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Abstract 

 
In this paper, a method is proposed for reducing 

power consumption in memory ECC checker circuitry that 
provides SEC-DED. The degrees of freedom in selecting 
the parity check matrix are used to minimize power with 
little or no impact on area and delay.  The power 
minimization method is applied to two popular SEC-DED 
codes: standard Hamming codes and odd-column-weight 
Hsiao codes.  Experiments on actual memory traces of 
Spec and MediaBench benchmarks indicate that 
considering power in addition to area and delay when 
selecting the parity check matrix can result in power 
reductions of up to 27% for Hsiao codes and up to 41% 
for Hamming codes. 
 

1. Introduction 
 
Error correcting codes (ECCs) are commonly used in 

memories to protect against soft errors and thereby 
enhance system reliability and data integrity [Chen 84], 
[Gray 00].  Single-error-correcting and double-error-
detecting (SEC-DED) codes are generally used for this 
purpose.  These codes are able to correct single-bit errors 
and detect double-bit errors in a codeword.  There are 
many ways to construct SEC-DED codes and implement 
the corresponding ECC circuitry. While previous research 
has focused on minimizing area and delay in ECC 
circuitry, this paper looks at minimizing power in 
addition to minimizing area and delay.  By considering 
power during the design of ECC circuitry, significant 
reductions can be achieved at little or no cost in terms of 
area and delay. 
 As power has become a first-order design 
consideration, researchers have begun looking at 
techniques to reduce power consumption in error detection 
circuitry. While conventional low power design 
methodologies that have been developed for general 
circuits can be applied to the design of error detection 
circuitry in a straightforward manner, there are some 
special properties of error detection circuitry that can be 
exploited to further reduce power consumption.  One such 

property is the fact that error detection circuitry typically 
contains large amounts of symmetry.  For example, parity 
trees and two-rail checker trees are totally symmetric with 
respect to their inputs and thus allow complete freedom in 
the ordering of the inputs.  The inputs can be ordered in 
any way with no change in the function of the circuit and 
no real impact on the area or delay.  This property was 
first exploited to minimize power in [Favalli 97].  Favalli 
and Metra considered signal probability on a level-by-
level basis to order the inputs in two-rail checkers to 
minimize power (the method can also be used for parity 
trees).  In [Mohanram 02], spatial correlation among 
signals was used for input ordering in parity trees and 
Berger code checkers.  A nice feature of both of these 
methods is that power is reduced essentially for free as 
there is no impact in terms of area or delay.  The only cost 
is the time for computing the input ordering. 
 In [Rossi 02, 03], the problem of reducing power 
consumption for fault tolerant buses with SEC codes was 
studied.  The bus model that was used considers mutual 
capacitance effects and assumes transitions between all 
pairs of vectors are equally likely.  The properties of both 
Hamming codes and dual rail codes with respect to power 
consumption were analyzed. Results in [Rossi 03] indicate 
that for small bus word sizes dual rail codes require less 
power, while for larger word sizes Hamming codes are 
better. 
 In this paper, the focus is on reducing power 
consumption in memory ECC circuitry that provides SEC-
DED.  Such circuits are widely used in industry in all 
types of memories including caches and embedded 
memories. The key design issue is selecting the code that 
is used.  A (n,k) linear SEC-DED block code has n bits in 
each codeword consisting of k data bits and n-k check bits.  
The code can be represented by a parity-check matrix, H, 
having n-k rows, one for each check bit, and n columns, 
one for each bit in the codeword.  In order for the code to 
be SEC-DED, the H-matrix must be formed in a way that 
the minimum distance between any codewords is 4.  Two 
well-known methods for constructing a SEC-DED H-
matrix were described by Hamming [Hamming 50] and 
Hsiao [Hsiao 70].  Different H-matrices result in different 
area, delay, and power.  This paper presents a method for 



  

selecting an H-matrix that simultaneously minimizes 
power, area and delay.  Once the H-matrix has been 
selected, the corresponding ECC circuitry for 
implementing the code can be synthesized. 
 Another related work is [Kleihorst 01], where 
Hamming codes were designed with the goal of area 
minimization of the ECC checker in mind. In this paper, 
we aim to minimize a joint function of area, delay and 
power while designing Hamming and Hsiao codes.  
 The paper is organized as follows: Section 2 gives an 
overview of the proposed method; Section 3 discusses the 
ECC memory hardware details; Section 4 gives the details 
of the optimization algorithms used; Section 5 explains 
the experimental methodology, the results of which are 
discussed in Section 6; finally, Section 7 concludes our 
discussion and outlines promising areas of future work. 
 

2. Overview of Proposed Method 
 

The key idea in this paper is to select the H-matrix in 
a way that minimizes power, area and delay in the ECC 
checker.  The space of H-matrices that provide SEC-DED 
capability is large. In [Hsiao 70], Hsiao showed that an H-
matrix that satisfies the following three constraints 
provides SEC-DED capability: 

1. There are no all-0 columns. 
2. Every column is distinct. 
3. Every column contains an odd number of 1’s (i.e., 

has odd weight). 
Hsiao showed that by using minimum odd weight 
columns, the number of 1’s in the H-matrix could be 
minimized (and made less than a Hamming SEC-DED 
code). This translates to less hardware area in the 
corresponding ECC circuitry. Furthermore, by selecting 
the odd weight columns in a way that balances the number 
of 1’s in each row of the H-matrix, the delay of the 
checker can be minimized (as the delay is constrained by 
the maximum weight row). 
 In this paper, power consumption is considered as an 
additional factor in selecting the H-matrix.  For odd-
weight-column codes, there are two degrees of freedom in 
selecting the H-matrix that can be used to reduce power 
with little to no impact on area and delay.  The first 
degree of freedom is simply permuting the columns.  This 
has no impact on area or delay as it does not change either 
the total number of 1’s in the H-matrix or the balancing 
of 1’s among the rows.  The second degree of freedom is 
in selecting the odd-weight-columns that are included in 
the matrix.  To minimize area and delay, the smallest odd 
weight columns should be used first (i.e., weight-1, then 
weight-3, then weight-5, etc.).  However, note that in 
general, only a subset of the largest odd weight columns 
will be used.  For example, for a (72,64) odd-weight-

column code, all 8
1C = 8 of the weight-1 and all 8

3C = 56 

of the weight-3 columns will be used, but only 8 of the 
8
5C = 56 possible weight-5 columns will be used.  

Selecting which 8 of the 56 possible weight-5 columns are 
used in the H-matrix is a degree of freedom that can be 
used for minimizing power with little to no impact on area 
or delay. 
 How much power can be reduced using the degrees of 
freedom in selecting the H-matrix will depend on the 
characteristics of the data stored in the memory.  The 
more correlated the data in successive memory reads and 
writes is, the more power can be reduced through careful 
selection of the H-matrix.  The switching activity (and 
hence power consumption) in the encoding and decoding 
logic corresponding to a particular H-matrix depends on 
which bit transitions occur in the data between successive 
memory reads and writes.   

Consider a very simple example to illustrate this point.  
Typically the high order data bit is more likely to be a 0 
than a 1, whereas the low order data bit is more likely to 
have an even distribution between 0 and 1.  Sparsity in 
higher order bits is a very common phenomenon for 
multimedia applications. In fact, special purpose 
compilers and architectures with support for variable 
bitwidth have been studied in order to exploit this 
characteristic of the multimedia applications [Stephenson 
00]. Thus, since the low order bit is more likely to 
transition in successive memory accesses than the high 
order bit, it would be better that the low order bit 
correspond to a lower weight column in the H-matrix and 
the high order bit correspond to a higher weight column 
in the H-matrix.  This would reduce the switching activity 
that occurs in the encoding/decoding logic and thereby 
reduce power.  This is a simplistic example to show how 
selection of the H-matrix can be used to exploit 
correlations in the data stored in the memory.  More 
elaborate forms of spatial and temporal correlations in the 
data can be exploited with the proposed methodology. 
 How much correlation exists in the data stored in a 
memory will depend on the purpose and function of the 
memory.  Some embedded memories for certain 
applications may have very correlated data and thus the 
proposed method for selecting the H-matrix can be very 
effective in reducing power.  Others may have less 
correlation.  The types of data that are stored in different 
memories ranges broadly.  Instruction caches and other 
memories that primarily contain instructions will tend to 
have a lot of correlation, as the frequency of execution of 
different instructions tends to be very skewed.  Memories 
that contain a lot of numerical data will tend to have a lot 
of spatial correlations among higher order bit positions as 
the range of the numerical values may be limited and/or 



  

skewed.  Some embedded controllers and sensors may 
spend a lot of time executing in a loop and thus have a lot 
of temporal correlations.  No matter what the nature of the 
memory is, not all transitions will be equally likely, so 
there will be some scope for power reduction using the 
proposed method.  However, the actual amount of power 
reduction will depend on the extent of the correlation. 
 The proposed method consists of two steps.  The first 
is to acquire information about the spatial and temporal 
correlations of the data in memory accesses.  The second 
step is to use that information to select the H-matrix for 
the odd-weight-column SEC-DED code. Information 
about the spatial and temporal correlations is acquired by 
analyzing a sample trace of the memory accesses for a 
typical workload.  The application that will use the 
memory, or a representative sample of the applications if 
there are multiple applications, is simulated and a sample 
trace of memory accesses is obtained.  The size of the 
sample should be chosen so that it is sufficiently 
representative of the typical workload.  The spatial and 
temporal correlations among the data from the sample 
traces are then extracted so that the H-matrix can be 
optimized for the typical workload of the memory.  The 
resulting design of the ECC circuitry will then minimize 
the average power across the typical workload.  For 
portable electronics this will help extend battery life. 
 Once the correlation information has been extracted, 
the second step of the proposed method involves selecting 
the H-matrix.  This problem is a non-linear optimization 
problem.  In this paper, two optimization techniques were 
investigated:  simulated annealing (SA) and genetic 
algorithms (GA).  Both techniques are described in Sec. 4.  
Experimental results showed that genetic algorithms 
outperformed simulated annealing for this problem.  
Genetic algorithms appear to be better suited to this 
problem as is discussed in Sec. 6. 

3. ECC Memory Checkers 
  

 The goal of this work is to reduce the switching 
activity in the part of the ECC circuitry that is used most 
frequently, namely the parity generator block which is 
used on every memory access (both read and write).  
Figure 1 illustrates the block-level design of a generic 
SEC-DED encoder/decoder for ECC memory. The left 
side of the figure is the processor interface where the 
relevant signals are u_data[63:0], representing the 64 bits 
of the processor data bus; rw_n, representing the memory 
read/write control signal; and error-out[1:0], the 2-bit 
error flag signal that is required to signal one of possible 
four error states: (1) no error,  (2) correctable data error, 
(3) correctable parity error, and (4) detectable double 
error. The right side of the figure is the memory interface 
consisting of the 72-bit memory data bus mem_data[71:0].  
The “Generate Parity Bits” block generates the parity bits 
to store with the processor data during a write cycle. 
During a read cycle, this block also generates the parity 
bits for the 64 data bits stored in memory.  These 
generated parity bits are then compared with the stored 
parity bits to generate the syndrome. In this paper, the 
focus is on selecting an SEC-DED code that minimizes 
power consumption in the parity generator block since 
that is the part of the circuit most heavily used. 

Hamming codes and Hsiao codes are commonly used 
in ECC circuitry.  The proposed optimization method is 
applicable to both of these kinds of SEC-DED codes.  
Note that the proposed method can be used for any 
memory word size. 
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Figure 1.  SEC-DEC Block Diagram (modified from [Xilinx 03]) 



  

4. Optimization Algorithms 
 

In this paper, two optimization algorithms that are 
known to give good performance for highly non-linear 
optimization problems, such as the one here, are 
investigated.  One is simulated annealing (SA), and the 
other is genetic algorithms (GA). In this section, we give 
a brief description of both these techniques and how they 
were adapted to this domain. 

4.1 Simulated Annealing (SA) 
 

For Hamming codes, we consider the H-matrix in the 
standard form and the only thing that can be varied to 
reduce power is the input ordering. For 64 inputs, there 
are 64! possible input permutations, which makes an 
exhaustive search of the input ordering with the lowest 
power dissipation intractable.   

For Hsiao codes, along with input ordering, we have 
the additional flexibility of designing the H-matrix. As 
explained in Sec. 2, selecting which 8 of the 56 possible 
weight-5 columns are used in the H-matrix for a (72,64) 
code is a degree of freedom that can be used for 
minimizing the dissipated power. So, the search space is 

even larger in this case, having (64! * 56
8C ) possible 

solutions.  
To solve this large non-linear optimization problem, 

we applied simulated annealing [Kirkpatrick 83] to find a 
(local) optimum of the cost function, the details of which 
are described below.  

4.1.1 Cost function 
 

The cost function is modeled as a combination of the 
delay in the circuit, the size of the circuit, and the power 
dissipation in the circuit. It is a weighted linear 
combination of the following 3 components, which 
represent the different design objectives mentioned in 
Section 2: 
1. Power dissipation: The power dissipated during ECC 
checking, which is found by doing power simulation of 
the permuted inputs through the parity checker circuit. 
The power goal is minimization of this dissipated power. 
2. Size of circuit: The number of total gates in the circuit, 
obtained by performing multiple-output logic 
minimization of the H-matrix equations, using 2-input 
XOR gates. The circuit-size goal is reduction of the 
number of XOR gates in the total parity checker circuit. 
3. Delay in circuit: The balance of delay in the circuit, 
measured by the variance between the depths of the XOR 
circuits corresponding to different parity equations. A 
checker circuit with minimum delay would have a perfect 
balance of depth between the XOR networks 

implementing each parity output, and would correspond to 
0 variance in the depth of the XOR networks. So, the 
timing goal is minimizing the variance in delay between 
the XOR networks corresponding to the different parity 
bits. 

4.2 Genetic Algorithm (GA) 
 

Genetic algorithm (GA) is another popular non-linear 
optimization tool, useful for such large-scale non-linear 
optimization problems [Holland 75]. In GA, each possible 
solution to the problem is encoded as a gene. An initial 
population of P random genes is considered, from which a 
next generation of P genes is created by crossover and 
mutation operations. We considered a variant of GA 
where the top E best genes (elites) at each generation are 
directly copied into the next generation, thus preserving 
the best E solutions found so far: this GA principle is 
called elitism.   
 For the purpose of illustration, we will consider n  = 64 
in this section. Note that all these methods can be 
generalized to work for architectures of other sizes. 

4.2.1 Overall GA algorithm 
Figure 2 outlines the overall GA algorithm that we use. 

 

Input: Initial population of K random genes, the 
number of elites E, the number mutant children M, the 
number of unfit parents U, the number of generations 
G
Output: gene with maximum fitness (minimum cost)
Algorithm:
1. i = 0
2. The K parent genes are sorted in decreasing order 
of fitness (increasing order of their cost)
3. Top E elite parents are copied into the next 
generation
4. M children are created, each by direct mutation of a 
randomly chosen gene from the E elites
5. Bottom U parent genes are rejected as unfit
6. Remaining K-E-M children are created by 
crossover between any 2 parents that are not elites
and not unfit.
7.  i = i + 1
8. If (i < G), goto Step 1. Else, return elite with 
maximum fitness (minimum cost)

Input: Initial population of K random genes, the 
number of elites E, the number mutant children M, the 
number of unfit parents U, the number of generations 
G
Output: gene with maximum fitness (minimum cost)
Algorithm:
1. i = 0
2. The K parent genes are sorted in decreasing order 
of fitness (increasing order of their cost)
3. Top E elite parents are copied into the next 
generation
4. M children are created, each by direct mutation of a 
randomly chosen gene from the E elites
5. Bottom U parent genes are rejected as unfit
6. Remaining K-E-M children are created by 
crossover between any 2 parents that are not elites
and not unfit.
7.  i = i + 1
8. If (i < G), goto Step 1. Else, return elite with 
maximum fitness (minimum cost)

 
Figure 2.  Outline of Genetic Algorithm 

4.2.2 Gene representation 
For Hamming codes, each solution corresponded to a 

particular input permutation. The inputGene 



  

corresponding to this is encoded as a string of the 
mapping for the input memory bits positions. For 
example, for n = 64, one possible permutation could be 
represented in the inputGene by the string 
“2,3,1,4,5…63,64”, representing the permutation where 
the 1st memory bit position is mapped to the 2nd input in 
the checker circuit, the 2nd bit is mapped to the 3rd input, 
the 3rd bit is mapped to the 1st input, and the other memory 
bits are mapped to their corresponding circuit inputs. 
 For Hsiao codes, each solution also contains an 
additional component that we call the matrixGene, 
representing the design of the H-matrix. In our 64-bit 
architecture example, we first index the 56 possible 
weight-5 columns in increasing order of their binary 
representation. The matrixGene is represented by the 
indices of the 8 weight-5 columns out of the 56 possible 
ones that are selected to fill up the last 8 positions of the 
H-matrix (after filling up the first 64 with all possible 
weight-1 and weight-3 columns). So, a possible 
matrixGene would be “1,4,6,9,11,34,53,55”, representing 
the indices of the particular weight-5 columns selected 
while creating the H-matrix. In the general case, for 
architectures of other sizes, the matrixGene would have a 
representation of a similar design choice of selecting some 
columns from a total set of possible odd weight columns.  

In the case of Hsiao codes, the GA algorithm 
performed simultaneous crossovers and mutations of both 
the inputGene and the matrixGene. The fitness of a 
composite gene, comprised of the inputGene and the 
matrixGene, was considered to be the inverse of the total 
cost calculated as shown in Section 4.1.1, so that genes 
with less cost ended up being “more fit”. 

4.2.3 Mutation operation 
The mutation operation for the inputGene creates a 

child from a single parent, by choosing two input index 
mappings at random in the parent gene and swapping 
them. For example, swapping the 1st and 4th positions in 
the example gene considered above would generate the 
mutant inputGene “4,3,1,2,5…63,64” from the parent 
“2,3,1,4,5…63,64”. 
 In the case of Hsiao codes, the mutation operation for 
the matrixGene creates a child from a single parent by 
selecting a column index at random and removing it from 
the selected set, bringing in a column from the unselected 
set. For example, swapping out the weight-5 column 
having index 3 and swapping in the column with index 4 
in the example gene considered above would generate the 
mutant child “1,3,6,9,11,34,53,55” from the parent 
matrixGene “1,4,6,9,11,34,53,55”. 

4.2.4 Crossover operation 
The crossover operation for the inputGene creates a 

child from two parents, trying to incorporate good features 
of both. We chose a crossover function where the mean of 
the positions in the two inputGenes was first computed, 
and the child was created by considering the sorted 
indices of the computed mean. In our example, the 
crossover between “3,1,2,4,5…63,64” and 
“1,2,3,4,5…63,64” would generate an intermediate mean 
[2.0,1.5,2.5,4.0,5.0…63.0, 64.0], for which the 
corresponding sorted indices would be “2,1,3,4,5…63,64” 
(where the ties between same values are broken 
arbitrarily).  

Notice that in this crossover function, the child has the 
common feature of both the parents, i.e., matrix bit 
positions 4-64 are mapped to circuit input 4-64. If both 
the parents had low cost and this was a feature responsible 
for it, then the child would also inherit this feature. 

In the case of the matrixGene, the crossover function 
appends the matrixGenes of both the parents (representing 
the selected columns) with the indices of the unselected 
columns. Then, an average and index-sorting operation 
similar to the inputGene is performed, after which the 
first 8 positions of the result are selected to get the 
matrixGene of the child. It can be easily shown that this 
operation is a valid crossover function for the subset-
selection problem that underlies the design of the H-
matrix for Hsiao codes. 
  

5. Experimental Methodology 
 

We ran experiments on 5 sample programs from the 
Spec 1995 and 2000 architecture benchmark suites: 
compress, perl, go, gcc and anagram, and 5 
benchmarks from the MediaBench multimedia benchmark 
suite [Lee 97]: decode, encode, epic, cjpeg and 
rawcaudio. We used the architecture tool SimpleScalar 
[Burger 96] to simulate a 64-bit architecture, and for each 
program all the memory read and write accesses were 
recorded. These memory traces are the inputs to the 
“Generate Pariy Bits” block of the ECC checker circuit, 
which generates 8 parity-check bits corresponding to each 
64 bit-wide memory word.  
 During estimation of the cost of each solution in the 
SA and the GA algorithms, the circuit corresponding to 
each H-matrix was synthesized by multiple-output logic 
minimization with 2-input XOR gates as basic 
components using sis [Sentovich 92]. 
 For each benchmark, the best input permutation and 
H-matrix was obtained for both the Hsiao code and the 
Hamming code. The SA algorithm was initialized from a 
random solution, and the temperature was increased until 
the system “melted” [Szu 87]. Subsequently, the 
temperature was reduced in a Cauchy schedule and 
annealing was performed for 500 time-steps. The GA 



  

algorithm was run with the following parameters: size of 
population K = 250, number of elites E = 5, number of 
mutant children M = 50, number of filtered unfit parents 
= bottom 100, number of generations G = 200. 
 For both SA and GA, the performance of the final best 
solution of minimum cost was compared to 100 random 
solutions. For Hamming code, this corresponded to 100 
random input orderings of the standard form Hamming 
code, whereas for the Hsiao code this corresponded to 100 
random minimum odd-weight-column H-matrices having 
a random input ordering.  These random solutions 
emulate the convention design procedure that arbitrarily 
selects a code with minimum area and delay, but with no 
consideration of power. 
 

6. Results 
 

Table 1 shows the results of running the GA and SA 
algorithms on the 10 benchmarks. The first 5 benchmarks 
are Spec benchmarks, and the next 5 are from 
MediaBench. The combined cost function was used in all 
these cases so that circuit size, delay and power were 
simultaneously minimized. We estimate power by the 
number of transitions in the outputs of the XOR gates of 
the checker circuit, the size of the circuit by the number of 
XOR gates in it, and the maximum delay in the circuit by 
the maximum level among the XOR networks 
implementing each parity equation. Note that it was 
assumed that the inputs to the checker are synchronized 
coming from a register and glitch power was not 
considered. 

Hsiao and Hamming codes were studied as the two 
underlying SEC-DED codes of the ECC checker. For both 
GA and SA, we compare the number of transitions in the 
ECC checker circuit of the best solutions with the average 
(of 100) random number of transitions and the worst (out 
of 100) random number of transitions. 
 As can be seen from the results in Table 1, GA gave 
12% to 27% power reduction on the different benchmarks 
with respect to the average random transitions, and 14% 
to 34% reduction with respect to the worst-case random 
transitions. For this experiment, GA has much better 
performance than SA, which gave 1% to 14% power 
reduction with respect to average random, and 2% to 22% 
improvement compared to worst-case random. One 
possible reason for the better performance of GA over SA 
in this case could be that for Hsiao codes, the total power 
in the circuit is a highly non-linear and discontinuous 
function of the input ordering and choice of H-matrix. 
Due to this, the gradient may not be well defined at every 
point on the cost function. So SA, which essentially 
performs a non-greedy gradient descent, does not perform 
very well. In comparison, GA’s are known to perform well 

for cost functions with such characteristics. Moreover, the 
best E solutions found at every step of GA (E =5 in our 
experiments) are deterministically remembered by using 
elitism, which is an added advantage of GA over SA in 
this case.  

In general, the results show that power savings in GA 
increase with increasing size of the benchmark traces. A 
possible reason for this could be that the inputs get more 
correlated as the size of the benchmark traces increases, 
thereby giving more scope to the GA algorithm to perform 
better optimization. 
 Figure 3 shows the characteristics of the 4 
representative benchmarks from the set of 10 that we have 
considered, two each from Spec and MediaBench. The 
plots on the left show the signal probabilities  in the 
columns of the memory trace matrix of the benchmark 
programs, sorted in increasing order. To generate each 
graph, the signal probability (i.e., probability of 1’s) is 
computed for every column, and then the columns are 
sorted in increasing order of signal probability from left to 
right in the plot. For perfectly random inputs, each 
column in the input trace matrix would have 0.5 fraction 
of 1’s, since 1’s and 0’s would be equally probable. The 
skewness of this distribution demonstrates that there is an 
uneven distribution of the number of 1’s in different 
columns of the input memory trace matrix.  The power 
optimization algorithms exploit this during re-ordering.  

The plots on the right in Figure 3 are histograms that 
show the pairwise correlations between the columns. The 
histograms were constructed as follows: for each pair of 
columns in the input memory trace, we counted how many 
transitions between 1 and 0 (and vice versa) would occur 
if we placed an XOR gate between the two columns. The 
histogram counts how many column pairs have their 
fraction of transitions in each bin range. If any two 
columns in the input trace matrix were independent, then 
the proportion of transitions would be 0.5 x 0.5 = 0.25. 
The corresponding histogram would have all the 
frequency concentrated at the 0.25 bin. In this case, the 
distribution of histogram frequencies in multiple bins for 
different benchmarks, ranging from 0.04 to 0.34, 
demonstrates that there is significant useful correlation 
between the input columns, which is useful for power 
optimization. 
 We also ran experiments on the (72,64) Hsiao code 
where we individually considered only the power, circuit 
size, and circuit delay components of the GA cost 
function. The results of these ablation experiments are 
shown in Table 2. Note that in each individual 
optimization, we obtain values that are generally better 
than the corresponding values obtained using the overall 
cost. For example, for the benchmark program encode, 
the overall cost minimization gave power savings of 14%, 
a circuit size of 172 gates and the maximum number of 



  

Table 1.  Results of GA and SA on Hsiao code with overall cost function  

SA power reduction GA power reduction Name Memory 
trace size 

Average  
random  
solution 

#transition 

Worst  
random 
solution 

#transition 

SA solution 
#transition 

GA 
solution 

#transition 
w.r.t. 

average 
random 

w.r.t. 
worst 

random 

w.r.t. 
average 
random 

w.r.t. 
worst 

random 
gcc 187089 6760149 7353330 6414782 5042942 5.1% 12.8% 25.4% 31.4% 
go 118897 5449560 5852080 5156709 4253540 5.4% 11.9% 22.0% 27.3% 

anagram 94041 4953000 5097104 4589887 4358206 7.3% 10.0% 12.0% 14.5% 
compress 72193 1518005 1622810 1383552 1222844 8.9% 14.7% 19.4% 24.7% 

perl 27657 1186947 1228706 1159770 1014818 2.3% 5.6% 14.5% 17.4% 
epic 470633 17111347 18898620 14700707 12445636 14.1% 22.2% 27.3% 34.2% 
cjpeg 18273 935956 975516 920797 759018 1.6% 5.6% 18.9% 22.2% 

encode 7569 399527 417434 394907 329548 1.2% 2.3% 17.5% 21.1% 
decode 4745 237972 251488 234402 195610 1.5% 6.8% 17.8% 22.2% 

rawc-audio 2233 141921 147616 121390 118396 14.5% 17.8% 15.6% 19.8% 

 

Table 2. Results of GA on Hsiao code with individual cost functions  

Minimize power only Minimize delay only Minimize circuit size only Minimize combined cost 
function 

Benchmark 
Name 

Power 
saved 

Ckt. 
size 

Max 
levels 

Power 
saved 

Ckt. 
size 

Max 
levels 

Power 
saved 

Ckt. 
size 

Max 
levels 

Power 
saved 

Ckt. 
size 

Max 
levels 

gcc 27.5% 172 7 -4.0% 172 7 0.9% 171 8 25.4% 171 7 
go 19.8% 172 8 -1.9% 173 7 4.6% 171 8 21.9% 172 7 

anagram 14.1% 172 8 1.9% 172 7 1.7% 171 7 12.0% 174 7 
compress 18.6% 174 7 3.3% 174 7 1.0% 171 7 19.4% 175 7 

perl 14.6% 172 7 0.4% 173 7 2.7% 171 8 14.6% 172 7 
epic 30.5% 172 8 -1.2% 172 7 3.3% 171 7 27.3% 173 7 
cjpeg 18.1% 172 8 -1.4% 172 7 1.7% 171 8 18.1% 172 8 

encode 15.2% 173 7 -2.7% 173 6 4.2% 171 7 14.2% 172 7 
decode 18.1% 172 7 -1.4% 173 6 2.5% 171 8 17.8% 171 7 

rawcaudio 17.7% 173 7 1.4% 173 7 3.7% 170 7 15.6% 172 7 

 

Table 3: Results of GA on Hamming code with overall cost function 

Benchmark 
Name 

Average random 
solution #transition 

GA solution 
#transition 

Hamming code 
power  reduction 

gcc 5793700 3408358 41.2% 
go 4663511 2764384 40.7% 

anagram 4120663 2810202 31.8% 
compress 1161115 1097838 5.4% 

perl 983159 710168 27.8% 
epic 14792749 8628410 41.7% 
cjpeg 783432 543062 30.7% 

encode 336843 223354 33.7% 
decode 201138 127272 36.7% 

rawcaudio 120058 79654 33.6% 
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Figure 3. Bit-wise profiles and pair-wise histograms for representative benchmarks 



  

levels to the output was 7. In comparison, individual 
minimizations of power, circuit size and maximum 
number of levels gave 15% power savings, 171 gates and 
6 maximum number of levels respectively, which are 
individually better than their corresponding results for the 
combined cost function. However, when one component in 
the cost function is individually minimized, the other two 
components can have highly non-optimal values since the 
cost function does not consider them at all during the 
optimization process (as shown by the negative power 
savings, i.e., increase in power dissipated with respect to 
random, in many cases, if only delay is minimized). The 
overall cost function gives a good tradeoff between 
minimization of power and satisfaction of the other design 
requirements. Note that the weights of the 3 components 
of the cost function gives the designer the flexibility to 
incorporate specific design choices, e.g., more importance 
to power minimization over circuit size or delay 
minimization. 
 An interesting observation in the ablation study is that 
for compress and go, the power reduction for the 
combined cost function is better than the power reduction 
for individual power minimization. This apparently seems 
like an anomaly, but it can be explained as follows. Since 
power is a highly non-linear function of the input 
permutation and the choice of H-matrix, there are many 
local minima in this function. The reduction of only the 
power component limits the search of the GA, and can 
cause the GA to sometimes get stuck in local minima. In 
these cases, using the combined cost function can help the 
optimization algorithm to get out of such local minima 
and get to a better optimum, as we see in the case of the 
compress and go benchmarks. So, apart from finding a 
good overall minimum of the various design components 
(power, circuit size, maximum delay), using the combined 
objective function also facilitates the GA algorithm to get 
do a better exploration of the search space, which enables 
it to avoid bad local minima more effectively in some 
cases. 
  In the next set of experiments, we ran the GA 
algorithm on the (72,64) standard Hamming code, for 
each of the benchmark circuits. Table 3 shows the power 
savings on the Hamming code, which are between 5% and 
41% for the different benchmark circuits, are better than 
the corresponding power savings for the Hsiao code in 
most cases. One possible explanation for that is that the 
Hsiao code is well optimized in terms of balance of gates 
between the different parity circuits. In comparison, 
Hamming codes have a large skew in the number of XOR 
gates in different parity equations, which can be exploited 
by the optimization algorithm more effectively. Moreover 
the standard Hamming code typically produced larger 
circuits when synthesized, which also gave the GA 

algorithm a larger search space where it could produce 
solutions significantly better than random. 
  

7. Conclusions 
 

Overall, our experiments demonstrate that there is 
significant correlation among memory traces for the 
benchmark applications we studied, and that optimizing 
the input permutation and the design of the H-matrix of 
the memory ECC checker using GA with a combined cost 
function gives us significant power reduction, while 
simultaneously minimizing the overall size of the circuit 
and the circuit delay. Note that both SA and GA are 
relatively slow optimization procedures, but the 
optimization is performed offline and it is the optimized 
H-matrix that is deployed in the online error correction 
phase. So, speed of the optimization algorithm is not a 
major issue for the problem we are studying, implying that 
more sophisticated search or optimization techniques 
could be employed if necessary. 
 An area for future work is to extend the technique 
described here to handle memory ECC for the ChipKill 
server architecture [Dell 97] and for other error-correcting 
codes, e.g., Reed-Solomon codes, Fire codes, etc. For 
some of these codes, the proposed scheme will have be 
modified to handle certain characteristics of the codes, 
e.g., for byte error-correcting codes, b-byte column groups 
of the H-matrix would have to be permuted instead of the 
columns being permuted directly. However, it would be 
relatively straightforward to frame the problem of finding 
the “best” H-matrix in these cases as an optimization 
problem, which can be solved by simulated annealing 
(SA) or genetic algorithms (GA). 
 Another interesting area of future research is the study 
of how the presence of caches would affect the correlation 
in the data input to the ECC memory, and whether there 
is any systematic pattern there that can be exploited by the 
optimization algorithms. 
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