
Paper 40.3 INTERNATIONAL TEST CONFERENCE
 0-7803-9039-3/$20.00 © 2005 IEEE

1

Synthesis of Non-Intrusive Concurrent Error Detection
Using an Even Error Detecting Function

Avijit Dutta and Nur A. Touba

Computer Engineering Research Center

Department of Electrical and Computer Engineering
University of Texas, Austin, TX 78712

Abstract

A new method for synthesizing non-intrusive

concurrent error detection (CED) circuitry is presented.
The idea is to use single-bit parity to detect all errors
affecting an odd number of bits and then synthesize a
circuit to detect the even errors. A novel statistical
sampling and expanding methodology is proposed for
constructing the even error detection circuitry. A major
feature of the proposed methodology is that it allows very
efficient tradeoffs between error coverage and overhead.
While CED schemes that use a fixed checker based on a
particular error detecting code are not amenable to
simplification without a major impact on coverage, the
proposed scheme can easily facilitate significant
reductions in overhead with only a small loss in coverage.
Experimental results show that the proposed scheme can
provide very high levels of soft error protection at a
fraction of the cost of duplication.

1. Introduction

When ionizing radiation from high-energy neutrons

and alpha particles strike a sensitive region in a
semiconductor device, they generate a dense track of
electron-hole pairs that may be collected by a p-n junction
resulting in a very short duration pulse of current causing
a single-event upset (SEU) in the signal value. An SEU
may cause a bit flip in some latch or memory element
thereby altering the state of the system resulting in a soft
error. Additionally, an SEU may occur in an internal
node of combinational logic and subsequently propagate
to and be captured in a latch. As process technology
scales well below 100 nanometers, the higher operating
frequencies, lower voltage levels, and smaller noise
margins make integrated circuits increasingly susceptible
to SEUs resulting in a dramatic increase in soft errors.
Studies indicate that the soft error failure rate will become
unacceptable even in mainstream commercial applications
[Ziegler 96], [Cohen 99].

One way to detect soft errors is to use concurrent error
detection (CED) circuitry that monitors the outputs of a
circuit for the occurrence of an error [Gössel 93],
[Nicolaidis 98]. If an error is detected, then the system

can recover thereby preventing a failure. Detecting errors
in logic circuits is much more expensive than in
memories. While CED can be efficiently incorporated in
memories due to their regular structure, logic circuits with
their irregular structure present a much greater challenge.
It is projected that in systems where memory CED is
employed, soft errors in logic circuits will be the limiting
factor for system reliability as technology continues to
scale [Shivakumar 02], [Bowman 03, 04]. This paper
focuses on the problem of providing CED in logic
circuits.

The simplest CED scheme for logic circuits is to use
duplication where the circuit is duplicated and the outputs
are compared with an equality checker. While this is very
simple to implement and provides very high error
coverage, it requires over 100% overhead. A lot of
research has been done on alternate schemes that are still
applicable to any logic circuit but require less hardware
overhead than duplication.

One class of techniques uses time redundancy.
Multiple sampling of the outputs has been proposed in
[Franco 94], [Metra 98], [Nicolaidis 99], [Favalli 02].
Self-dual functions have been proposed in [Saposhnikov
96, 98a]. These approaches have low hardware costs, but
reduce performance.

Another class of techniques involves re-synthesizing
the functional logic so that it has a more regular structure
such that simple error detecting codes can be used to
provide high coverage. Techniques have been developed
for parity codes [De 94], [Touba 97], [Bolchini 97];
Berger codes [Jha 93], [Saposhnikov 98b]; and Bose-Lin
codes [Das 99]. In cases where it is not desirable to re-
synthesize the functional logic (e.g., cores, macrocells,
handcrafted designs, legacy designs, etc.), these
techniques are not applicable.

A third class of techniques uses non-intrusive CED
where the functional logic is not modified. As shown in
[Gössel 93], this problem can be formulated as follows
(see illustration in Fig. 1). For a functional circuit with n
inputs, A=ai,…,an, and m outputs Z=zi,…,zm, let
EDF(ai,…,an, zi,…,zm) be the error detecting function
which is a Boolean function that is equal to 0 if the output
vector Z is error-free, equal to 1 if the output vector Z has
an error due to a fault in the specified fault class, and

Paper 40.3 INTERNATIONAL TEST CONFERENCE

2

equal to X (don’t care) in all other cases (i.e., for input
vector A, no fault can cause the output vector to be equal
to Z). Any implementation of the Boolean function EDF
will detect all errors due to the specified fault class. As
pointed out in [Almukhaizim 04a], the EDF could be
passed directly to a synthesis tool to produce the CED
circuitry and if the synthesis algorithm could search
exhaustively, it could find the optimal non-intrusive CED
circuit. However, synthesis tools use heuristics to search
the large space of solutions and consequently may obtain
a sub-optimal solution. In fact the nature of the EDF
function makes it particularly hard for synthesis tools to
handle as it has a very large don’t care space and many
exclusive-or (XOR) factors which most synthesis tools
are not good at finding. Thus, passing the EDF directly to
a synthesis tool generally does not produce good results
as shown in [Almukhaizim 04a]. Rather than trying to
directly synthesize the EDF, researchers have explored
structured implementations for the EDF. The basic
approach for this is to place a compaction circuit at the
outputs of the function logic to reduce them from m down
to k and then synthesize a prediction circuit that
independently predicts the k outputs. This is illustrated in
Figure 2. One approach for compacting the outputs is to
use a parity code which XORs together different subsets
of the outputs [Sogomonyan 74], [Fujiwara 87]. If the
parity code is selected so that no errors are masked, then
100% coverage can be maintained. In [Almukhaizim
04b], it was observed that the overhead for using a parity
code is dominated by the prediction logic and a method
based on entropy was proposed to guide the selection of
the parity code to minimize the prediction logic. A
technique for selecting the parity code with bounded error
masking was described in [Tarnick 94]. In [Almukhaizim
04a], a more general design methodology that is not
limited to parity was described for synthesizing the
compaction circuit to ensure no error masking. In
[Mohanram 03], CED based on a parity code is

selectively disabled for some input vectors to tradeoff less
coverage for less overhead in the prediction logic. In
[Morozov 00], a technique for using a Berger code was
described.

n

Functional
Logic

Error
Indication

Prediction
Circuit

k

Inputs

Outputs

m

Compaction

Comparison

k

Figure 2. Basic Approach for Structured Implementation
of Non-Intrusive CED

In this paper, a new method for synthesizing non-

intrusive CED circuitry is presented. The idea is to use
single-bit parity to detect all errors affecting an odd
number of bits and then synthesize a circuit to detect the
even errors. The key concept behind this approach is that
most of the errors in the EDF function are single-bit
errors. By using single-bit parity, all of the odd errors in
the EDF function (which includes the single bit errors)
become don’t cares leaving only the even errors. The
smaller number of even errors in the EDF function can be
efficiently synthesized with most synthesis tools. In
effect, the proposed method forces a decomposition of the
EDF function in which the odd errors are covered with a
single parity function and the even errors are covered via
conventional logic synthesis with don’t cares. Forming
the EDF function for even errors by exhaustive simulation
of all input vectors and all faults can be done only for
small circuits. In order to handle larger circuits, a novel
statistical sampling and expanding methodology is
proposed. While most CED schemes use a fixed checker
structure based on an error detecting code that it not
amenable to simplification without a significant impact on
error coverage. One of the nice features of the proposed

n

Functional
Logic

Error
Indication

Error
Detecting
Function
(EDF)

m

Inputs

Outputs

n

Functional
Logic

Error
Indication

Error
Detecting
Function
(EDF)

m

Inputs

Outputs

Figure 1. Non-Intrusive CED

Paper 40.3 INTERNATIONAL TEST CONFERENCE

3

scheme is that it provides very easy and efficient tradeoffs
between coverage and overhead. A systematic approach
is described for simplifying the even error detecting
function that results in large reductions in overhead with
only a minor loss in error coverage.

The paper is organized as follows: Sec. 2 provides an
overview of the proposed scheme and its architecture.
Sec. 3 describes the procedure for forming the even error
detecting function. Sec. 4 explains how the proposed
scheme allows for very efficient tradeoffs in coverage
versus overhead. Experimental results are presented in
Sec. 5. Section 6 concludes the paper.

2. Overview of Proposed Scheme

The proposed scheme involves combining single-bit
parity with an even error detecting circuit. A block
diagram for the proposed approach is shown in Fig. 3.
The even error detecting circuit generates a two-bit error
indication signal which normally has opposite values in
the fault-free case and indicates an error by having equal
values. An XOR-tree is used to compute the parity of the
outputs of the functional logic. The parity predictor
circuit predicts the complement of the parity of the
outputs such that its output together with the XOR-tree
output forms a two-bit error indication. The two pairs of
error indication signals are then merged using a two-rail
checker.

To simplify things, the even error detection function
(EVEN_EDF) will be described in the rest of the paper as
a single output function. The process of converting it so
that it produces a two-bit error indication signal is trivial.
It can be done by simply extracting one XOR factor,
inverting it, and making it a separate output (i.e., extract
any factor E2 such that EVEN_EDF=E1⊕ E2 and use E1
and E2’ as outputs with the XOR gate removed). Thus,
anytime EVEN_EDF is a 1, E1 and E2’ will have equal
values indicating an error, and anytime EVEN_EDF is a
0, E1 and E2’ will have opposite values which is the
normal error-free case.

Synthesizing the parity predictor circuit is exactly the
same as for previously proposed methods. Synthesizing
the even error detecting circuit is done by forming the
EVEN_EDF function and giving it to a synthesis tool to
synthesize. The challenge is how to form the EVEN_EDF
function and that is the subject of the next section.

n

Functional
Logic

Error
Indication

Parity
Prediction

Inputs

Outputs
m

XOR-Tree

Two-Rail Checker

Even Error
Detection
(EEDF)

Figure 3. Block Diagram of Proposed Scheme

3. Forming EVEN_EDF Function

Given a functional logic circuit F with n inputs and m

outputs, the simplest way to get the complete EVEN_EDF
function that provides 100% coverage of all errors would
be to exhaustively simulate F for all input vectors and
faults. For each input vector, each fault is injected and
the corresponding faulty output vector is obtained. If the
faulty output vector has an even number of errors, then
the minterm corresponding to the input vector and faulty
output vector pair would be added to the ON-set of the
EVEN_EDF function. This would continue until the
complete ON-set for EVEN_EDF is formed. The OFF-set
for EVEN_EDF is described by the functional logic
circuit F itself. The DC-set includes anything that is not
in the ON-set or OFF-set.

Forming the exact EVEN_EDF function through
exhaustive simulation is intractable for all but the smallest
circuits. Thus a less computationally complex procedure
needs to be used for forming the EVEN_EDF function
which will not necessarily obtain the exact ON-set. The
proposed method involves using statistical methods to
approximate the ON-set. Fortunately, good results can
still be obtained even if the exact ON-set is not known. If
some extra minterms from the DC-set are included in the
ON-set, there is no loss of coverage, but possibly the
synthesis tool may not obtain as optimal of a result. If
some minterms are missing from the ON-set, there may
be some loss of coverage. If the approximate ON-set is
reasonably close to the exact ON-set, the impact in terms
of either the optimality of the synthesis or the coverage

Paper 40.3 INTERNATIONAL TEST CONFERENCE

4

can be kept very small. Moreover, if one is interested in
trading off less coverage for less overhead, this can be
nicely facilitated by approximating the ON-set in a way
that the missing minterms simplify the logic
implementation. Note that nothing from the OFF-set can
be included in the ON-set because then the error
indication would give a false alarm. The proposed
method avoids this by construction as will be seen.

The proposed method for approximating the ON-set of
the EVEN_EDF function involves random sampling of
the input space for each fault combined with a bit-
stripping operation. The procedure is described as
follows:

Input: Functional logic circuit F, fault list, and number
of simulations to do per fault (L).

Output: Approximate ON-set for EVEN_EDF function.

Step 1: Prune fault list – All faults that have a structural
path to only one output are pruned from the fault
list as they will never cause even errors.

Step 2: Randomly simulate L input vectors for each fault
in fault list – The value of L is a parameter for
this procedure that allows tradeoffs between
runtime versus accuracy.

Step 3: For any vector that causes an even error, perform
bit-stripping – Select a bit in the input vector and
flip its value to the opposite of its current value
and fault simulate. If the error is no longer even,
then the input bit is flipped back to its original
value. Otherwise, the input bit is changed to an
X since an even error occurs regardless of the
value of that input bit. This process is repeated
for all the bits in the input vector one by one.
The order in which the bits are processed is
selected randomly each time a new vector is
processed so that no particular order is repeated.
The purpose of bit-stripping is to convert the
input vector into an input cube that covers a
large set of minterms.

Step 4: Add to the ON-set each input cube obtained in
step 3 along with its corresponding output cube –
Each input cube found in step 3 is fault
simulated to obtain its corresponding 3-valued
output cube. Together they specify a cube of
minterms that are added to the ON-set of the
EVEN_EDF function.

The procedure above produces an approximation of
the ON-set for the EVEN_EDF function. Rather than
simulating all of the input vectors for each fault (which
would be exponential), only L vectors are simulated per
fault where L is a user-specified value based on the
desired level of accuracy in approximating the ON-set.
Each input vector that causes an even error is expanded

into a cube using bit-stripping. The resulting cube after
bit-stripping contains many input vectors that also cause
an even error. Some input vectors that cause an even
error may not be found using this procedure because they
may not be contained in any of the input cubes generated
through bit-stripping. The larger the value of L, the more
input cubes that are generated per fault and hence the less
chance of missing an input vector that causes an even
error for the fault. Missing input vectors that cause even
errors means the ON-set for the EVEN_EDF function will
be missing minterms which may result in some loss of
coverage. However, on the good side, the minterms that
are included in the EVEN_EDF function are contained in
cubes (due to the way they were generated) and thus may
simplify the logic implementation of the approximate
EVEN_EDF function compared to the exact EVEN_EDF
function that gives 100% coverage. The other source of
approximation in the procedure is that one output cube is
associated with all the input vectors contained in an input
cube. In reality, of course, each input vector corresponds
to only a single output vector and not a whole cube of
output vectors. While the output cube is guaranteed to
contain the correct output vector, it also contains many
other output vectors thereby resulting in extra minterms
being placed in the ON-set which should actually be in
the DC-set. There is no risk of any minterms from the
OFF-set ending up in the ON-set since the output cube
always contains an even error (this is ensured by the way
the bit-stripping is done) and thus it can never contain a
fault-free output vector. The fact that the approximate
ON-set contains some minterms from the DC-set does not
impact the coverage at all. Potentially it could make the
logic implementation of the approximate EVEN_EDF
function more complex compared with the exact
EVEN_EDF, but the fact that the additional minterms in
the ON-set are contained in cubes (due to the way they
were generated) the impact generally will not be
significant.

Since the procedure is based on statistical sampling,
no special ATPG is required to construct the EVEN_EDF
function.

4. Coverage versus Overhead Tradeoffs

Because the procedure described in Sec. 3

approximates the ON-set, there is no guarantee of what
the final coverage will be. Fault injection experiments are
required to determine what coverage is achieved with the
proposed method. A simple approach for this would be to
do a large number of simulations where stuck-at faults are
randomly injected in the functional logic circuit and
random patterns are simulated. If an odd error results, it
is guaranteed to be detected by the parity network. If an
even error results, then the even error detecting function is
simulated to see if it detects it. The percentage of all
faulty output vectors that are detected gives the coverage.

Paper 40.3 INTERNATIONAL TEST CONFERENCE

5

This simple approach treats all faults as equally likely.
More accurate results could be obtained by using a more
sophisticated modeling (e.g., the one described in
[Alexandrescu 02]).

If the coverage is not high enough, the procedure
described in Sec. 3 can be repeated with a larger value of
L to obtain a more accurate approximation of the
EVEN_EDF function and then the even error detecting
circuit can re-synthesized.

If lower overhead is desired for the CED circuitry, a
strategy for achieving this while minimizing the loss of
coverage is as follows. When the input cubes are
generated via bit-stripping in Step 3 of the procedure
described in Sec. 3, a threshold can be set on the size of
the cubes. If the size of the input cube is not larger than
the threshold, then the input cube is simply discarded and
not added to the ON-set. The reasoning behind this
strategy is that small input cubes contain only a small
number of input vectors while requiring a potentially
large amount of logic to implement (depending on the
extent to which they can be merged or factored with other
cubes). By discarding these cubes, the impact on the
overall coverage is minimal while the benefit in reducing
overhead is substantial. This strategy can be very
effective in trading off a small loss in coverage for a large
reduction in overhead. This is one of the key advantages
of the proposed schemes and will be highlighted in the
experimental results.

5. Experimental Results

Experiments were performed on some MCNC
benchmark circuits [Yang 91]. The area results for the
circuits were obtained using Synopsis Design Analyzer
with the precompiled HTO18.db (0.18 micron)
technology library. The area reported is the cell area.
 Table 1 compares the area overhead for the self-
checking circuits implemented using the duplication
method and the proposed scheme. Both are non-intrusive
and hence do not require re-synthesis of the functional
logic. The circuit information and the optimized area for
the MCNC benchmark circuits with no CED can be found
under the first major heading.

 Under the second and third major headings the results
corresponding to the duplication method and the proposed
scheme are given, namely the area for the circuit with
CED and the percentage area overhead compared with the
optimized functional logic without CED. For the
proposed scheme different tradeoffs between area
overhead and coverage are shown. The last
coverage/overhead entry for each circuit shows the case
where no even error detecting circuit is used (i.e., where
only single-bit parity is used). To increase coverage, the
even errors have to be detected. With a sufficiently large
value of L, 100% coverage was obtained for most circuits
to give a reference point. Note that the percentage area
overhead was computed as follows:
% overhead =((area with CED – optimized area without

CED) / (optimized area without CED)) ×100

The coverage was computed in the manner described in
Sec. 4 where faults were randomly injected in the
functional logic and random patterns were simulated. The
coverage is defined as the number of output vectors that
contained errors that were detected by the CED. Of
course, duplication always provides 100% coverage.

As can be seen from the results, significant reductions
in area overhead can be achieved with relatively small
reductions in coverage. It is interesting to note that in
most cases, getting the last 1-2% of coverage is very
expensive. By going from 100% down to 99-98%
coverage, a significant reduction in the CED overhead can
be achieved. The likely reason for this is that there are a
number of hard to sensitize paths that lead to even errors.
Since few patterns sensitize these paths, the probability of
soft errors occurring along these paths is very small.
However, detecting these soft errors requires a lot of
hardware. This phenomenon is illustrated in Figs. 4-6
which are graphs of coverage versus overhead. As can be
seen in these graphs, the CED hardware required to
increase the coverage rises somewhat linearly until the
coverage reaches the high 90’s at which point a lot of
hardware is required to detect the last few percent of soft
errors. The proposed method provides a very efficient
way to take advantage of this phenomenon by allowing
the designer the option of reducing the CED overhead
significantly with only small loss in coverage.

Paper 40.3 INTERNATIONAL TEST CONFERENCE

6

Table 1. Comparison of Proposed Method with Duplication

Circuit Duplication Proposed
Name Num.

PI
Num.
PO

Area Area Overhead
(%)

Area Overhead
(%)

Coverage
(%)

8252 54.3 100
7487 40.3 99.2
6417 20.5 88

apla 10 12 5348 12298 130.2

6150 11.5 72.4
3756 30.6 100
3402 18.3 99.8
3258 13.3 91.2

br1 12 8 2876 6614 129.5

3169 10.2 76.4
16516 103.4 99.8
15687 93.2 98.7
15509 91.4 96.7

chkn 29 7 8120 18940 133.5

15395 89.6 90
4894 62.1 100
3697 22.4 99.4
3359 11.2 90.3

dc2 8 7 3021 7046 133.2

3217 6.5 84.6
5846 40.4 100
5203 24.6 97.4
5094 22.2 80

exp 8 18 4176 9396 131.3

4927 18.4 70.2
2224 80.2 100
2007 62.4 98.9
1928 56.3 80.2

wim 4 7 1236 3414 176.2

1903 54.0 74.2
4461 92.3 100
4245 83.6 98
4129 78.4 88

5xp1 7 10 2320 5220 125.0

4036 74.0 81
2356 110.2 100
2391 98.4 97.3
2379 97.6 78.4

b12 15 9 1208 3020 150.1

2343 94.2 72.2
2950 150.1 100
2430 106.4 98.2
2289 94.3 72

cu 14 11 1180 3068 160.2

2230 89.7 64.2
3557 67.5 100
3241 52.6 97.8
3160 48.8 82

sao2 10 4 2124 4885 129.9

3107 46.3 71.3
1867 120.2 99.8

1793.1 112.1 99.2
1528.4 80.2 84

misex1 8 7 849 1970 132.0

1446.2 70.4 76

Paper 40.3 INTERNATIONAL TEST CONFERENCE

7

75

80

85

90

95

100

6.5 11.2 22.4 62.1

Overhead (%)

C
ov

er
ag

e
(%

)

Figure 4. Coverage vs. Overhead for dc2

75

80

85

90

95

100

70.4 80.2 112.1 120.2

Overhead (%)

C
o
ve

ra
g
e
 (
%

)

Figure 5. Coverage vs. Overhead for misex1

75

80

85

90

95

100

10.2 13.3 18.3 30.6

Overhead (%)

C
o
v
e
ra

g
e
 (
%

)

Figure 6. Coverage vs. Overhead for br1

6. Conclusions

The proposed method provides an efficient way to

achieve high levels of soft error protection with reduced
overhead. It is non-intrusive and thus does not require
any modification to the functional logic itself.

Acknowledgements

This research was supported in part by the National
Science Foundation under Grant No. CCR 0426608.

References

[Alexandrescu 02] Alexandrescu, D., L. Anghel, and M.

Niholaidis, “New Methods for Evaluating the Impact of
Single Event Transients in VDSM ICs,” Prof. of Int. Symp.
on Defect and Fault Tolerance, pp. 99-107, 2002.

[Almukhaizim 04a] Almukhaizim, S., P. Drineas, and Y.
Makris, "Concurrent Error Detection for Combinational
and Sequential Logic via Output Compaction," Proc. of Int.
Symp. on Quality Electronic Design, pp. 319-324, 2004.

 [Almukhaizim 04b] Almukhaizim, S., P. Drineas, and Y.
Makris, "Cost-Driven Selection of Parity Trees," Proc. of
VLSI Test Symposium, pp. 319-324, 2004.

 [Bowman 03] Bowman, R.C., “Technology scaling trends and
accelerated testing for soft errors in commercial silicon
devices”, Proc. IEEE International On-Line Testing
Symposium, pp. 4, 2003.

[Bowman 04] Bowman, R.C., “Soft errors in commercial
integrated circuits”, International Journal of High Speed
Computing, Vol. 14, No.2, pp. 299-309, 2004.

[Bolchini 97] C. Bolchini, F. Salice, and D. Sciuto, “A Novel
Methodology for Designing TSC Networks based on the
Parity Bit Code,” Proc. European Design and Test
Conference, pp. 440-444, 1997.

 [Cohen 99] Cohen, N., et al., “Soft Error Considerations for
Deep-Submicron CMOS Circuit Applications,”
International Electron Devices Meeting, 1999.

[Das 99] Das, D., and N. A. Touba, “Synthesis of Circuits with
Low-Cost Concurrent Error Detection Based on Bose-Lin
Codes,” Journal of Electronic Testing: Theory and
Applications, Vol. 15, Nos. 1/2, pp. 145-155, Aug. 1999.

[De 94] De, K., et al., “RSYN: A System for Automated
Synthesis of Reliable Multilevel Circuits,” IEEE Trans.
VLSI Systems, pp. 186-195, Jun. 1994.

[Favalli 02] Favalli, M., and C. Metra, “Online Testing
Approach for Very Deep-Submicron ICs,” IEEE Design
and Test of Computers, Vol. 19, No. 2, pp. 16-23,
Mar. 2002.

[Franco 94] Franco, P., and E. J. McCluskey, “On Line Delay
Testing of Digital Circuits,” Proc. VLSI Test Symposium,
pp. 167-173, 1994.

[Fujiwara 87] Fujiwara, E., and K. Matsuoka, “A Self-Checking
Generalized Prediction Checker and Its Use for Built-In
Testing,” IEEE Trans. Computers, Vol. C-36, No. 1,
pp. 86-93, Jan. 1987.

[Gössel 93] Gössel, M., and S. Graf, Error Detection Circuits,
McGraw-Hill Book Company, London, 1993.

[Jha 93] Jha, N.K., and S. Wang, “Design and Synthesis of
Self-Checking VLSI Circuits,” IEEE Trans. Computer-

Paper 40.3 INTERNATIONAL TEST CONFERENCE

8

Aided Design, Vol. 12, No. 6, pp. 878-887, Jun. 1993.
[Mohanram 03a] Mohanram, K., E.S. Sogomonyan, M. Gössel,

and N.A. Touba, “Synthesis of Low-Cost Parity-Based
Partially Self-Checking Circuits,” Proc. of International
On-Line Test Symposium, pp. 35-40, 2003.

 [Mohanram 03b] Mohanram, K., and N.A. Touba, “Cost-
Effective Approach for Reducing Soft Error Failure Rate in
Logic Circuits,” Proc. of International Test Conference, pp.
893-901, 2003.

 [Metra 98] Metra, C., M. Favalli, and B. Ricco, “Online
Detection of Logic Errors Due to Crosstalk, Delay and
Transient Faults,” Proc. International Test Conference,
pp. 524-533, 1998.

[Morozov 00] Morozov, A., V.V. Saposhnikov, Vl.V.
Saposhnikov, and M. Gössel, “New Self-Checking Circuits
by Use of Berger-Codes,” Proc. of On-Line Testing
Workshop, 2000, pp. 141-146, 2000.

 [Nicolaidis 98] Nicolaidis, M., and Y. Zorian, “Online Testing
for VLSI – A Compendium of Approaches,” Journal
of Electronic Testing: Theory and Applications, Vol. 12,
Nos. 1/2, pp. 7-20, Feb. 1998.

[Nicolaidis 99] Nicolaidis, M., “Time Redundancy Based
Soft-Error Tolerance to Rescue Nanometer Technologies,”
Proc. of VLSI Test Symposium, pp. 86-94, 1999.

[Saposhnikov 96] Saposhnikov, Vl.V., A. Dmitriev, M. Gössel,
and V.V. Saposhnikov, “Self-Dual Parity Checking – A
New Method On-Line Testing,” Proc. of VLSI Test
Symposium, pp. 162-168, 1996.

[Saposhnikov 98a] Saposhnikov, Vl.V., V.V. Saposhnikov, A.
Dmitriev, and M. Gössel, “Self-Dual Duplication for Error
Detection,” Proc. of Asian Test Symp., pp. 296-300, 1998.

[Saposhnikov 98b] Saposhnikov, V.V., et al., “A New Design
Methodology for Self-Checking Unidirectional
Combinational Circuits,” Journal on Electronic Testing:
Theory and Applications, Vol. 12, Nos. 1/2, pp. 41-53,
Feb. 1998.

[Shivakumar 02] Shivakumar, P., M. Kistler, S.W. Keckler, D.
Burger, and L. Alvisi, “Modeling the Effect of Technology
Trends on the Soft Error Rate of Combinational Logic,”
Proc. International Conference on Dependable Systems
and Networks, pp. 389-398, 2002.

 [Sogomonyan 74] Sogomonvan, E., “Design of Built-In Self-
Checking Monitoring Circuits for Combinational Devices,”
Automation and Remote Control, Vol. 35, No. 2, pp. 280-
289, 1974.

[Tarnick 94] Tarnick, S., “Bounding Error Masking in Linear
Output Space Compression Schemes,” Proc. of Asian Test
Symposium, pp. 27-32, 1994.

[Touba 97] Touba, N.A., and E. J. McCluskey, “Logic Synthesis
of Multilevel Circuits with Concurrent Error Detection,”
IEEE Trans. on Computer-Aided Design, Vol. 16, No. 7,
pp. 783-789, Jul. 1997.

[Yang 91] Yang, S., “Logic Synthesis and Optimization
benchmarks,Version 3.0, Tech. Report, Microelectronics
Centre of North Carolina, 1991.

 [Ziegler 96] Ziegler, J.F., et al., “IBM Experiments in Soft Fails
in Computer Electronics (1978-1994),” IBM Journal of
Research and Development, Vol. 40, pp. 3-18, 1996.

