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Abstract

If a system-on-a-chip (SOC) contains an embedded
processor, this paper presents a novel approach for
using the processor to aid in testing the other
components of the SOC.  The basic idea is that the tester
loads a program along with compressed test data into
the processor’s on-chip memory.  The processor executes
the program which decompresses the test data and
applies it to scan chains in the other components of the
SOC to test them.  This approach both reduces the
amount of data that must be stored on the tester and
reduces the test time.  Moreover, it enables at-speed scan
shifting even with a slow tester (i.e., a tester whose
maximum clock rate is slower than the SOC’s normal
operating clock rate).  A procedure is described for
converting a set of test cubes (i.e., test vectors where
unspecified inputs are left as X’s) into a compressed form.
A program that can be run on an embedded processor is
given for decompressing the test cubes and applying them
to scan chains on the chip.  Experimental results indicate
significant amount of compression can be achieved.

1. Introduction

An increasingly difficult challenge in testing systems-
on-a-chip (SOC) is dealing with the large amount of test
data that must be transferred between the tester and the
chip [Zorian 97].  The entire set of test vectors for all
components of the SOC must be stored on the tester and
transferred to the chip during testing (as illustrated in
Fig. 1).  This poses a serious problem because of the cost
and limitations of ATE (automated test equipment).
Testers have limited speed, channel capacity, and
memory.  The amount of time required to test a chip
depends on how much test data needs to be transferred to
the chip and how fast the data can be transferred (i.e., the
test data bandwidth).  This depends on the speed and
channel capacity of the tester and the organization of the
scan chains on the chip. Both test time and test storage
are major concerns for SOCs.

Usually, an SOC will contain one or more embedded
processors.  This paper presents a novel approach for
using an embedded processor to aid in testing the other
components of the SOC.  The basic idea is that the tester
loads a program along with compressed test data into the
processor’s on-chip memory (e.g., cache or other scratch
pad memory).  The processor executes the program
which decompresses the test data and applies it to scan
chains in the other components of the SOC to test them.
This approach both reduces the amount of data that must
be stored on the tester and reduces the test time.
Moreover, it can enable at-speed shifting using a slow
tester (i.e., a tester whose maximum clock rate is slower
than the SOC’s normal operating clock rate).
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Figure 1.  Block Diagram for Transferring Test Data
between Tester and Chip

Previous research in using embedded processors to
aid in testing has focused on performing memory tests
[Saxena 98], [Rajsuman 99], or pseudo-random built-in
self-test (BIST).  Techniques for generating pseudo-
random patterns and compacting test responses using
simple programs have been proposed in [Rajski 93],
[Gupta 94], and [Stroele 95, 96, 98].  Techniques for
mixed-mode BIST using embedded processors have been
described in [Hellebrand 96] and [Dorsch 98].  The
approach presented here is a fully deterministic test
approach which supports either external testing or BIST.
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The advantage of decompressing deterministic vectors is
that a targeted fault coverage can be achieved with a
short test time.  The number of vectors that need to be
applied to the circuit is much less than that required for
pseudo-random BIST.  Moreover, it supports structured
delay fault testing and testing of intellectual property
(IP) blocks.  In some cases, an IP provider may not be
willing to provide any information of the internal logic
of an IP block and thus fault simulation is not possible
thereby precluding pseudo-random BIST.

Previous research has also been done in
compressing/decompressing test data.  Novel approaches
for compressing test data using the Burrows-Wheeler
transform and run-length coding were presented in
[Yamaguchi 97], [Inshida 98].  These schemes were
developed for reducing the time to transfer test data from
a workstation to a tester (not for use on chips).  It is too
complex and slow for an on-chip implementation.  A
scheme for compression/decompression of test data
using cyclical scan circuits is described in [Jas 98].  It
uses careful ordering of the test set and formation of
cyclical scan chains to achieve compression with run-
length codes.  Compression schemes based on statistical
codes were presented in [Iyengar 98] for non-scan
circuits and [Jas 99] for scan circuits.

The compression/decompression scheme presented in
this paper is very well suited for implementation on an
embedded processor. The decompression process
requires very few processor instructions and thus can be
done very quickly.  The decompression process is
pipelined to maximize the throughput of decompressed
test vectors and thereby minimize the test time.

2. Proposed Scheme

The compression/decompression scheme described in
this paper is based on generating the next test vector
from the previous one by storing only the information
about how the vectors differ.  In this scheme, each test
vector is divided into fixed length blocks as shown in
Fig. 2.

The size of the test vector blocks depends on the
word size of the processor.  The way this block size is
determined will be explained later.  The next test vector
is built from the previous test vector by replacing the
blocks in which they differ.  For example, in Fig. 2, the
blocks in which test vector t+1 differs from test vector t
are shaded.  Hence test vector t+1 can be built from test
vector t by replacing only the shaded blocks.

Because of the structural relationship among faults in
a circuit, there will be a lot of similarity between the test
vectors.  The test vectors can be ordered in an optimal
way such that two successive test vectors differ in a

relatively fewer number of blocks.  Hence the amount of
information required to store these differences will be
less than that required for storing the entire test vector.
These differences are represented by “replacement
words” which are encoded pieces of information that tell
the processor how to build the next test vector from the
previous one.  Each replacement word has three fields as
shown in Fig. 3.  A single bit field called the last flag, a
log2N bit field called the block number (where N is the
number of blocks into which the test vector is divided)
and a b bit field called the new block pattern.  The block
number field contains the address of the block that is to
be replaced with the new pattern contained in the new
block pattern field.  If two successive test vectors differ
in x blocks then this information is represented as a
sequence of x replacement words where the last flag
field of the x-th replacement word (the last replacement
word in the sequence) has its last flag bit set (1).  All
other replacement words have their last flags turned
off (0).  The sequence of replacement words for the
example of Fig. 2 is shown in Fig. 4.  The processor
reads these replacement words and then replaces the
appropriate blocks with the new block patterns.  When it
sees the last flag bit set, then it knows that the next test
vector formation has been completed.  It then shifts the
test vector into the scan chain(s) and applies it to the
core-under-test.  The block size, b, is chosen in such a

way that  1 + log2N + b = W, where W is the word size
of the processor.

As mentioned before, if successive test vectors differ
in a small number of blocks, then the total number of

Block #:
Vector (t):  
Vector (t+1):

000 001 010 011 100 101 110 111

Figure 2.  Dividing Test Vector into Blocks

Last
Block

Block
#

New Block Pattern

1  m=log2N b=block size 

Figure 3.  Replacement Words

Last
Flag Block # New Block Pattern

0 001 1011010011010011010001101010
0 010 1011010011010011010001101010
0 101 1011010011010011010001101010
1 111 1011010011010011010001101010

Word Size of Processor (e.g., 32 bits)

Figure 4.  Replacement Words for Example in Fig. 2
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bits required for representing all the replacement words
(to build the next test vector) will be less than that
required for representing the entire test vector (which is
the same as the number of bits in a test vector).  We thus
obtain compression.  Note that the amount of
compression depends on the ordering of the test vectors.
The better the ordering, the fewer the number of blocks
in which successive test vectors differ and consequently
the fewer the number of replacement words.

The optimal ordering of the test vectors to maximize
the compression can be obtained as follows.  Form a
complete undirected graph where each vertex v
corresponds to a test vector tv and the weight of each
edge (x,y) is the number of bits required to encode the
information of how to produce tx from ty or vice versa.
The minimum cost Hamitonian path in the graph
corresponds to the optimal ordering of the test vectors.
Finding the minimum cost Hamitonian path in a graph is
a well known NP-complete problem [Cormen 89].
However, a polynomial time approximation algorithm
producing a near optimal solution exists when the
triangle inequality holds.  In our application, the triangle
inequality holds. Let w(x,y) denote the weight of an edge
between vertices x and y.  The triangle inequality implies
that for any three vertices x, y, and z in the graph, w(x,y)
+ w(y,z) ≥ w(x,z).  The reason why this is true is as
follows.  Let x and y differ in blocks b1, b2,…, bn and y
and z differ in blocks b1’, b2’,…, bm’.  Then x and z will
differ in m+n blocks if ∀i (bi ≠ bi’ ) or they will differ in
less than m+n blocks if some bi and bi’  are the same.

3. Performing Decompression Using an 
Embedded Processor

The compression/decompression technique described
in the previous section can be implemented by using an
embedded processor in an SOC.  This section describes
the implementation details.

The block diagram in Fig. 5 gives an overview of the
architectural set-up of the scheme.  The processor is used
to concurrently load multiple scan chains on the chip.
The on-chip memory holds the instructions which the
processor executes and also the data on which the
processor operates.  The tester initially downloads a
software program into the memory which the processor
executes.  The tester then supplies the processor with a
stream of encoded data (replacement words) about
blocks that are to be replaced with new patterns to
produce the next test vector.  The processor just decodes
the replacement words and acts accordingly.

In the initialization phase (before testing begins) the
tester downloads the software program (compiled

machine code) into the on-chip memory.  Then a fixed
set of locations are reserved in the memory for the tester
to continuously download the encoded data (replacement
words) which the program uses.  For example, let us
assume that memory locations 0, 1,..., M-1 are M
memory locations which are reserved for the tester to
write encoded data into in a modulo M manner, i.e., the
tester first writes encoded data into locations 0, 1,..., M-1
and then again starts from 0.  After the initialization
phase is over, the tester starts loading replacement words
into the specified memory locations.  The processor now
starts running the program.  The program is very simple.
It directs the processor to routinely read the replacement
words from the memory locations 0, 1,..., M-1 in a
modulo M manner and act accordingly.  While the
processor is running the program, which results in test
vectors being generated and applied to the scan chains,
the tester continues to load the memory with new
replacement words for the processor to work on.

Note that, in general, there will be a memory I/O
controller on the SOC for interfacing with the outside
world during normal system operation.  This memory
I/O controller is used by the tester to load the data into
the memory during testing.  The memory I/O controller
is typically capable of handling a slower clock rate when
interfacing with the outside world.  Thus, the tester can
run at a slower clock rate than the normal system clock
rate of the processor.  Thus the processor can be
operating at-speed even though the tester may be slower.
Because of the tremendous cost of high-speed ATE
equipment, this is a major advantage because it allows
at-speed scan shifting while using slower (and cheaper)
ATE equipment.

The current set of blocks is stored in the on-chip
memory along with the replacement words.  The
program that runs on the processor causes the processor
to execute a while loop until the end of the test data.  In
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M
I
S
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Figure 5.  Block Diagram of Test Architecture
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each iteration of the loop, it fetches a replacement word
from the next memory location from which it is
supposed to read the data and replaces the appropriate
block.  When the processor sees that the last flag bit is
set, it knows that it has seen the last replacement word
for that particular test vector and now needs to apply the
test vector to the scan chain.  The mechanism for
applying a test vector to a scan chain is controlled by a
serializer.  The processor downloads each block to the
appropriate serializer one at a time and the serializer
shifts the block into the scan chain.  The serializer is a
register with a small finite state controller which shifts in
one bit per clock cycle into the scan chain.  When the
entire test vector has been shifted into the scan chain, the
system clock is applied and the response is loaded back
into the scan chain.  The response is shifted out into a
multi-input signature register (MISR) for compaction as
the next test vector is shifted into the scan chain.

M-1

Replacement
Words

0
1

W

Current
Blocks

0
1

N-1
b

Ser. 0

Ser. 1

Ser. k-1

0

1

k-1

b b

N-k

N-k+1

N-1

Figure 6.  Organization of Data in On-Chip Memory

As shown in Fig. 6, a test vector is stored as N words
in the on-chip memory (where N is the number of blocks
into which the test vectors have been divided).  Note that
there are two distinct areas (sequence of addresses) in the
memory from which the processor reads/writes data.
There is one area from which the processor only reads
the data.  This is the area into which the tester writes the
replacement words and the processor reads it to update
the blocks.  The other area is where the patterns for the
blocks of the test vector are stored.  The processor both
reads and writes data from and to this area.  It writes data
into this area when it is replacing a block with a new
pattern, and it reads data from this area when it
downloads them to the serializers for shifting them into
the scan chains.  When the processor sees the last flag bit
set, it begins the process of applying the vector by
downloading the 0th block into the serializer for the 0th
scan chain and starts the serializer.  The serializer then
starts shifting the block into the scan chain.  While it is
doing so the processor continues to download the 1st
block into the serializer for the 1st scan chain and so on

and so forth.  Thus if there are k scan chains and N
blocks (k < N) then the i-th block gets downloaded into
the (i mod k)-th serializer.  When the processor has
finished downloading the block into the k-th serializer, it
comes back to the 0th serializer.  Now there can be two
situations.  If the 0th serializer has finished shifting in
the earlier block the processor can immediately
download the next block and start the serializer again.
Otherwise it has to wait for the serializer to finish
shifting before it can download another block into it.
Once the last block has been downloaded and shifted in,
the test vector is applied to the scan chains and the
processor again continues to read replacement words
from the on-chip memory and update the blocks.

In Fig. 7, ‘C’ like pseudo-code for the decompression
program that runs on the processor is given.  It is a high
level view of how the assembly code for the program
running on the processor may look like.  Note that it is
just an abstraction and tries to convey the basic
algorithm for the decoding.  The macro calls in most
cases will be just a few processor instructions.  For
example, the write_memory is actually a representative
of a STORE instruction with indirect register addressing
(base and offset register).  The variable mem_index is an
offset that points to the address from which the processor
should get the next data to decode.  MEM_START is

  void test (void)
  {
   int i;  // looping variable
   int k; // number of scan chains
   int N; // total number of blocks in a test vector
   unsigned int mem_index = MEM_START;
   int last_block,block_to_replace,pattern;

  // continue until read sees “end_of_test” instruction
  while(read_memory (MEM_START+mem_index,&last_block,
  &block_to_update,&pattern))
   {
    // replace appropriate block with new block pattern
    write_memory (base_address+block_to_replace,pattern);
    // load test vector into scan chains
    if(last_block)
    {
      for(i=0;i < N; i++)
      {
        while(serializer_busy (i%k));  // wait until serializer is ready
        load_serializer_from_memory (&serializer[i%k],base_address+i);
        start_serializer (i%k);
     }
    }
    // point to next memory location for reading replacement word
    mem_index = (mem_index+1)% MEM_SIZE;
   }
  }

Figure 7. Pseudo-Code for Program Run on Processor
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defined to be the starting location for reading the
replacement words.  It is assumed that the very last
instruction of the test session causes the processor to set
some kind of a flag which is abstracted by the condition
of the while loop.  MEM_SIZE is the total size of the
address space reserved for the tester to write the
replacement words i.e., the tester writes to locations
MEM_START, (MEM_START+1),..., (MEM_START+
MEM_SIZE-1).  The read_memory macro implements
reading a replacement block from a memory location
and obtains the information about the address of the
block to replace, pattern with which to replace, and
whether it is the last block for that test vector.  The
load_serializer_from_ memory macro downloads a block
from the memory location addressed by the block
number as offset from some base address, into the
serializer for that scan chain and starts the serializer (by
setting an indicator line abstracted by the start_serializer
routine) to shift that into the scan chain.

4. Avoiding Memory Overflow

Since the tester is constantly transferring replacement
words to the on-chip memory, one potential problem is
that if the processor falls too far behind in processing the
replacement words, there could be a “memory overflow.”
This would result in the tester overwriting a replacement
word in the memory that has not yet been processed.
Care must be taken to ensure that no memory overflow
will occur.

The possibility for a memory overflow depends on
the relative speed of the processor to the tester.  The rate
at which the tester puts data into the memory depends on
the tester clock rate and the number of channels.  The
rate at which the processor processes data in the memory
depends on its clock rate, word size, and instruction set.
The instruction set determines how many clock cycles
are required to process the replacement words.

The tester continuously writes test data in a cyclic
fashion into locations 0,1,…,M-1 of the memory.  So
after every MW (where W is the word size) bits each
location of the memory gets overwritten by the tester.
Hence the processor should finish processing all the
replacement words in locations 0,1,…,M-1 within the
time taken by the tester to shift in MW bits.  If the tester
has n scan channels and has a clock period TT, the time
taken by the tester to shift in MW bits is  [WM/n]TT.
Hence the processor should process all M replacement
words within this time.  All the processor does for each
replacement word is to read the new pattern and the
block address and replace the appropriate block.
However for the blocks which have the last flag set, the
processor has to download all the blocks into the

serializers to shift them into the scan chains.  This is the
most time consuming part for the processor.  So the
speed at which the processor can process M replacement
words depends on how many of them have their last flag
set.  Let this be denoted by e.  Then the time taken by
the processor to process M replacement words is
[Mu+(eNb/k)] TP where TP is the clock period of the
processor, N is the total number of blocks, b is the block
size, k is the number of scan chains, and u is the number
of cycles taken by the processor to read a replacement
word and replace the appropriate block.  The value of u
depends on the instruction set architecture of the processor.
No memory overflow will occur if the following
condition is satisfied:  [Mu+(eNb/k)]TP  < [WM/n]TT

If the condition above is not satisfied, then for a
given compressed test set, a quick check can be made to
see if a memory overflow will occur.  If a memory
overflow would occur, then something must be done to
avoid this.  One solution would be to re-order the test
vectors when constructing the compressed test set so that
e will become smaller.  This will likely result in less test
data compression, but it will avoid memory overflow.
Another solution may be to insert NOP’s in the tester
program at carefully selected locations to slow it down
so no memory overflow will occur, or to simply run the
tester at a slower clock rate that ensures no memory
overflow.  These solutions would not reduce the amount
of test data compression and thus would still minimize
tester memory requirements.

Note that if the processor is sufficiently faster than
the tester, then the above condition will be satisfied and
the maximal reduction of both test data and test time can
be achieved.  Note also that as the number of scan chains
(i.e., k) is increased, the condition becomes easier to
satisfy.

5.  Experimental Results

We used our scheme to compress test sets for the
largest ISCAS benchmark circuits.  An ATPG tool was
used to generate test cubes that provided 100% coverage
of detectable faults in each circuit. Unspecified input
assignments were left as X’s to enable better
compression.  Static compaction of the test cubes was
performed by merging the test cubes when possible and
doing reverse fault simulation to remove superfluous test
cubes.  The block size in each case was derived by the

formula:  1 + log2N +  b = W.  Where N is the number
of blocks in the scan chain, b is the block size, and W is
the width of the addressable element of the memory. N is

the number of blocks, so we need log2N bits to address
each block.  One bit is needed as the last block indicator
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and the update pattern for each block is b bits wide.  So
the above inequality results from the fact that the
memory addressable element (word) should be big
enough to hold this data.  The results obtained in the
table below are for W = 32.  The percentage of
compression is computed as:
(Original Bits - Compressed Bits)/(Original Bits) x 100

As can be seen from the results, a significant amount
of compression can be achieve with the proposed
scheme.  Note that this compression results in both less
storage requirements on the tester and less test time.  As
explained in Sec. 4, the actual test time reduction could
be somewhat less depending on the number of scan
chains and the relative speed of the processor compared
to the tester.  However, with a sufficiently fast processor,
the percentage compression figure shown in Table 1
would also be the percentage reduction in test time.

Table 1.  Compression Obtained for Benchmark Circuits
Using the Proposed Scheme

Circuit Scan
Size

Original
Test Data

(Bits)

Block
Size

(Bits)

Percent
Comp.

c2670 233 35183 27 58.45
c5315 178 24742 28 41.52
c7552 207 62721 28 42.39
s5378 199 29850 28 39.00
s9234 247 48906 27 26.60
s13207 700 186200 26 73.32
s15850 611 86151 26 46.65
s38417 1664 247936 24 59.06

6.  Conclusion

The proposed approach makes use of existing
functional circuitry on the chip (i.e., an embedded
processor) to aid in testing the SOC.  By harnessing the
computational power of an embedded processor,
decompression of test data can be performed in software.
This reduces both the amount of test storage and test
time, thereby reducing the tester memory and channel
capacity requirements.  Such techniques are needed to
keep down the cost of the ATE equipment for testing
future SOC’s.

A basic framework for how an embedded processor
can be used for decompressing test data is presented
here. One specific compression/decompression algorithm
which gives good results is described.  However, there is
a lot of scope for future research in other compression/
decompression algorithms for test data.  The ability to
use a processor to perform the decompression in
software opens the door to many possible techniques.
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