  

Graph coloring refers to a problem, where we seek to assign a color to each node of an undirected graph G so that 
if (u, v) is an edge, then u and v are assigned different colors; and the goal is to do this while using a small set of 
colors. More formally, a k-coloring of G is a function f: V Æ {1, 2, . . . . , k} so that for every edge (u, v), f(u) ≠ f(v). 
For the burst-error problem under consideration, the number of colors required to color the graph is equal to the 
number of extra check bits required. There is however, one key difference between the traditional graph coloring 
problem and our problem at hand. While in a conventional graph coloring problem, one would try to color all nodes 
of the graph using a minimum set of colors, all we need for our purposes is to select any one node from each 
conflicting pair and move them to a different line.  The justification behind this is as follows. Each conflicting pair 
represents two bits, separated by a distance less than or equal to b. The structure of an OLS matrix is such that for all 
b < m, conflicting nodes will always be in pairs. Now if we choose any one node from each conflicting pair and 
move them to different lines, following pre-determined rules, we can convert the OLS code into a burst error 
correcting code. Hence once we single out the entire set of conflicting nodes (the set V of graph vertices) and 
determine the constraints binding their mutual positioning in a line of the OLS matrix, we trim the set of nodes by 
picking one from each conflicting pair. Then we have our final graph which we proceed to color in a manner 
described below with the final goal of using up as few colors as possible. 

Since we expect the set of conflicting nodes to be fairly constrained as far as their mutual positioning in a single 
line goes, especially for smaller data sizes, we choose to represent the graph using an adjacency matrix. Identifying 
conflicting pair of nodes requires a single pass through each bit of the OLS matrix once. Since an OLS matrix 
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capable of 2t errors has 2tm check bits and m2 data bits, identifying all conflicting pair of nodes requires O (m3) time. 
Once all the conflicting pair of nodes has been recognized, the edges are determined following the rules listed below, 

i) if any two nodes u, v of the graph appear in a row of the OLS matrix which produced neither u nor v,  then (u, 
v) is an edge of G. 

ii) if any two nodes u, v of the graph are separated by a distance less than or equal to b, then (u, v) is an edge of G. 
This takes O (n2), n being the number of nodes in the graph [Cormen 01]. 

Once the graph G has been created, there are two separate problems which need to be solved in order. First we 
need to trim the graph, choosing one node from each conflicting pair. While choosing any one from the conflicting 
pair would preserve the functionality of our goal, choosing the node with fewer edges incident upon it helps us in the 
next step, where we do the coloring. Since two nodes sharing an edge between them needs to be colored differently, 
fewer edges would allow us to achieve our coloring goals using fewer colors which translate to fewer extra check 
bits. The argument rings true intuitively as well, since fewer edges mean less constraints and subsequently more 
freedom in coloring the graph. 

Once the set of nodes, V, and the set of edges, E, has been trimmed, we are left with the final step in our problem 
i.e. to color G. It has been shown that k-coloring, for k > 2 is a NP complete problem [Kleinberg 06]. In this paper 
we try solving the graph coloring problem using an underlying Breadth First Search (BFS) structure. In order to 
adapt the traditional BFS algorithm for the purposes of graph coloring we needed to use some additional data 
structures. Each node maintains an array listing what are the forbidden colors for that node. Thereafter the BFS 
algorithm is applied as follows, 

 
i) start with a source node, s 
ii) add s to the processing queue Q 
iii) while Q ≠ ∅,  

a) u  dequeue (Q) 
b) make a single pass through the array 
listing forbidden colors, selecting the first 
color, say cu  not listed as forbidden for u 
c) for each node v ∈ Adj (u) 

1)  set cu as a forbidden color 
2)  enqueue (v) 

 d) set u.visited  1 
iv) go through set of nodes, if u.visited ≠ 1, run 
steps i)-iii) on it (after traversing the queue Q, if 
any node has u.visited ≠ 1, it would mean that 
node is disconnected from the rest of the graph, 
hence a separate modified BFS algorithm needs to 
be run on that node to ensure that all nodes of the 
graph are covered) 

 
In addition to traversing each node and each edge of the graph as part of our coloring algorithm, one has to go 

through an array for each node to determine what should be the correct color for that node. The cost for that 
traversal is of O (k), for an array of size k. Hence, using our chosen adjacency-matrix representation of the graph, the 
complexity of the algorithm described above is bounded by O (n2k).  

The number of colors used, k, signifies the number of extra check bits required to convert the original OLS code 
into a code capable of correcting all burst errors of length b or less. For our experiments, the array in each node 
keeping track of forbidden colors would be initialized to size k. If at any node, all k colors are designated as 
forbidden, that would mean the graph cannot be colored using k colors. Subsequent calls to the coloring function 
would be made with increasing values of k unless a valid solution was obtained. The next section lists some of the 
experimental results we obtained as proof of concept for our proposed scheme.  

 
5. Results  
 

Table 1 shows experimental results where OLS codes that were originally double error correcting were converted 
to double error correcting and 3-bit burst error correcting code. Experiments were performed for different sizes of m. 
Although a double error correcting OLS code would include the sub-matrices M1, M2, M3 and M4, the structure of M1 
is such that there would be too many conflicts due to bit adjacency. Hence without any loss of generalization, a 
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double error correcting OLS code was formed out of sub-matrices M2, M3, M4 and M5. This ensured a minimal 
number of conflicts and subsequently a better solution. 

As shown in Table 1, the overhead of extra check-bits diminish with increasing size of code. This can be 
explained by virtue of the fact that for a larger m there is more freedom in the placement of bits giving rise to fewer 
conflicts.  

 
Table 1. Check-bit overhead for 3-bit burst-error protection and Double Error Correcting OLS code 

m Original check-bits Data Bits Extra added check-bits Percentage Overhead 

4 16 16 4 25% 
8 32 64 4 12.50% 
16 64 256 3 4.69% 

 
In Table 2, we show how attempting to build a code capable of handling longer burst errors affects check bit 

overhead. As expected we see that a larger number of check bits is necessary for stronger codes. We see from Fig. 1 
that the increase in the number of extra check-bits follows a piecewise linear relationship with the length of burst-
errors to be corrected. 

 
Table 2. Check-bit overhead for DEC OLS code with m=16 while burst-error length is varied 

 

Burst 
Error 

Length 

Extra added 
check-bits 

Percentage 
Overhead 

3 3 4.69% 
5 3 4.69% 
7 4 6.25% 
9 5 7.81% 

11 5 7.81% 
 

6. Concluding Remarks  
 

In this paper we have presented a scheme for generating one-step decodable burst-error correction codes. Our 
experimental results show that the check-bit overhead is a decreasing function for increasing code size, which makes 
it this an attractive solution to counter the worsening problem of multiple-bit errors in memory systems. 
 

 

 
Figure 2. Burst-error length vs check-bit overhead 
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