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Abstract 

  Many test data compression schemes are based on 
LFSR reseeding. A drawback of these schemes is that the 
unspecified bits are filled with random values resulting in a 
large number of transitions during scan-in thereby causing 
high power dissipation. This paper presents a new 
encoding scheme that can be used in conjunction with any 
LFSR reseeding scheme to significantly reduce test power 
and even further reduce test storage. The proposed 
encoding scheme acts as a second stage of compression 
after LFSR reseeding. It accomplishes two goals.  First, it 
reduces the number of transitions in the scan chains (by 
filling the unspecified bits in a different manner), and 
second it reduces the number of specified bits that need to 
be generated via LFSR reseeding.  Experimental results 
indicate that the proposed method significantly reduces test 
power and in most cases provides greater test data 
compression than LFSR reseeding alone. 

1. Introduction 
As the size and the complexity of systems-on-a-chip 

(SOC) continue to grow, test data volume has increased 
dramatically. Several commercial tools for test data 
compression have been introduced including 
TestKompress by Mentor Graphics [Rajski 02] and 
SmartBIST by Cadence [Koenemann 01].  All of the 
commercial tools that have been introduced so far are 
based on LFSR reseeding [Koenemann 91]. 

The basic idea in LFSR reseeding is to generate 
deterministic test cubes by expanding seeds.  A seed is an 
initial state of the LFSR that is expanded by running the 
LFSR in autonomous mode.  Since typically only 1-5% of 
the bits in a test vector are specified, most bits in a test 
cube do not need to be considered when a seed is 
computed because they are don’t care bits.  Therefore, the 
size of a seed is much smaller than the size of a test vector. 
Consequently, reseeding can significantly reduce test data 
storage and bandwidth. 

Several reseeding schemes have been proposed to 
reduce test storage. The first was introduced in 
[Koenemann 91]. Several techniques were proposed to 
improve the encoding efficiency of the basic scheme in 
[Koenemann 91] including using multiple-polynomial 
LFSRs [Hellebrand 92], using test cube concatenation 
[Hellebrand 95], and using variable-length seeds [Zacharia 
95].  More recent work has focused on dynamic LFSR 

reseeding where the seed is incrementally modified as the 
LFSR runs [Koenemann 01], [Krishna 01], [Rajski 02].  In 
dynamic LFSR reseeding, the size of a seed does not 
depend on smax and thus can be even smaller than the size 
of an LFSR. 

While reseeding is a very powerful method for test data 
compression, it is not good for power consumption.  The 
don’t care bits in each test cube get filled with random 
values thereby resulting in excessive switching activity 
when they are shifted into a scan chain.  When scanning in 
test vectors where 95% to 99% of the bits have been filled 
with random values, a very large percentage of the flip-
flops will make transitions thereby resulting in excessive 
power consumption during test.  The chip may be designed 
to only handle the power consumption during normal 
operation, and thus the excessive power consumption 
during test can result in overheating.  One solution to this 
problem is to simply reduce the scan frequency, however 
this results in longer test times.  Many techniques for 
reducing power consumption during scan testing have been 
presented and are summarized in [Girard 02].  While most 
work has focused on reducing test power for general scan 
testing, only recently has work been done on considering 
together the problems of test data compression and low 
power test.  Research in this direction has been presented 
in [Sankaralingam 00], [Chandra 01, 02], and [Rosinger 
02] and is summarized in Sec. 2. 

In this paper, we present a new encoding algorithm that 
can be used in conjunction with any LFSR reseeding 
scheme to significantly reduce power consumption during 
test.  A key feature of the proposed approach is that it 
reduces the number of specified bits and the number of 
transitions at the same time. Since the amount of 
compression for LFSR reseeding depends on the number of 
specified bits, the proposed approach exploits this property.  
Experimental results indicate that the proposed method 
significantly reduces test power and in most cases provides 
greater test data compression than LFSR reseeding alone. 

2. Related Work 
The idea of considering together the problems of test 

data compression and low power test has been previously 
investigated in a few papers.  In [Sankaralingam 00], a 
procedure for directing the static compaction process in a 
manner that reduces test power and test data was described.  
In [Chandra 01], an encoding algorithm that reduces both 
test storage and test power was presented. The test cubes 



  

are encoded using a Golomb code which is a run-length 
code. All don’t care bits are mapped to 0 and the Golomb 
code is used to encode runs of 0’s.  The Golomb code 
efficiently compresses the test data, and the mapping of the 
don’t cares to all 0’s reduces the number of transitions 
during scan-in and thus power.  One drawback of a 
Golomb code is that it is very inefficient for runs of 1’s.  In 
fact, the test storage can even increase for test cubes that 
have many runs of 1’s. 

A method based on an alternating run-length code was 
presented in [Chandra 02] to improve on the encoding 
efficiency of a Golomb code.  While a Golomb code only 
encodes runs of 0’s, an alternating run-length code can 
encode both runs of 0’s and runs of 1’s.  However, the 
code becomes inefficient when a pattern is encoded where 
the runs are short. 

While both Golomb codes and alternating run-length 
codes are good for reducing test power, they are not as 
efficient as LFSR reseeding for compressing test data.  
With LFSR reseeding, only the specified bits, which 
generally account for only 1-5% of the test data, need to be 
considered. 

One previous method has been proposed  in [Rosinger 
02] for reducing test power for LFSR reseeding.  Two 
LFSRs are used.  The main LFSR generates the test cube 
through conventional reseeding.  An extra “masking” 
LFSR is used to generate a set of mask bits.  If the number 
of 1’s in a test cube is less than the number of 0’s, then the 
output of the two LFSRs are ANDed together and the mask 
cube will have a 1 for each specified 1 in the test cube and 
an X for each specified 0 or X in the test cube.  If the 
number of 0’s in the test cube is less than the number of 1’s, 
then the output of the two LFSRs are ORed together and 
the mask cube will have a 0 for each specified 0 in the test 
cube and an X for each specified 1 or X in the test cube.  A 
seed is computed for the extra “masking” LFSR so that it 
generates the mask cube.  Thus the effective number of 
specified bits that must be generated using this method is 
equal to the original number of specified bits in the test 
cube plus the number of specified bits in each mask cube 
(which is equal to the minimum of the number of 0’s or 1’s 
in each test cube).  The size of the main LFSR is the same 
as for conventional reseeding, and the size of the extra 
“masking” LFSR depends on the maximum number of 
specified bits in any mask cube.  Test power is reduced 
because the output of the two LFSRs are ANDed or ORed, 
thus reducing the transition probability.  However, the test 
data compression for this scheme is greatly reduced 
compared with conventional LFSR reseeding because it 
requires storing an extra set of seeds for the extra 
“masking” LFSR.  Results in the paper indicate that the test 
storage was increased by 21% to 54% compared with 
conventional LFSR reseeding while the transition count 
was reduced by about 24%. 

The proposed method addresses the problem of 

reducing test power for LFSR reseeding.  However, a 
different approach is taken which does not compromise the 
amount of test data compression.  Moreover, the number of 
transitions is reduced much more significantly than in 
[Rosinger 02].  The experimental results for the proposed 
method are compared with the previous methods in Sec. 5. 

The proposed scheme has some similarity to the 
dynamic scan scheme presented in [Samaranayake 02], 
however there are a number of significant differences.  
Both schemes use the fact that different test cubes have 
compatible values for a significant number of scan 
elements.  The dynamic scan scheme identifies scan chain 
segments that have compatible values across a set of test 
cubes and bypasses those segments in order to reduce test 
time and test storage.  This approach also serves to reduce 
power as well, although that is not the focus of the paper.   
The proposed scheme also takes advantage of compatible 
scan segments, but in a different way.  The proposed 
scheme exploits the property that the number of transitions 
in a test cube is smaller than the number of specified bits.  
By dividing the scan chains into blocks and identifying 
blocks that do not contain transitions, the proposed 
approach is able to fill those blocks with constant values.  
The compatibility of blocks across different test cubes is 
exploited in reducing control information and not through 
bypassing. In [Samaranayake 02], scan chain 

reconfiguration is necessary which requires inserting 
design-for-test (DFT) logic in the scan chains themselves 
to provide the bypass capability, whereas for the proposed 
scheme, DFT logic is inserted only at the inputs of the scan 
chains and is thus compatible with conventional scan 
chains.  The proposed scheme can be used for hard cores 
and firm cores. 

3.  Encoding Algorithm 
Let a transition in a test cube be defined as a specified 

0 (1) followed by zero or more X’s followed by a specified 
1 (0).  The key idea of the proposed encoding algorithm is 
to take advantage of the fact that number of transitions in a 
test cube is always less than the number of specified bits in 
a test cube.  Thus, rather than using LFSR reseeding to 
directly encode the specified bits as in conventional LFSR 
reseeding,  the proposed encoding algorithm divides the 
test cube into blocks and only uses LFSR reseeding to 
produce the blocks that contain transitions.  For the blocks 
that do not contain transitions, the logic value fed into the 
scan chain is simply held constant.  This approach reduces 
the number of transitions in the scan chains and in most 
cases also reduces the total number of specified bits that 
must be generated by the LFSR as compared with 
conventional LFSR reseeding. 

3.1 Basic concepts 
The proposed encoding scheme encodes each test cube 

with two kinds of data: hold flags and data bits.   



  

Block Block1 Block2 Block3 Block4 
Original  0 X X 1  X 1 1 1 1 X 1 X  X X X X
Encoded 0 0 X X 1 1 - - - - 1 - - - - X X X X X

Figure 1. Example of encoding test data 
Block Block1 Block2 Block3 Block4 

Original  X 0 1 X  X 0 X 0 X X X X  1 1 1 X
Encoded 0 X 0 1 0 1 - - - - 0 X X X 1 1 - - - -

Figure 2. Example of conversion procedure (last bit of blocks 1 and 3 are specified to convert 
blocks 2 and 4 into non-transitons blocks) 

Each test cube is divided into several blocks and each 
block has a one-bit hold flag. The hold flag indicates 
whether a transition occurs in a block.  There are three types 
of blocks: 
1) Transition block (Hold flag = 0) 

One or more transitions exist in the block.  Either both 
0 and 1 are present in the block (e.g., XX1X0X), or only 0 
or 1 is present but the last specified bit from a previous 
block was opposite. 
2) Non-transition block (Hold flag = 1) 

No transition occurs in current block.  Only 0 or 1 is 
present in the block, and the last specified bit from a 
previous block is same (e.g., X0XX0X). 
3) Don’t care block (Hold flag = X) 

No specified bits occur in the block, all are don’t cares. 
If the hold flag for a block is 1, then the data bits in the 

block are simply held constant from the last data bit in the 
previous block.  If the hold flag is 0, then the data bits are 
loaded directly from the LFSR. If the hold flag is X, then it 
can be either treated as a non-transition block or as a 
transition block with all X data. Both the hold flags and the 
data bits are generated from a single LFSR using reseeding. 

An example of the proposed encoding is shown in 
Fig. 1.  The test sequence in the example is composed of 4 
blocks and each block has 1 hold flag and 4 data bits.  The 
hold flags are shown in bold in the “Encoded” bit sequence 
row.  In Fig. 1, the original test cube contains 7 specified 
bits.  However, using the proposed encoding scheme, the 
encoded data has only 3 specified hold flags and 2 
specified data bits giving a total of only 5 specified bits.  
Thus, the proposed encoding scheme reduces the number 
of specified bits that need to be generated using LFSR 
reseeding.  As shown in Fig. 1, the 1’s in block 2 and block 
3 don’t need to be generated directly by the LFSR, but are 
rather generated as a by-product of the fact that the hold 
flags keep the input to the scan chain held constant at 1.  
Thus, test data compression can be achieved in this way.  
Moreover, no transitions will occur when generating block 
2 and block 3 because the hold flags are 1 thus keeping all 
the bits in the blocks constant. This would not be the case 
in conventional LFSR reseeding where the X’s in blocks 1 
and 2 get filled with random data which may results in 
many more transitions.  Thus, a reduction in the number of 
transitions can be achieved in this way.  

3.2 Conversion procedure 
It is possible to increase the number of non-transition 

blocks by converting some transitions blocks into non-
transition blocks.  There are two requirements that must be 
satisfied in order to convert a transition block into a non-
transition block.  The first is that it cannot contain both 
specified 0’s and specified 1’s.  The second is that the last 
bit of the previous block must be an X.  Two examples of 
this are shown in Fig. 2.  Block 2 is initially a transition 
block even though it only contains specified 0’s because 
the last specified bit in block 1 was a 1.  However, the very 
last bit of block 1 is a don’t care, so a conversion 
procedure can be used to specify that don’t care as a 0 and 
thereby convert block 2 into a non-transition block.  Even 
though this conversion required adding an extra specified 
data bit, the net result is still a reduction in the total number 
of specified bits because now block 2 is a non-transition 
block and thus none of its data bits need to be generated by 
the LFSR.  This same conversion procedure can also be 
used to convert block 4 in Fig. 2 into a non-transition block. 

By increasing the number of non-transition blocks, the 
conversion procedure can help to reduce both test storage 
(since it can reduce the total number of specified bits) as 
well as test power (since it can reduce the number of 
transitions by enabling all the X’s in the converted 
non-transition block to be filled with the same logic value). 

3.3 Partitioning into hold cube compatible sets 
The test storage for LFSR reseeding depends on the 

number of specified bits.  For each block that is not a don’t 
care block, the hold flag for that block is specified.  If the 
number of specified hold flags becomes larger than the 
number of the specified test data bits that are reduced by 
using the proposed encoding scheme, then the encoding 
scheme would be reducing test power dissipation at the 
cost of test storage.  The test storage would increase 
because the total number of specified data bits plus 
specified hold bits would exceed the total number of 
specified bits in the original test cubes.  However, in this 
section, a method for reducing the number of specified 
hold flags is introduced. 

The key idea is to take advantage of the fact that many 
test cubes may have compatible assignments in their 
corresponding hold flags.  We will denote the set of hold 



  

flags for one test cube as a hold cube since each hold flag 
can be either a 1, 0, or don’t care (X).  If several 
consecutive test cubes have the same hold cube, it is not 
necessary to change any of the hold flags.  Thus, the hold 
flags could be loaded once and then reused when applying 
subsequent test cubes.  The hold cubes for a pair of test 
cubes are compatible if they do not conflict in any 
specified bit positions.  In other words, for every bit 
position where one hold cube has a specified value, the 
other hold cube has either the same specified value or a 
don’t care (and vice versa).  Let a hold cube compatible set 
be defined as a set of test cubes with mutually compatible 
hold cubes.  Since typically only around 1-5% of the data 
bits in a test cube are specified, the corresponding hold 
cube will typically have a large number of don’t cares.  
Thus the test cubes can generally be partitioned into a 
relatively small number of hold cube compatible sets.   The 
test cubes can then be ordered so that the test cubes in each 
hold cube compatible set will occur in succession.  Thus, 
the hold flags only need to be loaded once for each hold 
cube compatible set.  One extra bit per test cube is required 
to indicate if the hold flags for the current test cube needs 
to be updated or not.  
 

Test 
Cube 

 Hold cube 

1  1 X X 1 0 X 
2  X 1 X X 1 1 
3  1 0 X 1 X X 
4  X 0 0 1 0 X 
5  X X X 0 1 1 

(a) Hold cube before partitioning 
 

Test CubeUpdate 
Flag 

Hold cube 

1 1 1 0 0 1 0 X 
3 0 X X X X X X 
4 0 X X X X X X 
2 1 X 1 X 0 1 1 
5 0 X X X X X X 

(b) Hold cube after partitioning 
Figure 3. Hold cube regeneration and reordering 

Figure 3 shows an example of partitioning a test set 
into hold cube compatible sets.  The original hold cubes for 
each test cube are shown in Fig. 3-(a).  Originally, they 
require 16 specified bits.  They are then grouped into 2 
hold cube compatible sets.  The first set contains test cubes 
1, 3, and 4, and the second contains test cubes 2 and 5.  
The test cubes are reordered so that the hold cube 
compatible sets are grouped together. An extra update flag 
bit is added to each test cube to indicate if the hold flags 
need to be updated.  This flag is set only for the first test 
cube in each hold cube compatible set.  In this example, the 
total number of specified bits (including the added update 
flag bits) is reduced to 14. In our experiments (shown in 
Sec. 5), we found that in most cases, this encoding scheme 

was capable of reducing the total number of specified bits 
(including data bits, hold flags, and update flags) to below 
that of the original test cubes. 

4. Hardware implementation 
The hardware implementation for the proposed scheme 

is shown in Fig. 4.  Each scan chain is divided into one or 
more blocks.  Let B be the number of blocks per scan chain.  
Each scan chain has a hold flag shift register (HF-SR) 
whose size is equal to B.  LFSR reseeding is used to 
generate all of the data for each test cube which consists of 
three components:  update flag, hold flags, and test data.  
The format for the data coming out of the LFSR for each 
test cube is shown in Fig. 5. 
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Figure 4. Hardware implementation 

There is a small finite state machine (FSM) controller 
that controls where the data coming out from the LFSR is 
stored.  In the first clock cycle, the LFSR generates a single 
bit which is the update flag.  If the update flag is 1, then in 
the next B clock cycles, the LFSR generates the hold flags 
for each of the scan chains which are shifted into the HF-
SRs. If the update flag is 0, then the HF-SRs are not loaded.  
Let the length of each scan chain be L.  Then for the next L 
clock cycles, the LFSR generates the test data. For each 
L/B clock cycles, if the corresponding hold flag for a scan 
chain is 0, then the scan chain is loaded from the LFSR.  If 
the corresponding hold flag is a 1, then the last value 
shifted into the scan chain is repeatedly shifted into the 
scan chain and the data from the LFSR is ignored.  After 
each L/B clock cycles, the hold flag shift register is shifted 
so that the next hold flag becomes active for its 
corresponding block and is used as the control signal to a 
MUX (as shown in Fig. 4).  After the scan chains have 
been filled, then the scan vector is applied to the circuit-
under-test and the response is loaded back into the scan 
chain.  The process is then repeated to generate the next 
scan vector. 
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Num. of Blocks
per Scan Chain (B)
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(If update flag is equal to 1) Test data
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Figure 5. Data format 

The hardware overhead consists of one 2-to-1 MUX 
and a HF-SR per scan chain, one 1-bit update flag flip-flop 
and the small FSM controller.  The FSM controller consists 
of a bit counter (which is present for LFSR reseeding 
anyway) and some small combinational logic.  The size of 
the HF-SR dominantly determines the hardware overhead 
in this scheme.  It depends on the number of scan chains 
and the total number of blocks. 

5. Experimental results 
Experimental results for the proposed scheme for the 

largest ISCAS 89 benchmark circuits are shown in Table 1.  
Results are shown for dividing each test cube into different 
numbers of blocks (note that there is one hold flag for each 

block).  The test cubes were partitioned into hold cube 
compatible sets, and the number of such sets is shown in 
each case.    The total number of specified bits required for 
the proposed encoding scheme is shown (including update 
flags, hold flags, and data bits). The total number of 
specified bits and total number of transitions (computed as 
described in [Sankaralingam 00]) for the proposed 
encoding scheme is compared with that for the original test 
cubes.  The number of transitions includes the number of 
transitions in HF-SRs.  In most cases, the total number of 
specified bits is reduced (which will result in less test data 
storage) while a substantial reduction in the total number of 
transitions is obtained (which results in less test power).  
Note that there is a tradeoff between the numbers of 
specified bits in the test data and hold flags.  The more 
blocks that are used, the less specified bits in the test data, 
but the more specified hold flags.  Moreover, the reduction 
in the number of transitions increases as the number of 
blocks in a test pattern increases. The hardware overhead 
also increases in this case as the size of the hold flag shift 
registers becomes larger.  The hardware overhead depends 
the number of scan chains, which is chosen depending on 
the circuit size. The third to last column indicates

Table 1.  Results for proposed encoding scheme 
Circuit Information Test Storage Test Power Overhead Test time

Circuit 
Name 

Num. 
Test 

Pattern 

Num. 
Blocks 

Num. 
Compatible 

Sets 

Num. 
Specified 
Data Bits 

Num. 
Specified 
Hold lags

Total
Specified

Bits 

Change
(%) 

Num. 
Transitions

Transition 
Reduction 

(%) 

Num 
Mux 

Size
HF-
SR 

Change
(%) 

31 143 4162 1966 6128 +15 40233 52 3 +11 s5378 196 
22 126 4664 986 5650 +4 148981 40 

11 
2 +7 

31 191 6743 3154 9897 -4 51426 52 3 +12 s9234 205 
11 133 8495 1275 9767 -5 204919 38 

11 
1 +3 

100 114 7006 2391 9397 -1 169626 53 5 +6 s13207 266 
20 93 8183 1152 9335 -1 968199 41 

21 
1 +1 

51 125 8952 2157 11109 0 271198 48 3 +4 s15850 269 
31 118 9301 1627 10928 -1 482798 43 

21 
2 +2 

185 141 20084 8777 28861 -5 917155 50 6 +4 s38417 376 
152 146 20933 7399 28332 -7 735408 52 

31 
5 +3 

209 255 21233 12348 33581 +25 398761 53 7 +12 s38584 296 
21 205 24964 3630 28594 +8 6037549 27 

31 
1 +1 

Table 2. Results comparing partial reseeding alone with using partial reseeding in conjunction with the proposed scheme 
Partial Reseeding Algorithm 

[Krishna 01] 
 Partial Reseeding with Proposed Encoding Scheme Circuit 

Num.  
Specified Bits 

Test 
Storage 

Num.  
Specified Bits

Test 
Storage 

Reduction of 
Specified Bits 

(%) 

Change in  
Test Storage 

(%) 

Transition 
Reduction

(%) 
s5378 508 533 501 514 1 -3.6 54 
s9234 5198 5537 4031 4556 22 -17.7 57 

s13207 2824 3008 2779 3021 1 +0.4 56 
s15850 5092 5204 4166 4896 18 -5.9 57 
s38417 23984 24513 20688 23166 13 -5.5 52 
s38584 2848 2942 2263 2827 7 -3.9 45 



  

Table 3. Results comparing proposed scheme with previous schemes 
Circuit Dual-LFSR reseeding 

[Rosinger 02] 
Alternating run-length code 

[Chandra 02] 
Proposed scheme 

 Test 
Storage 

Comp. 
(%) 

Power 
Reduction

(%) 

Test 
Storage 

Comp.
(%) 

Power 
Reduction

(%) 

Test 
Storage 

Comp. 
(%) 

Power 
Reduction

(%) 
s9234 19440 68 24 21612 44 76 10302 79 53 

s13207 11803 94 25 32648 80 93 10484 94 53 
s15850 14518 90 25 26306 65 85 11411 93 52 
s38417 66234 92 25 64976 60 81 32152 95 52 
s38584 23835 94 25 77372 61 83 31152 93 40 

the number of 2-to-1 MUXs required which is equal to the 
number of scan chains because one MUX is located on the 
entrance of each scan chain.  The size of HF-SR is 
indicated in the second to last column.  It depends on the 
number of blocks.  Test time is increased because it takes 
several clock cycles to insert hold flags into HF-SRs.  As 
shown in the last column, the test time increase due to the 
proposed scheme is very small.  

The proposed encoding scheme can be used in 
conjunction with any LFSR reseeding scheme.  
Experiments were performed for using the proposed 
encoding scheme in conjunction with the partial LFSR 
reseeding scheme described in [Krishna 01].  Results are 
shown in Table 2.  The exact same set of test cubes that 
were used for generating the results published in 
[Krishna 01] were encoded using the proposed encoding 
scheme in conjunction with the scheme in [Krishna 01].  
As can be seen, in most cases both the test storage and test 
power are reduced using the proposed scheme. 

Table 3 shows a comparison of the experimental results 
in [Rosinger 02] and [Chandra 02] with the proposed 
encoding scheme (used in conjunction with partial LFSR 
reseeding as described in [Krishna 01]).  As can be seen, 
the proposed scheme reduces the test storage requirements 
much more than the other schemes.  In terms of reducing 
test power, the proposed scheme is much more effective 
than the scheme in [Rosinger 02] which is also applicable 
for LFSR reseeding.  Moreover, the compression ratio in 
the proposed scheme is similar or even higher than that in 
[Rosinger 02] even though 1,000 pseudo-random patterns 
are applied first in [Rosinger 02].  Note that the results for 
both [Chandra 02] and the proposed scheme are for 
encoding the entire deterministic test set.  While the test 
power for the proposed scheme is not reduced as much as 
for the scheme in [Chandra 02] which is based on run-
length encoding, much more compression  is achieved.  
The key advantage of the proposed scheme compared with 
[Chandra 02] is that it is compatible with LFSR reseeding 
which is used in commercial tools due to its superior 
encoding efficiency. 

6. Conclusion 
LFSR reseeding is a powerful approach for reducing 

test storage.  The proposed encoding scheme provides a 
way to reduce test power for LFSR reseeding.  It acts as a 
second stage of compression after LFSR reseeding.  By 
employing hold flags, not only is test power reduced, but 
also test storage can be reduced. 
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