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ABSTRACT 

An FPGA-based reconfigurable system may contain boards 
of FPGAs which are reconfigured for different applications and 
must work correctly. This paper presents a novel approach for 
rapidly testing the configuration in the FPGAs each time the 
system is reconfigured. A low-cost configuration-dependent test 
method is used to detect faults in the circuit. The “original 
configuration” is modified by only changing the logic function of 
the CLBs to form “test configurations” that can be used to 
quickly test the circuit. The test procedure is rapid enough to be 
performed on the fly whenever the system is reconfigured. The 
technique is independent of any fault model since it partitions 
the circuit into segments and tests each segment exhaustively. 

1. INTRODUCTION 
A field-programmable gate array (FPGA) can be configured in 

the field to implement a desired logic function. A static RAM 
based FPGA architecture has a matrix of configurable logic 
blocks (CLBs), programmable interconnect, and programmable 
U 0  cells. A user can specify a logic function and then use 
compiler software to map the logic function to a network of 
CLBs which are then placed and routed. The end result is a 
particular configuration for the FPGA which implements the 
logic function. 

One powerful and exciting application of FPGAs is in 
constructing reconfigurable systems (or custom computing 
machines). The hardware in such systems can be reconfigured 
to adapt to different computing requirements for different 
applications. Reconfigurable systems offer higher computational 
density and higher throughput for many applications compared 
with conventional fixed hardware systems. 

An important and challenging issue for reconfigurable 
systems is reliability. There are two reasons why it is important 
to check each time the hardware is reconfigured that the new 
configuration is fault-free: 
1. A defect in the reconfigurable hardware may only cause faulty 

behavior for certain configurations. It is possible that a 
defective FPGA component may pass manufacturing test and 
may work correctly for many different configurations, but then 
may suddenly fail for one particular configuration. 

2. There are many failure mechanisms that can cause an FPGA 
component to fail over time. Periodic testing of the 
reconfigurable computing machine allows failed components 
to be identified and replaced. 
In order to describe the relationship between the work 

presented here and previous work in FPGA testing, it is 
important to make the distinction between confguration- 
independent testing and configuration-dependent testing. In 

configuration-independent testing, no assumptions are made 
about the way in which the FPGA will be configured by the 
user. The goal is to maximize the fault coverage for all possible 
configurations. Configuration-independent testing is done when 
the FPGA is manufactured (i.e., before it is shipped to the user). 
Previous work in FPGA testing has focused on configuration- 
independent testing. Configuration-dependent testing, on the 
other hand, involves testing that a particular FPGA configuration 
is fault-free. A higher fault coverage (for the particular 
configuration) can be achieved with less test time. The 
approach described here is a configuration-dependent test 
technique. Configuration-independent techniques for testing 
FPGAs have been described in [7][10], and techniques for 
diagnosis are described in [2][3][4]. 

The approach of detecting, locating, and avoiding faulty 
hardware in reconfigurable systedms is used in the Teramac 
Custom Computer [ 11. A configuration-independent test 
approach is used where each resource in the system is tested 
several times with different test configurations. When faults are 
detected, the faulty hardware is marked so that the compiler will 
avoid mapping to those resources. Three drawbacks of the 
diagnostic tests are described in [l]: 
1. Time to develop (through experimentation) test configurations 

that provide a high coverage. 
2.  Time it takes to develop the diagnostic tests necessary to 

locate (not just detect) the faults. 
3. Time to run the tests. 

The configuration-dependent test method presented in this 
paper addresses the problem of detecting faults in a given 
configuration for reconfigurable systems. By adopting a 
functional testing technique this method does not depend on any 
fault model. However it should be noted that for the 
configuration under test, this method will provide 100% single 
stuck-at and multiple stuck-at fault coverage. Moreover this 
technique is independent of the underlying FPGA architecture 
and hence can be used in future generations of FPGA chips with 
no modifications. It provides a systematic procedure for testing 
a particular configuration. This is done by modifying the 
“original configuration” by only changing the logic function of 
the CLBs to form “test configurations” that can be used to 
quickly test the circuit. A systematic procedure is applied to the 
“original configuration” to generate a small set of test 
configurations. The logic function of the CLBs in the test 
configurations are chosen in such a way that the “segment 
verification testing” [5] approach can be used to detect all stuck- 
at faults in the circuit with a small set of test sessions. Since 
only the logic functions of the CLBs are changed, time 
consuming placement and routing is avoided. The process of 
generating the test configurations and test vectors is fully 
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automated and very fast. It can be performed whenever the 
system is reconfigured. 

Stroud, et al., [8][9] proposed a configuration-independent 
pseudo-exhaustive testing approach for the CLBs in an FPGA. 
However, since the area of an FPGA is dominated by the 
programmable interconnect, many faults occur in the 
interconnect. Thus, thorough testing of the interconnect for each 
configuration used in a reconfigurable system is also very 
important. The method presented here is a configuration- 
dependent approach that detects faults in both the interconnects 
and the CLBs used for that configuration. 

2. OVERVIEW OF TEST METHODOLOGY 
In order to quickly test a new configuration, a functional test 

that is independent of any specific structural fault model is 
needed (to avoid time consuming test generation). The most 
obvious approach is exhaustive testing, where all possible input 
combinations are applied to a circuit. However, with this 
approach the test length grows exponentially with the number of 
circuit inputs and hence this method can not be used in practice 
to test circuits with a large number of inputs. An alternative 
testing strategy is pseudo-exhaustive testing (PET), which 
involves testing portions of the circuit exhaustively instead of 
the whole circuit. PET takes on different forms depending on 
how exactly these portions (sub-circuits) are derived and tested. 
One such technique of accomplishing PET is verification testing 
[SI. Our proposed method uses this concept. But in our 
technique, we can avoid additional hardware as well as 
expensive simulations for path sensitization by using the 
“reprogrammable” capability of the FFGAs. In our method, 
paths are “sensitized” by programming CLBs in “pass-through” 
mode. A CLB in “pass-through” mode has its output function 
equal to one of its inputs. Note that a CLB can be put in “pass- 
through” mode without changing the interconnect routing. 

Given a new configuration for a reconfigurable computing 
machine, the goal here is to test the reconfigurable hardware for 
that specific configuration to ensure that it is fault-free. In this 
paper, it will be assumed that the reconfigurable hardware 
consists of multiple static RAM based FPGA chips with 
programmable interconnect between them. However, the ideas 
and concepts described in this paper can be applied to other 
types of reconfigurable hardware. 

Given a logic function to be implemented by reconfigurable 
hardware, compilers are used to translate the logic function into 
an interconnection of CLBs where each CLB implements some 
logic function. This is then mapped to physical CLBs and 
interconnect to form a configuration. The goal here is to test the 
physical CLBs and interconnects to make sure that they are 
fault-free (i.e., correctly implement the desired logic function). 

The strategy for testing a particular configuration is to divide 
it up into single output segments such that the number of inputs 
to each segment is less than a user specified parameter N ,  where 
N is small enough to enable exhaustive testing of the segment. 
The segments have to be formed so that any fault in the overall 
configuration will be present in at least one of the configuration 
segments. So the strategy for detecting faults is to thoroughly 
test each configuration segment. Each configuration segment 
consists of only a subset of the total number of CLBs and 

interconnects in the reconfigurable hardware. Multiple 
segments are then tested simultaneously. The number of 
segments that can be tested simultaneously is limited by the 
number of primary outputs of the circuit. In order to test each 
segment we need to observe its output. This can be done by 
routing the segment-under-test’s output to one of the primary 
outputs. In conventional hardware, observation points need to 
be inserted to do this if the segment output can not be sensitized 
to a primary output. But in reconfigurable hardware this can be 
done by programming some of the CLBs in “pass-through” mode 
and routing the segment output through such CLBs to one of the 
primary outputs of the circuit. This is one of the key advantages 
of this method. Also we cannot route more than one segment 
output to the same primary output because we need to observe 
the segment outputs independently to prevent aliasing. Thus the 
number of primary outputs is an upper bound on the number of 
segments that can be tested simultaneously. Similarly some 
segment inputs may not be primary inputs of the circuit. In this 
case also we can route some primary input to the segment input 
by selectively programming some of the CLBs in “pass-through” 
mode. 
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Fig. 1 .  A Circuit Composed of CLBs and Interconnects 

The proposed technique is best explained with an example. 
Consider the circuit of Fig. 1 .  It has 9 primary inputs a,b ... i; 2 
primary outputs x and y ;  and 9 CLBs CI,  C2, ..., C 9  The first 
step in the algorithm is to compute the dependency set for every 
CLB in the circuit. The dependency set for a CLB is defined as 
the set of primary inputs that have a path to the CLB. For 
example, the dependency set for C3 is {b,c,d,e,f) and that for c 6  

is {e,Jg,h/. If the cardinality of the dependency set of the CLB 
is less than or equal to N (the user specified threshold), then the 
CLB and its driving cone of logic forms a “testable segment”. 
For example, if N is 5 in our example, then the initial testable 
segments are S1 = {CI.  C2, C3, C4/ and S2 = {Cq, C5, c6).  In 
the example circuit, two test sessions will be needed to test the 
two segments as we can not route both the segment outputs to 
primary outputs along independent paths. This is shown in 
Figs. 2 and 3. 

The bold lines indicate the routed path and the dotted CLBs 
are the ones that are programmed in “pass-through” mode. The 
bold CLBs define the segments that are being tested. After the 
segments are tested, the CLBs are marked as tested. Some of 
the tested CLBs can then be programmed in “pass-through” 
mode to reduce the input dependency of the other untested CLBs 
to form additional testable segments. For example, if we 
program the CLBs C1. CJ, CJ, and c 6  in “pass-through” mode, 
we can test the remaining segment consisting of the CLBs C7, 
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C8 and Cg. This is illustrated in Fig. 4. Thus the example 

circuit can be tested in 3 test sessions. 
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Fig. 2 .  Testing Segment SI = (C1, C2, C3, C4] 
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Fig. 4. Testing Segment S3 = fC7, Cs. Cg] 

The test configurations are determined by the procedure 
described in the following section. When the system is 
reconfigured, each of these “test configurations” are loaded one 
by one and the pseudo-exhaustive patterns are applied to each 
configuration. If no faults are detected, then the “system 
configuration” is loaded and the system continues operating. 
The pseudo-exhaustive patterns can either by applied by 
external hardware, or they can be generated using a 
pseudo-exhaustive pattern generator on-chip (e.g., having an 
LFSR feed the boundary scan around the chip) to provide a self- 
test functionality. 

3. SEGMENTATION PROCEDURE 
In order to make the whole testing procedure fast, it is very 

important to minimize the number of test sessions. In the 
example, it was shown that the entire circuit can be tested in 
three test sessions. This process of forming the test segments 
needs to be automated. Moreover we need to minimize the 
number of test sessions. We have developed an efficient 
algorithm for solving this test session minimization problem. 

The key components of our algorithm are described below. 
The first step in our algorithm is identification of a “good” 

segment. It is desirable that the segment should include as 
many CLBs as possible without exceeding the limit on its fan- 
in. The fan-in of a segment is defined as the number of inputs 
to the segment. Note that some of these inputs may not be 
primary inputs of the circuit. The circuit partitioner tries to 
identify a “good” segment for testing. At the beginning all 
CLBs are marked “untested”. Starting from each of the primary 
outputs the circuit partitioner does a depth-first search of the 
circuit until it reaches a CLB marked “untested”. This CLB 
forms the output of the single-output segment that is to be 
formed by the circuit partitioner now. Starting from this CLB, 
the circuit partitioner traces the cone of logic back towards the 
primary inputs one level at a time by doing a breadth-first search 
from this CLB and recording at every step the fan-in of the 
segment formed by the cone of logic up to that point. Once this 
is done, the largest size cone (number of CLBs) with input fan- 
in less than N (the user specified threshold) is identified as a 
testable segment. 

The routability analyzer checks for the existence of 
independent paths. Two paths are said to be independent if they 
do not have a common CLB or interconnect. Given a testable 
segment the routability analyzer finds out whether the segment 
inputs that are not primary inputs of the circuit can be routed to 
primary inputs through independent paths. This is necessary as 
we need to apply all 2” patterns to the segment input where rn is 
the number of segment inputs. This is done by a brunch and 
bound backtracking algorithm. Once the routing path is 
identified, the routing can later be done easily by programming 
the CLBs on the path in the “pass-through” mode. If the input 
router fails to find a routing solution it tries to modify the 
segment by selectively adding and deleting CLBs from it until it 
finds a solution. It is to be noted that in every case a routing 
solution will always be found eventually although the segment 
size may be very small. This is because a segment comprising a 
single CLB will always have a routing solution (if the number of 
primary inputs of the circuit is greater than the number of inputs 
of the CLB, which is always true). If not then the CLB inputs 
will also not have independent primary inputs driving it during 
normal circuit operation. At the end of this step all the CLBs 
and interconnects that are part of the segment are marked 
“tested’. The whole process is then repeated again and again 
until all the CLBs and interconnects are marked “tested”. The 
heuristic by which the total number of test configurations is 
minimized is by trying to maximize the size of each testable 
segment. The total number of test sessions however can further 
be minimized by concurrently testing multiple segments as 
explained beIow. 

Once all the test configurations have been identified, we 
identify conflicting segments. Two segments S, and S, are said 
to be in conflict if they need to use the same resource in 
different ways while being tested. For example, if testing 
segment S, requires that CLB C, is to be programmed in “pass- 
through” mode and testing segment S, requires that CLB C, be 
programmed for normal operation, then it is obvious that these 
two segments can not be tested concurrently. The conflict is 
modeled by the conflict resolution graph where each vertex 
corresponds to a testable segment and there is an edge between 
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two vertices if the corresponding segments are not in conflict. 
The minimum number of test sessions is then found by a 
minimum clique cover of this graph. Efficient heuristic 
procedures for solving this NP-hard problem exist. 

We have implemented our algorithm. Given a configuration, 
the configuration is mapped into a graph where each vertex 
corresponds to a CLB in the configuration and there is an edge 
between two vertices if the corresponding CLBs have an 
interconnect between them. The algorithm operates on the graph 
to generate the set of testable segments. The concurrency 
analysis is then done to identify segments that can be tested 
concurrently. The total test time for testing the whole 
configuration is thus minimized. 

Note that our example circuit represents a directed acyclic 
graph (DAG). Our technique also works for sequential circuits 
by testing the flip-flops separately. The combinational logic is 
tested as described, and then additional test sessions are added 
in which the CLBs are configured (using “pass-through” mode) 
to create scan paths through the flip-flops to allow them to be 
tested. More details can be found in [6]. 

Our algorithm can very easily be integrated with the compiler 
that generates the Configurations. This would enable the 
compiler to find out the testable segments for a given 
configuration. It can then download all the testable segment 
configurations for a given test session on the FPGA and have 
them tested. Then the next set of testable configurations will be 
downloaded and tested. This process will be continued until all 
the segments are tested. The final configuration will then be 
downloaded onto the FPGA. 

4. EXPERIMENTAL RESULTS 
The procedure described in this paper was used to generate 

test configurations for FPGA implementations of the ISCAS 
benchmark circuits. Results are shown in Table 1. The total 
number of test configurations required to allow pseudo- 
exhaustive testing where no segment has more than 20 inputs 
( N  = 20) is shown for each circuit. A very small number of test 
sessions are needed to pseudo-exhaustively test the entire 
circuit. This is a lot less than that needed by any configuration- 
independent testing method providing equal fault coverage. 
Note that this method can be implemented as a self-test and 
compared to the self-test approach of [8][9] it requires fewer test 
sessions and yet provides complete fault coverage for both the 
CLBs and the interconnects. 

5. CONCLUSIONS 
We have presented a novel technique for rapidly testing the 

new configuration whenever a reconfigurable computing 
machine is reconfigured. Our technique is a functional testing 
approach, and hence it is independent of any structural fault 
model. It is also independent of the underlying hardware 
architecture. As a result, it can continue to be used after 
migrating to new generations of FPGAs. By testing all the test 
configurations before the actual configuration is downloaded, the 
correctness and reliability of the system is ensured. 

Table 1. Number of Test Configurations 

c499 41 32 70 296 

c 1908 

~13207  I 62 I 152 11 894 I 3370 I 13 
~38417  I 28 I 106 11 3339 I 14850 I 13 
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