
Improving Encoding Efficiency for Linear Decompressors
Using Scan Inversion

Kedarnath J. Balakrishnan and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712-1084
E-mail: {kjbala, touba}@ece.utexas.edu

Abstract

The output space of a linear decompressor must be
sufficiently large to contain all the test cubes in the test
set. The idea proposed in this paper is to use scan
inversion to transform the output space of a linear
decompressor so as to reduce the number of inputs
required thereby increasing the encoding efficiency while
still keeping all the test cubes in the output space. Any
existing method for designing a linear decompressor
(either combinational or sequential) can be used first to
obtain the best linear decompressor that it can. Using that
linear decompressor as a starting point, the proposed
method improves the encoding efficiency further. The key
property used by the proposed method is that scan
inversion is a linear transformation of the output space
and thus the output space remains a linear subspace
spanned by a Boolean matrix. Using this property, a
systematic procedure based on linear algebra is described
for selecting the set of inverting scan cells to maximize
encoding efficiency. Experiments indicate that significant
improvements in encoding efficiency can be achieved.

1. Introduction
As system-on-chip designs become increasingly

complex containing many cores and requiring large
amounts of test data, the test data storage requirements on
the tester and the test data bandwidth requirements
between the tester and chip are growing rapidly [Khoche
00]. Test data compression techniques provide a means to
reduce these requirements thereby allowing less expensive
testers to be used as well as reducing test time.
Compressing the output response is relatively easy since
lossy compression techniques can be employed, e.g., using
a multiple input signature register (MISR). However,
compressing test vectors is much more difficult because
lossless compression techniques must be used. Recently,
as reducing test vector volume has become such an

important problem, a lot of research has been done on
lossless compression techniques for test vectors.

An important class of test vector compression schemes
involves using a linear decompressor which uses only
linear operations to decompress the test vectors. This
includes techniques based on linear feedback shift register
(LFSR) reseeding and combinational linear expansion
circuits consisting of XOR gates. Commercial tools for
compressing test vectors including TestKompress from
Mentor Graphics [Rajski 02], SmartBIST from
IBM/Cadence [Könemann 01], and DBIST [Chandramouli
03] from Synopsys are based on linear decompressors.
Linear decompression exploits the unspecified (don’t care)
bit positions in test cubes (i.e., deterministic test vectors
where the unassigned bit positions are left as don’t cares)
to achieve large amounts of compression. The encoding
efficiency of the linear decompressor is defined as the ratio
of the number of specified bits in the test set to the number
of bits stored on the tester. Higher encoding efficiency
means more compression. This paper describes a new
technique that can significantly improve the encoding
efficiency of a linear decompressor. It is applicable to any
linear decompressor including both combinational and
sequential.

If there are c scan cells, then the space of all possible
scan vectors is 2c. The output space of a linear
decompressor is the set of scan vectors that can be
generated by the linear decompressor. Each bit stored on
the tester can be thought of as a “free-variable” that can be
assigned any value (0 or 1). Consider the case where the
linear decompressor receives an input sequence from the
tester consisting of n free-variables when generating a scan
vector. Assuming the linear decompressor is always
initialized to the same state before generating each scan
vector (if it is a sequential circuit), then the size of the
output space of the linear decompressor is less than or
equal to 2n (since that is the number of possible unique
input sequences that could be applied to it). The output
space will be equal to 2n if every input sequence maps to a

unique scan vector, and less than 2n if some input
sequences map to the same scan vector. In the degenerate
case where the linear decompressor is just a set of wires
directly connecting each scan chain to a tester channel,
then n=c and the content of every scan cell is equal to a

unique free-variable such that the output space of the
linear decompressor contains all possible scan vectors.
However, in order to get compression, n needs to be less
than c, and thus in the general case, the output space of the
linear decompressor will be a subset

of all possible scan vectors. Linear decompressors
have some nice properties compared with non-linear
decompressors. They generally have a larger output space
for the same n because of the use of XOR gates which
minimize the number of input sequences that map to the
same scan vector. Another very important property is that
the output space of a linear decompressor is a linear
subspace spanned by a Boolean matrix, Acxn. The
Boolean matrix A can be obtained by symbolic simulation
of the linear decompressor (see [Krishna 01] for details).
Each row in A corresponds to a scan cell and each column
corresponds to a free-variable in the input sequence. The
advantage of having the output space be defined by A is
that determining whether a particular test cube is contained
in the output space and the corresponding input sequence
to generate it can be quickly done by solving a set of linear
equations using Gaussian elimination.

In order to be able to compress a test set, the output
space of the linear decompressor must contain all the test
cubes in the test set. When using an LFSR as a linear
decompressor, it has been shown that if the number of
free-variables used to generate a test cube is 20 more than
the number of specified bits in a test cube, then the
probability of the test cube not being in the output space is
less than 10-6 [Könemann 91]. However, for a given test
set, the number of free-variables can be reduced further
provided the corresponding reduced output space still
contains all the test cubes in the test set. Reducing the
number of free-variables increases the encoding efficiency
and hence compression. As the number of free-variables
are reduced, the output space becomes smaller and smaller
until a point is reached where one or more test cubes are
no longer in the output space. This point terminates the
reduction in free-variables and limits the encoding
efficiency that can be achieved by the linear decompressor
for a particular test set.

The idea proposed in this paper is to alter and reshape
the output space of a linear decompressor using scan
inversion. This can allow the number of free-variables to
be reduced further while still keeping all the test cubes in
the output space thereby increasing the encoding
efficiency. The encoding efficiency can often be
increased above 1 using the proposed approach. Any
method for designing a linear decompressor can be used
first to obtain the best linear decompressor that it can.
Using that linear decompressor as a starting point, the
proposed method reduces the number of free-variables
further to improve the encoding efficiency by
incorporating scan inversion. The key property used by

the proposed method is that scan inversion is a linear
transformation of the output space and thus the output
space remains a linear subspace spanned by a Boolean
matrix. Using this property, a systematic procedure based
on linear algebra is described for selecting the set of
inverting scan cells to maximize encoding efficiency. A
nice feature of the proposed method is that it can be
implemented without any hardware overhead (this is
described in detail in Sec. 3).

The paper is organized as follows: Sec. 2 describes
how this paper relates to previous work. Sec. 3 discusses
how scan inversion can be implemented in hardware.
Section 4 presents a procedure for selecting which set of
scan cells to invert based on linear algebra. Sec. 5
explains how the proposed method can be used to improve
encoding efficiency for linear decompressors. Sec. 6
shows experimental results. Sec. 7 is a conclusion.

2. Related Work
A number of different techniques for designing linear

decompressors have been proposed in the literature. The
original idea of using an LFSR as a linear decompressor
and solving for test cubes using linear algebra was
described in [Könemann 91]. Several techniques for
improving the encoding efficiency for linear
decompressors based on LFSRs were described in
[Venkataraman 93], [Hellebrand 95ab], [Zacharia 95, 96],
[Rajski 98], and [Krishna 01, 02].

Linear decompressors that can receive data from the
tester in a continuous-flow (i.e., “streaming” data) are
especially useful for test data compression. Continuous-
flow linear decompressors can be directly connected to the
tester and operate very efficiently since they simply
receive the data as fast as the tester can transfer it. From a
tools integration standpoint, this is very nice since it
mimics the standard behavior of normal scan chains.
There is no need for any special scheduling or
synchronization. A number of techniques for designing
both combinational and sequential continuous-flow linear
decompressors have been proposed. Combinational
continuous-flow linear decompressors are described in
[Hamzaoglu 99], [Hsu 01], [Bayraktaroglu 01, 03], [Mitra
03], and [Krishna 03]. Sequential continuous-flow linear
decompressors are described in [Jas 00], [Könemann 01],
[Rajski 02], [Volkerink 03], [Rao 03], and [Krishna 04].

The method described in this paper can be used in
conjunction with any linear decompressor including all of
the ones referenced above to improve the encoding
efficiency further. It transforms the output space of the

linear decompressor in a way that allows a smaller number
of free-variables from the tester to be used to encode the
test set. The proposed idea has some relation to the idea of
transforming the output space of a test pattern generator to
encode test cubes which has been investigated in the past
in the context of built-in self-test (BIST). Techniques for
designing a non-linear circuit to transform the output space
of a pseudo-random generator to encode test cubes were
described in [Touba 95ab, 01], [Chatterjee 95],
[Wunderlich 96], and [Kiefer 97, 98]. The proposed
method differs significantly from these methods in that it
uses linear transformations, is based on linear algebra, is
targeted towards lossless test vector compression, and can
be implemented without any overhead.

3. Scan Inversion
The proposed method involves inverting a set of scan

cells to transform the output space of the linear
decompressor. Implementing inverted scan cells can be
accomplished either by explicitly inserting inverters in the
scan chains, or by simply using the Q’ output instead of
the Q output when connecting the output of one scan cell
to the next scan cell. An example of inverting the contents
of a scan cell is shown in Fig. 2. Figure 1 shows a normal
scan chain with no inversion, while Fig. 2 shows the scan
chain with the third scan cell inverted. This is
accomplished by inverting before and after the third scan
cell. If the same scan vector was shifted into both the
normal scan chain in Fig. 1 and the scan chain in Fig. 2,
the contents of the third scan cell in Fig. 2 would have the
opposite value from what it would be in the normal scan
chain while the contents of all other scan cells would be
the same. Also, when the output response is shifted out,

the bit corresponding to the third scan cell will have the
opposite value from what it normally would have.

While the example in Fig. 2 only involves inverting
one scan cell, any set of scan cells in the scan chain can be
inverted by making appropriate connections from either Q
or Q’ to the next scan cell. To invert the first scan cell in a
scan chain, either an inverter can be placed on the
scan_data_in (SDI) input or the XOR (XNOR) gate that is
driving the SDI input can simply be changed to an XNOR
(XOR) gate.

If the inverted scan cells are implemented by simply
changing some connections from Q to Q’ and changing
some XOR gates to XNOR gates, then there is effectively
no overhead for using the proposed method. Even if
explicit inverters are used, the overhead would still be
small.

The proposed method does not involve any special
ordering of the scan cells. The scan chains can be ordered
in any manner to optimize the layout.

4. Selecting Set of Inverted Scan Cells
The proposed method involves selecting a set of scan

cells to be inverted. If there are c scan cells, then there are
2c different ways the scan cells can be inverted each of
which results in a different transformation of the output
space of the linear decompressor. Given a particular linear
decompressor, the goal is to select the set of inverted scan
chains so that the resulting transformed output space of the
linear decompressor will contain all of the test cubes in the
test set. This section describes a systematic procedure
based on linear algebra for doing this.

D Q
Q’

D Q
Q’

D Q
Q’

D Q
Q’

Combinational Logic

SDI

Scan
Mode

SDO

Figure 1. Normal Scan Chain

D Q
Q’

D Q
Q’

D Q
Q’

D Q
Q’

Combinational Logic

SDI

Scan
Mode

SDO

Figure 2. Scan Chain with 3rd Scan Cell Inverted

The first step is to obtain the Boolean matrix A that
spans the output space of the linear decompressor. This
can be obtained using symbolic simulation (see [Krishna
01] for details).

1 0 1 1 1 0
0 1 0 1 0 1
0 0 1 1 1 1
1 0 0 0 0 1
0 1 0 1 0 1

x1
x2
x3
x4
x5
x6

=

0
0
1
1
1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

A x = b c1 c2 c3 c4 c5

In order for a test cube to be in the output space of the
linear decompressor, there must exist a solution to the
system of linear equations, Ax=b where x is an assignment
of values to the free-variables that are inputs to the
decompressor when generating the test cube, and b is the
values of each bit in the test cube. Note that for the
unspecified bits in the test cube, there is no need to solve
the linear equations, so it is only the linear equations
(rows) corresponding to the specified bits in b that need to
be considered. Gauss-Jordan Elimination [Cullen 97] can
be used to perform rows operations that transform a set of
columns into an identity matrix (these columns are called
the pivots). An example of a system of linear equations
for a test cube t1 is shown in Fig. 3, and the corresponding
system after Guass-Jordan Elimination is shown in Fig. 4.
The vector b after Guass-Jordan Elimination will be
referred to as z to eliminate confusion. The rows after
Gauss-Jordan Elimination can be classified as either
pivoted rows or linearly dependent rows. The pivoted
rows have pivots while the linearly dependent rows are all
0. In the example in Fig. 4, the first three rows are pivoted
while the last two are linearly dependent. If all rows are
pivoted, then a solution to the system of linear equations
exists, and hence the test cube is in the output space of the
linear decompressor. If some of the rows are linearly
dependent, then a solution only exists if all of the
corresponding values in z (the vector b after Guass-Jordan
Elimination) are equal to 0 for the linearly dependent
rows. If there is a linearly dependent row whose
corresponding value in z is equal to 1, then a solution does
not exist. In Fig. 4, the fourth row is linearly dependent,
but the corresponding value in z is 0 so that is okay.
However, the fifth row is also linearly dependent, but the
corresponding value in z is 1, and thus there is no solution.
This is easy to see because in the original system of linear
equations in Fig. 3, both rows 2 and 5 are identical in A,
however, the corresponding outputs for those two rows in
b have opposite values. Obviously there is no assignment
to x that will simultaneously solve the linear equations for
both rows 2 and 5.

Figure 3. System of Linear Equations for Test Cube t1

1 0 0 0 0 1
0 1 0 1 0 1
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0

1
0
1
0
1

Pivots

Pivoted
Rows

Linearly
Dependent

1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
1 0 1 1 0
0 1 0 0 1

Constraints
i1⊕i3⊕i4=0

i2⊕i5=1

z Dependency

Figure 4. Gauss-Jordan Reduction for Test Cube t1

1 0 1 1 1 0
0 1 0 1 0 1
1 1 1 0 1 1
0 1 0 0 0 1

x1
x2
x3
x4
x5
x6

=
0
0
1
1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

A x = b c1 c2 c6 c7

Figure 5. System of Linear Equations for Test Cube t2

1 0 0 0 1 1
0 1 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0

1
0
1
0

Linearly
Dependent

1 1 0 1
0 1 0 0
1 1 1 0
0 1 0 1

Constraints
i1⊕i2⊕i6=1

z Dependency

Figure 6. Gauss-Jordan Reduction for Test Cube t2

1 0 1 1 0 0 0
0 1 0 0 1 0 0
1 1 0 0 0 0 1

i1
i2
i3
i4
i5
i6
i7

=
0
1
1

C i = z

Constraints for t1

Constraints for t2

For the example in Fig. 3, let the specified values in b
correspond to scan cells c1 through c5. If either scan cell
c2 or scan cell c5 were inverted, the system of linear
equations would become solvable. For example, if scan
cell 5 was inverted, then the last row in b would be
changed from a 1 to a 0. Now the fact that row 5 is the
same as row 2 in A is not a problem because the
corresponding values in b for those two rows are identical.
This is an example of how scan inversion can be used to
make a test cube solvable.

Figure 7. Constraint Matrix for Test Set {t1, t2}

Let i = (i1, i2, …, ic) be a vector in which if ij =1 then

scan cell j is inverted and if ij =0 then scan cell j is not
inverted. For a given test cube, a set of constraints on i for
which the test cube is solvable can be determined as

follows. For the rows that are pivoted, there are no
constraints on i since it doesn’t matter what the
corresponding value of z is for those rows since they are
always solvable. For the linearly dependent rows, the
corresponding value of z must be 0, so whatever scan
inversion takes place must ensure that the value for that
row is 0 after Guass-Jordan Elimination. This places
constraints on i. In the example in Fig. 4, the last two
rows are linearly dependent, so constraints must be placed
on i to ensure that the corresponding values in z for those
rows are always 0. These constraints can be determined
by augmenting the linear system with a dependency matrix
which is a square matrix with the number of rows and
columns equal to the number of rows in b. The
dependency matrix is initially an identity matrix since each
value in b depends only on itself. The row operations that
are performed during Gauss-Jordan Elimination are also
applied to the dependency matrix. After Gauss-Jordan
Elimination, the dependency matrix indicates which set of
scan cells each value in z depends on. For each linearly
dependent row, the constraints on i can be obtained by
looking at the dependency for the value in z for that row.
The value in z for each linearly dependent row must be 0,
so a linear equation in terms of i can be written to ensure
that the value in z will be 0. In the example in Fig. 4, the
4th row is linearly dependent and the corresponding value
in z depends on scan cells c1, c3, and c4. Since the
corresponding value in z in the normal scan chain is 0, the
constraint on scan inversion is that i1⊕i3⊕i4 should be 0.
In other words, either none of scan cells c1, c3, and c4
should be inverted or two of them should be inverted (thus
canceling each other out). If one or all three of them are
inverted, then the value in z for that row will become 1 and
no solution for the test cube will exist. Similarly, a linear
equation for the constraint due to the 5th row can be
obtained. In this case, for the normal scan chain the value
of z for this row is 1, so it is necessary that one of the scan
cells that it depends on be inverted, either c2 or c5 in order
to get a solution for the test cube.

The procedure described above can be used to obtain a
set of constraints on i for each test cube to make it
solvable. Consider test cube t2 whose system of linear
equations is shown in Fig. 5. Note that this test cube has
only 4 specified bits and in this case the specified bits are
in scan cells c1, c2, c6, and c7. The system of linear
equation after Guass-Jordan Elimination is shown in Fig.
6. As can be seen, there is one linearly dependent row in
this case. The corresponding set of constraints on i can be
obtained from the dependency matrix.

In order for the linear decompressor to be able to
generate all of the test cubes in the test set, there needs to
be a solution for all test cubes. Thus, i must be selected to
allow all test cubes to be simultaneously solved. A

solution for i can be obtained by forming a constraint
matrix C that incorporates all of the constraints for all of
the test cubes. Each constraint for each test cube can be
added as a row in C. For example, suppose the test set
consisted of test cube t1 and t2 whose constraints were
obtained in Figs. 4 and 6. Then the first two rows in C
would correspond to the two linear constraint equations
from Fig. 4, and the last row in C would correspond to the
linear constraint equation from Fig. 6. The resulting
constraint matrix is shown in Fig. 7. Gauss-Jordan
Elimination can then be used to find a solution to the
system of linear equations Ci=z. The solution for i gives
the set of scan cells that need to be inverted so that the test
set can be generated by the linear decompressor. If no
solution exists, then it is not possible for the linear
decompressor to be used to generate the test set under any
set of inverted scan cells.

The complexity of the Gauss-Jordan Elimination
method for solving a set of n linear equations with m
variables is of the order of O(nm2). In the proposed
scheme, as with any other linear test vector compression
scheme, a set of linear equations needs to be solved for
each test cube. Hence, if s is the number of specified bits
in a cube, and c is the number of compressed bits for that
cube, then solving for that cube will require O(sc2) time.
The only additional task involved in the proposed scheme
is to solve for the constraint matrix. The time complexity
for this additional step will depend on how many
equations there are in the constraint matrix and the number
of scan cells that are included in the inversion constraints.
Note that there is no need to include the scan cells that are
not present in any inversion constraint for any test cube.

5. Using Scan Inversion to Increase Encoding
Efficiency
Given a linear decompressor, the previous section

described how to select a set of inverting scan cells so that
all the test cubes in the test set will be in the output space
(if such a set of inverting scan cells exists). This
procedure can be used in two ways to increase encoding
efficiency. One is to start with an initial decompressor
design and reduce the number of free-variables that it
receives per test cube from the tester as much as possible
while still keeping the test set in the output space through
scan inversion. The other is to use scan inversion to relax
the constraints on the ATPG (automatic test pattern
generation). The number of free variables per test cube is
kept constant but each cube can have more specified bits.
Hence the ATPG can do more static and dynamic
compaction. Both of these applications will increase
encoding efficiency and hence compression. They are
discussed in detail in the following subsections.

5.1 Reducing Free-Variables per Test Cube
Any method can be used to design the best linear

decompressor for a normal scan chain. Then the number
of free-variables that are input to the decompressor per test
cube can be incrementally reduced and the procedure in
Sec. 4 can be used to see if it is possible to still solve for
all the test cubes using scan inversion. If so, then this
process of incrementally reducing the number of free-
variables and checking for a solution is repeated until a
point is reached when no further reduction in the number
of free-variables per test cube is possible while still being
able to solve for all test cubes. For example, for a
continuous-flow decompressor (either sequential or
combinational), the number of free-variables per test cube
can be reduced by simply holding one tester channel input
to a constant 0 when doing symbolic simulation to obtain
the matrix A that spans the output space of the linear
decompressor. This will reduce the rank of A and hence
reduce the output space. However, if the procedure in Sec.
4 can still solve for all test cubes using scan inversion,
then the linear decompressor design can be simplified by
eliminating that one tester channel input that was held to 0
since it is no longer needed. This can be repeated to try to
eliminate additional tester channel inputs. The end result
will be a linear decompressor that generates the exact same
test set, but uses fewer tester channels thereby reducing
tester storage and bandwidth requirements.
5.2 Increasing Specified Bits per Test Cube

If the number of tester channels that are allocated for
feeding the linear decompressor is fixed, then another way
that scan inversion can be used is to increase encoding
efficiency is to allow more specified bits per test cube.
Some test compression methodologies (e.g.,
[Bayraktaroglu 01, 03], [Rajski 02]) involve fixing the
decompressor design and then constraining the ATPG so
that the resulting test cubes will be in the output space of
the decompressor. The constraints on the ATPG reduce
the amount of static and dynamic compaction that are
performed and therefore can result in more test cubes and
hence more test time. The scan inversion method
proposed here can be used to allow more specified bits per
test cube while still being able to solve for the test cube.
This can be used to relax the constraints on the ATPG and
thereby allow more static and dynamic compaction. Each
time a test cube is generated by the ATPG any additional
constraints for solving the test cube via scan inversion can
be added to the constraint matrix C described in Sec. 4. If
the additional constraints cause the constraint matrix to no
longer have a solution, then that test cube cannot be
accepted and the ATPG must find a less specified test
cube. If the constraint matrix still has a solution, then the
test cube can be accepted. The end result of relaxing the
constraints on the ATPG is that more static and dynamic

compaction can be performed thereby reducing the total
number of test cubes and hence reducing both test time
and tester storage requirements.

6. Experimental Results

Two sets of experiments were performed to evaluate
the effectiveness of the proposed method. The first set of
experiments was done on randomly generated test cubes
for large industrial-size scan architectures. The second set
of experiments was done on the largest ISCAS 89
benchmark circuits [Brglez 89]. For the randomly
generated test cubes, experiments were performed using
two different types of linear decompressors. The first was
a combinational linear decompressor as shown in Fig. 8
using 512 scan chains and 1024 scan chains. The results
are shown in Table 1. For the combinational decompressor
with normal scan chains without inversion, the number of
channels from the tester was 32. For each randomly
generated test cube, the number of specified bits was
incrementally increased until it could no longer be solved
(i.e., it was no longer in the output space). The average
percentage of specified bits per test cube that could be
solved for is shown along with the corresponding
encoding efficiency. This measures the best encoding
efficiency that can be achieved for normal scan chains
without scan inversion. Recall that the encoding efficiency
is defined as the ratio of the number of specified bits in the
test set to the number of bits stored on the tester. Note that
since each test cube is encoded independently, there is no
dependence on the number of test cubes. Results are then
shown for scan inversion using it in the two ways
described in Sec. 5. The first is using scan inversion to
reduce the number of tester channels while still encoding
the same set of test cubes as before. The number of
reduced tester channels along with the resulting encoding
efficiency that is achieved are shown in columns 6 and 7
respectively. The second way that scan inversion is used
is to keep the tester channels at 32 and increase the
percentage of specified bits per test cube as much as
possible until it is no longer possible to solve for all the
test cubes. The maximum percentage of specified bits and
the resulting encoding efficiency are shown in the last two
columns of Table 1. Note that when using scan inversion,
the effectiveness reduces as the number of test cubes
increases since it is harder to keep all of the test cubes in
the output space. Results are shown for several different
numbers of test cubes.

A number of interesting observations can be made from
Table 1. Scan inversion is remarkably effective at
improving the encoding efficiency for combinational
decompressors (it is more than doubled in most cases).
Typically the encoding efficiency for combinational
decompressors is fairly low because of the fact that they

Table 1. Results for Combinational Linear Decompressor

Combinational without Scan Inversion Combinational with Scan Inversion Scan
Chains

Num.
Test Cubes Tester

Channels
Percentage
Specified

Encoding
Efficiency

Reduced
Channels

Encoding
Efficiency

Increased
% Specified

Encoding
Efficiency

200 32 2.7% 0.43 11 1.26 6.2% 0.99
400 32 2.7% 0.43 13 1.06 5.7% 0.91
600 32 2.7% 0.43 15 0.92 5.5% 0.88

512

1000 32 2.7% 0.43 16 0.86 5.2% 0.83
200 32 1.3% 0.42 11 1.21 3.5% 1.12
400 32 1.3% 0.42 11 1.21 3.1% 0.99
600 32 1.3% 0.42 13 1.02 2.9% 0.93

1024

1000 32 1.3% 0.42 14 0.95 2.8% 0.90

Table 2. Results for Sequential Linear Decompressor

Sequential without Scan Inversion Sequential with Scan Inversion Scan
Chains

Num.
Test Cubes Tester

Channels
Percentage
Specified

Encoding
Efficiency

Reduced
Channels

Encoding
Efficiency

Increased
% Specified

Encoding
Efficiency

200 16 3.0% 0.94 14 1.07 3.6% 1.13
400 16 3.0% 0.94 15 1.00 3.3% 1.04
600 16 3.0% 0.94 16 0.94 3.2% 1.01

512

1000 16 3.0% 0.94 16 0.94 3.1% 0.98
200 16 1.5% 0.94 11 1.37 2.1% 1.32
400 16 1.5% 0.94 13 1.16 1.9% 1.20
600 16 1.5% 0.94 14 1.07 1.8% 1.13

1024

1000 16 1.5% 0.94 15 1.00 1.7% 1.07

Table 3. Comparison of Test Data for Different Encoding Schemes

Circuit
Name

MinTest
[Hamzaoglu 98]

Illinois Scan
Architecture

[Hamzaoglu 99]

FDR Codes
[Chandra 01]

Mutation
Encoding
[Reda 02]

Seed
Overlapping

[Rao 03]

Sequential
Decompressor

Sequential
Decompressor

w/ Scan Inversion

 Num.
Vect.

Total
Bits

Num.
Vect.

Total
Bits

Num.
Vect.

Total
Bits

Num.
Vect.

Total
Storage

Num.
Vect.

Total
Bits

Num.
Vect.

Total
Bits

Num.
Vect.

Total
Bits

s13207 233 163,100 273 109,772 236 30,880 274 16,913 272 17,970 266 15,020 266 9,708
s15850 96 58,656 178 32,758 126 26,000 185 14,676 174 15,774 226 16,153 226 10,726
s38417 68 113,152 337 96,269 99 93,466 231 55,848 288 60,684 105 50,365 105 36,864
s38584 110 161,040 239 96,056 136 77,812 220 47,886 215 31,061 192 38,192 192 27,555

must receive enough free-variables every clock cycle to be
able to encode each bit-slice of the scan chains. The
worst-case most heavily specified bit-slices typically limit
the encoding efficiency. As can be seen in Table 1, the
encoding efficiency is less than 0.5 without scan inversion.
However, with scan inversion, the most heavily specified
bit slices can be solved with fewer free-variables per clock
cycle thereby allowing the number of
tester channels to be reduced substantially. The fact that
the encoding efficiency can be increased to around 0.9
with a combinational decompressor is a surprising result.
This level of encoding efficiency is on the order of what is
typically achieved with sequential decompressors,
however, in this case no LFSR is needed thereby reducing
the hardware overhead. Combinational decompressors are
attractive because they are very simple requiring low
hardware overhead. The only drawback to using them has

been the substantially reduced encoding efficiency
compared with sequential decompressors, however, these
results indicate that with scan inversion the gap in
encoding efficiency between combinational and sequential
decompressors can be significantly reduced. The results
for keeping the number of channels at 32 and increasing
the percentage of specified bits per test cube did not
provide as high of encoding efficiency as reducing the
tester channels did.

We also did the same experiments using a continuous-
flow sequential linear decompressor as shown in Fig. 9.
The results are shown in Table 2. In this case, the number
of channels from the tester for the normal scan chain
without inversion was 16 and a 64 bit LFSR was used.
Because the sequential linear decompressor is very
efficient to begin with, the number of channels that can be
reduced using scan inversion is not as spectacular as for

combinational decompressors. Nonetheless, a significant
increase in the encoding efficiency (above 1 in many
cases) can be achieved especially for 1024 scan chains
where the percentage of specified bits per test cube is less.
Note also that the results for keeping the number of
channels at 16 and increasing the percentage of specified
bits per test cube were actually better than reducing the
tester channels. This is the opposite of what happened for
combinational decompressors where reducing channels
achieved higher encoding efficiency.

Scan Chain 1 (m bits)

Scan Chain 2 (m bits)

Scan Chain n (m bits)

b-to-n
Comb.
Linear
Expand

b Channels
from Tester

Figure 8. Combinational Linear Decompressor

Scan Chain 1 (m bits)

Scan Chain 2 (m bits)

Scan Chain n (m bits)

L
F
S
R

Comb.
Linear
Expand

b Channels
from Tester

Figure 9. Continuous-Flow Sequential Linear

Decompressor
Experiments were also performed for the largest

ISCAS 89 benchmark circuits to compare the results with
previously published techniques. A scan architecture with
64 scan chains was assumed and a sequential
decompressor like the one in Fig. 9 was used with a 64 bit
LFSR. Table 3 shows the results obtained by the proposed
method along with other test vector compression schemes.
The first column shows the circuit name and the next two
columns are the number of vectors and the total test size of
the dynamically compacted test cubes generated by
MINTEST [Hamzaoglu 98]. The next few columns show
the number of test vectors and the compressed test size for
the Illinois scan architecture [Hamzaoglu 99], frequency
directed runlength codes [Chandra 01], mutation encoding
[Reda 02] and seed overlapping [Rao 03]. As can be seen
from the results, scan inversion substantially reduces the
tester storage requirements compared with using the
sequential decompressor without scan inversion. The
results indicate that the tester storage requirements are less
than those in recently published test vector compression

papers.

7. Conclusions

A method for improving the encoding efficiency of a
linear decompressor using scan inversion was proposed.
A systematic procedure based on linear algebra was
described for selecting the set of inverted scan cells.
Experimental results show that scan inversion can
dramatically improve the encoding efficiency of
combinational linear decompressors bringing it close to
that of sequential decompressors. Scan inversion can also
significantly improve the encoding efficiency for
sequential linear decompressors. Scan inversion can be
implemented with no hardware overhead.

Acknowledgements
This material is based on work supported in part by the

Intel Corporation and in part by the National Science
Foundation under Grant No. CCR-0306238.

References
[Bayraktaroglu 01] Bayraktaroglu, I., and A. Orailoglu, “Test

Volume and Application Time Reduction Through Scan
Chain Concealment,” Proc. of Design Automation
Conference, pp. 151-155, 2001.

[Bayraktaroglu 03] Bayraktaroglu, I., and A. Orailoglu,
“Decompression Hardware Determination for Test Volume
and Time Reduction through Unified Test Pattern
Compaction and Compression,” Proc. of VLSI Test
Symposium, pp. 113-118, 2003.

[Brglez 89] Brglez, F., D. Bryan, and K. Kozminski,
“Combinational Profiles of Sequential Benchmark Circuits,”
Proc. of International Symposium on Circuits and Systems,
pp. 1929-1934, 1989.

[Chandra 01] Chandra, A., and K. Chakrabarty, “Frequency-
Directed Run Length (FDR) Codes with Application to
System-on-a-Chip Test Data Compression,” Proc. of VLSI
Test Symposium, pp. 42-47, 2001.

[Chandramouli 03] Chandramouli, M., “How to Implement
Deterministic Logic Built-In Self-Test (BIST),” Complier: A
Monthly Magazine for Technologists Worldwide, Synopsys,
Jan. 2003.

[Chatterjee 95] Chatterjee, M., and D. K. Pradhan, “A New
Pattern Biasing Technique for BIST,” Proc. of VLSI Test
Symposium, pp. 417-425, 1995.

[Cullen 97] Cullen, C. G., Linear Algebra with Applications,
Addison-Wesley, ISBN 0-673-99386-8, 1997.

[Hamzaoglu 98] Hamzaoglu, I., and J. H. Patel, “Test Set
Compaction Algorithms for Combinational Circuits,” Proc.
of International Conference on Computer-Aided Design
(ICCAD), pp. 283-289, 1998.

[Hamzaoglu 99] Hamzaoglu, I., and J. H. Patel, “Reducing Test
Application Time for Full Scan Embedded Cores,” Proc. of
International Symposium on Fault Tolerant Computing, pp.
260-267, 1999.

[Rajski 98] Rajski, J., J. Tyszer, and N. Zacharia, “Test Data
Decompression for Multiple Scan Designs with Boundary
Scan”, IEEE Trans. on Comp., Vol. 47, No. 11, pp. 1188-
1200, Nov. 1998.

[Hellebrand 95a] Hellebrand, S., J. Rajski, S. Tarnick, S.
Venkataraman and B. Courtois, “Built-In Test for Circuits
with Scan Based on Reseeding of Multiple-Polynomial
Linear Feedback Shift Registers,” IEEE Trans. on
Computers, Vol. 44, No. 2, pp. 223-233, Feb. 1995. [Rajski 02] Rajski, J., et al., “Embedded Deterministic Test for

Low Cost Manufacturing Test,” Proc. of International Test
Conference, pp. 301-310, 2002.

[Hellebrand 95b] Hellebrand, S., B. Reeb, S. Tarnick, and H.-J.
Wunderlich, “Pattern Generation for a Deterministic BIST
Scheme,” Proc. of International Conference on Computer-
Aided Design (ICCAD), pp. 88-94, 1995.

[Rao 03] Rao, W., I. Bayraktaroglu, and A. Orailoglu, “Test
Application Time and Volume Compression through Seed
Overlapping,” Proc. of Design Automation Conference, pp.
732-737, 2003.

[Hsu 01] Hsu, F.F., K. M. Butler, J. H. Patel, “A Case Study on
the Implementation of the Illinois Scan Architecture,” Proc.
of International Test Conference, pp. 538-547, 2001. [Reda 02] Reda, S., and A. Orailoglu, “Reducing Test

Application Time Through Test Data Mutation Encoding”,
Proc. of Design, Automation, and Test in Europe, pp. 387-
393, 2002.

[Jas 00] Jas, A., B. Pouya, and N. A. Touba, “Virtual Scan
Chains: A Means for Reducing Scan Length in Cores”, Proc.
of VLSI Test Symposium, pp. 73-78, 2000.

[Sinanoglu 02] Sinanoglu, O., I. Bayraktaroglu, and A. Orailoglu,
“Test Power Reduction Through Minimization of Scan Chain
Transistions,” Proc. of IEEE VLSI Test Symposium, pp. 166-
171, 2002.

[Khoche 00] Khoche, A., and J. Rivoir, “I/O Bandwidth
Bottleneck for Test: Is it Real ?,” Proc. of International
Workshop on Test Resource Partitioning, 2000.

[Kiefer 97] Kiefer, G., and H.-J. Wunderlich, “Using BIST
Control for Pattern Generation,” Proc. of International Test
Conference, pp. 347-355, 1997.

[Touba 95a] Touba, N. A., and E. J. McCluskey, “Transformed
Pseudo-Random Patterns for BIST”, Proc. of IEEE VLSI Test
Symposium, pp. 410-416, 1995. [Kiefer 98] Kiefer, G., and H.-J. Wunderlich, “Deterministic

BIST with Multiple Scan Chains,” Proc. of International Test
Conference, pp. 1057-1064, 1998.

[Touba 95b] Touba, N. A., and E. J. McCluskey, “Synthesis of
Mapping Logic for Generating Transformed Pseudo-Random
Patterns for BIST”, Proc. of IEEE International Test
Conference, pp. 674-682, 1995.

[Könemann 91] Könemann, B., “LFSR-Coded Test Patterns for
Scan Designs,” Proc. of European Test Conference, pp. 237-
242, 1991. [Touba 01] Touba, N. A., and E. J. McCluskey, “Bit-Fixing in

Pseudo-Random Sequences for Scan BIST,” IEEE
Transactions on Computer-Aided Design, Vol. 20, No. 4, pp.
545-555, Apr. 2001.

[Könemann 01] Könemann, B., “A SmartBIST Variant with
Guaranteed Encoding” Proc. of Asian Test Symposium, pp.
325-330, 2001.

[Venkataraman 93] Venkataramann, S., J. Rajski, S. Hellebrand,
and S. Tarnick, “An Efficient BIST Scheme Based on
Reseeding of Multiple Polynomial Linear Feedback Shift
Registers,” Proc. of International Conference on Computer-
Aided Design (ICCAD), pp. 572-577, 1993.

[Krishna 01] Krishna, C. V., A. Jas, and N. A. Touba, “Test
Vector Encoding Using Partial LFSR Reseeding,” Proc. of
IEEE International Test Conference, pp. 885-893, 2001.

[Krishna 02] Krishna, C. V., and N. A. Touba, “Reducing Test
Data Volume Using LFSR Reseeding with Seed
Compression,” Proc. of International Test Conference, pp.
321-330, 2001.

[Volkerink 03] Volkerink, E. H., and S. Mitra, “Efficient Seed
Utilization for Reseeding Based Compression,” Proc. of VLSI
Test Symposium, pp. 232-237, 2003.

[Krishna 03] Krishna, C. V., and N. A. Touba, “Adjustable
Width Linear Combinational Scan Vector Decompression,”
Proc. of International Conference on Computer-Aided
Design (ICCAD), pp. 863-866, 2003.

[Wunderlich 96] Wunderlich, H.-J., and G. Kiefer, “Bit-Flipping
BIST,” Proc. of International Conference on Computer-
Aided Design (ICCAD), pp. 337-343, 1996.

[Zacharia 95] Zacharia, N., J. Rajski, and J. Tyszer,
“Decompression of Test Data Using Variable-Length Seed
LFSRs,” Proc. of VLSI Test Symposium, pp. 426-433, 1995.

[Krishna 04] Krishna, C. V., and N. A. Touba, “3-Stage Variable
Length Continuous-Flow Scan Vector Decompression
Scheme,” Proc. of VLSI Test Symposium, 2004.

[Zacharia 96] Zacharia, N., J. Rajski, J. Tyszer, and J.
Waicukauski, “Two Dimensional Test Data Decompressor
for Multiple Scan Designs,” Proc. of International Test
Conference, pp. 186-194, 1996.

[Mitra 03] Mitra, S., and K. S. Kim, “XMAX: X-tolerant
architectures for Maximal Test Compression,” Proc. of
International Conference on Computer Design, pp. 326-330,
2003.

