
Relating Entropy Theory to Test Data Compression

Kedarnath J. Balakrishnan and Nur A. Touba

Computer Engineering Research Center
University of Texas, Austin, TX 78712
Email: {kjbala, touba}@ece.utexas.edu

Abstract
 The entropy of a set of data is related to the amount
of information that it contains and provides a theoretical
bound on the amount of compression that can be
achieved. While calculating entropy is well understood
for fully specified data, this paper explores the use of
entropy for incompletely specified test data and shows
how theoretical bounds on the maximum amount of test
data compression can be calculated. An algorithm for
specifying don’t cares to minimize entropy for fixed length
symbols is presented, and it is proven to provide the
lowest entropy among all ways of specifying the don’t
cares. The impact of different ways of partitioning the
test data into symbols on entropy is studied. Different test
data compression techniques are analyzed with respect to
their entropy bounds. Entropy theory is used to show the
limitations and advantages of certain types of test data
encoding strategies.
1. Introduction

The rapid increase in test data volume is a major
challenge for testing system-on-a-chip (SOC) designs.
Reducing the test data volume by compression techniques
is an attractive approach for dealing with this problem.
The test data can be stored in compressed form on the
tester and then decompressed using an on-chip
decompressor.

A number of test vector compression schemes have
been developed using a variety of codes. Codes can be
classified into four categories depending on whether they
encode a fixed or variable number of bits in the original
data using either a fixed or variable number of bits in the
encoded data. Each of the four categories are listed
below:

Fixed-to-Fixed Codes: These codes encode fixed size
blocks of data using smaller fixed size blocks of encoded
data. Conventional LFSR reseeding [Könemann 91] falls
into this category where each fixed size test vector is
encoded as a smaller fixed size LFSR seed. Techniques
that use combinational expanders with more outputs than
inputs to fill more scan chains with fewer tester channels
each clock cycle fall into this category. These techniques
include using linear combinational expanders such as

broadcast networks [Hamzaoglu 99] and XOR networks
[Bayraktaroglu 01], as well as non-linear combinational
expanders [Reddy 02], [Li 03]. If the size of the original
blocks is n bits and the size of the encoded blocks is b
bits, then there are 2n possible symbols (original block
combinations) and 2b possible codewords (encoded block
combinations). Since b is less than n, obviously not all
possible symbols can be encoded using a fixed-to-fixed
code. If Sdictionary is the set of symbols that can be
encoded (i.e., are in the “dictionary”) and Sdata is the set
of symbols that occur in the original data, then if Sdata ⊆
Sdictionary, it is a complete encoding, otherwise it is a
partial encoding. For LFSR reseeding, it has been shown
in [Könemann 91], that if b is chosen to be 20 bits larger
than the maximum number of specified bits in any n-bit
block of the original data, then the probability of not
having a complete encoding is less than 10-6. The
technique in [Reddy 02] constructs the non-linear
combinational expander so that it will implement a
complete encoding. For techniques that do not have a
complete encoding, there are two alternatives. One is to
constrain the ATPG process so that it only generates test
data that is contained in the dictionary (this is used in
[Bayraktaroglu 01]), and the other is to bypass the
dictionary for symbols that are not contained in it (this is
used in [Li 03]). Bypassing the dictionary requires adding
an extra bit to each codeword to indicate whether it is
coded data or not.

Fixed-to-Variable Codes: These codes encode fixed
size blocks of data using a variable number of bits in the
encoded data. Huffman codes are in this category. The
idea with a Huffman code is to encode symbols that occur
more frequently with shorter codewords and symbols that
occur less frequently with longer codewords. A method
was shown in [Huffman 52] to construct the code in a
way that minimizes the average length of a codeword.
The problem with a Huffman code is that the decoder
grows exponentially as the block size is increased. In [Jas
99, 03], the idea of a selective Huffman code was
introduced where partial coding is used and the dictionary
is selectively bypassed. This allows larger block sizes to
be efficiently used.

Variable-to-Fixed Codes: These codes encode a
variable number of bits using fixed size blocks of encoded
data. Conventional run-length codes are in this category.
A method for encoding variable length runs of 0’s using
fixed size blocks of encoded data was proposed in [Jas
98]. The LZ77 based coding method in [Wolff 02] also
falls in this category. Note that in [Wolff 02], it is a
partial encoding that uses a bypass mode.

Variable-to-Variable Codes: These codes encode a
variable number of bits in the original data using a
variable number of bits in the encoded data. Several
techniques that use run-length codes with a variable
number of bits per codeword have been proposed
including using Golomb codes [Chandra 01a], frequency
directed codes [Chandra 01b], and VIHC codes [Gonciari
02]. One of the difficulties with variable-to-variable
codes is synchronizing the transfer of data from the tester.
All of the techniques that have been proposed in this
category require the use of a synchronizing signal going
from the on-chip decoder back to the tester to tell the
tester to stop sending data at certain times while the
decoder is busy. Fixed-to-fixed codes do not have this
issue because the data transfer rate from the tester to the
decoder is constant.

This paper investigates the fundamental limits of test
data compression, i.e., it looks to answer the question:
how much can we compress? This is done by looking at
the entropy of test sets and its relation to the compression
limit. The idea of using entropy for calculating the test
data compression limits was first studied in [Chandra 02].
However, in that work, the entropy calculations were
limited to a special case related to FDR codes. All the
don’t cares were specified as 0’s and only one set of
symbols was considered. Different ways of specifying
the don’t cares and different symbol sets will lead to
different entropies for the same test set. In this paper, we
investigate entropy including the additional degrees of
freedom that were not explored in [Chandra 02]. In this
paper, a procedure for calculating the minimum entropy
of a test set over all possible ways of specifying the don’t
cares is described. Also, the relationship between entropy
and symbol partitioning is studied.

Using entropy theory, we can derive theoretical limits
on the compression that can be achieved using various
types of coding techniques. This is useful in identifying
how much room for improvement there is for the various
test data compression techniques that have been proposed.
It is also useful to identify the compression techniques
that have a lot of room for improvement and offer scope
for fruitful research.

2. Entropy Analysis for Test Data
Entropy is a measure of the disorder in a system. The

entropy of a set of data is related to the amount of
information that it contains which is directly related to the

amount of compression that can be achieved. Entropy is
equal to the minimum average number of bits needed to
represent a codeword and hence presents a fundamental
limit on the amount of data compression that can be
achieved [Cover 91]. The entropy for a set of test data
depends on how the test data is partitioned into symbols
and how the don’t cares are specified. These two degrees
of freedom are investigated in this section.

2.1 Partitioning Test Data into Symbols
 For fixed-to-fixed and fixed-to-variable codes, the test

data is partitioned into fixed length symbols (i.e., each
symbol has the same number of bits). The entropy for the
test data will depend on the symbol length. Different
symbol lengths will have different entropy. For a given
symbol length, the entropy for the test data can be
calculated and will give a theoretical limit on the amount
of compression that can be achieved by any fixed-to-fixed
or fixed-to-variable code that uses that symbol length.
This is illustrated by the following example. Consider the
test set T in Table 1 which consists of four test vectors
each partitioned into 4-bit blocks. The probability of
occurrence of each unique 4-bit symbol can be calculated.
Note that the term “probability” here refers to the actual
frequency of the symbol with respect to the total number
of symbols in the data rather than the classical definition
of probability as the chance of occurrence. The entropy of
this test set is calculated from the probabilities of
occurrence of unique symbols using the formula

, where pi is the probability of

occurrence of symbol xi in the test set and n is the total
number of unique symbols. This entropy is calculated to
be 2.64. The entropy gives the minimum average number
of bits required for each codeword. Thus, the maximum
compression that can be achieved is given by
(symbol_length – entropy) / (symbol_length) which in this
case is equal to (4 - 2.64) / 4 = 34%. Now, if the test set
is partitioned into 6-bit blocks instead of 4-bit blocks,
then the corresponding probabilities of occurrence of
unique symbols will change. In this case, the entropy
calculated using the above formula is 3.25. Hence, the
entropy for 6-bit blocks is different than 4-bit blocks. The
maximum compression in this case is equal to (6 – 3.25) /
6 = 45.8%.

∑
=

⋅−=
n

i
ii ppH

1
2log

Table 1. Test set divided into 4-bit blocks
test 1 1111 0001 0011 0000 1100 0111
test 2 0000 0011 0001 0111 0100 0000
test 3 0001 0111 0111 1100 1100 0000
test 4 0011 0000 0000 0100 1100 0111

For variable-to-fixed and variable-to-variable codes,
the test data is partitioned into variable length symbols
(i.e., the symbols can have different numbers of bits). An
example of this is a run-length code where each symbol
consists of a different size run-length. Given the set of

variable length symbols, the entropy can be calculated the
same way as for fixed length symbols. If the test set
shown in Table 1 is partitioned into symbols
corresponding to different size runs of 0’s, The entropy
for this partitioning is 2.07. Calculating the maximum
compression for variable length symbols is different than
for fixed length symbols. For variable length symbols,
the maximum compression is equal to
(avg_symbol_length – entropy) / (avg_symbol_length).
The average symbol length is computed as ∑

=
⋅

n

i
ii xp

1

where pi is the probability of occurrence of symbol xi, |xi|
is the length of symbol xi, and n is the total number of
unique symbols. For this example, the average symbol
length was calculated as 2.49, so the maximum
compression is (2.53 – 2.07)/2.53 = 18.2%. This is the
maximum compression that any code that encodes runs of
0’s can achieve for the test data in Table 1.

2.2 Specifying the Don’t Cares
While computing entropy for fully specified data is

well understood, the fact that test data generally contains
don’t cares makes the problem of determining theoretical
limits on test data compression more complex.
Obviously, the entropy will depend on how the don’t
cares are filled with 1’s and 0’s since that affects the
frequency distribution of the various symbols. To
determine the maximum amount of compression that can
be achieved, the don’t cares should be filled in a way that
minimizes the entropy.

While the number of different ways the don’t cares
can be filled is obviously exponential, for fixed length
symbols, a greedy algorithm is presented here for filling
the don’t cares in an optimum way to minimize entropy.
A proof is given that it minimizes entropy across all
possible ways of filling the don’t cares. However, for
variable length symbols, the problem is more difficult and
remains an open problem. In [Wurtenberger 03], this
problem is discussed for run length codes. An
optimization method based on simulated annealing is then
used to find the solution. Since a heuristic based
approach is used, it is not guaranteed to obtain the
optimum solution.

2.2.1 Greedy Fill Algorithm

For fixed length symbols, we describe an algorithm
called “greedy fill” below and claim that it is optimal, i.e.,
it results in minimum entropy among all possible ways of
filling the don’t cares given a specific partitioning of the
test set into fixed length symbols.

The greedy fill algorithm is based on the idea that the
don’t cares should be specified in a way such that the
frequency distribution of the patterns becomes as skewed
as possible. This algorithm was first described in [Jas 03]
where the goal was to maximize the compression for

Huffman coding, but it also applies for minimizing
entropy. If the fixed symbol length is n, then the
algorithm identifies the minterm, a fully specified symbol
of length n (there are 2n such minterms), that is contained
in as many of n-bit blocks of the unspecified test data as
possible, i.e., having the highest frequency of occurrence.
This minterm is then selected, and all the unspecified n-
bit blocks that contain this minterm are specified to match
the minterm. The algorithm then proceeds in the same
manner by finding the next most frequently occurring
minterm. This continues until all the don’t cares have
been specified.
Theorem 1: The probability distribution obtained from
the greedy fill algorithm described above results in
minimum entropy.
Proof: The proof of this theorem can be found in
[Balakrishnan 04].

To illustrate this algorithm, an example test set
consisting of four test vectors with 12 bits each is shown
in Fig. 1(a). The test vectors are partitioned into 4-bit
blocks resulting in a total of twelve 4-bit blocks. Of the 16
(24 = 16) possible minterms for a block, the most
frequently occurring minterm is 1111 as seven of the
unspecified blocks contain 1111. After the first iteration,
only five blocks remain and the most frequently occurring
minterm now is 1000. All the five blocks contain this
minterm and hence the algorithm terminates. The
resulting test set after filling up the unspecified bits in the
above manner is shown in Fig. 1(b).

 X 0 X 0 1 0 X X 1 X X X 1 0 0 0 1 0 0 0 1 1 1 1
 X X 1 X X 1 X 1 1 1 1 X 1 1 1 1 1 1 1 1 1 1 1 1
 X X 0 0 1 X X 0 X 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1
 X X X X X 1 X X 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0

(a) Unspecified test set (b) After greedy fill algorithm
Figure 1. Specifying don’t cares to minimize entropy

2.2.2 Experimental Results for Greedy Fill Algorithm

Experiments were performed using the greedy fill
algorithm to calculate the theoretical limit on test data
compression for the dynamically compacted test cubes
generated by MINTEST [Hamzaoglu 98] for the largest
ISCAS’89 benchmark circuits. These are the same test
sets used for experiments in [Chandra 01ab], [Gonciari
03], and [Jas 03]. The compression values in Table 2 are
calculated from the exact values of minimum entropy that
were generated using the greedy fill algorithm. As can be
seen from the table, the percentage compression that can
be achieved increases with the symbol length. No fixed-
to-fixed or fixed-to-variable code using these particular
symbol lengths can achieve greater compression than the
bounds shown in Table 2 for these particular test sets.
Note, however, that these entropy bounds would be
different for a different test set for these circuits, e.g., if
the method in [Kajihara 02] was used to change the
location or number of don’t cares. However, given any

test set, the proposed method can be used to determine the
corresponding entropy bound for it.

The greedy fill algorithm is exponential in the symbol
length because the number of minterms grows
exponentially. Thus, it is not practical to calculate the
entropy for larger symbol lengths using this algorithm.
An approximate algorithm that is not guaranteed to find
the minimum entropy but can scale to larger symbol
lengths is described in [Balakrishnan 04]. Experimental
results show that the limits obtained by this algorithm are
very close to the exact entropy limits while greatly
reducing the computation complexity.

Table 2. Exact entropy compression limits using greedy
fill algorithm

Symbol Length Circuit Original Test
Data 4 6 8 10

s5378 23754 52.0 % 56.3 % 59.2 % 63.8 %
s9234 39723 54.1 % 57.4 % 60.7 % 63.7 %
s13207 165200 83.6 % 85.0 % 85.6 % 87.1 %
s15850 76986 68.9 % 70.5 % 71.9 % 73.5 %
s38417 164736 59.8 % 63.2 % 65.3 % 67.7 %
s38584 199104 65.9 % 67.6 % 68.8 % 70.8 %

3. Symbol Length versus Compression Limits
In this section, the relationship between symbol

length, compression limits, and decoding complexity is
investigated. The compression limit was calculated from
minimum entropy for the benchmark circuit s9234 as the
symbol length is varied. The percentage compression
varies from 50% for a symbol length of 2 to 92% for a
symbol length of 32; this corresponds to a compression
ratio range of 2 to 12. The reason why greater
compression can be achieved for larger symbol lengths is
that more information is being stored in the decoder. This
becomes very clear when the compression limit is
graphed for all possible symbol lengths as shown in Fig.
2. As can be seen, the compression ratio goes towards
infinity as the symbol length becomes equal to the
number of bits in the entire test set. When the symbol
length is equal to the number of bits in the entire test set,
then the decoder is encoding the entire test set. This is
equivalent to built-in self-test (BIST) where no data is
stored on the tester.

Consider the simple case where the information in the
decoder is simply stored in a ROM without any encoding.
The decoder ROM translates the codewords into the
original symbols, so at a minimum, it needs to store the
set of original symbols. For a symbol length of 2, there
are 22 possible symbols, so the decoder ROM would have
to store 4 symbols each requiring 2 bits, thus it requires 8
bits of storage. For a symbol length of 4, there are 24
possible symbols, so the decoder ROM would have to
store 16 symbols each requiring 4 bits, thus it requires 64
bits of storage. Having a larger decoder ROM allows
greater compression. For a symbol length of 32, there are

232 possible symbols, but it is not likely that the test data
would contain all of them. The decoder would only need
to store the symbols that actually occur in the test data. In

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000 100000

Symbol length

Pe
rc

en
ta

ge
 C

om
pr

es
si

on

1

10

100

1000

10000

100000

C
om

pr
es

si
on

 R
at

io

percentage compression compression ratio

Figure 2. Compression for all symbols lengths for s9234

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

Symbol length

1

10

100

1000

10000

100000

encoded data size decoding information on chip

Figure 3. Encoded data size versus simple decoder ROM

size for s9234

Fig. 3, the size of a simple decoder ROM that is required
for different symbols lengths is graphed for different
symbol lengths. As can be seen, the decoder information
goes up exponentially as the symbol length goes from 1 to
10 as in this range all possible symbols are occurring in
the test data and the number of symbols is growing
exponentially. After this, the decoder information goes
up less than exponentially because not all possible
symbols of that length occur in the test data. After the
symbol length exceeds about 20, the decoder information
is nearly equal to the entire test set as there is very little
repetition of the symbols in the test data (i.e., almost all
the symbols in the test data are unique at that point). One
way to view the graph in Fig. 3 is that as the symbol
length is increased, essentially more information is being
stored in the on-chip decoder, and less information is
being stored off-chip in the tester memory. A symbol
length of 1 corresponds to conventional external testing
with no compression, and a symbol length equal to the
size of the test set corresponds to conventional BIST
where no data is stored on the tester.

The real challenge in test data compression is in the
design of the decoder. The entropy of the test data places
a fundamental limit on the amount of compression that
can be achieved for a particular symbol length, but the
real key is to achieve something close to the maximum
compression using a small decoder. The next two
sections evaluate existing test data compression schemes
with respect to their compression limits based on entropy
theory.

4. Analysis of Test Data Compression
Schemes

In this section, different test data compression
schemes proposed in the literature are compared with
their entropy bounds. Both schemes that operate on fixed
length symbols as well as those that work on variable
length symbols are considered. One major constraint is
that we are only able to report results for schemes for
which we have access to the exact test set that was
encoded. For this reason, we have limited the results to
only those schemes that reported results for the
MINTEST test cubes [Hamzaoglu 98]. Discussion of
LFSR reseeding schemes is deferred to Sec. 5.

4.1 Fixed Symbol Length Schemes
Table 3 shows results for two compression schemes.

One is a fixed-to-variable scheme based on selective
Huffman coding [Jas 99, 03], and the other is a fixed-to-
fixed scheme that uses a selective dictionary with fixed
length indices [Li 03]. The first two columns show the
circuit name and the size of the original test set. Then
results are shown for [Jas 03] comparing the actual
percentage of compression achieved with the entropy
limit for a symbol length of 8 and 12. The same is done
for the method in [Li 03] for a block size of 16 and 32.
The method in [Jas 03] is closer to the entropy limit
because it uses variable length codewords whereas the
method in [Li 03] uses fixed length codewords. However,
the method in [Li 03] has the advantage of an easier
interface to the tester since it is a fixed-to-fixed code.

Table 3. Fixed symbol length schemes versus entropy
limits

Selective Huffman [Jas 03] Dictionary Based
Compression [Li 03]

8 12 16 32 Circuit
Test
Set
Size Entropy

Limit
Actual
Comp.

Entropy
Limit

Actual
Comp.

Entropy
Limit

Actual
Comp.

Entropy
Limit

Actual
Comp.

s5378 23754 59.2 50.1 66.2 55.1 71.6 45.3 96.0 67.2
s9234 39723 60.7 50.3 65.0 54.2 68.7 46.1 91.8 65.9
s13207 165200 85.6 69.0 88.0 77.0 88.8 49.2 98.3 73.4
s15850 76986 71.9 60.0 75.1 66.0 77.8 47.4 94.0 67.6
s38417 164736 65.3 55.1 68.5 59.0 71.7 44.0 89.2 49.0
s38584 199104 68.8 58.3 72.2 64.1 75.1 45.8 93.7 64.3

4.2 Variable Symbol Length Schemes
Table 4 shows results for three compression schemes

that are based on variable-to-variable codes. Each of these

schemes are based on encoding runs of 0’s. As was
discussed in Sec. 2, filling the don’t cares to minimize
entropy for variable size symbols is an open problem.
These three schemes all fill the don’t cares by simply
replacing them with specified 0’s. For simplicity, the
entropy limits in Table 4 were calculated by also filling
the don’t cares with specified 0’s.

The results in Table 4 indicate that the VIHC method
in [Gonciari 03] gets very close to the entropy limit. This
is because this method is based on Huffman coding. One
conclusion that can be drawn from these results is that
there is not much room for improvement for research in
variable-to-variable codes that encode runs of 0’s. The
only way to get better compression than the entropy limit
that is shown here would be to use a different automatic
test pattern generation (ATPG) procedure or fill the don’t
cares in a different way that changes the entropy limit.
Table 4. Variable symbol length schemes versus entropy

limits

Circuit Test Data
Size

Entropy
Limit

Golomb
[Chandra 01a]

FDR
[Chandra 01b]

VIHC
[Gonciari 03]

s5378 23754 52.4 % 40.7 % 48.0 % 51.8 %
s9234 39723 47.8 % 43.3 % 43.6 % 47.2 %
s13207 165200 83.7 % 74.8 % 81.3 % 83.5 %
s15850 76986 68.2 % 47.1 % 66.2 % 67.9 %
s38417 164736 54.5 % 44.1 % 43.3 % 53.4 %
s38584 199104 62.5 % 47.7 % 60.9 % 62.3 %

5. Analysis of LFSR Reseeding Schemes
Conventional LFSR reseeding [Könemann 91] is a

special type of fixed-to-fixed code in which the set of
symbols is the output space of the LFSR and the set of
codewords is the seeds. As was seen in the graphs in Sec.
3, larger symbol lengths are needed in order to achieve
greater amounts of compression due to the entropy limits
on compression. The difficultly with larger symbol
lengths is that the decoder needs to be able to produce
more symbols of greater length. The power of LFSR
reseeding is that an LFSR is used for producing the
symbols. An r-stage LFSR has a maximal output space as
it produces 2r-1 different symbols as well as having a very
compact structure resulting in low area. Thus, an LFSR is
an excellent vehicle for facilitating larger symbols lengths
with a small area decoder. The only issue is whether the
set of symbols that occur in the test data, Sdata, are a
subset of the symbols produced by the LFSR, SLFSR, (i.e.,
Sdata ⊆ SLFSR). Fortunately, the symbols produced by the
LFSR have a pseudo-random property. If n is the symbol
length, then as was shown in [Könemann 91], if the
number of specified bits in an n-bit block of test data is 20
less than the size of the LFSR, then the probability of the
n-bit block of test data not matching one of the symbols in
SLFSR is negligibly small (less than 10-6). In [Hellebrand
95], a multiple-polynomial technique was presented which
reduces the size of the seed information to just 1 bit more

than the maximum number of specified bits in an n-bit
block. Thus, the compression that is achieved with this
approach for a symbol length of n is equal to the ratio of n
to the maximum number of specified bits in an n-bit block
plus 1. Fig. 4 shows a graph of the compression for LFSR
reseeding for all possible symbol lengths. As can be seen,
no compression is achieved for short symbol lengths
where the maximum number of specified bits is equal to
the symbol length. Compression does not start to occur
until the symbol length becomes larger than 20. The
compression steadily improves as the symbol length is
increased, but in general, it cannot exceed the total
percentage of don’t cares in the test data. For the test set
in Fig. 4, the percentage of don’t cares is 94%.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000

Symbol length

Pe
rc

en
ta

ge
 C

om
pr

es
si

on

Entropy Limits LFSR reseeding

Figure 4. Compression for LFSR reseeding versus symbol

length for s13207

6. Conclusions
This paper shows how entropy theory can be used to

calculate theoretical limits to the amount of test data
compression. These limits are useful as a measure of how
much improvement is possible over existing test data
compression schemes. They can be used to identify coding
techniques where there is not much scope for
improvement as well as identify coding techniques that
hold promise for fruitful research.

This paper studied the relationship of symbol
partitioning and don’t care filling to entropy. An area for
future research is to look at new coding techniques that
can exploit this to achieve greater compression.

Acknowledgements
This material is based on work supported in part by

the Intel Corporation and in part by the National Science
Foundation under Grant No. CCR-0306238.

References
[Balakrishnan 04] Balakrishnan, K. J., “New Approaches and Limits to

Test Data Compression for Systems-on-chip”, Ph.D. dissertation,
University of Texas, Austin, TX, August 2004.

[Bayraktaroglu 01] Bayraktaroglu, I., and Orailoglu, A., “Test Volume
and Application Time Reduction through Scan Chain

Concealment”, Proc. Design Automation Conference, pp. 151-155,
2001.

[Chandra 01a] Chandra A., and Chakrabarty, K., “System-on-a-chip test
data compression and decompression architectures based on
Golomb Codes”, IEEE Trans. on Computer-Aided Design Vol. 20,
No. 3, pp. 355-368, March 2001.

[Chandra 01b] Chandra, A., and Chakrabarty, K., “Frequency-Directed
Run-Length Codes with Application to System-on-a-chip Test Data
Compression”, Proc. VLSI Test Symposium, pp. 42-47, 2001.

[Chandra 02] Chandra, A., Chakrabarty, K., and Medina, R. A., “How
Effective are Compression Codes for Reducing Test Data
Volume?”, Proc. VLSI Test Symposium, pp. 91-96, 2002.

[Cover 91] Cover, T. M., and Thomas J. A., Elements of Information
Theory, John Wiley and Sons, Inc., 2nd Edition.

[Gonciari 02] Gonciari, P. T., Al-Hashimi, B M., Nicolici, N.,
“Improving compression ratio, area overhead, and test application
time for systems-on-a-chip test data compression/ decompression”,
Proc. Design Automation and Test in Europe, pp. 604-611, 2002.

[Gonciari 03] Gonciari, P. T., Al-Hashimi, B M., Nicolici, N.,
“Variable-Length Input Huffman Coding for System-on-a-chip
Test”, IEEE Trans. on Computer-Aided Design, Vol. 22, No 6, pp.
783-796, 2003.

[Hamzaoglu 98] Hamzaoglu I., Patel J. H., “Test Set Compaction
Algorithms for Combinational Circuits”, Proc. of Int. Conference on
Computer Aided Design, pp. 283-289, 1998.

[Hamzaoglu 99] Hamzaoglu, I., and Patel, J. H. , "Reducing Test
Application Time for Full Scan Embedded Cores," Proc. Int. Symp.
on Fault-Tolerant Computing, pp. 260-267, 1999.

[Hellebrand 95] Hellebrand, S., Rajski J., Tarnick S., Venkataraman S.,
and Courtois B., “Built-In Test for Circuits with Scan Based on
Reseeding of Multiple-Polynomial Linear Feedback Shift
Registers”, IEEE Transactions on Computers, Vol. 44, No. 2, pp.
223-233, Feb. 1995.

[Huffman 52] Huffman, D. A., “A method for the construction of
minimum redundancy codes”, Proc. IRE, Vol. 40, pp. 1098-1101,
1952.

[Ichihara 00] Ichihara, H., Kinoshita, K., Pomeranz, I.,Reddy, S. M.,
“Test Transformation to Improve Compaction by Statistical
Encoding”, Proc. Int. Conf. on VLSI Design, pp. 294-299, 2000.

[Jas 98] Jas, A., and Touba, N. A. ,"Test Vector Decompression Via
Cyclical Scan Chains and Its Application to Testing Core-Based
Designs", Proc. of Int.. Test Conference, pp. 458-464, 1998.

[Jas 99] Jas, A., Dastidar, J. G., and Touba, N. A., “Scan Vector
Compression/Decompression Using Statistical Coding,” Proc. VLSI
Test Symposium, pp. 114-120, 1999.

[Jas 03] Jas, A., Dastidar, J. G., Ng M-E.,Touba, N. A., “An Efficient
Test Vector Compression Scheme Using Selective Huffman
Coding”, IEEE Trans. on Computer-Aided Design, Vol. 22, No 6,
pp 797-806, 2003.

[Kajihara 02] Kajihara, S., Taniguchi K., Miyase K., I. Pomeranz, and
Reddy S. M., “Test Data Compression Using Don't Care
Identification and Statistical Encoding”, Proc. of Asian Test
Symposium, pp. 67-72, 2002.

[Koenemann 91] Koenemann, B., “LFSR-Coded Test Patterns for Scan
Designs,” Proc. European Test Conference, pp. 237-242, 1991.

[Li 03] Li, L., and Chakrabarty, K., "Test data compression using
dictionaries with fixed-length indices", Proc. VLSI Test Symposium,
pp. 219-224, 2003.

[Reddy 02] Reddy, S. M., Miyase K., Kajihara S., Pomeranz, I., “On test
data volume reduction for multiple scan chain designs”, Proc. VLSI
Test Symposium, pp. 103-108,2002.

[Wolff 02] Wolff, FG, Papachristou, C., “Multiscan Based Test
Compression and Hardware Decomposition Using LZ77,” Proc.
International Test Conference, pp. 331-338, 2002

[Wurtenberger 03] Wurtenberger, A., Tautermann, C., “Hellebrand. S.,
A Hybrid Coding Strategy for Optimized Data Compression,” Proc.
International Test Conference, pp. 451-459, 2003.

	References

