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Abstract 
 The entropy of a set of data is related to the amount 
of information that it contains and provides a theoretical 
bound on the amount of compression that can be 
achieved. While calculating entropy is well understood 
for fully specified data, this paper explores the use of 
entropy for incompletely specified test data and shows 
how theoretical bounds on the maximum amount of test 
data compression can be calculated.  An algorithm for 
specifying don’t cares to minimize entropy for fixed length 
symbols is presented, and it is proven to provide the 
lowest entropy among all ways of specifying the don’t 
cares.  The impact of different ways of partitioning the 
test data into symbols on entropy is studied.  Different test 
data compression techniques are analyzed with respect to 
their entropy bounds.  Entropy theory is used to show the 
limitations and advantages of certain types of test data 
encoding strategies. 
1. Introduction 

The rapid increase in test data volume is a major 
challenge for testing system-on-a-chip (SOC) designs. 
Reducing the test data volume by compression techniques 
is an attractive approach for dealing with this problem. 
The test data can be stored in compressed form on the 
tester and then decompressed using an on-chip 
decompressor. 

A number of test vector compression schemes have 
been developed using a variety of codes.  Codes can be 
classified into four categories depending on whether they 
encode a fixed or variable number of bits in the original 
data using either a fixed or variable number of bits in the 
encoded data.  Each of the four categories are listed 
below: 

Fixed-to-Fixed Codes:  These codes encode fixed size 
blocks of data using smaller fixed size blocks of encoded 
data.  Conventional LFSR reseeding [Könemann 91] falls 
into this category where each fixed size test vector is 
encoded as a smaller fixed size LFSR seed.  Techniques 
that use combinational expanders with more outputs than 
inputs to fill more scan chains with fewer tester channels 
each clock cycle fall into this category.  These techniques 
include using linear combinational expanders such as 

broadcast networks [Hamzaoglu 99] and XOR networks 
[Bayraktaroglu 01], as well as non-linear combinational 
expanders [Reddy 02], [Li 03].  If the size of the original 
blocks is n bits and the size of the encoded blocks is b 
bits, then there are 2n possible symbols (original block 
combinations) and 2b possible codewords (encoded block 
combinations).  Since b is less than n, obviously not all 
possible symbols can be encoded using a fixed-to-fixed 
code.  If Sdictionary is the set of symbols that can be 
encoded (i.e., are in the “dictionary”) and Sdata is the set 
of symbols that occur in the original data, then if Sdata ⊆ 
Sdictionary, it is a complete encoding, otherwise it is a 
partial encoding.  For LFSR reseeding, it has been shown 
in [Könemann 91], that if b is chosen to be 20 bits larger 
than the maximum number of specified bits in any n-bit 
block of the original data, then the probability of not 
having a complete encoding is less than 10-6.  The 
technique in [Reddy 02] constructs the non-linear 
combinational expander so that it will implement a 
complete encoding.  For techniques that do not have a 
complete encoding, there are two alternatives.  One is to 
constrain the ATPG process so that it only generates test 
data that is contained in the dictionary (this is used in 
[Bayraktaroglu 01]), and the other is to bypass the 
dictionary for symbols that are not contained in it (this is 
used in [Li 03]).  Bypassing the dictionary requires adding 
an extra bit to each codeword to indicate whether it is 
coded data or not. 

Fixed-to-Variable Codes:  These codes encode fixed 
size blocks of data using a variable number of bits in the 
encoded data.  Huffman codes are in this category.  The 
idea with a Huffman code is to encode symbols that occur 
more frequently with shorter codewords and symbols that 
occur less frequently with longer codewords.  A method 
was shown in [Huffman 52] to construct the code in a 
way that minimizes the average length of a codeword.  
The problem with a Huffman code is that the decoder 
grows exponentially as the block size is increased.  In [Jas 
99, 03], the idea of a selective Huffman code was 
introduced where partial coding is used and the dictionary 
is selectively bypassed.  This allows larger block sizes to 
be efficiently used. 



 

Variable-to-Fixed Codes:  These codes encode a 
variable number of bits using fixed size blocks of encoded 
data.  Conventional run-length codes are in this category.  
A method for encoding variable length runs of 0’s using 
fixed size blocks of encoded data was proposed in [Jas 
98].  The LZ77 based coding method in [Wolff 02] also 
falls in this category.  Note that in [Wolff 02], it is a 
partial encoding that uses a bypass mode. 

Variable-to-Variable Codes:  These codes encode a 
variable number of bits in the original data using a 
variable number of bits in the encoded data.  Several 
techniques that use run-length codes with a variable 
number of bits per codeword have been proposed 
including using Golomb codes [Chandra 01a], frequency 
directed codes [Chandra 01b], and VIHC codes [Gonciari 
02].  One of the difficulties with variable-to-variable 
codes is synchronizing the transfer of data from the tester.  
All of the techniques that have been proposed in this 
category require the use of a synchronizing signal going 
from the on-chip decoder back to the tester to tell the 
tester to stop sending data at certain times while the 
decoder is busy.  Fixed-to-fixed codes do not have this 
issue because the data transfer rate from the tester to the 
decoder is constant. 

This paper investigates the fundamental limits of test 
data compression, i.e., it looks to answer the question:  
how much can we compress?  This is done by looking at 
the entropy of test sets and its relation to the compression 
limit. The idea of using entropy for calculating the test 
data compression limits was first studied in [Chandra 02].  
However, in that work, the entropy calculations were 
limited to a special case related to FDR codes.  All the 
don’t cares were specified as 0’s and only one set of 
symbols was considered.  Different ways of specifying 
the don’t cares and different symbol sets will lead to 
different entropies for the same test set.  In this paper, we 
investigate entropy including the additional degrees of 
freedom that were not explored in [Chandra 02].  In this 
paper, a procedure for calculating the minimum entropy 
of a test set over all possible ways of specifying the don’t 
cares is described.  Also, the relationship between entropy 
and symbol partitioning is studied. 

Using entropy theory, we can derive theoretical limits 
on the compression that can be achieved using various 
types of coding techniques. This is useful in identifying 
how much room for improvement there is for the various 
test data compression techniques that have been proposed.  
It is also useful to identify the compression techniques 
that have a lot of room for improvement and offer scope 
for fruitful research. 

2. Entropy Analysis for Test Data 
Entropy is a measure of the disorder in a system.  The 

entropy of a set of data is related to the amount of 
information that it contains which is directly related to the 

amount of compression that can be achieved.  Entropy is 
equal to the minimum average number of bits needed to 
represent a codeword and hence presents a fundamental 
limit on the amount of data compression that can be 
achieved [Cover 91].  The entropy for a set of test data 
depends on how the test data is partitioned into symbols 
and how the don’t cares are specified.  These two degrees 
of freedom are investigated in this section. 

2.1 Partitioning Test Data into Symbols 
 For fixed-to-fixed and fixed-to-variable codes, the test 

data is partitioned into fixed length symbols (i.e., each 
symbol has the same number of bits).  The entropy for the 
test data will depend on the symbol length.  Different 
symbol lengths will have different entropy.  For a given 
symbol length, the entropy for the test data can be 
calculated and will give a theoretical limit on the amount 
of compression that can be achieved by any fixed-to-fixed 
or fixed-to-variable code that uses that symbol length.  
This is illustrated by the following example. Consider the 
test set T in Table 1 which consists of four test vectors 
each partitioned into 4-bit blocks.  The probability of 
occurrence of each unique 4-bit symbol can be calculated.  
Note that the term “probability” here refers to the actual 
frequency of the symbol with respect to the total number 
of symbols in the data rather than the classical definition 
of probability as the chance of occurrence. The entropy of 
this test set is calculated from the probabilities of 
occurrence of unique symbols using the formula 

, where pi is the probability of 

occurrence of symbol xi in the test set and n is the total 
number of unique symbols.  This entropy is calculated to 
be 2.64.  The entropy gives the minimum average number 
of bits required for each codeword.  Thus, the maximum 
compression that can be achieved is given by 
(symbol_length – entropy) / (symbol_length) which in this 
case is equal to (4 - 2.64) / 4 = 34%.  Now, if the test set 
is partitioned into 6-bit blocks instead of 4-bit blocks, 
then the corresponding probabilities of occurrence of 
unique symbols will change. In this case, the entropy 
calculated using the above formula is 3.25.  Hence, the 
entropy for 6-bit blocks is different than 4-bit blocks.  The 
maximum compression in this case is equal to (6 – 3.25) / 
6 = 45.8%. 
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Table 1.  Test set divided into 4-bit blocks 
test 1 1111 0001 0011 0000 1100 0111 
test 2 0000 0011 0001 0111 0100 0000 
test 3 0001 0111 0111 1100 1100 0000 
test 4 0011 0000 0000 0100 1100 0111 

 

For variable-to-fixed and variable-to-variable codes, 
the test data is partitioned into variable length symbols 
(i.e., the symbols can have different numbers of bits).  An 
example of this is a run-length code where each symbol 
consists of a different size run-length.  Given the set of 



 

variable length symbols, the entropy can be calculated the 
same way as for fixed length symbols.  If the test set 
shown in Table 1 is partitioned into symbols 
corresponding to different size runs of 0’s, The entropy 
for this partitioning is 2.07. Calculating the maximum 
compression for variable length symbols is different than 
for fixed length symbols.  For variable length symbols, 
the maximum compression is equal to 
(avg_symbol_length – entropy) / (avg_symbol_length).  
The average symbol length is computed as ∑

=
⋅

n

i
ii xp

1
 

where pi is the probability of occurrence of symbol xi, |xi| 
is the length of symbol xi, and n is the total number of 
unique symbols. For this example, the average symbol 
length was calculated as 2.49, so the maximum 
compression is (2.53 – 2.07)/2.53 = 18.2%.  This is the 
maximum compression that any code that encodes runs of 
0’s can achieve for the test data in Table 1. 

2.2 Specifying the Don’t Cares 
While computing entropy for fully specified data is 

well understood, the fact that test data generally contains 
don’t cares makes the problem of determining theoretical 
limits on test data compression more complex.  
Obviously, the entropy will depend on how the don’t 
cares are filled with 1’s and 0’s since that affects the 
frequency distribution of the various symbols.  To 
determine the maximum amount of compression that can 
be achieved, the don’t cares should be filled in a way that 
minimizes the entropy. 

While the number of different ways the don’t cares 
can be filled is obviously exponential, for fixed length 
symbols, a greedy algorithm is presented here for filling 
the don’t cares in an optimum way to minimize entropy.  
A proof is given that it minimizes entropy across all 
possible ways of filling the don’t cares.  However, for 
variable length symbols, the problem is more difficult and 
remains an open problem.  In [Wurtenberger 03], this 
problem is discussed for run length codes. An 
optimization method based on simulated annealing is then 
used to find the solution.  Since a heuristic based 
approach is used, it is not guaranteed to obtain the 
optimum solution. 

 

2.2.1 Greedy Fill Algorithm 
 

For fixed length symbols, we describe an algorithm 
called “greedy fill” below and claim that it is optimal, i.e., 
it results in minimum entropy among all possible ways of 
filling the don’t cares given a specific partitioning of the 
test set into fixed length symbols.  

The greedy fill algorithm is based on the idea that the 
don’t cares should be specified in a way such that the 
frequency distribution of the patterns becomes as skewed 
as possible.  This algorithm was first described in [Jas 03] 
where the goal was to maximize the compression for 

Huffman coding, but it also applies for minimizing 
entropy.  If the fixed symbol length is n, then the 
algorithm identifies the minterm, a fully specified symbol 
of length n (there are 2n such minterms), that is contained 
in as many of n-bit blocks of the unspecified test data as 
possible, i.e., having the highest frequency of occurrence.  
This minterm is then selected, and all the unspecified n-
bit blocks that contain this minterm are specified to match 
the minterm. The algorithm then proceeds in the same 
manner by finding the next most frequently occurring 
minterm.  This continues until all the don’t cares have 
been specified. 
Theorem 1:  The probability distribution obtained from 
the greedy fill algorithm described above results in 
minimum entropy. 
Proof: The proof of this theorem can be found in 
[Balakrishnan 04]. 

To illustrate this algorithm, an example test set 
consisting of four test vectors with 12 bits each is shown 
in Fig. 1(a). The test vectors are partitioned into 4-bit 
blocks resulting in a total of twelve 4-bit blocks. Of the 16 
(24 = 16) possible minterms for a block, the most 
frequently occurring minterm is 1111 as seven of the 
unspecified blocks contain 1111. After the first iteration, 
only five blocks remain and the most frequently occurring 
minterm now is 1000. All the five blocks contain this 
minterm and hence the algorithm terminates.  The 
resulting test set after filling up the unspecified bits in the 
above manner is shown in Fig. 1(b). 

 

   X 0 X 0   1 0 X X  1 X X X       1 0 0 0   1 0 0 0   1 1 1 1 
 X X 1 X   X 1 X 1   1 1 1 X       1 1 1 1   1 1 1 1   1 1 1 1 
 X X 0 0   1 X X 0   X 1 1 1       1 0 0 0   1 0 0 0   1 1 1 1 
 X X X X   X 1 X X   1 0 0 0       1 1 1 1   1 1 1 1   1 0 0 0 

 

(a) Unspecified test set       (b) After greedy fill algorithm 
Figure 1.  Specifying don’t cares to minimize entropy 

 
2.2.2 Experimental Results for Greedy Fill Algorithm 
 

Experiments were performed using the greedy fill 
algorithm to calculate the theoretical limit on test data 
compression for the dynamically compacted test cubes 
generated by MINTEST [Hamzaoglu 98] for the largest 
ISCAS’89 benchmark circuits. These are the same test 
sets used for experiments in [Chandra 01ab], [Gonciari 
03], and [Jas 03]. The compression values in Table 2 are 
calculated from the exact values of minimum entropy that 
were generated using the greedy fill algorithm. As can be 
seen from the table, the percentage compression that can 
be achieved increases with the symbol length.  No fixed-
to-fixed or fixed-to-variable code using these particular 
symbol lengths can achieve greater compression than the 
bounds shown in Table 2 for these particular test sets.  
Note, however, that these entropy bounds would be 
different for a different test set for these circuits, e.g., if 
the method in [Kajihara 02] was used to change the 
location or number of don’t cares.  However, given any 



 

test set, the proposed method can be used to determine the 
corresponding entropy bound for it. 

The greedy fill algorithm is exponential in the symbol 
length because the number of minterms grows 
exponentially.  Thus, it is not practical to calculate the 
entropy for larger symbol lengths using this algorithm.  
An approximate algorithm that is not guaranteed to find 
the minimum entropy but can scale to larger symbol 
lengths is described in [Balakrishnan 04]. Experimental 
results show that the limits obtained by this algorithm are 
very close to the exact entropy limits while greatly 
reducing the computation complexity. 

 

Table 2.  Exact entropy compression limits using greedy 
fill algorithm 

Symbol Length Circuit Original Test 
Data 4 6 8 10 

s5378 23754 52.0 % 56.3 % 59.2 % 63.8 % 
s9234 39723 54.1 % 57.4 % 60.7 % 63.7 % 
s13207 165200 83.6 % 85.0 % 85.6 % 87.1 % 
s15850 76986 68.9 % 70.5 % 71.9 % 73.5 % 
s38417 164736 59.8 % 63.2 % 65.3  % 67.7 % 
s38584 199104 65.9 % 67.6 % 68.8 % 70.8 % 

3. Symbol Length versus Compression Limits 
In this section, the relationship between symbol 

length, compression limits, and decoding complexity is 
investigated. The compression limit was calculated from 
minimum entropy for the benchmark circuit s9234 as the 
symbol length is varied.  The percentage compression 
varies from 50% for a symbol length of 2 to 92% for a 
symbol length of 32; this corresponds to a compression 
ratio range of 2 to 12.  The reason why greater 
compression can be achieved for larger symbol lengths is 
that more information is being stored in the decoder.  This 
becomes very clear when the compression limit is 
graphed for all possible symbol lengths as shown in Fig. 
2.  As can be seen, the compression ratio goes towards 
infinity as the symbol length becomes equal to the 
number of bits in the entire test set.  When the symbol 
length is equal to the number of bits in the entire test set, 
then the decoder is encoding the entire test set.  This is 
equivalent to built-in self-test (BIST) where no data is 
stored on the tester. 

Consider the simple case where the information in the 
decoder is simply stored in a ROM without any encoding.  
The decoder ROM translates the codewords into the 
original symbols, so at a minimum, it needs to store the 
set of original symbols.  For a symbol length of 2, there 
are 22 possible symbols, so the decoder ROM would have 
to store 4 symbols each requiring 2 bits, thus it requires 8 
bits of storage.  For a symbol length of 4, there are 24 
possible symbols, so the decoder ROM would have to 
store 16 symbols each requiring 4 bits, thus it requires 64 
bits of storage.  Having a larger decoder ROM allows 
greater compression.  For a symbol length of 32, there are 

232 possible symbols, but it is not likely that the test data 
would contain all of them.  The decoder would only need 
to store the symbols that actually occur in the test data.  In  
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Figure 2. Compression for all symbols lengths for s9234 
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Figure 3. Encoded data size versus simple decoder ROM 

size for s9234 

Fig. 3, the size of a simple decoder ROM that is required 
for different symbols lengths is graphed for different 
symbol lengths.  As can be seen, the decoder information 
goes up exponentially as the symbol length goes from 1 to 
10 as in this range all possible symbols are occurring in 
the test data and the number of symbols is growing 
exponentially.  After this, the decoder information goes 
up less than exponentially because not all possible 
symbols of that length occur in the test data.  After the 
symbol length exceeds about 20, the decoder information 
is nearly equal to the entire test set as there is very little 
repetition of the symbols in the test data (i.e., almost all 
the symbols in the test data are unique at that point).  One 
way to view the graph in Fig. 3 is that as the symbol 
length is increased, essentially more information is being 
stored in the on-chip decoder, and less information is 
being stored off-chip in the tester memory.  A symbol 
length of 1 corresponds to conventional external testing 
with no compression, and a symbol length equal to the 
size of the test set corresponds to conventional BIST 
where no data is stored on the tester. 



 

The real challenge in test data compression is in the 
design of the decoder.  The entropy of the test data places 
a fundamental limit on the amount of compression that 
can be achieved for a particular symbol length, but the 
real key is to achieve something close to the maximum 
compression using a small decoder.  The next two 
sections evaluate existing test data compression schemes 
with respect to their compression limits based on entropy 
theory. 

4. Analysis of Test Data Compression 
Schemes 

In this section, different test data compression 
schemes proposed in the literature are compared with 
their entropy bounds.  Both schemes that operate on fixed 
length symbols as well as those that work on variable 
length symbols are considered.  One major constraint is 
that we are only able to report results for schemes for 
which we have access to the exact test set that was 
encoded.  For this reason, we have limited the results to 
only those schemes that reported results for the 
MINTEST test cubes [Hamzaoglu 98].  Discussion of 
LFSR reseeding schemes is deferred to Sec. 5. 

4.1 Fixed Symbol Length Schemes 
Table 3 shows results for two compression schemes.  

One is a fixed-to-variable scheme based on selective 
Huffman coding [Jas 99, 03], and the other is a fixed-to-
fixed scheme that uses a selective dictionary with fixed 
length indices [Li 03].  The first two columns show the 
circuit name and the size of the original test set. Then 
results are shown for [Jas 03] comparing the actual 
percentage of compression achieved with the entropy 
limit for a symbol length of 8 and 12.  The same is done 
for the method in [Li 03] for a block size of 16 and 32.  
The method in [Jas 03] is closer to the entropy limit 
because it uses variable length codewords whereas the 
method in [Li 03] uses fixed length codewords.  However, 
the method in [Li 03] has the advantage of an easier 
interface to the tester since it is a fixed-to-fixed code. 

Table 3. Fixed symbol length schemes versus entropy 
limits 

Selective Huffman [Jas 03] Dictionary Based 
Compression [Li 03] 

8 12 16 32 Circuit 
Test 
Set 
Size Entropy 

Limit 
Actual 
Comp. 

Entropy 
Limit 

Actual 
Comp. 

Entropy 
Limit 

Actual 
Comp.

Entropy 
Limit 

Actual 
Comp.

s5378 23754 59.2 50.1 66.2 55.1 71.6 45.3 96.0 67.2
s9234 39723 60.7 50.3 65.0 54.2 68.7 46.1 91.8 65.9
s13207 165200 85.6 69.0 88.0 77.0 88.8 49.2 98.3 73.4
s15850 76986 71.9 60.0 75.1 66.0 77.8 47.4 94.0 67.6
s38417 164736 65.3 55.1 68.5 59.0 71.7 44.0 89.2 49.0
s38584 199104 68.8 58.3 72.2 64.1 75.1 45.8 93.7 64.3

4.2 Variable Symbol Length Schemes 
Table 4 shows results for three compression schemes 

that are based on variable-to-variable codes. Each of these 

schemes are based on encoding runs of 0’s.  As was 
discussed in Sec. 2, filling the don’t cares to minimize 
entropy for variable size symbols is an open problem.  
These three schemes all fill the don’t cares by simply 
replacing them with specified 0’s.  For simplicity, the 
entropy limits in Table 4 were calculated by also filling 
the don’t cares with specified 0’s. 

The results in Table 4 indicate that the VIHC method 
in [Gonciari 03] gets very close to the entropy limit.  This 
is because this method is based on Huffman coding.  One 
conclusion that can be drawn from these results is that 
there is not much room for improvement for research in 
variable-to-variable codes that encode runs of 0’s.  The 
only way to get better compression than the entropy limit 
that is shown here would be to use a different automatic 
test pattern generation (ATPG) procedure or fill the don’t 
cares in a different way that changes the entropy limit. 
Table 4. Variable symbol length schemes versus entropy 

limits 

Circuit Test Data 
Size 

Entropy 
Limit 

Golomb 
[Chandra 01a] 

FDR 
[Chandra 01b]

VIHC 
[Gonciari 03]

s5378 23754 52.4 % 40.7 % 48.0 % 51.8 % 
s9234 39723 47.8 % 43.3 % 43.6 % 47.2 % 
s13207 165200 83.7 % 74.8 % 81.3 % 83.5 % 
s15850 76986 68.2 % 47.1 % 66.2 % 67.9 % 
s38417 164736 54.5 % 44.1 % 43.3 % 53.4 % 
s38584 199104 62.5 % 47.7 % 60.9 % 62.3 % 

5. Analysis of LFSR Reseeding Schemes 
Conventional LFSR reseeding [Könemann 91] is a 

special type of fixed-to-fixed code in which the set of 
symbols is the output space of the LFSR and the set of 
codewords is the seeds.  As was seen in the graphs in Sec. 
3, larger symbol lengths are needed in order to achieve 
greater amounts of compression due to the entropy limits 
on compression.  The difficultly with larger symbol 
lengths is that the decoder needs to be able to produce 
more symbols of greater length.  The power of LFSR 
reseeding is that an LFSR is used for producing the 
symbols. An r-stage LFSR has a maximal output space as 
it produces 2r-1 different symbols as well as having a very 
compact structure resulting in low area.  Thus, an LFSR is 
an excellent vehicle for facilitating larger symbols lengths 
with a small area decoder.  The only issue is whether the 
set of symbols that occur in the test data, Sdata, are a 
subset of the symbols produced by the LFSR, SLFSR, (i.e., 
Sdata ⊆ SLFSR).  Fortunately, the symbols produced by the 
LFSR have a pseudo-random property.  If n is the symbol 
length, then as was shown in [Könemann 91], if the 
number of specified bits in an n-bit block of test data is 20 
less than the size of the LFSR, then the probability of the 
n-bit block of test data not matching one of the symbols in 
SLFSR is negligibly small (less than 10-6). In [Hellebrand 
95], a multiple-polynomial technique was presented which 
reduces the size of the seed information to just 1 bit more 



 

than the maximum number of specified bits in an n-bit 
block.  Thus, the compression that is achieved with this 
approach for a symbol length of n is equal to the ratio of n 
to the maximum number of specified bits in an n-bit block 
plus 1. Fig. 4 shows a graph of the compression for LFSR 
reseeding for all possible symbol lengths. As can be seen, 
no compression is achieved for short symbol lengths 
where the maximum number of specified bits is equal to 
the symbol length. Compression does not start to occur 
until the symbol length becomes larger than 20. The 
compression steadily improves as the symbol length is 
increased, but in general, it cannot exceed the total 
percentage of don’t cares in the test data. For the test set 
in Fig. 4, the percentage of don’t cares is 94%. 
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Figure 4. Compression for LFSR reseeding versus symbol 

length for s13207 

6. Conclusions 
This paper shows how entropy theory can be used to 

calculate theoretical limits to the amount of test data 
compression. These limits are useful as a measure of how 
much improvement is possible over existing test data 
compression schemes. They can be used to identify coding 
techniques where there is not much scope for 
improvement as well as identify coding techniques that 
hold promise for fruitful research. 

This paper studied the relationship of symbol 
partitioning and don’t care filling to entropy.  An area for 
future research is to look at new coding techniques that 
can exploit this to achieve greater compression. 
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