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Abstract 

The output space of a linear decompressor must be 
sufficiently large to contain all the test cubes in the test 
set.  The idea proposed in this paper is to use scan 
inversion to transform the output space of a linear 
decompressor so as to reduce the number of inputs 
required thereby increasing the encoding efficiency while 
still keeping all the test cubes in the output space.  Any 
existing method for designing a linear decompressor 
(either combinational or sequential) can be used first to 
obtain the best linear decompressor that it can.  Using that 
linear decompressor as a starting point, the proposed 
method improves the encoding efficiency further.  The key 
property used by the proposed method is that scan 
inversion is a linear transformation of the output space 
and thus the output space remains a linear subspace 
spanned by a Boolean matrix.  Using this property, a 
systematic procedure based on linear algebra is described 
for selecting the set of inverting scan cells to maximize 
encoding efficiency. Experiments indicate that significant 
improvements in encoding efficiency can be achieved. 

1.  Introduction 
As system-on-chip designs become increasingly 

complex containing many cores and requiring large 
amounts of test data, the test data storage requirements on 
the tester and the test data bandwidth requirements 
between the tester and chip are growing rapidly [Khoche 
00].  Test data compression techniques provide a means to 
reduce these requirements thereby allowing less expensive 
testers to be used as well as reducing test time.  
Compressing the output response is relatively easy since 
lossy compression techniques can be employed, e.g., using 
a multiple input signature register (MISR).  However, 
compressing test vectors is much more difficult because 
lossless compression techniques must be used.  Recently, 
as reducing test vector volume has become such an 

important problem, a lot of research has been done on 
lossless compression techniques for test vectors.  

An important class of test vector compression schemes 
involves using a linear decompressor which uses only 
linear operations to decompress the test vectors.  This 
includes techniques based on linear feedback shift register 
(LFSR) reseeding and combinational linear expansion 
circuits consisting of XOR gates.  Commercial tools for 
compressing test vectors including TestKompress from 
Mentor Graphics [Rajski 02], SmartBIST from 
IBM/Cadence [Könemann 01], and DBIST [Chandramouli 
03] from Synopsys are based on linear decompressors.  
Linear decompression exploits the unspecified (don’t care) 
bit positions in test cubes (i.e., deterministic test vectors 
where the unassigned bit positions are left as don’t cares) 
to achieve large amounts of compression.  The encoding 
efficiency of the linear decompressor is defined as the ratio 
of the number of specified bits in the test set to the number 
of bits stored on the tester.  Higher encoding efficiency 
means more compression. This paper describes a new 
technique that can significantly improve the encoding 
efficiency of a linear decompressor. It is applicable to any 
linear decompressor including both combinational and 
sequential. 

If there are c scan cells, then the space of all possible 
scan vectors is 2c.  The output space of a linear 
decompressor is the set of scan vectors that can be 
generated by the linear decompressor.  Each bit stored on 
the tester can be thought of as a “free-variable” that can be 
assigned any value (0 or 1).  Consider the case where the 
linear decompressor receives an input sequence from the 
tester consisting of n free-variables when generating a scan 
vector.  Assuming the linear decompressor is always 
initialized to the same state before generating each scan 
vector (if it is a sequential circuit), then the size of the 
output space of the linear decompressor is less than or 
equal to 2n (since that is the number of possible unique 
input sequences that could be applied to it).  The output 
space will be equal to 2n if every input sequence maps to a 

  



unique scan vector, and less than 2n if some input 
sequences map to the same scan vector.  In the degenerate 
case where the linear decompressor is just a set of wires 
directly connecting each scan chain to a tester channel, 
then n=c and the content of every scan cell is equal to a 

unique free-variable such that the output space of the 
linear decompressor contains all possible scan vectors.  
However, in order to get compression, n needs to be less 
than c, and thus in the general case, the output space of the 
linear decompressor will be a subset 

of all possible scan vectors.  Linear decompressors 
have some nice properties compared with non-linear 
decompressors.  They generally have a larger output space 
for the same n because of the use of XOR gates which 
minimize the number of input sequences that map to the 
same scan vector.  Another very important property is that 
the output space of a linear decompressor is a linear 
subspace spanned by a Boolean matrix, Acxn.  The 
Boolean matrix A can be obtained by symbolic simulation 
of the linear decompressor (see [Krishna 01] for details).  
Each row in A corresponds to a scan cell and each column 
corresponds to a free-variable in the input sequence.  The 
advantage of having the output space be defined by A is 
that determining whether a particular test cube is contained 
in the output space and the corresponding input sequence 
to generate it can be quickly done by solving a set of linear 
equations using Gaussian elimination. 

In order to be able to compress a test set, the output 
space of the linear decompressor must contain all the test 
cubes in the test set.  When using an LFSR as a linear 
decompressor, it has been shown that if the number of 
free-variables used to generate a test cube is 20 more than 
the number of specified bits in a test cube, then the 
probability of the test cube not being in the output space is 
less than 10-6 [Könemann 91].  However, for a given test 
set, the number of free-variables can be reduced further 
provided the corresponding reduced output space still 
contains all the test cubes in the test set.  Reducing the 
number of free-variables increases the encoding efficiency 
and hence compression.  As the number of free-variables 
are reduced, the output space becomes smaller and smaller 
until a point is reached where one or more test cubes are 
no longer in the output space.  This point terminates the 
reduction in free-variables and limits the encoding 
efficiency that can be achieved by the linear decompressor 
for a particular test set. 

The idea proposed in this paper is to alter and reshape 
the output space of a linear decompressor using scan 
inversion. This can allow the number of free-variables to 
be reduced further while still keeping all the test cubes in 
the output space thereby increasing the encoding 
efficiency.   The encoding efficiency can often be 
increased above 1 using the proposed approach.  Any 
method for designing a linear decompressor can be used 
first to obtain the best linear decompressor that it can.  
Using that linear decompressor as a starting point, the 
proposed method reduces the number of free-variables 
further to improve the encoding efficiency by 
incorporating scan inversion.  The key property used by 

the proposed method is that scan inversion is a linear 
transformation of the output space and thus the output 
space remains a linear subspace spanned by a Boolean 
matrix.  Using this property, a systematic procedure based 
on linear algebra is described for selecting the set of 
inverting scan cells to maximize encoding efficiency.  A 
nice feature of the proposed method is that it can be 
implemented without any hardware overhead (this is 
described in detail in Sec. 3). 

The paper is organized as follows:  Sec. 2 describes 
how this paper relates to previous work.  Sec. 3 discusses 
how scan inversion can be implemented in hardware.  
Section 4 presents a procedure for selecting which set of 
scan cells to invert based on linear algebra.  Sec. 5 
explains how the proposed method can be used to improve 
encoding efficiency for linear decompressors.  Sec. 6 
shows experimental results.  Sec. 7 is a conclusion. 

2.  Related Work 
A number of different techniques for designing linear 

decompressors have been proposed in the literature.  The 
original idea of using an LFSR as a linear decompressor 
and solving for test cubes using linear algebra was 
described in [Könemann 91].  Several techniques for 
improving the encoding efficiency for linear 
decompressors based on LFSRs were described in 
[Venkataraman 93], [Hellebrand 95ab], [Zacharia 95, 96], 
[Rajski 98], and [Krishna 01, 02]. 

Linear decompressors that can receive data from the 
tester in a continuous-flow (i.e., “streaming” data) are 
especially useful for test data compression.  Continuous-
flow linear decompressors can be directly connected to the 
tester and operate very efficiently since they simply 
receive the data as fast as the tester can transfer it. From a 
tools integration standpoint, this is very nice since it 
mimics the standard behavior of normal scan chains.  
There is no need for any special scheduling or 
synchronization. A number of techniques for designing 
both combinational and sequential continuous-flow linear 
decompressors have been proposed.  Combinational 
continuous-flow linear decompressors are described in 
[Hamzaoglu 99], [Hsu 01], [Bayraktaroglu 01, 03], [Mitra 
03], and [Krishna 03].  Sequential continuous-flow linear 
decompressors are described in [Jas 00], [Könemann 01], 
[Rajski 02], [Volkerink 03], [Rao 03], and [Krishna 04]. 

The method described in this paper can be used in 
conjunction with any linear decompressor including all of 
the ones referenced above to improve the encoding 
efficiency further.  It transforms the output space of the 

  



linear decompressor in a way that allows a smaller number 
of free-variables from the tester to be used to encode the 
test set.  The proposed idea has some relation to the idea of 
transforming the output space of a test pattern generator to 
encode test cubes which has been investigated in the past 
in the context of built-in self-test (BIST). Techniques for 
designing a non-linear circuit to transform the output space 
of a pseudo-random generator to encode test cubes were 
described in [Touba 95ab, 01], [Chatterjee 95], 
[Wunderlich 96], and [Kiefer 97, 98].  The proposed 
method differs significantly from these methods in that it 
uses linear transformations, is based on linear algebra, is 
targeted towards lossless test vector compression, and can 
be implemented without any overhead. 

3.  Scan Inversion 
The proposed method involves inverting a set of scan 

cells to transform the output space of the linear 
decompressor.  Implementing inverted scan cells can be 
accomplished either by explicitly inserting inverters in the 
scan chains, or by simply using the Q’ output instead of 
the Q output when connecting the output of one scan cell 
to the next scan cell.  An example of inverting the contents 
of a scan cell is shown in Fig. 2.  Figure 1 shows a normal 
scan chain with no inversion, while Fig. 2 shows the scan 
chain with the third scan cell inverted.  This is 
accomplished by inverting before and after the third scan 
cell.  If the same scan vector was shifted into both the 
normal scan chain in Fig. 1 and the scan chain in Fig. 2, 
the contents of the third scan cell in Fig. 2 would have the 
opposite value from what it would be in the normal scan 
chain while the contents of all other scan cells would be 
the same.  Also, when the output response is shifted out, 

the bit corresponding to the third scan cell will have the 
opposite value from what it normally would have. 

While the example in Fig. 2 only involves inverting 
one scan cell, any set of scan cells in the scan chain can be 
inverted by making appropriate connections from either Q 
or Q’ to the next scan cell.  To invert the first scan cell in a 
scan chain, either an inverter can be placed on the 
scan_data_in (SDI) input or the XOR (XNOR) gate that is 
driving the SDI input can simply be changed to an XNOR 
(XOR) gate. 

If the inverted scan cells are implemented by simply 
changing some connections from Q to Q’ and changing 
some XOR gates to XNOR gates, then there is effectively 
no overhead for using the proposed method.  Even if 
explicit inverters are used, the overhead would still be 
small. 

The proposed method does not involve any special 
ordering of the scan cells.  The scan chains can be ordered 
in any manner to optimize the layout. 

4.  Selecting Set of Inverted Scan Cells 
The proposed method involves selecting a set of scan 

cells to be inverted.  If there are c scan cells, then there are 
2c different ways the scan cells can be inverted each of 
which results in a different transformation of the output 
space of the linear decompressor.  Given a particular linear 
decompressor, the goal is to select the set of inverted scan 
chains so that the resulting transformed output space of the 
linear decompressor will contain all of the test cubes in the 
test set.  This section describes a systematic procedure 
based on linear algebra for doing this. 
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Figure 1.  Normal Scan Chain 
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Figure 2.  Scan Chain with 3rd Scan Cell Inverted

  



The first step is to obtain the Boolean matrix A that 
spans the output space of the linear decompressor.  This 
can be obtained using symbolic simulation (see [Krishna 
01] for details). 

1 0 1 1 1 0
0 1 0 1 0 1
0 0 1 1 1 1
1 0 0 0 0 1
0 1 0 1 0 1

x1
x2
x3
x4
x5
x6

=

0
0
1
1
1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

A               x       =     b      c1 c2 c3 c4 c5

 

In order for a test cube to be in the output space of the 
linear decompressor, there must exist a solution to the 
system of linear equations, Ax=b where x is an assignment 
of values to the free-variables that are inputs to the 
decompressor when generating the test cube, and b is the 
values of each bit in the test cube.  Note that for the 
unspecified bits in the test cube, there is no need to solve 
the linear equations, so it is only the linear equations 
(rows) corresponding to the specified bits in b that need to 
be considered.  Gauss-Jordan Elimination [Cullen 97] can 
be used to perform rows operations that transform a set of 
columns into an identity matrix (these columns are called 
the pivots).  An example of a system of linear equations 
for a test cube t1 is shown in Fig. 3, and the corresponding 
system after Guass-Jordan Elimination is shown in Fig. 4.  
The vector b after Guass-Jordan Elimination will be 
referred to as z to eliminate confusion.  The rows after 
Gauss-Jordan Elimination can be classified as either 
pivoted rows or linearly dependent rows.  The pivoted 
rows have pivots while the linearly dependent rows are all 
0.  In the example in Fig. 4, the first three rows are pivoted 
while the last two are linearly dependent.  If all rows are 
pivoted, then a solution to the system of linear equations 
exists, and hence the test cube is in the output space of the 
linear decompressor.  If some of the rows are linearly 
dependent, then a solution only exists if all of the 
corresponding values in z (the vector b after Guass-Jordan 
Elimination) are equal to 0 for the linearly dependent 
rows.  If there is a linearly dependent row whose 
corresponding value in z is equal to 1, then a solution does 
not exist.  In Fig. 4, the fourth row is linearly dependent, 
but the corresponding value in z is 0 so that is okay.  
However, the fifth row is also linearly dependent, but the 
corresponding value in z is 1, and thus there is no solution.  
This is easy to see because in the original system of linear 
equations in Fig. 3, both rows 2 and 5 are identical in A, 
however, the corresponding outputs for those two rows in 
b have opposite values.  Obviously there is no assignment 
to x that will simultaneously solve the linear equations for 
both rows 2 and 5. 

 

Figure 3.  System of Linear Equations for Test Cube t1 
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Figure 4.  Gauss-Jordan Reduction for Test Cube t1 
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Figure 5.  System of Linear Equations for Test Cube t2 
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Figure 6.  Gauss-Jordan Reduction for Test Cube t2 
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For the example in Fig. 3, let the specified values in b 
correspond to scan cells c1 through c5.  If either scan cell 
c2 or scan cell c5 were inverted, the system of linear 
equations would become solvable.  For example, if scan 
cell 5 was inverted, then the last row in b would be 
changed from a 1 to a 0.  Now the fact that row 5 is the 
same as row 2 in A is not a problem because the 
corresponding values in b for those two rows are identical.  
This is an example of how scan inversion can be used to 
make a test cube solvable. 

 

Figure 7.  Constraint Matrix for Test Set {t1, t2} 
 
Let i = (i1, i2, …, ic) be a vector in which if ij =1 then 

scan cell j is inverted and if ij =0 then scan cell j is not 
inverted.  For a given test cube, a set of constraints on i for 
which the test cube is solvable can be determined as 

  



follows.  For the rows that are pivoted, there are no 
constraints on i since it doesn’t matter what the 
corresponding value of z is for those rows since they are 
always solvable.  For the linearly dependent rows, the 
corresponding value of z must be 0, so whatever scan 
inversion takes place must ensure that the value for that 
row is 0 after Guass-Jordan Elimination.  This places 
constraints on i.  In the example in Fig. 4, the last two 
rows are linearly dependent, so constraints must be placed 
on i to ensure that the corresponding values in z for those 
rows are always 0.  These constraints can be determined 
by augmenting the linear system with a dependency matrix 
which is a square matrix with the number of rows and 
columns equal to the number of rows in b.  The 
dependency matrix is initially an identity matrix since each 
value in b depends only on itself.  The row operations that 
are performed during Gauss-Jordan Elimination are also 
applied to the dependency matrix.  After Gauss-Jordan 
Elimination, the dependency matrix indicates which set of 
scan cells each value in z depends on.  For each linearly 
dependent row, the constraints on i can be obtained by 
looking at the dependency for the value in z for that row.  
The value in z for each linearly dependent row must be 0, 
so a linear equation in terms of i can be written to ensure 
that the value in z will be 0.  In the example in Fig. 4, the 
4th row is linearly dependent and the corresponding value 
in z depends on scan cells c1, c3, and c4.  Since the 
corresponding value in z in the normal scan chain is 0, the 
constraint on scan inversion is that i1⊕i3⊕i4 should be 0.  
In other words, either none of scan cells c1, c3, and c4 
should be inverted or two of them should be inverted (thus 
canceling each other out).  If one or all three of them are 
inverted, then the value in z for that row will become 1 and 
no solution for the test cube will exist.  Similarly, a linear 
equation for the constraint due to the 5th row can be 
obtained.  In this case, for the normal scan chain the value 
of z for this row is 1, so it is necessary that one of the scan 
cells that it depends on be inverted, either c2 or c5 in order 
to get a solution for the test cube. 

The procedure described above can be used to obtain a 
set of constraints on i for each test cube to make it 
solvable.  Consider test cube t2 whose system of linear 
equations is shown in Fig. 5.  Note that this test cube has 
only 4 specified bits and in this case the specified bits are 
in scan cells c1, c2, c6, and c7.  The system of linear 
equation after Guass-Jordan Elimination is shown in Fig. 
6.  As can be seen, there is one linearly dependent row in 
this case.  The corresponding set of constraints on i can be 
obtained from the dependency matrix. 

In order for the linear decompressor to be able to 
generate all of the test cubes in the test set, there needs to 
be a solution for all test cubes.  Thus, i must be selected to 
allow all test cubes to be simultaneously solved.  A 

solution for i can be obtained by forming a constraint 
matrix C that incorporates all of the constraints for all of 
the test cubes.  Each constraint for each test cube can be 
added as a row in C.  For example, suppose the test set 
consisted of test cube t1 and t2 whose constraints were 
obtained in Figs. 4 and 6.  Then the first two rows in C 
would correspond to the two linear constraint equations 
from Fig. 4, and the last row in C would correspond to the 
linear constraint equation from Fig. 6.  The resulting 
constraint matrix is shown in Fig. 7.  Gauss-Jordan 
Elimination can then be used to find a solution to the 
system of linear equations Ci=z.  The solution for i gives 
the set of scan cells that need to be inverted so that the test 
set can be generated by the linear decompressor.  If no 
solution exists, then it is not possible for the linear 
decompressor to be used to generate the test set under any 
set of inverted scan cells.  

The complexity of the Gauss-Jordan Elimination 
method for solving a set of n linear equations with m 
variables is of the order of O(nm2). In the proposed 
scheme, as with any other linear test vector compression 
scheme, a set of linear equations needs to be solved for 
each test cube. Hence, if s is the number of specified bits 
in a cube, and c is the number of compressed bits for that 
cube, then solving for that cube will require O(sc2) time. 
The only additional task involved in the proposed scheme 
is to solve for the constraint matrix. The time complexity 
for this additional step will depend on how many 
equations there are in the constraint matrix and the number 
of scan cells that are included in the inversion constraints. 
Note that there is no need to include the scan cells that are 
not present in any inversion constraint for any test cube.  

5. Using Scan Inversion to Increase Encoding 
Efficiency 
Given a linear decompressor, the previous section 

described how to select a set of inverting scan cells so that 
all the test cubes in the test set will be in the output space 
(if such a set of inverting scan cells exists).  This 
procedure can be used in two ways to increase encoding 
efficiency.  One is to start with an initial decompressor 
design and reduce the number of free-variables that it 
receives per test cube from the tester as much as possible 
while still keeping the test set in the output space through 
scan inversion.  The other is to use scan inversion to relax 
the constraints on the ATPG (automatic test pattern 
generation). The number of free variables per test cube is 
kept constant but each cube can have more specified bits. 
Hence the ATPG can do more static and dynamic 
compaction. Both of these applications will increase 
encoding efficiency and hence compression. They are 
discussed in detail in the following subsections. 

 

  



5.1 Reducing Free-Variables per Test Cube 
Any method can be used to design the best linear 

decompressor for a normal scan chain.  Then the number 
of free-variables that are input to the decompressor per test 
cube can be incrementally reduced and the procedure in 
Sec. 4 can be used to see if it is possible to still solve for 
all the test cubes using scan inversion.  If so, then this 
process of incrementally reducing the number of free-
variables and checking for a solution is repeated until a 
point is reached when no further reduction in the number 
of free-variables per test cube is possible while still being 
able to solve for all test cubes.  For example, for a 
continuous-flow decompressor (either sequential or 
combinational), the number of free-variables per test cube 
can be reduced by simply holding one tester channel input 
to a constant 0 when doing symbolic simulation to obtain 
the matrix A that spans the output space of the linear 
decompressor.  This will reduce the rank of A and hence 
reduce the output space.  However, if the procedure in Sec. 
4 can still solve for all test cubes using scan inversion, 
then the linear decompressor design can be simplified by 
eliminating that one tester channel input that was held to 0 
since it is no longer needed.  This can be repeated to try to 
eliminate additional tester channel inputs.  The end result 
will be a linear decompressor that generates the exact same 
test set, but uses fewer tester channels thereby reducing 
tester storage and bandwidth requirements. 
5.2 Increasing Specified Bits per Test Cube 

If the number of tester channels that are allocated for 
feeding the linear decompressor is fixed, then another way 
that scan inversion can be used is to increase encoding 
efficiency is to allow more specified bits per test cube.  
Some test compression methodologies (e.g., 
[Bayraktaroglu 01, 03], [Rajski 02]) involve fixing the 
decompressor design and then constraining the ATPG so 
that the resulting test cubes will be in the output space of 
the decompressor.  The constraints on the ATPG reduce 
the amount of static and dynamic compaction that are 
performed and therefore can result in more test cubes and 
hence more test time.  The scan inversion method 
proposed here can be used to allow more specified bits per 
test cube while still being able to solve for the test cube.  
This can be used to relax the constraints on the ATPG and 
thereby allow more static and dynamic compaction.  Each 
time a test cube is generated by the ATPG any additional 
constraints for solving the test cube via scan inversion can 
be added to the constraint matrix C described in Sec. 4.  If 
the additional constraints cause the constraint matrix to no 
longer have a solution, then that test cube cannot be 
accepted and the ATPG must find a less specified test 
cube.  If the constraint matrix still has a solution, then the 
test cube can be accepted.  The end result of relaxing the 
constraints on the ATPG is that more static and dynamic 

compaction can be performed thereby reducing the total 
number of test cubes and hence reducing both test time 
and tester storage requirements. 

6. Experimental Results 

Two sets of experiments were performed to evaluate 
the effectiveness of the proposed method.  The first set of 
experiments was done on randomly generated test cubes 
for large industrial-size scan architectures.  The second set 
of experiments was done on the largest ISCAS 89 
benchmark circuits [Brglez 89].  For the randomly 
generated test cubes, experiments were performed using 
two different types of linear decompressors.  The first was 
a combinational linear decompressor as shown in Fig. 8 
using 512 scan chains and 1024 scan chains.  The results 
are shown in Table 1. For the combinational decompressor 
with normal scan chains without inversion, the number of 
channels from the tester was 32.  For each randomly 
generated test cube, the number of specified bits was 
incrementally increased until it could no longer be solved 
(i.e., it was no longer in the output space).  The average 
percentage of specified bits per test cube that could be 
solved for is shown along with the corresponding 
encoding efficiency.  This measures the best encoding 
efficiency that can be achieved for normal scan chains 
without scan inversion. Recall that the encoding efficiency 
is defined as the ratio of the number of specified bits in the 
test set to the number of bits stored on the tester. Note that 
since each test cube is encoded independently, there is no 
dependence on the number of test cubes.  Results are then 
shown for scan inversion using it in the two ways 
described in Sec. 5.  The first is using scan inversion to 
reduce the number of tester channels while still encoding 
the same set of test cubes as before.  The number of 
reduced tester channels along with the resulting encoding 
efficiency that is achieved are shown in columns 6 and 7 
respectively.  The second way that scan inversion is used 
is to keep the tester channels at 32 and increase the 
percentage of specified bits per test cube as much as 
possible until it is no longer possible to solve for all the 
test cubes.  The maximum percentage of specified bits and 
the resulting encoding efficiency are shown in the last two 
columns of Table 1.  Note that when using scan inversion, 
the effectiveness reduces as the number of test cubes 
increases since it is harder to keep all of the test cubes in 
the output space.  Results are shown for several different 
numbers of test cubes. 

A number of interesting observations can be made from 
Table 1.  Scan inversion is remarkably effective at 
improving the encoding efficiency for combinational 
decompressors (it is more than doubled in most cases).  
Typically the encoding efficiency for combinational 
decompressors is fairly low because of the fact that they

  



Table 1.  Results for Combinational Linear Decompressor 

Combinational without Scan Inversion Combinational with Scan Inversion Scan 
Chains 

Num. 
Test Cubes Tester 

Channels 
Percentage 
Specified 

Encoding 
Efficiency 

Reduced 
Channels 

Encoding 
Efficiency 

Increased 
% Specified 

Encoding 
Efficiency 

200 32 2.7% 0.43 11 1.26 6.2% 0.99 
400 32 2.7% 0.43 13 1.06 5.7% 0.91 
600 32 2.7% 0.43 15 0.92 5.5% 0.88 

512 

1000 32 2.7% 0.43 16 0.86 5.2% 0.83 
200 32 1.3% 0.42 11 1.21 3.5% 1.12 
400 32 1.3% 0.42 11 1.21 3.1% 0.99 
600 32 1.3% 0.42 13 1.02 2.9% 0.93 

1024 

1000 32 1.3% 0.42 14 0.95 2.8% 0.90 
 

Table 2.  Results for Sequential Linear Decompressor 

Sequential without Scan Inversion Sequential with Scan Inversion Scan 
Chains 

Num. 
Test Cubes Tester 

Channels 
Percentage 
Specified 

Encoding 
Efficiency 

Reduced 
Channels 

Encoding 
Efficiency 

Increased 
% Specified 

Encoding 
Efficiency 

200 16 3.0% 0.94 14 1.07 3.6% 1.13 
400 16 3.0% 0.94 15 1.00 3.3% 1.04 
600 16 3.0% 0.94 16 0.94 3.2% 1.01 

512 

1000 16 3.0% 0.94 16 0.94 3.1% 0.98 
200 16 1.5% 0.94 11 1.37 2.1% 1.32 
400 16 1.5% 0.94 13 1.16 1.9% 1.20 
600 16 1.5% 0.94 14 1.07 1.8% 1.13 

1024 

1000 16 1.5% 0.94 15 1.00 1.7% 1.07 

 
Table 3.  Comparison of Test Data for Different Encoding Schemes  

 
Circuit 
Name 

MinTest 
[Hamzaoglu 98] 

Illinois Scan 
Architecture 

[Hamzaoglu 99] 

FDR Codes 
[Chandra 01] 

Mutation 
Encoding 
[Reda 02] 

Seed  
Overlapping 

[Rao 03] 

Sequential 
Decompressor 

Sequential 
Decompressor 

w/ Scan Inversion

 Num. 
Vect. 

Total 
Bits 

Num. 
Vect. 

Total 
Bits 

Num. 
Vect. 

Total 
Bits 

Num. 
Vect. 

Total 
Storage

Num. 
Vect. 

Total 
Bits 

Num. 
Vect. 

Total 
Bits 

Num. 
Vect. 

Total 
Bits 

s13207 233 163,100 273 109,772 236 30,880 274 16,913 272 17,970 266 15,020 266 9,708 
s15850 96 58,656 178 32,758 126 26,000 185 14,676 174 15,774 226 16,153 226 10,726 
s38417 68 113,152 337 96,269 99 93,466 231 55,848 288 60,684 105 50,365 105 36,864 
s38584 110 161,040 239 96,056 136 77,812 220 47,886 215 31,061 192 38,192 192 27,555 

 
must receive enough free-variables every clock cycle to be 
able to encode each bit-slice of the scan chains.  The 
worst-case most heavily specified bit-slices typically limit 
the encoding efficiency.  As can be seen in Table 1, the 
encoding efficiency is less than 0.5 without scan inversion.  
However, with scan inversion, the most heavily specified 
bit slices can be solved with fewer free-variables per clock 
cycle thereby allowing the number of 
tester channels to be reduced substantially.  The fact that 
the encoding efficiency can be increased to around 0.9 
with a combinational decompressor is a surprising result.  
This level of encoding efficiency is on the order of what is 
typically achieved with sequential decompressors, 
however, in this case no LFSR is needed thereby reducing 
the hardware overhead.  Combinational decompressors are 
attractive because they are very simple requiring low 
hardware overhead.  The only drawback to using them has 

been the substantially reduced encoding efficiency 
compared with sequential decompressors, however, these 
results indicate that with scan inversion the gap in 
encoding efficiency between combinational and sequential 
decompressors can be significantly reduced.  The results 
for keeping the number of channels at 32 and increasing 
the percentage of specified bits per test cube did not 
provide as high of encoding efficiency as reducing the 
tester channels did. 

We also did the same experiments using a continuous-
flow sequential linear decompressor as shown in Fig. 9.  
The results are shown in Table 2.  In this case, the number 
of channels from the tester for the normal scan chain 
without inversion was 16 and a 64 bit LFSR was used.  
Because the sequential linear decompressor is very 
efficient to begin with, the number of channels that can be 
reduced using scan inversion is not as spectacular as for 

  



combinational decompressors.  Nonetheless, a significant 
increase in the encoding efficiency (above 1 in many 
cases) can be achieved especially for 1024 scan chains 
where the percentage of specified bits per test cube is less.  
Note also that the results for keeping the number of 
channels at 16 and increasing the percentage of specified 
bits per test cube were actually better than reducing the 
tester channels.  This is the opposite of what happened for 
combinational decompressors where reducing channels 
achieved higher encoding efficiency. 

 

Scan Chain 1 (m bits)

Scan Chain 2 (m bits)

Scan Chain n (m bits)

b-to-n
Comb.
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Figure 8.  Combinational Linear Decompressor 
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Figure 9.  Continuous-Flow Sequential Linear 

Decompressor 
Experiments were also performed for the largest 

ISCAS 89 benchmark circuits to compare the results with 
previously published techniques.  A scan architecture with 
64 scan chains was assumed and a sequential 
decompressor like the one in Fig. 9 was used with a 64 bit 
LFSR.  Table 3 shows the results obtained by the proposed 
method along with other test vector compression schemes. 
The first column shows the circuit name and the next two 
columns are the number of vectors and the total test size of 
the dynamically compacted test cubes generated by 
MINTEST [Hamzaoglu 98]. The next few columns show 
the number of test vectors and the compressed test size for 
the Illinois scan architecture [Hamzaoglu 99], frequency 
directed runlength codes [Chandra 01], mutation encoding 
[Reda 02] and seed overlapping [Rao 03]. As can be seen 
from the results, scan inversion substantially reduces the 
tester storage requirements compared with using the 
sequential decompressor without scan inversion.  The 
results indicate that the tester storage requirements are less 
than those in recently published test vector compression 

papers. 

7. Conclusions 

A method for improving the encoding efficiency of a 
linear decompressor using scan inversion was proposed.  
A systematic procedure based on linear algebra was 
described for selecting the set of inverted scan cells.  
Experimental results show that scan inversion can 
dramatically improve the encoding efficiency of 
combinational linear decompressors bringing it close to 
that of sequential decompressors.  Scan inversion can also 
significantly improve the encoding efficiency for 
sequential linear decompressors.  Scan inversion can be 
implemented with no hardware overhead. 
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