
Low Power Test Data Compression Based on LFSR Reseeding
Jinkyu Lee and Nur A. Touba

Computer Engineering Research Center
University of Texas at Austin, Austin, TX 78712-1084

Abstract

 Many test data compression schemes are based on
LFSR reseeding. A drawback of these schemes is that the
unspecified bits are filled with random values resulting in a
large number of transitions during scan-in thereby causing
high power dissipation. This paper presents a new
encoding scheme that can be used in conjunction with any
LFSR reseeding scheme to significantly reduce test power
and even further reduce test storage. The proposed
encoding scheme acts as a second stage of compression
after LFSR reseeding. It accomplishes two goals. First, it
reduces the number of transitions in the scan chains (by
filling the unspecified bits in a different manner), and
second it reduces the number of specified bits that need to
be generated via LFSR reseeding. Experimental results
indicate that the proposed method significantly reduces test
power and in most cases provides greater test data
compression than LFSR reseeding alone.

1. Introduction
As the size and the complexity of systems-on-a-chip

(SOC) continue to grow, test data volume has increased
dramatically. Several commercial tools for test data
compression have been introduced including
TestKompress by Mentor Graphics [Rajski 02] and
SmartBIST by Cadence [Koenemann 01]. All of the
commercial tools that have been introduced so far are
based on LFSR reseeding [Koenemann 91].

The basic idea in LFSR reseeding is to generate
deterministic test cubes by expanding seeds. A seed is an
initial state of the LFSR that is expanded by running the
LFSR in autonomous mode. Since typically only 1-5% of
the bits in a test vector are specified, most bits in a test
cube do not need to be considered when a seed is
computed because they are don’t care bits. Therefore, the
size of a seed is much smaller than the size of a test vector.
Consequently, reseeding can significantly reduce test data
storage and bandwidth.

Several reseeding schemes have been proposed to
reduce test storage. The first was introduced in
[Koenemann 91]. Several techniques were proposed to
improve the encoding efficiency of the basic scheme in
[Koenemann 91] including using multiple-polynomial
LFSRs [Hellebrand 92], using test cube concatenation
[Hellebrand 95], and using variable-length seeds [Zacharia
95]. More recent work has focused on dynamic LFSR

reseeding where the seed is incrementally modified as the
LFSR runs [Koenemann 01], [Krishna 01], [Rajski 02]. In
dynamic LFSR reseeding, the size of a seed does not
depend on smax and thus can be even smaller than the size
of an LFSR.

While reseeding is a very powerful method for test data
compression, it is not good for power consumption. The
don’t care bits in each test cube get filled with random
values thereby resulting in excessive switching activity
when they are shifted into a scan chain. When scanning in
test vectors where 95% to 99% of the bits have been filled
with random values, a very large percentage of the flip-
flops will make transitions thereby resulting in excessive
power consumption during test. The chip may be designed
to only handle the power consumption during normal
operation, and thus the excessive power consumption
during test can result in overheating. One solution to this
problem is to simply reduce the scan frequency, however
this results in longer test times. Many techniques for
reducing power consumption during scan testing have been
presented and are summarized in [Girard 02]. While most
work has focused on reducing test power for general scan
testing, only recently has work been done on considering
together the problems of test data compression and low
power test. Research in this direction has been presented
in [Sankaralingam 00], [Chandra 01, 02], and [Rosinger
02] and is summarized in Sec. 2.

In this paper, we present a new encoding algorithm that
can be used in conjunction with any LFSR reseeding
scheme to significantly reduce power consumption during
test. A key feature of the proposed approach is that it
reduces the number of specified bits and the number of
transitions at the same time. Since the amount of
compression for LFSR reseeding depends on the number of
specified bits, the proposed approach exploits this property.
Experimental results indicate that the proposed method
significantly reduces test power and in most cases provides
greater test data compression than LFSR reseeding alone.

2. Related Work
The idea of considering together the problems of test

data compression and low power test has been previously
investigated in a few papers. In [Sankaralingam 00], a
procedure for directing the static compaction process in a
manner that reduces test power and test data was described.
In [Chandra 01], an encoding algorithm that reduces both
test storage and test power was presented. The test cubes

are encoded using a Golomb code which is a run-length
code. All don’t care bits are mapped to 0 and the Golomb
code is used to encode runs of 0’s. The Golomb code
efficiently compresses the test data, and the mapping of the
don’t cares to all 0’s reduces the number of transitions
during scan-in and thus power. One drawback of a
Golomb code is that it is very inefficient for runs of 1’s. In
fact, the test storage can even increase for test cubes that
have many runs of 1’s.

A method based on an alternating run-length code was
presented in [Chandra 02] to improve on the encoding
efficiency of a Golomb code. While a Golomb code only
encodes runs of 0’s, an alternating run-length code can
encode both runs of 0’s and runs of 1’s. However, the
code becomes inefficient when a pattern is encoded where
the runs are short.

While both Golomb codes and alternating run-length
codes are good for reducing test power, they are not as
efficient as LFSR reseeding for compressing test data.
With LFSR reseeding, only the specified bits, which
generally account for only 1-5% of the test data, need to be
considered.

One previous method has been proposed in [Rosinger
02] for reducing test power for LFSR reseeding. Two
LFSRs are used. The main LFSR generates the test cube
through conventional reseeding. An extra “masking”
LFSR is used to generate a set of mask bits. If the number
of 1’s in a test cube is less than the number of 0’s, then the
output of the two LFSRs are ANDed together and the mask
cube will have a 1 for each specified 1 in the test cube and
an X for each specified 0 or X in the test cube. If the
number of 0’s in the test cube is less than the number of 1’s,
then the output of the two LFSRs are ORed together and
the mask cube will have a 0 for each specified 0 in the test
cube and an X for each specified 1 or X in the test cube. A
seed is computed for the extra “masking” LFSR so that it
generates the mask cube. Thus the effective number of
specified bits that must be generated using this method is
equal to the original number of specified bits in the test
cube plus the number of specified bits in each mask cube
(which is equal to the minimum of the number of 0’s or 1’s
in each test cube). The size of the main LFSR is the same
as for conventional reseeding, and the size of the extra
“masking” LFSR depends on the maximum number of
specified bits in any mask cube. Test power is reduced
because the output of the two LFSRs are ANDed or ORed,
thus reducing the transition probability. However, the test
data compression for this scheme is greatly reduced
compared with conventional LFSR reseeding because it
requires storing an extra set of seeds for the extra
“masking” LFSR. Results in the paper indicate that the test
storage was increased by 21% to 54% compared with
conventional LFSR reseeding while the transition count
was reduced by about 24%.

The proposed method addresses the problem of

reducing test power for LFSR reseeding. However, a
different approach is taken which does not compromise the
amount of test data compression. Moreover, the number of
transitions is reduced much more significantly than in
[Rosinger 02]. The experimental results for the proposed
method are compared with the previous methods in Sec. 5.

The proposed scheme has some similarity to the
dynamic scan scheme presented in [Samaranayake 02],
however there are a number of significant differences.
Both schemes use the fact that different test cubes have
compatible values for a significant number of scan
elements. The dynamic scan scheme identifies scan chain
segments that have compatible values across a set of test
cubes and bypasses those segments in order to reduce test
time and test storage. This approach also serves to reduce
power as well, although that is not the focus of the paper.
The proposed scheme also takes advantage of compatible
scan segments, but in a different way. The proposed
scheme exploits the property that the number of transitions
in a test cube is smaller than the number of specified bits.
By dividing the scan chains into blocks and identifying
blocks that do not contain transitions, the proposed
approach is able to fill those blocks with constant values.
The compatibility of blocks across different test cubes is
exploited in reducing control information and not through
bypassing. In [Samaranayake 02], scan chain

reconfiguration is necessary which requires inserting
design-for-test (DFT) logic in the scan chains themselves
to provide the bypass capability, whereas for the proposed
scheme, DFT logic is inserted only at the inputs of the scan
chains and is thus compatible with conventional scan
chains. The proposed scheme can be used for hard cores
and firm cores.

3. Encoding Algorithm
Let a transition in a test cube be defined as a specified

0 (1) followed by zero or more X’s followed by a specified
1 (0). The key idea of the proposed encoding algorithm is
to take advantage of the fact that number of transitions in a
test cube is always less than the number of specified bits in
a test cube. Thus, rather than using LFSR reseeding to
directly encode the specified bits as in conventional LFSR
reseeding, the proposed encoding algorithm divides the
test cube into blocks and only uses LFSR reseeding to
produce the blocks that contain transitions. For the blocks
that do not contain transitions, the logic value fed into the
scan chain is simply held constant. This approach reduces
the number of transitions in the scan chains and in most
cases also reduces the total number of specified bits that
must be generated by the LFSR as compared with
conventional LFSR reseeding.

3.1 Basic concepts
The proposed encoding scheme encodes each test cube

with two kinds of data: hold flags and data bits.

Block Block1 Block2 Block3 Block4
Original 0 X X 1 X 1 1 1 1 X 1 X X X X X
Encoded 0 0 X X 1 1 - - - - 1 - - - - X X X X X

Figure 1. Example of encoding test data
Block Block1 Block2 Block3 Block4

Original X 0 1 X X 0 X 0 X X X X 1 1 1 X
Encoded 0 X 0 1 0 1 - - - - 0 X X X 1 1 - - - -

Figure 2. Example of conversion procedure (last bit of blocks 1 and 3 are specified to convert
blocks 2 and 4 into non-transitons blocks)

Each test cube is divided into several blocks and each
block has a one-bit hold flag. The hold flag indicates
whether a transition occurs in a block. There are three types
of blocks:
1) Transition block (Hold flag = 0)

One or more transitions exist in the block. Either both
0 and 1 are present in the block (e.g., XX1X0X), or only 0
or 1 is present but the last specified bit from a previous
block was opposite.
2) Non-transition block (Hold flag = 1)

No transition occurs in current block. Only 0 or 1 is
present in the block, and the last specified bit from a
previous block is same (e.g., X0XX0X).
3) Don’t care block (Hold flag = X)

No specified bits occur in the block, all are don’t cares.
If the hold flag for a block is 1, then the data bits in the

block are simply held constant from the last data bit in the
previous block. If the hold flag is 0, then the data bits are
loaded directly from the LFSR. If the hold flag is X, then it
can be either treated as a non-transition block or as a
transition block with all X data. Both the hold flags and the
data bits are generated from a single LFSR using reseeding.

An example of the proposed encoding is shown in
Fig. 1. The test sequence in the example is composed of 4
blocks and each block has 1 hold flag and 4 data bits. The
hold flags are shown in bold in the “Encoded” bit sequence
row. In Fig. 1, the original test cube contains 7 specified
bits. However, using the proposed encoding scheme, the
encoded data has only 3 specified hold flags and 2
specified data bits giving a total of only 5 specified bits.
Thus, the proposed encoding scheme reduces the number
of specified bits that need to be generated using LFSR
reseeding. As shown in Fig. 1, the 1’s in block 2 and block
3 don’t need to be generated directly by the LFSR, but are
rather generated as a by-product of the fact that the hold
flags keep the input to the scan chain held constant at 1.
Thus, test data compression can be achieved in this way.
Moreover, no transitions will occur when generating block
2 and block 3 because the hold flags are 1 thus keeping all
the bits in the blocks constant. This would not be the case
in conventional LFSR reseeding where the X’s in blocks 1
and 2 get filled with random data which may results in
many more transitions. Thus, a reduction in the number of
transitions can be achieved in this way.

3.2 Conversion procedure
It is possible to increase the number of non-transition

blocks by converting some transitions blocks into non-
transition blocks. There are two requirements that must be
satisfied in order to convert a transition block into a non-
transition block. The first is that it cannot contain both
specified 0’s and specified 1’s. The second is that the last
bit of the previous block must be an X. Two examples of
this are shown in Fig. 2. Block 2 is initially a transition
block even though it only contains specified 0’s because
the last specified bit in block 1 was a 1. However, the very
last bit of block 1 is a don’t care, so a conversion
procedure can be used to specify that don’t care as a 0 and
thereby convert block 2 into a non-transition block. Even
though this conversion required adding an extra specified
data bit, the net result is still a reduction in the total number
of specified bits because now block 2 is a non-transition
block and thus none of its data bits need to be generated by
the LFSR. This same conversion procedure can also be
used to convert block 4 in Fig. 2 into a non-transition block.

By increasing the number of non-transition blocks, the
conversion procedure can help to reduce both test storage
(since it can reduce the total number of specified bits) as
well as test power (since it can reduce the number of
transitions by enabling all the X’s in the converted
non-transition block to be filled with the same logic value).

3.3 Partitioning into hold cube compatible sets
The test storage for LFSR reseeding depends on the

number of specified bits. For each block that is not a don’t
care block, the hold flag for that block is specified. If the
number of specified hold flags becomes larger than the
number of the specified test data bits that are reduced by
using the proposed encoding scheme, then the encoding
scheme would be reducing test power dissipation at the
cost of test storage. The test storage would increase
because the total number of specified data bits plus
specified hold bits would exceed the total number of
specified bits in the original test cubes. However, in this
section, a method for reducing the number of specified
hold flags is introduced.

The key idea is to take advantage of the fact that many
test cubes may have compatible assignments in their
corresponding hold flags. We will denote the set of hold

flags for one test cube as a hold cube since each hold flag
can be either a 1, 0, or don’t care (X). If several
consecutive test cubes have the same hold cube, it is not
necessary to change any of the hold flags. Thus, the hold
flags could be loaded once and then reused when applying
subsequent test cubes. The hold cubes for a pair of test
cubes are compatible if they do not conflict in any
specified bit positions. In other words, for every bit
position where one hold cube has a specified value, the
other hold cube has either the same specified value or a
don’t care (and vice versa). Let a hold cube compatible set
be defined as a set of test cubes with mutually compatible
hold cubes. Since typically only around 1-5% of the data
bits in a test cube are specified, the corresponding hold
cube will typically have a large number of don’t cares.
Thus the test cubes can generally be partitioned into a
relatively small number of hold cube compatible sets. The
test cubes can then be ordered so that the test cubes in each
hold cube compatible set will occur in succession. Thus,
the hold flags only need to be loaded once for each hold
cube compatible set. One extra bit per test cube is required
to indicate if the hold flags for the current test cube needs
to be updated or not.

Test
Cube

 Hold cube

1 1 X X 1 0 X
2 X 1 X X 1 1
3 1 0 X 1 X X
4 X 0 0 1 0 X
5 X X X 0 1 1

(a) Hold cube before partitioning

Test CubeUpdate
Flag

Hold cube

1 1 1 0 0 1 0 X
3 0 X X X X X X
4 0 X X X X X X
2 1 X 1 X 0 1 1
5 0 X X X X X X

(b) Hold cube after partitioning
Figure 3. Hold cube regeneration and reordering

Figure 3 shows an example of partitioning a test set
into hold cube compatible sets. The original hold cubes for
each test cube are shown in Fig. 3-(a). Originally, they
require 16 specified bits. They are then grouped into 2
hold cube compatible sets. The first set contains test cubes
1, 3, and 4, and the second contains test cubes 2 and 5.
The test cubes are reordered so that the hold cube
compatible sets are grouped together. An extra update flag
bit is added to each test cube to indicate if the hold flags
need to be updated. This flag is set only for the first test
cube in each hold cube compatible set. In this example, the
total number of specified bits (including the added update
flag bits) is reduced to 14. In our experiments (shown in
Sec. 5), we found that in most cases, this encoding scheme

was capable of reducing the total number of specified bits
(including data bits, hold flags, and update flags) to below
that of the original test cubes.

4. Hardware implementation
The hardware implementation for the proposed scheme

is shown in Fig. 4. Each scan chain is divided into one or
more blocks. Let B be the number of blocks per scan chain.
Each scan chain has a hold flag shift register (HF-SR)
whose size is equal to B. LFSR reseeding is used to
generate all of the data for each test cube which consists of
three components: update flag, hold flags, and test data.
The format for the data coming out of the LFSR for each
test cube is shown in Fig. 5.

L
F
S
R

Phase
Shifter

Scan Chain

Scan Chain

Scan Chain

HF-SR

HF-SR

HF-SR

Update flag

0

1

0

1

0

1

1-bit ff

Load signal for HF-SR

Figure 4. Hardware implementation

There is a small finite state machine (FSM) controller
that controls where the data coming out from the LFSR is
stored. In the first clock cycle, the LFSR generates a single
bit which is the update flag. If the update flag is 1, then in
the next B clock cycles, the LFSR generates the hold flags
for each of the scan chains which are shifted into the HF-
SRs. If the update flag is 0, then the HF-SRs are not loaded.
Let the length of each scan chain be L. Then for the next L
clock cycles, the LFSR generates the test data. For each
L/B clock cycles, if the corresponding hold flag for a scan
chain is 0, then the scan chain is loaded from the LFSR. If
the corresponding hold flag is a 1, then the last value
shifted into the scan chain is repeatedly shifted into the
scan chain and the data from the LFSR is ignored. After
each L/B clock cycles, the hold flag shift register is shifted
so that the next hold flag becomes active for its
corresponding block and is used as the control signal to a
MUX (as shown in Fig. 4). After the scan chains have
been filled, then the scan vector is applied to the circuit-
under-test and the response is loaded back into the scan
chain. The process is then repeated to generate the next
scan vector.

׃ ׃

Num. of Blocks
per Scan Chain (B)

Update Flag

Scan chain length (L)

Hold Cube
(If update flag is equal to 1) Test data

Num. of
Scan Chains

Figure 5. Data format

The hardware overhead consists of one 2-to-1 MUX
and a HF-SR per scan chain, one 1-bit update flag flip-flop
and the small FSM controller. The FSM controller consists
of a bit counter (which is present for LFSR reseeding
anyway) and some small combinational logic. The size of
the HF-SR dominantly determines the hardware overhead
in this scheme. It depends on the number of scan chains
and the total number of blocks.

5. Experimental results
Experimental results for the proposed scheme for the

largest ISCAS 89 benchmark circuits are shown in Table 1.
Results are shown for dividing each test cube into different
numbers of blocks (note that there is one hold flag for each

block). The test cubes were partitioned into hold cube
compatible sets, and the number of such sets is shown in
each case. The total number of specified bits required for
the proposed encoding scheme is shown (including update
flags, hold flags, and data bits). The total number of
specified bits and total number of transitions (computed as
described in [Sankaralingam 00]) for the proposed
encoding scheme is compared with that for the original test
cubes. The number of transitions includes the number of
transitions in HF-SRs. In most cases, the total number of
specified bits is reduced (which will result in less test data
storage) while a substantial reduction in the total number of
transitions is obtained (which results in less test power).
Note that there is a tradeoff between the numbers of
specified bits in the test data and hold flags. The more
blocks that are used, the less specified bits in the test data,
but the more specified hold flags. Moreover, the reduction
in the number of transitions increases as the number of
blocks in a test pattern increases. The hardware overhead
also increases in this case as the size of the hold flag shift
registers becomes larger. The hardware overhead depends
the number of scan chains, which is chosen depending on
the circuit size. The third to last column indicates

Table 1. Results for proposed encoding scheme
Circuit Information Test Storage Test Power Overhead Test time

Circuit
Name

Num.
Test

Pattern

Num.
Blocks

Num.
Compatible

Sets

Num.
Specified
Data Bits

Num.
Specified
Hold lags

Total
Specified

Bits

Change
(%)

Num.
Transitions

Transition
Reduction

(%)

Num
Mux

Size
HF-
SR

Change
(%)

31 143 4162 1966 6128 +15 40233 52 3 +11 s5378 196
22 126 4664 986 5650 +4 148981 40

11
2 +7

31 191 6743 3154 9897 -4 51426 52 3 +12 s9234 205
11 133 8495 1275 9767 -5 204919 38

11
1 +3

100 114 7006 2391 9397 -1 169626 53 5 +6 s13207 266
20 93 8183 1152 9335 -1 968199 41

21
1 +1

51 125 8952 2157 11109 0 271198 48 3 +4 s15850 269
31 118 9301 1627 10928 -1 482798 43

21
2 +2

185 141 20084 8777 28861 -5 917155 50 6 +4 s38417 376
152 146 20933 7399 28332 -7 735408 52

31
5 +3

209 255 21233 12348 33581 +25 398761 53 7 +12 s38584 296
21 205 24964 3630 28594 +8 6037549 27

31
1 +1

Table 2. Results comparing partial reseeding alone with using partial reseeding in conjunction with the proposed scheme
Partial Reseeding Algorithm

[Krishna 01]
 Partial Reseeding with Proposed Encoding Scheme Circuit

Num.
Specified Bits

Test
Storage

Num.
Specified Bits

Test
Storage

Reduction of
Specified Bits

(%)

Change in
Test Storage

(%)

Transition
Reduction

(%)
s5378 508 533 501 514 1 -3.6 54
s9234 5198 5537 4031 4556 22 -17.7 57

s13207 2824 3008 2779 3021 1 +0.4 56
s15850 5092 5204 4166 4896 18 -5.9 57
s38417 23984 24513 20688 23166 13 -5.5 52
s38584 2848 2942 2263 2827 7 -3.9 45

Table 3. Results comparing proposed scheme with previous schemes
Circuit Dual-LFSR reseeding

[Rosinger 02]
Alternating run-length code

[Chandra 02]
Proposed scheme

 Test
Storage

Comp.
(%)

Power
Reduction

(%)

Test
Storage

Comp.
(%)

Power
Reduction

(%)

Test
Storage

Comp.
(%)

Power
Reduction

(%)
s9234 19440 68 24 21612 44 76 10302 79 53

s13207 11803 94 25 32648 80 93 10484 94 53
s15850 14518 90 25 26306 65 85 11411 93 52
s38417 66234 92 25 64976 60 81 32152 95 52
s38584 23835 94 25 77372 61 83 31152 93 40

the number of 2-to-1 MUXs required which is equal to the
number of scan chains because one MUX is located on the
entrance of each scan chain. The size of HF-SR is
indicated in the second to last column. It depends on the
number of blocks. Test time is increased because it takes
several clock cycles to insert hold flags into HF-SRs. As
shown in the last column, the test time increase due to the
proposed scheme is very small.

The proposed encoding scheme can be used in
conjunction with any LFSR reseeding scheme.
Experiments were performed for using the proposed
encoding scheme in conjunction with the partial LFSR
reseeding scheme described in [Krishna 01]. Results are
shown in Table 2. The exact same set of test cubes that
were used for generating the results published in
[Krishna 01] were encoded using the proposed encoding
scheme in conjunction with the scheme in [Krishna 01].
As can be seen, in most cases both the test storage and test
power are reduced using the proposed scheme.

Table 3 shows a comparison of the experimental results
in [Rosinger 02] and [Chandra 02] with the proposed
encoding scheme (used in conjunction with partial LFSR
reseeding as described in [Krishna 01]). As can be seen,
the proposed scheme reduces the test storage requirements
much more than the other schemes. In terms of reducing
test power, the proposed scheme is much more effective
than the scheme in [Rosinger 02] which is also applicable
for LFSR reseeding. Moreover, the compression ratio in
the proposed scheme is similar or even higher than that in
[Rosinger 02] even though 1,000 pseudo-random patterns
are applied first in [Rosinger 02]. Note that the results for
both [Chandra 02] and the proposed scheme are for
encoding the entire deterministic test set. While the test
power for the proposed scheme is not reduced as much as
for the scheme in [Chandra 02] which is based on run-
length encoding, much more compression is achieved.
The key advantage of the proposed scheme compared with
[Chandra 02] is that it is compatible with LFSR reseeding
which is used in commercial tools due to its superior
encoding efficiency.

6. Conclusion
LFSR reseeding is a powerful approach for reducing

test storage. The proposed encoding scheme provides a
way to reduce test power for LFSR reseeding. It acts as a
second stage of compression after LFSR reseeding. By
employing hold flags, not only is test power reduced, but
also test storage can be reduced.

Acknowledgements
This material is based on work supported in part by the

Intel Corporation and in part by the National Science
Foundation under Grant No. CCR-0306238.

References
[Chandra 01] Chandra, A., and K. Chakrabarty, “Combining low-power

scan testing and test data compr---ession for system-on-a-chip,” Proc. of
Design Automation Conf., pp. 166-169, 2001.

[Chandra 02] Chandra, A., and K. Chakrabarty, “Reduction of SOC Test
Data Volume, Scan Power and Testing Time Using Alternating Run-
length Codes,” Proc. of Design Automation Conf., pp. 673-678, 2002.

[Girard 02] Girard, P., “Survey of Low-Power Testing of VLSI Circuits,”
IEEE Design & Test of Computers, pp. 82-92, 2002.

[Hellebrand 92] Hellebrand, S., S. Tarnick, J. Rajski, and B. Courtois,
“Generation of Vector Patterns Through Reseeding of Multiple-
Polynomial Linear Feedback Shift Register,” Proc. of International Test
Conference, pp. 120-129, 1992.

[Hellebrand 95] Hellebrand, S., J. Rajski, S. Tarnick, S. Venkataraman,
and B. Courtois, “Built-in Test for Circuits with Scan Based on
Reseeding of Multiple-Polynomial Linear Feedback Shift Registers,”
IEEE Trans. on Computers, Vol. 44, No. 2, pp. 223-233, Feb. 1995

[Koenemann 91] Koenemann, B., “LFSR-Coded Test Patterns for Scan
Designs,” Proc. of European Test Conference, pp. 237-242, 1991.

[Koenemann 01] Koenemann, B., C. Barnhart, B. Keller, T. Snethen, O.
Farnsworth, and D. Wheater, “A SmartBIST variant with guaranteed
encoding,” Proc. of VLSI Test Symposium, pp. 325-330, 2001

[Krishna 01] Krishna, C.V., A. Jas, and N.A. Touba, “Test Vector
Encoding Using Partial LFSR Reseeding,” Proc. of International Test
Conference, pp. 885 – 893, 2001.

[Rajski 02] Rajski, J., J. Tyszer, M. Kassab, N. Mukherjee, R. Thompson,
T. Kun-Han, A. Hertwig, N. Tamarapalli, G. Mrugalski, G. Eider, and Q.
Jun, “Embedded deterministic test for low cost manufacturing test,”
Proc. of International Test Conference, pp. 301-310, 2002.

[Rosinger 02] Rosinger, P. M., B.M. Al-Hashimi, and N. Nicolici, “Low
Power Mixed-Mode BIST Based on Mask Pattern Generation Using
Dual LFSR Re-seeding,” Proc. of Int. Conf. on Comp. De., pp. 474-479,
2002.

[Samaranayake 02] Samaranayake, S., N. Sitchinava, R. Kapur, M.B.
Amin, and T.W. Williams, “Dynamic Scan: Driving Down the Cost of
Test,” Computer, Vol. 35, Issue 10, pp. 63 – 68, 2002

[Sankaralingam 00] Sankaralingam, R., R.R. Oruganti, and N.A. Touba,
“Static compaction techniques to control scan vector power dissipation,”
Proc. of VLSI Test Symp., pp. 35-40, 2000.

[Zacharia 95] Zacharia, N., J. Rasjski, and J. Tyszer, “Decompression of
Test Data Using Variable-Length Seed LFSRs,” Proc. of VLSI Test
Symposium, pp. 426-433, 1995.

