
CONFIGURATION SELF-TEST IN FPGA-BASED RECONFIGURABLE SYSTEMS

Wasim Quddus, Abhijit Jas, and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712-1084
{ quddus, jas, touba} @cat.ece.utexas.edu

ABSTRACT

An FPGA-based reconfigurable system may contain boards
of FPGAs which are reconfigured for different applications and
must work correctly. This paper presents a novel approach for
rapidly testing the configuration in the FPGAs each time the
system is reconfigured. A low-cost configuration-dependent test
method is used to detect faults in the circuit. The “original
configuration” is modified by only changing the logic function of
the CLBs to form “test configurations” that can be used to
quickly test the circuit. The test procedure is rapid enough to be
performed on the fly whenever the system is reconfigured. The
technique is independent of any fault model since it partitions
the circuit into segments and tests each segment exhaustively.

1. INTRODUCTION
A field-programmable gate array (FPGA) can be configured in

the field to implement a desired logic function. A static RAM
based FPGA architecture has a matrix of configurable logic
blocks (CLBs), programmable interconnect, and programmable
U 0 cells. A user can specify a logic function and then use
compiler software to map the logic function to a network of
CLBs which are then placed and routed. The end result is a
particular configuration for the FPGA which implements the
logic function.

One powerful and exciting application of FPGAs is in
constructing reconfigurable systems (or custom computing
machines). The hardware in such systems can be reconfigured
to adapt to different computing requirements for different
applications. Reconfigurable systems offer higher computational
density and higher throughput for many applications compared
with conventional fixed hardware systems.

An important and challenging issue for reconfigurable
systems is reliability. There are two reasons why it is important
to check each time the hardware is reconfigured that the new
configuration is fault-free:
1. A defect in the reconfigurable hardware may only cause faulty

behavior for certain configurations. It is possible that a
defective FPGA component may pass manufacturing test and
may work correctly for many different configurations, but then
may suddenly fail for one particular configuration.

2. There are many failure mechanisms that can cause an FPGA
component to fail over time. Periodic testing of the
reconfigurable computing machine allows failed components
to be identified and replaced.
In order to describe the relationship between the work

presented here and previous work in FPGA testing, it is
important to make the distinction between confguration-
independent testing and configuration-dependent testing. In

configuration-independent testing, no assumptions are made
about the way in which the FPGA will be configured by the
user. The goal is to maximize the fault coverage for all possible
configurations. Configuration-independent testing is done when
the FPGA is manufactured (i.e., before it is shipped to the user).
Previous work in FPGA testing has focused on configuration-
independent testing. Configuration-dependent testing, on the
other hand, involves testing that a particular FPGA configuration
is fault-free. A higher fault coverage (for the particular
configuration) can be achieved with less test time. The
approach described here is a configuration-dependent test
technique. Configuration-independent techniques for testing
FPGAs have been described in [7][10], and techniques for
diagnosis are described in [2][3][4].

The approach of detecting, locating, and avoiding faulty
hardware in reconfigurable systedms is used in the Teramac
Custom Computer [11. A configuration-independent test
approach is used where each resource in the system is tested
several times with different test configurations. When faults are
detected, the faulty hardware is marked so that the compiler will
avoid mapping to those resources. Three drawbacks of the
diagnostic tests are described in [l]:
1. Time to develop (through experimentation) test configurations

that provide a high coverage.
2. Time it takes to develop the diagnostic tests necessary to

locate (not just detect) the faults.
3. Time to run the tests.

The configuration-dependent test method presented in this
paper addresses the problem of detecting faults in a given
configuration for reconfigurable systems. By adopting a
functional testing technique this method does not depend on any
fault model. However it should be noted that for the
configuration under test, this method will provide 100% single
stuck-at and multiple stuck-at fault coverage. Moreover this
technique is independent of the underlying FPGA architecture
and hence can be used in future generations of FPGA chips with
no modifications. It provides a systematic procedure for testing
a particular configuration. This is done by modifying the
“original configuration” by only changing the logic function of
the CLBs to form “test configurations” that can be used to
quickly test the circuit. A systematic procedure is applied to the
“original configuration” to generate a small set of test
configurations. The logic function of the CLBs in the test
configurations are chosen in such a way that the “segment
verification testing” [5] approach can be used to detect all stuck-
at faults in the circuit with a small set of test sessions. Since
only the logic functions of the CLBs are changed, time
consuming placement and routing is avoided. The process of
generating the test configurations and test vectors is fully

0-7803-5471 -0/99/$10.0001999 IEEE

1-97

mailto:cat.ece.utexas.edu

automated and very fast. It can be performed whenever the
system is reconfigured.

Stroud, et al., [8][9] proposed a configuration-independent
pseudo-exhaustive testing approach for the CLBs in an FPGA.
However, since the area of an FPGA is dominated by the
programmable interconnect, many faults occur in the
interconnect. Thus, thorough testing of the interconnect for each
configuration used in a reconfigurable system is also very
important. The method presented here is a configuration-
dependent approach that detects faults in both the interconnects
and the CLBs used for that configuration.

2. OVERVIEW OF TEST METHODOLOGY
In order to quickly test a new configuration, a functional test

that is independent of any specific structural fault model is
needed (to avoid time consuming test generation). The most
obvious approach is exhaustive testing, where all possible input
combinations are applied to a circuit. However, with this
approach the test length grows exponentially with the number of
circuit inputs and hence this method can not be used in practice
to test circuits with a large number of inputs. An alternative
testing strategy is pseudo-exhaustive testing (PET), which
involves testing portions of the circuit exhaustively instead of
the whole circuit. PET takes on different forms depending on
how exactly these portions (sub-circuits) are derived and tested.
One such technique of accomplishing PET is verification testing
[SI. Our proposed method uses this concept. But in our
technique, we can avoid additional hardware as well as
expensive simulations for path sensitization by using the
“reprogrammable” capability of the FFGAs. In our method,
paths are “sensitized” by programming CLBs in “pass-through”
mode. A CLB in “pass-through” mode has its output function
equal to one of its inputs. Note that a CLB can be put in “pass-
through” mode without changing the interconnect routing.

Given a new configuration for a reconfigurable computing
machine, the goal here is to test the reconfigurable hardware for
that specific configuration to ensure that it is fault-free. In this
paper, it will be assumed that the reconfigurable hardware
consists of multiple static RAM based FPGA chips with
programmable interconnect between them. However, the ideas
and concepts described in this paper can be applied to other
types of reconfigurable hardware.

Given a logic function to be implemented by reconfigurable
hardware, compilers are used to translate the logic function into
an interconnection of CLBs where each CLB implements some
logic function. This is then mapped to physical CLBs and
interconnect to form a configuration. The goal here is to test the
physical CLBs and interconnects to make sure that they are
fault-free (i.e., correctly implement the desired logic function).

The strategy for testing a particular configuration is to divide
it up into single output segments such that the number of inputs
to each segment is less than a user specified parameter N , where
N is small enough to enable exhaustive testing of the segment.
The segments have to be formed so that any fault in the overall
configuration will be present in at least one of the configuration
segments. So the strategy for detecting faults is to thoroughly
test each configuration segment. Each configuration segment
consists of only a subset of the total number of CLBs and

interconnects in the reconfigurable hardware. Multiple
segments are then tested simultaneously. The number of
segments that can be tested simultaneously is limited by the
number of primary outputs of the circuit. In order to test each
segment we need to observe its output. This can be done by
routing the segment-under-test’s output to one of the primary
outputs. In conventional hardware, observation points need to
be inserted to do this if the segment output can not be sensitized
to a primary output. But in reconfigurable hardware this can be
done by programming some of the CLBs in “pass-through” mode
and routing the segment output through such CLBs to one of the
primary outputs of the circuit. This is one of the key advantages
of this method. Also we cannot route more than one segment
output to the same primary output because we need to observe
the segment outputs independently to prevent aliasing. Thus the
number of primary outputs is an upper bound on the number of
segments that can be tested simultaneously. Similarly some
segment inputs may not be primary inputs of the circuit. In this
case also we can route some primary input to the segment input
by selectively programming some of the CLBs in “pass-through”
mode.

a \

X

Y

Fig. 1 . A Circuit Composed of CLBs and Interconnects

The proposed technique is best explained with an example.
Consider the circuit of Fig. 1 . It has 9 primary inputs a,b ... i; 2
primary outputs x and y ; and 9 CLBs CI, C2, ..., C 9 The first
step in the algorithm is to compute the dependency set for every
CLB in the circuit. The dependency set for a CLB is defined as
the set of primary inputs that have a path to the CLB. For
example, the dependency set for C3 is {b,c,d,e,f) and that for c 6

is {e,Jg,h/. If the cardinality of the dependency set of the CLB
is less than or equal to N (the user specified threshold), then the
CLB and its driving cone of logic forms a “testable segment”.
For example, if N is 5 in our example, then the initial testable
segments are S1 = {CI. C2, C3, C4/ and S2 = {Cq, C5, c6). In
the example circuit, two test sessions will be needed to test the
two segments as we can not route both the segment outputs to
primary outputs along independent paths. This is shown in
Figs. 2 and 3.

The bold lines indicate the routed path and the dotted CLBs
are the ones that are programmed in “pass-through” mode. The
bold CLBs define the segments that are being tested. After the
segments are tested, the CLBs are marked as tested. Some of
the tested CLBs can then be programmed in “pass-through”
mode to reduce the input dependency of the other untested CLBs
to form additional testable segments. For example, if we
program the CLBs C1. CJ, CJ, and c 6 in “pass-through” mode,
we can test the remaining segment consisting of the CLBs C7,

1-98

C8 and Cg. This is illustrated in Fig. 4. Thus the example

circuit can be tested in 3 test sessions.

a \

h gw /
i A

Fig. 2 . Testing Segment SI = (C1, C2, C3, C4]

X

Y

i

Fig. 4. Testing Segment S3 = fC7, Cs. Cg]

The test configurations are determined by the procedure
described in the following section. When the system is
reconfigured, each of these “test configurations” are loaded one
by one and the pseudo-exhaustive patterns are applied to each
configuration. If no faults are detected, then the “system
configuration” is loaded and the system continues operating.
The pseudo-exhaustive patterns can either by applied by
external hardware, or they can be generated using a
pseudo-exhaustive pattern generator on-chip (e.g., having an
LFSR feed the boundary scan around the chip) to provide a self-
test functionality.

3. SEGMENTATION PROCEDURE
In order to make the whole testing procedure fast, it is very

important to minimize the number of test sessions. In the
example, it was shown that the entire circuit can be tested in
three test sessions. This process of forming the test segments
needs to be automated. Moreover we need to minimize the
number of test sessions. We have developed an efficient
algorithm for solving this test session minimization problem.

The key components of our algorithm are described below.
The first step in our algorithm is identification of a “good”

segment. It is desirable that the segment should include as
many CLBs as possible without exceeding the limit on its fan-
in. The fan-in of a segment is defined as the number of inputs
to the segment. Note that some of these inputs may not be
primary inputs of the circuit. The circuit partitioner tries to
identify a “good” segment for testing. At the beginning all
CLBs are marked “untested”. Starting from each of the primary
outputs the circuit partitioner does a depth-first search of the
circuit until it reaches a CLB marked “untested”. This CLB
forms the output of the single-output segment that is to be
formed by the circuit partitioner now. Starting from this CLB,
the circuit partitioner traces the cone of logic back towards the
primary inputs one level at a time by doing a breadth-first search
from this CLB and recording at every step the fan-in of the
segment formed by the cone of logic up to that point. Once this
is done, the largest size cone (number of CLBs) with input fan-
in less than N (the user specified threshold) is identified as a
testable segment.

The routability analyzer checks for the existence of
independent paths. Two paths are said to be independent if they
do not have a common CLB or interconnect. Given a testable
segment the routability analyzer finds out whether the segment
inputs that are not primary inputs of the circuit can be routed to
primary inputs through independent paths. This is necessary as
we need to apply all 2” patterns to the segment input where rn is
the number of segment inputs. This is done by a brunch and
bound backtracking algorithm. Once the routing path is
identified, the routing can later be done easily by programming
the CLBs on the path in the “pass-through” mode. If the input
router fails to find a routing solution it tries to modify the
segment by selectively adding and deleting CLBs from it until it
finds a solution. It is to be noted that in every case a routing
solution will always be found eventually although the segment
size may be very small. This is because a segment comprising a
single CLB will always have a routing solution (if the number of
primary inputs of the circuit is greater than the number of inputs
of the CLB, which is always true). If not then the CLB inputs
will also not have independent primary inputs driving it during
normal circuit operation. At the end of this step all the CLBs
and interconnects that are part of the segment are marked
“tested’. The whole process is then repeated again and again
until all the CLBs and interconnects are marked “tested”. The
heuristic by which the total number of test configurations is
minimized is by trying to maximize the size of each testable
segment. The total number of test sessions however can further
be minimized by concurrently testing multiple segments as
explained beIow.

Once all the test configurations have been identified, we
identify conflicting segments. Two segments S, and S, are said
to be in conflict if they need to use the same resource in
different ways while being tested. For example, if testing
segment S, requires that CLB C, is to be programmed in “pass-
through” mode and testing segment S, requires that CLB C, be
programmed for normal operation, then it is obvious that these
two segments can not be tested concurrently. The conflict is
modeled by the conflict resolution graph where each vertex
corresponds to a testable segment and there is an edge between

1-99

two vertices if the corresponding segments are not in conflict.
The minimum number of test sessions is then found by a
minimum clique cover of this graph. Efficient heuristic
procedures for solving this NP-hard problem exist.

We have implemented our algorithm. Given a configuration,
the configuration is mapped into a graph where each vertex
corresponds to a CLB in the configuration and there is an edge
between two vertices if the corresponding CLBs have an
interconnect between them. The algorithm operates on the graph
to generate the set of testable segments. The concurrency
analysis is then done to identify segments that can be tested
concurrently. The total test time for testing the whole
configuration is thus minimized.

Note that our example circuit represents a directed acyclic
graph (DAG). Our technique also works for sequential circuits
by testing the flip-flops separately. The combinational logic is
tested as described, and then additional test sessions are added
in which the CLBs are configured (using “pass-through” mode)
to create scan paths through the flip-flops to allow them to be
tested. More details can be found in [6].

Our algorithm can very easily be integrated with the compiler
that generates the Configurations. This would enable the
compiler to find out the testable segments for a given
configuration. It can then download all the testable segment
configurations for a given test session on the FPGA and have
them tested. Then the next set of testable configurations will be
downloaded and tested. This process will be continued until all
the segments are tested. The final configuration will then be
downloaded onto the FPGA.

4. EXPERIMENTAL RESULTS
The procedure described in this paper was used to generate

test configurations for FPGA implementations of the ISCAS
benchmark circuits. Results are shown in Table 1. The total
number of test configurations required to allow pseudo-
exhaustive testing where no segment has more than 20 inputs
(N = 20) is shown for each circuit. A very small number of test
sessions are needed to pseudo-exhaustively test the entire
circuit. This is a lot less than that needed by any configuration-
independent testing method providing equal fault coverage.
Note that this method can be implemented as a self-test and
compared to the self-test approach of [8][9] it requires fewer test
sessions and yet provides complete fault coverage for both the
CLBs and the interconnects.

5. CONCLUSIONS
We have presented a novel technique for rapidly testing the

new configuration whenever a reconfigurable computing
machine is reconfigured. Our technique is a functional testing
approach, and hence it is independent of any structural fault
model. It is also independent of the underlying hardware
architecture. As a result, it can continue to be used after
migrating to new generations of FPGAs. By testing all the test
configurations before the actual configuration is downloaded, the
correctness and reliability of the system is ensured.

Table 1. Number of Test Configurations

c499 41 32 70 296

c 1908

~13207 I 62 I 152 11 894 I 3370 I 13
~38417 I 28 I 106 11 3339 I 14850 I 13

ACKNOWLEDGMENTS

This work is part of the ROAR project and is based upon
work supported in part by the Defense Advanced Research
Projects Agency (DARPA) under Contract Number DABT63-

REFERENCES
[l] Culbertson, W. B., R. Amerson, R. J. Carter, P. Kuekes,

and G. Snider, “Defect Tolerance on the Teramac Custom
Computer,” Proc. of the 1997 IEEE Symposium on FPGA’s
for Custom Computing Machines, 1997, pp. 140-147.

[2] Huang, W.K., X. T. Chen, and F. Lombardi, “On the Diag-
nosis of Programmable Interconnect Systems: Theory and
Applications,” Proc. VLSI Test Symp., 1996, pp. 204-209.

[3] Liu, T., F. Lombardi, and J. Salinas, “Diagnosis of
Interconnects and FpICs Using a Structured Walking-1
Approach,” Proc. IEEE VLSI Test Symp., 1995, pp. 256-261.

[4] Lombardi, F., D. Ashen, X. T. Chen, and W. K. Huang,
“Diagnosing Programmable Interconnect Systems for
FPGAs,” Proc. Int. Symp. On FPGAs, 1996, pp. 100-106.

[5] McCluskey, E. J., “Verification Testing - A Pseudo-
Exhaustive Test Technique,” IEEE Transactions on
Computers, Vol. C-33, No. 11, pp. 866-875, Nov. 1981.

[6] Quddus, W., “Configuration Self-Test in FPGA-Based
Reconfigurable Systems,” Masters Thesis, Dept. of ECE,
University of Texas at Austin, May 1999.

[7] Renovell, M., J. Figueras, Y. Zorian, “Test of RAM-Based
FPGA Methodology and Application to the Interconnect,”
Proc. IEEE VLSI Test Symposium, 1997, pp. 230-237.

[8] Stroud, C., S. Konala, P. Chen, and M. Abramovici, “Built-
In-Self-Test of Logic Blocks in FPGAs (Finally, A Free
Lunch: BIST Without Overhead!),” Proc. IEEE VLSI Test
Symposium, 1996, pp. 387-392.

[9] Stroud, C., E. Lee, S. Konala, and M. Abramovici, “Using
L A Testing for BIST in FPGAs,” Proc. of International Test
Conference, 1996, pp. 68-75.

[lo] Zhao, L., D. M. H. Walker, F. Lombardi, “Bridging Fault
Detetction in FPGA Interconnects Using IDDQ,” Proc. ACM
Int. Symp. On FPGAs, 1998, pp. 95-103.

974-0024.

I- 100

