

Reducing Power Consumption in Memory ECC Checkers

Shalini Ghosh1, Sugato Basu2, and Nur A. Touba1

1Computer Engineering Research Center,
Dept. of Electrical and Computer Engineering,
University of Texas, Austin, TX 78712-1084.

{shalini,touba}@ece.utexas.edu

2 Machine Learning Research Group,
Dept. of Computer Sciences,

University of Texas, Austin, TX 78712-1188.
sugato@cs.utexas.edu

Abstract

In this paper, a method is proposed for reducing

power consumption in memory ECC checker circuitry that
provides SEC-DED. The degrees of freedom in selecting
the parity check matrix are used to minimize power with
little or no impact on area and delay. The power
minimization method is applied to two popular SEC-DED
codes: standard Hamming codes and odd-column-weight
Hsiao codes. Experiments on actual memory traces of
Spec and MediaBench benchmarks indicate that
considering power in addition to area and delay when
selecting the parity check matrix can result in power
reductions of up to 27% for Hsiao codes and up to 41%
for Hamming codes.

1. Introduction

Error correcting codes (ECCs) are commonly used in

memories to protect against soft errors and thereby
enhance system reliability and data integrity [Chen 84],
[Gray 00]. Single-error-correcting and double-error-
detecting (SEC-DED) codes are generally used for this
purpose. These codes are able to correct single-bit errors
and detect double-bit errors in a codeword. There are
many ways to construct SEC-DED codes and implement
the corresponding ECC circuitry. While previous research
has focused on minimizing area and delay in ECC
circuitry, this paper looks at minimizing power in
addition to minimizing area and delay. By considering
power during the design of ECC circuitry, significant
reductions can be achieved at little or no cost in terms of
area and delay.
 As power has become a first-order design
consideration, researchers have begun looking at
techniques to reduce power consumption in error detection
circuitry. While conventional low power design
methodologies that have been developed for general
circuits can be applied to the design of error detection
circuitry in a straightforward manner, there are some
special properties of error detection circuitry that can be
exploited to further reduce power consumption. One such

property is the fact that error detection circuitry typically
contains large amounts of symmetry. For example, parity
trees and two-rail checker trees are totally symmetric with
respect to their inputs and thus allow complete freedom in
the ordering of the inputs. The inputs can be ordered in
any way with no change in the function of the circuit and
no real impact on the area or delay. This property was
first exploited to minimize power in [Favalli 97]. Favalli
and Metra considered signal probability on a level-by-
level basis to order the inputs in two-rail checkers to
minimize power (the method can also be used for parity
trees). In [Mohanram 02], spatial correlation among
signals was used for input ordering in parity trees and
Berger code checkers. A nice feature of both of these
methods is that power is reduced essentially for free as
there is no impact in terms of area or delay. The only cost
is the time for computing the input ordering.
 In [Rossi 02, 03], the problem of reducing power
consumption for fault tolerant buses with SEC codes was
studied. The bus model that was used considers mutual
capacitance effects and assumes transitions between all
pairs of vectors are equally likely. The properties of both
Hamming codes and dual rail codes with respect to power
consumption were analyzed. Results in [Rossi 03] indicate
that for small bus word sizes dual rail codes require less
power, while for larger word sizes Hamming codes are
better.
 In this paper, the focus is on reducing power
consumption in memory ECC circuitry that provides SEC-
DED. Such circuits are widely used in industry in all
types of memories including caches and embedded
memories. The key design issue is selecting the code that
is used. A (n,k) linear SEC-DED block code has n bits in
each codeword consisting of k data bits and n-k check bits.
The code can be represented by a parity-check matrix, H,
having n-k rows, one for each check bit, and n columns,
one for each bit in the codeword. In order for the code to
be SEC-DED, the H-matrix must be formed in a way that
the minimum distance between any codewords is 4. Two
well-known methods for constructing a SEC-DED H-
matrix were described by Hamming [Hamming 50] and
Hsiao [Hsiao 70]. Different H-matrices result in different
area, delay, and power. This paper presents a method for

selecting an H-matrix that simultaneously minimizes
power, area and delay. Once the H-matrix has been
selected, the corresponding ECC circuitry for
implementing the code can be synthesized.
 Another related work is [Kleihorst 01], where
Hamming codes were designed with the goal of area
minimization of the ECC checker in mind. In this paper,
we aim to minimize a joint function of area, delay and
power while designing Hamming and Hsiao codes.
 The paper is organized as follows: Section 2 gives an
overview of the proposed method; Section 3 discusses the
ECC memory hardware details; Section 4 gives the details
of the optimization algorithms used; Section 5 explains
the experimental methodology, the results of which are
discussed in Section 6; finally, Section 7 concludes our
discussion and outlines promising areas of future work.

2. Overview of Proposed Method

The key idea in this paper is to select the H-matrix in
a way that minimizes power, area and delay in the ECC
checker. The space of H-matrices that provide SEC-DED
capability is large. In [Hsiao 70], Hsiao showed that an H-
matrix that satisfies the following three constraints
provides SEC-DED capability:

1. There are no all-0 columns.
2. Every column is distinct.
3. Every column contains an odd number of 1’s (i.e.,

has odd weight).
Hsiao showed that by using minimum odd weight
columns, the number of 1’s in the H-matrix could be
minimized (and made less than a Hamming SEC-DED
code). This translates to less hardware area in the
corresponding ECC circuitry. Furthermore, by selecting
the odd weight columns in a way that balances the number
of 1’s in each row of the H-matrix, the delay of the
checker can be minimized (as the delay is constrained by
the maximum weight row).
 In this paper, power consumption is considered as an
additional factor in selecting the H-matrix. For odd-
weight-column codes, there are two degrees of freedom in
selecting the H-matrix that can be used to reduce power
with little to no impact on area and delay. The first
degree of freedom is simply permuting the columns. This
has no impact on area or delay as it does not change either
the total number of 1’s in the H-matrix or the balancing
of 1’s among the rows. The second degree of freedom is
in selecting the odd-weight-columns that are included in
the matrix. To minimize area and delay, the smallest odd
weight columns should be used first (i.e., weight-1, then
weight-3, then weight-5, etc.). However, note that in
general, only a subset of the largest odd weight columns
will be used. For example, for a (72,64) odd-weight-

column code, all 8
1C = 8 of the weight-1 and all 8

3C = 56

of the weight-3 columns will be used, but only 8 of the
8
5C = 56 possible weight-5 columns will be used.

Selecting which 8 of the 56 possible weight-5 columns are
used in the H-matrix is a degree of freedom that can be
used for minimizing power with little to no impact on area
or delay.
 How much power can be reduced using the degrees of
freedom in selecting the H-matrix will depend on the
characteristics of the data stored in the memory. The
more correlated the data in successive memory reads and
writes is, the more power can be reduced through careful
selection of the H-matrix. The switching activity (and
hence power consumption) in the encoding and decoding
logic corresponding to a particular H-matrix depends on
which bit transitions occur in the data between successive
memory reads and writes.

Consider a very simple example to illustrate this point.
Typically the high order data bit is more likely to be a 0
than a 1, whereas the low order data bit is more likely to
have an even distribution between 0 and 1. Sparsity in
higher order bits is a very common phenomenon for
multimedia applications. In fact, special purpose
compilers and architectures with support for variable
bitwidth have been studied in order to exploit this
characteristic of the multimedia applications [Stephenson
00]. Thus, since the low order bit is more likely to
transition in successive memory accesses than the high
order bit, it would be better that the low order bit
correspond to a lower weight column in the H-matrix and
the high order bit correspond to a higher weight column
in the H-matrix. This would reduce the switching activity
that occurs in the encoding/decoding logic and thereby
reduce power. This is a simplistic example to show how
selection of the H-matrix can be used to exploit
correlations in the data stored in the memory. More
elaborate forms of spatial and temporal correlations in the
data can be exploited with the proposed methodology.
 How much correlation exists in the data stored in a
memory will depend on the purpose and function of the
memory. Some embedded memories for certain
applications may have very correlated data and thus the
proposed method for selecting the H-matrix can be very
effective in reducing power. Others may have less
correlation. The types of data that are stored in different
memories ranges broadly. Instruction caches and other
memories that primarily contain instructions will tend to
have a lot of correlation, as the frequency of execution of
different instructions tends to be very skewed. Memories
that contain a lot of numerical data will tend to have a lot
of spatial correlations among higher order bit positions as
the range of the numerical values may be limited and/or

skewed. Some embedded controllers and sensors may
spend a lot of time executing in a loop and thus have a lot
of temporal correlations. No matter what the nature of the
memory is, not all transitions will be equally likely, so
there will be some scope for power reduction using the
proposed method. However, the actual amount of power
reduction will depend on the extent of the correlation.
 The proposed method consists of two steps. The first
is to acquire information about the spatial and temporal
correlations of the data in memory accesses. The second
step is to use that information to select the H-matrix for
the odd-weight-column SEC-DED code. Information
about the spatial and temporal correlations is acquired by
analyzing a sample trace of the memory accesses for a
typical workload. The application that will use the
memory, or a representative sample of the applications if
there are multiple applications, is simulated and a sample
trace of memory accesses is obtained. The size of the
sample should be chosen so that it is sufficiently
representative of the typical workload. The spatial and
temporal correlations among the data from the sample
traces are then extracted so that the H-matrix can be
optimized for the typical workload of the memory. The
resulting design of the ECC circuitry will then minimize
the average power across the typical workload. For
portable electronics this will help extend battery life.
 Once the correlation information has been extracted,
the second step of the proposed method involves selecting
the H-matrix. This problem is a non-linear optimization
problem. In this paper, two optimization techniques were
investigated: simulated annealing (SA) and genetic
algorithms (GA). Both techniques are described in Sec. 4.
Experimental results showed that genetic algorithms
outperformed simulated annealing for this problem.
Genetic algorithms appear to be better suited to this
problem as is discussed in Sec. 6.

3. ECC Memory Checkers

 The goal of this work is to reduce the switching
activity in the part of the ECC circuitry that is used most
frequently, namely the parity generator block which is
used on every memory access (both read and write).
Figure 1 illustrates the block-level design of a generic
SEC-DED encoder/decoder for ECC memory. The left
side of the figure is the processor interface where the
relevant signals are u_data[63:0], representing the 64 bits
of the processor data bus; rw_n, representing the memory
read/write control signal; and error-out[1:0], the 2-bit
error flag signal that is required to signal one of possible
four error states: (1) no error, (2) correctable data error,
(3) correctable parity error, and (4) detectable double
error. The right side of the figure is the memory interface
consisting of the 72-bit memory data bus mem_data[71:0].
The “Generate Parity Bits” block generates the parity bits
to store with the processor data during a write cycle.
During a read cycle, this block also generates the parity
bits for the 64 data bits stored in memory. These
generated parity bits are then compared with the stored
parity bits to generate the syndrome. In this paper, the
focus is on selecting an SEC-DED code that minimizes
power consumption in the parity generator block since
that is the part of the circuit most heavily used.

Hamming codes and Hsiao codes are commonly used
in ECC circuitry. The proposed optimization method is
applicable to both of these kinds of SEC-DED codes.
Note that the proposed method can be used for any
memory word size.

Generate Parity Bits

Generate Syndrome

Correct
Data

mem_data [71:0]

mem_data_int [63:0]

u_data [63:0] &
gen_parity [7:0]

rw_n

rw_n

rw_n

syndrome [7:0]

parity_mem_data [7:0]

u_data [63:0]

gen_parity [7:0]

Error
Detection

error_out [1:0]

mem_data_int [63:0] &
parity_mem_data [7:0]

Generate Parity Bits

Generate Syndrome

Correct
Data

mem_data [71:0]

mem_data_int [63:0]

u_data [63:0] &
gen_parity [7:0]

rw_n

rw_n

rw_n

syndrome [7:0]

parity_mem_data [7:0]

u_data [63:0]

gen_parity [7:0]

Error
Detection

error_out [1:0]

mem_data_int [63:0] &
parity_mem_data [7:0]

Figure 1. SEC-DEC Block Diagram (modified from [Xilinx 03])

4. Optimization Algorithms

In this paper, two optimization algorithms that are
known to give good performance for highly non-linear
optimization problems, such as the one here, are
investigated. One is simulated annealing (SA), and the
other is genetic algorithms (GA). In this section, we give
a brief description of both these techniques and how they
were adapted to this domain.

4.1 Simulated Annealing (SA)

For Hamming codes, we consider the H-matrix in the
standard form and the only thing that can be varied to
reduce power is the input ordering. For 64 inputs, there
are 64! possible input permutations, which makes an
exhaustive search of the input ordering with the lowest
power dissipation intractable.

For Hsiao codes, along with input ordering, we have
the additional flexibility of designing the H-matrix. As
explained in Sec. 2, selecting which 8 of the 56 possible
weight-5 columns are used in the H-matrix for a (72,64)
code is a degree of freedom that can be used for
minimizing the dissipated power. So, the search space is

even larger in this case, having (64! * 56
8C) possible

solutions.
To solve this large non-linear optimization problem,

we applied simulated annealing [Kirkpatrick 83] to find a
(local) optimum of the cost function, the details of which
are described below.

4.1.1 Cost function

The cost function is modeled as a combination of the
delay in the circuit, the size of the circuit, and the power
dissipation in the circuit. It is a weighted linear
combination of the following 3 components, which
represent the different design objectives mentioned in
Section 2:
1. Power dissipation: The power dissipated during ECC
checking, which is found by doing power simulation of
the permuted inputs through the parity checker circuit.
The power goal is minimization of this dissipated power.
2. Size of circuit: The number of total gates in the circuit,
obtained by performing multiple-output logic
minimization of the H-matrix equations, using 2-input
XOR gates. The circuit-size goal is reduction of the
number of XOR gates in the total parity checker circuit.
3. Delay in circuit: The balance of delay in the circuit,
measured by the variance between the depths of the XOR
circuits corresponding to different parity equations. A
checker circuit with minimum delay would have a perfect
balance of depth between the XOR networks

implementing each parity output, and would correspond to
0 variance in the depth of the XOR networks. So, the
timing goal is minimizing the variance in delay between
the XOR networks corresponding to the different parity
bits.

4.2 Genetic Algorithm (GA)

Genetic algorithm (GA) is another popular non-linear
optimization tool, useful for such large-scale non-linear
optimization problems [Holland 75]. In GA, each possible
solution to the problem is encoded as a gene. An initial
population of P random genes is considered, from which a
next generation of P genes is created by crossover and
mutation operations. We considered a variant of GA
where the top E best genes (elites) at each generation are
directly copied into the next generation, thus preserving
the best E solutions found so far: this GA principle is
called elitism.
 For the purpose of illustration, we will consider n = 64
in this section. Note that all these methods can be
generalized to work for architectures of other sizes.

4.2.1 Overall GA algorithm
Figure 2 outlines the overall GA algorithm that we use.

Input: Initial population of K random genes, the
number of elites E, the number mutant children M, the
number of unfit parents U, the number of generations
G
Output: gene with maximum fitness (minimum cost)
Algorithm:
1. i = 0
2. The K parent genes are sorted in decreasing order
of fitness (increasing order of their cost)
3. Top E elite parents are copied into the next
generation
4. M children are created, each by direct mutation of a
randomly chosen gene from the E elites
5. Bottom U parent genes are rejected as unfit
6. Remaining K-E-M children are created by
crossover between any 2 parents that are not elites
and not unfit.
7. i = i + 1
8. If (i < G), goto Step 1. Else, return elite with
maximum fitness (minimum cost)

Input: Initial population of K random genes, the
number of elites E, the number mutant children M, the
number of unfit parents U, the number of generations
G
Output: gene with maximum fitness (minimum cost)
Algorithm:
1. i = 0
2. The K parent genes are sorted in decreasing order
of fitness (increasing order of their cost)
3. Top E elite parents are copied into the next
generation
4. M children are created, each by direct mutation of a
randomly chosen gene from the E elites
5. Bottom U parent genes are rejected as unfit
6. Remaining K-E-M children are created by
crossover between any 2 parents that are not elites
and not unfit.
7. i = i + 1
8. If (i < G), goto Step 1. Else, return elite with
maximum fitness (minimum cost)

Figure 2. Outline of Genetic Algorithm

4.2.2 Gene representation
For Hamming codes, each solution corresponded to a

particular input permutation. The inputGene

corresponding to this is encoded as a string of the
mapping for the input memory bits positions. For
example, for n = 64, one possible permutation could be
represented in the inputGene by the string
“2,3,1,4,5…63,64”, representing the permutation where
the 1st memory bit position is mapped to the 2nd input in
the checker circuit, the 2nd bit is mapped to the 3rd input,
the 3rd bit is mapped to the 1st input, and the other memory
bits are mapped to their corresponding circuit inputs.
 For Hsiao codes, each solution also contains an
additional component that we call the matrixGene,
representing the design of the H-matrix. In our 64-bit
architecture example, we first index the 56 possible
weight-5 columns in increasing order of their binary
representation. The matrixGene is represented by the
indices of the 8 weight-5 columns out of the 56 possible
ones that are selected to fill up the last 8 positions of the
H-matrix (after filling up the first 64 with all possible
weight-1 and weight-3 columns). So, a possible
matrixGene would be “1,4,6,9,11,34,53,55”, representing
the indices of the particular weight-5 columns selected
while creating the H-matrix. In the general case, for
architectures of other sizes, the matrixGene would have a
representation of a similar design choice of selecting some
columns from a total set of possible odd weight columns.

In the case of Hsiao codes, the GA algorithm
performed simultaneous crossovers and mutations of both
the inputGene and the matrixGene. The fitness of a
composite gene, comprised of the inputGene and the
matrixGene, was considered to be the inverse of the total
cost calculated as shown in Section 4.1.1, so that genes
with less cost ended up being “more fit”.

4.2.3 Mutation operation
The mutation operation for the inputGene creates a

child from a single parent, by choosing two input index
mappings at random in the parent gene and swapping
them. For example, swapping the 1st and 4th positions in
the example gene considered above would generate the
mutant inputGene “4,3,1,2,5…63,64” from the parent
“2,3,1,4,5…63,64”.
 In the case of Hsiao codes, the mutation operation for
the matrixGene creates a child from a single parent by
selecting a column index at random and removing it from
the selected set, bringing in a column from the unselected
set. For example, swapping out the weight-5 column
having index 3 and swapping in the column with index 4
in the example gene considered above would generate the
mutant child “1,3,6,9,11,34,53,55” from the parent
matrixGene “1,4,6,9,11,34,53,55”.

4.2.4 Crossover operation
The crossover operation for the inputGene creates a

child from two parents, trying to incorporate good features
of both. We chose a crossover function where the mean of
the positions in the two inputGenes was first computed,
and the child was created by considering the sorted
indices of the computed mean. In our example, the
crossover between “3,1,2,4,5…63,64” and
“1,2,3,4,5…63,64” would generate an intermediate mean
[2.0,1.5,2.5,4.0,5.0…63.0, 64.0], for which the
corresponding sorted indices would be “2,1,3,4,5…63,64”
(where the ties between same values are broken
arbitrarily).

Notice that in this crossover function, the child has the
common feature of both the parents, i.e., matrix bit
positions 4-64 are mapped to circuit input 4-64. If both
the parents had low cost and this was a feature responsible
for it, then the child would also inherit this feature.

In the case of the matrixGene, the crossover function
appends the matrixGenes of both the parents (representing
the selected columns) with the indices of the unselected
columns. Then, an average and index-sorting operation
similar to the inputGene is performed, after which the
first 8 positions of the result are selected to get the
matrixGene of the child. It can be easily shown that this
operation is a valid crossover function for the subset-
selection problem that underlies the design of the H-
matrix for Hsiao codes.

5. Experimental Methodology

We ran experiments on 5 sample programs from the
Spec 1995 and 2000 architecture benchmark suites:
compress, perl, go, gcc and anagram, and 5
benchmarks from the MediaBench multimedia benchmark
suite [Lee 97]: decode, encode, epic, cjpeg and
rawcaudio. We used the architecture tool SimpleScalar
[Burger 96] to simulate a 64-bit architecture, and for each
program all the memory read and write accesses were
recorded. These memory traces are the inputs to the
“Generate Pariy Bits” block of the ECC checker circuit,
which generates 8 parity-check bits corresponding to each
64 bit-wide memory word.
 During estimation of the cost of each solution in the
SA and the GA algorithms, the circuit corresponding to
each H-matrix was synthesized by multiple-output logic
minimization with 2-input XOR gates as basic
components using sis [Sentovich 92].
 For each benchmark, the best input permutation and
H-matrix was obtained for both the Hsiao code and the
Hamming code. The SA algorithm was initialized from a
random solution, and the temperature was increased until
the system “melted” [Szu 87]. Subsequently, the
temperature was reduced in a Cauchy schedule and
annealing was performed for 500 time-steps. The GA

algorithm was run with the following parameters: size of
population K = 250, number of elites E = 5, number of
mutant children M = 50, number of filtered unfit parents
= bottom 100, number of generations G = 200.
 For both SA and GA, the performance of the final best
solution of minimum cost was compared to 100 random
solutions. For Hamming code, this corresponded to 100
random input orderings of the standard form Hamming
code, whereas for the Hsiao code this corresponded to 100
random minimum odd-weight-column H-matrices having
a random input ordering. These random solutions
emulate the convention design procedure that arbitrarily
selects a code with minimum area and delay, but with no
consideration of power.

6. Results

Table 1 shows the results of running the GA and SA
algorithms on the 10 benchmarks. The first 5 benchmarks
are Spec benchmarks, and the next 5 are from
MediaBench. The combined cost function was used in all
these cases so that circuit size, delay and power were
simultaneously minimized. We estimate power by the
number of transitions in the outputs of the XOR gates of
the checker circuit, the size of the circuit by the number of
XOR gates in it, and the maximum delay in the circuit by
the maximum level among the XOR networks
implementing each parity equation. Note that it was
assumed that the inputs to the checker are synchronized
coming from a register and glitch power was not
considered.

Hsiao and Hamming codes were studied as the two
underlying SEC-DED codes of the ECC checker. For both
GA and SA, we compare the number of transitions in the
ECC checker circuit of the best solutions with the average
(of 100) random number of transitions and the worst (out
of 100) random number of transitions.
 As can be seen from the results in Table 1, GA gave
12% to 27% power reduction on the different benchmarks
with respect to the average random transitions, and 14%
to 34% reduction with respect to the worst-case random
transitions. For this experiment, GA has much better
performance than SA, which gave 1% to 14% power
reduction with respect to average random, and 2% to 22%
improvement compared to worst-case random. One
possible reason for the better performance of GA over SA
in this case could be that for Hsiao codes, the total power
in the circuit is a highly non-linear and discontinuous
function of the input ordering and choice of H-matrix.
Due to this, the gradient may not be well defined at every
point on the cost function. So SA, which essentially
performs a non-greedy gradient descent, does not perform
very well. In comparison, GA’s are known to perform well

for cost functions with such characteristics. Moreover, the
best E solutions found at every step of GA (E =5 in our
experiments) are deterministically remembered by using
elitism, which is an added advantage of GA over SA in
this case.

In general, the results show that power savings in GA
increase with increasing size of the benchmark traces. A
possible reason for this could be that the inputs get more
correlated as the size of the benchmark traces increases,
thereby giving more scope to the GA algorithm to perform
better optimization.
 Figure 3 shows the characteristics of the 4
representative benchmarks from the set of 10 that we have
considered, two each from Spec and MediaBench. The
plots on the left show the signal probabilities in the
columns of the memory trace matrix of the benchmark
programs, sorted in increasing order. To generate each
graph, the signal probability (i.e., probability of 1’s) is
computed for every column, and then the columns are
sorted in increasing order of signal probability from left to
right in the plot. For perfectly random inputs, each
column in the input trace matrix would have 0.5 fraction
of 1’s, since 1’s and 0’s would be equally probable. The
skewness of this distribution demonstrates that there is an
uneven distribution of the number of 1’s in different
columns of the input memory trace matrix. The power
optimization algorithms exploit this during re-ordering.

The plots on the right in Figure 3 are histograms that
show the pairwise correlations between the columns. The
histograms were constructed as follows: for each pair of
columns in the input memory trace, we counted how many
transitions between 1 and 0 (and vice versa) would occur
if we placed an XOR gate between the two columns. The
histogram counts how many column pairs have their
fraction of transitions in each bin range. If any two
columns in the input trace matrix were independent, then
the proportion of transitions would be 0.5 x 0.5 = 0.25.
The corresponding histogram would have all the
frequency concentrated at the 0.25 bin. In this case, the
distribution of histogram frequencies in multiple bins for
different benchmarks, ranging from 0.04 to 0.34,
demonstrates that there is significant useful correlation
between the input columns, which is useful for power
optimization.
 We also ran experiments on the (72,64) Hsiao code
where we individually considered only the power, circuit
size, and circuit delay components of the GA cost
function. The results of these ablation experiments are
shown in Table 2. Note that in each individual
optimization, we obtain values that are generally better
than the corresponding values obtained using the overall
cost. For example, for the benchmark program encode,
the overall cost minimization gave power savings of 14%,
a circuit size of 172 gates and the maximum number of

Table 1. Results of GA and SA on Hsiao code with overall cost function

SA power reduction GA power reduction Name Memory
trace size

Average
random
solution

#transition

Worst
random
solution

#transition

SA solution
#transition

GA
solution

#transition
w.r.t.

average
random

w.r.t.
worst

random

w.r.t.
average
random

w.r.t.
worst

random
gcc 187089 6760149 7353330 6414782 5042942 5.1% 12.8% 25.4% 31.4%
go 118897 5449560 5852080 5156709 4253540 5.4% 11.9% 22.0% 27.3%

anagram 94041 4953000 5097104 4589887 4358206 7.3% 10.0% 12.0% 14.5%
compress 72193 1518005 1622810 1383552 1222844 8.9% 14.7% 19.4% 24.7%

perl 27657 1186947 1228706 1159770 1014818 2.3% 5.6% 14.5% 17.4%
epic 470633 17111347 18898620 14700707 12445636 14.1% 22.2% 27.3% 34.2%
cjpeg 18273 935956 975516 920797 759018 1.6% 5.6% 18.9% 22.2%

encode 7569 399527 417434 394907 329548 1.2% 2.3% 17.5% 21.1%
decode 4745 237972 251488 234402 195610 1.5% 6.8% 17.8% 22.2%

rawc-audio 2233 141921 147616 121390 118396 14.5% 17.8% 15.6% 19.8%

Table 2. Results of GA on Hsiao code with individual cost functions

Minimize power only Minimize delay only Minimize circuit size only Minimize combined cost
function

Benchmark
Name

Power
saved

Ckt.
size

Max
levels

Power
saved

Ckt.
size

Max
levels

Power
saved

Ckt.
size

Max
levels

Power
saved

Ckt.
size

Max
levels

gcc 27.5% 172 7 -4.0% 172 7 0.9% 171 8 25.4% 171 7
go 19.8% 172 8 -1.9% 173 7 4.6% 171 8 21.9% 172 7

anagram 14.1% 172 8 1.9% 172 7 1.7% 171 7 12.0% 174 7
compress 18.6% 174 7 3.3% 174 7 1.0% 171 7 19.4% 175 7

perl 14.6% 172 7 0.4% 173 7 2.7% 171 8 14.6% 172 7
epic 30.5% 172 8 -1.2% 172 7 3.3% 171 7 27.3% 173 7
cjpeg 18.1% 172 8 -1.4% 172 7 1.7% 171 8 18.1% 172 8

encode 15.2% 173 7 -2.7% 173 6 4.2% 171 7 14.2% 172 7
decode 18.1% 172 7 -1.4% 173 6 2.5% 171 8 17.8% 171 7

rawcaudio 17.7% 173 7 1.4% 173 7 3.7% 170 7 15.6% 172 7

Table 3: Results of GA on Hamming code with overall cost function

Benchmark
Name

Average random
solution #transition

GA solution
#transition

Hamming code
power reduction

gcc 5793700 3408358 41.2%
go 4663511 2764384 40.7%

anagram 4120663 2810202 31.8%
compress 1161115 1097838 5.4%

perl 983159 710168 27.8%
epic 14792749 8628410 41.7%
cjpeg 783432 543062 30.7%

encode 336843 223354 33.7%
decode 201138 127272 36.7%

rawcaudio 120058 79654 33.6%

encode - Bitwise Profile

0

0.1

0.2

0.3

0.4

1 7 13 19 25 31 37 43 49 55 61

Sorted Columns

S
ig

n
al

 p
ro

b
ab

ili
ty

encode - Pairw ise Histogram

0

500

1000

1500

0.12 0.16 0.2 0.24 0.28 0.32

Probability of XOR transitions

C

o
lu

m
n

 p
ai

rs

epic - Bitw ise profile

0
0.1
0.2
0.3
0.4
0.5

1 7 13 19 25 31 37 43 49 55 61

Sorted Columns

S
ig

n
al

 p
ro

b
ab

ili
ty

epic - Pairw ise Histogram

0
200
400
600
800

1000

0.04 0.08 0.12 0.16 0.2 0.24 0.28

Probability of XOR transitions

C

o
lu

m
n

 p
ai

rs

gcc - Bitw ise Proflie

0

0.05

0.1

0.15

0.2

0.25

1 7 13 19 25 31 37 43 49 55 61

Sorted Columns

S
ig

n
al

 p
ro

b
ab

ili
ty

gcc - Pairwise Histogram

0
100
200
300
400
500
600
700

0.06 0.1 0.14 0.18 0.22 0.26

Probability of XOR transitions

C

o
lu

m
n

 p
ai

rs

go - Bitw ise Proflie

0

0.05

0.1

0.15

0.2

0.25

1 7 13 19 25 31 37 43 49 55 61

Sorted Columns

S
ig

n
al

 P
ro

b
ab

ili
ty

go - Pairwise Histogram

0

200

400

600

800

0.1 0.14 0.18 0.22 0.26 0.3 0.34

Probability of XOR transitions

C

o
lu

m
n

 p
ai

rs

Figure 3. Bit-wise profiles and pair-wise histograms for representative benchmarks

levels to the output was 7. In comparison, individual
minimizations of power, circuit size and maximum
number of levels gave 15% power savings, 171 gates and
6 maximum number of levels respectively, which are
individually better than their corresponding results for the
combined cost function. However, when one component in
the cost function is individually minimized, the other two
components can have highly non-optimal values since the
cost function does not consider them at all during the
optimization process (as shown by the negative power
savings, i.e., increase in power dissipated with respect to
random, in many cases, if only delay is minimized). The
overall cost function gives a good tradeoff between
minimization of power and satisfaction of the other design
requirements. Note that the weights of the 3 components
of the cost function gives the designer the flexibility to
incorporate specific design choices, e.g., more importance
to power minimization over circuit size or delay
minimization.
 An interesting observation in the ablation study is that
for compress and go, the power reduction for the
combined cost function is better than the power reduction
for individual power minimization. This apparently seems
like an anomaly, but it can be explained as follows. Since
power is a highly non-linear function of the input
permutation and the choice of H-matrix, there are many
local minima in this function. The reduction of only the
power component limits the search of the GA, and can
cause the GA to sometimes get stuck in local minima. In
these cases, using the combined cost function can help the
optimization algorithm to get out of such local minima
and get to a better optimum, as we see in the case of the
compress and go benchmarks. So, apart from finding a
good overall minimum of the various design components
(power, circuit size, maximum delay), using the combined
objective function also facilitates the GA algorithm to get
do a better exploration of the search space, which enables
it to avoid bad local minima more effectively in some
cases.
 In the next set of experiments, we ran the GA
algorithm on the (72,64) standard Hamming code, for
each of the benchmark circuits. Table 3 shows the power
savings on the Hamming code, which are between 5% and
41% for the different benchmark circuits, are better than
the corresponding power savings for the Hsiao code in
most cases. One possible explanation for that is that the
Hsiao code is well optimized in terms of balance of gates
between the different parity circuits. In comparison,
Hamming codes have a large skew in the number of XOR
gates in different parity equations, which can be exploited
by the optimization algorithm more effectively. Moreover
the standard Hamming code typically produced larger
circuits when synthesized, which also gave the GA

algorithm a larger search space where it could produce
solutions significantly better than random.

7. Conclusions

Overall, our experiments demonstrate that there is
significant correlation among memory traces for the
benchmark applications we studied, and that optimizing
the input permutation and the design of the H-matrix of
the memory ECC checker using GA with a combined cost
function gives us significant power reduction, while
simultaneously minimizing the overall size of the circuit
and the circuit delay. Note that both SA and GA are
relatively slow optimization procedures, but the
optimization is performed offline and it is the optimized
H-matrix that is deployed in the online error correction
phase. So, speed of the optimization algorithm is not a
major issue for the problem we are studying, implying that
more sophisticated search or optimization techniques
could be employed if necessary.
 An area for future work is to extend the technique
described here to handle memory ECC for the ChipKill
server architecture [Dell 97] and for other error-correcting
codes, e.g., Reed-Solomon codes, Fire codes, etc. For
some of these codes, the proposed scheme will have be
modified to handle certain characteristics of the codes,
e.g., for byte error-correcting codes, b-byte column groups
of the H-matrix would have to be permuted instead of the
columns being permuted directly. However, it would be
relatively straightforward to frame the problem of finding
the “best” H-matrix in these cases as an optimization
problem, which can be solved by simulated annealing
(SA) or genetic algorithms (GA).
 Another interesting area of future research is the study
of how the presence of caches would affect the correlation
in the data input to the ECC memory, and whether there
is any systematic pattern there that can be exploited by the
optimization algorithms.

Acknowledgements

This research was supported in part by the Hewlett-
Packard Corporation, and in part by the National Science
Foundation under Grant No. CCR-0306238.

References

[Burger 96] Burger, D., T.M. Austin, and S. Bennett,
“Evaluating Future Microprocessors: the SimpleScalar
Tool Set”, TR-1308, Univ. of Wisconsin-Madison, CS
Dept., July 1996.

[Chen 84] Chen, C.L., and M.Y. Hsiao, “Error-Correcting Codes
for Semiconductor Memory Applications: A State-of-the-Art
Review”, IBM J. of Res. and Develop., vol. 28, no. 2, pp.
124-134, March 1984.

[Dell 97] Dell, T.J., “A White Paper on the Benefits of
Chipkill-Correct ECC for PC Server Main Memory”,
IBM Microelectronics Division, November, 1997.

[Favalli 97] Favalli, K., and C. Metra, “Design of Low-
Power CMOS Two-Rail Checkers”, Journal of
Microelectronics Systems Integration, vol. 5, no. 2, pp.
101-110, 1997.

[Gray 00] Gray, K., “Adding Error-Correcting Circuitry to
 ASIC Memory”, IEEE Spectrum, pp. 55-60, Apr. 2000.
[Hamming 50] Hamming, R.W., “Error Detecting and Error

Correcting Codes”, Bell System Tech. J., 29, 147, 1950.
[Holland 75] Holland, J.H., “Adaption in Natural and Artificial

Systems”, University of Michigan Press, Ann Arbor (USA),
1975.

[Hsiao 70] Hsiao, M.Y., “A Class of Optimal Minimum Odd-
weight-column SEC-DED Codes”, IBM J. of Res. and
Develop., vol. 14, no. 4, pp. 395-401, July 1970.

[Kirkpatrick 83] Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi
Jr., “Optimization by Simulated Annealing”, Science,
pp. 671-680, May, 1983.

[Kleihorst 01] Kleihorst, R., and N. Benschop, “Fault Tolerant
ICs by Area-Optimized Error Correction Codes”, Proc.
of International On-Line Testing Workshop, pp. 143,
2001.

[Lee 97] Lee, C., M. Potkonjak, and W.H. Mangione-
Smith, “MediaBench: A Tool for Evaluating
Multimedia and Communications Systems”, Proc. Of
Micro 30, 1997.

[Mohanram 02] Mohanram, K., and N.A. Touba, “Input
Ordering in Concurrent Checkers to Reduce Power
Consumption”, Proc. of IEEE Symposium on Defect
and Fault Tolerance, pp. 87-95, 2002.

[Rossi 02] Rossi, D., V.E.S. van Dijk, R.P Kleihorst, A.K.
Nieuwland, and C. Metra, “Coding Scheme for Low
Energy Consumption Fault-Tolerant Bus,” Proc. of
International On-Line Testing Workshop, pp. 8-12,
2002.

[Rossi 03] Rossi, D., V.E.S. van Dijk, R.P Kleihorst, A.K.
Nieuwland, and C. Metra, “Power Consumption of
Fault Tolerant Codes: the Active Elements,” Proc. of
International On-Line Testing Symposium, pp. 61-67,
2003.

[Sentovich 92] Sentovich, E. M., K.J. Singh, L. Lavagno,
C. Moon, R. Murgai, A. Saldanha, P.R. Stephan, R.K.
Brayton, and A.L. Sangiovanni-Vincentelli, “SIS: A System
for Sequential Circuit Synthesis,” Technical Report
Memorandum No. UCB/ERL M92/41, University of
California, Berkeley, 1992.

[Stephenson 00] Stephenson, M., J. Babb, and S.P.
Amarasinghe, “Bidwidth analysis with application to
silicon compilation”, PLDI, pp. 108-120, 2000.

 [Szu 87] Szu, H., and R. Hartley, “Fast Simulated Annealing”,
Physics Letters A, vol. 122, no. 3,4, pp. 157 – 162, 1987.

[Xilinx 03] Xilinx Applications Note: CoolRunner-II
CPLD, “Single Error Correction and Double Error
Detection (SECDED) with CoolRunner-II CPLDs”,
XAPP383 (v1.1), August 1, 2003.

