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Abstract 
 
A new method for synthesizing non-intrusive 

concurrent error detection (CED) circuitry is presented.  
The idea is to use single-bit parity to detect all errors 
affecting an odd number of bits and then synthesize a 
circuit to detect the even errors.  A novel statistical 
sampling and expanding methodology is proposed for 
constructing the even error detection circuitry.  A major 
feature of the proposed methodology is that it allows very 
efficient tradeoffs between error coverage and overhead.  
While CED schemes that use a fixed checker based on a 
particular error detecting code are not amenable to 
simplification without a major impact on coverage, the 
proposed scheme can easily facilitate significant 
reductions in overhead with only a small loss in coverage.  
Experimental results show that the proposed scheme can 
provide very high levels of soft error protection at a 
fraction of the cost of duplication. 
 
1. Introduction 

 
When ionizing radiation from high-energy neutrons 

and alpha particles strike a sensitive region in a 
semiconductor device, they generate a dense track of 
electron-hole pairs that may be collected by a p-n junction 
resulting in a very short duration pulse of current causing 
a single-event upset (SEU) in the signal value. An SEU 
may cause a bit flip in some latch or memory element 
thereby altering the state of the system resulting in a soft 
error. Additionally, an SEU may occur in an internal 
node of combinational logic and subsequently propagate 
to and be captured in a latch.  As process technology 
scales well below 100 nanometers, the higher operating 
frequencies, lower voltage levels, and smaller noise 
margins make integrated circuits increasingly susceptible 
to SEUs resulting in a dramatic increase in soft errors.  
Studies indicate that the soft error failure rate will become 
unacceptable even in mainstream commercial applications 
[Ziegler 96], [Cohen 99]. 

One way to detect soft errors is to use concurrent error 
detection (CED) circuitry that monitors the outputs of a 
circuit for the occurrence of an error [Gössel 93], 
[Nicolaidis 98]. If an error is detected, then the system 

can recover thereby preventing a failure.  Detecting errors 
in logic circuits is much more expensive than in 
memories.  While CED can be efficiently incorporated in 
memories due to their regular structure, logic circuits with 
their irregular structure present a much greater challenge.  
It is projected that in systems where memory CED is 
employed, soft errors in logic circuits will be the limiting 
factor for system reliability as technology continues to 
scale [Shivakumar 02], [Bowman  03, 04].  This paper 
focuses on the problem of providing CED in logic 
circuits. 

The simplest CED scheme for logic circuits is to use 
duplication where the circuit is duplicated and the outputs 
are compared with an equality checker.  While this is very 
simple to implement and provides very high error 
coverage, it requires over 100% overhead.  A lot of 
research has been done on alternate schemes that are still 
applicable to any logic circuit but require less hardware 
overhead than duplication. 

One class of techniques uses time redundancy.  
Multiple sampling of the outputs has been proposed in 
[Franco 94], [Metra 98], [Nicolaidis 99], [Favalli 02].  
Self-dual functions have been proposed in [Saposhnikov 
96, 98a].  These approaches have low hardware costs, but 
reduce performance. 

Another class of techniques involves re-synthesizing 
the functional logic so that it has a more regular structure 
such that simple error detecting codes can be used to 
provide high coverage.  Techniques have been developed 
for parity codes [De 94], [Touba 97], [Bolchini 97]; 
Berger codes [Jha 93], [Saposhnikov 98b]; and Bose-Lin 
codes [Das 99].  In cases where it is not desirable to re-
synthesize the functional logic (e.g., cores, macrocells, 
handcrafted designs, legacy designs, etc.), these 
techniques are not applicable. 

A third class of techniques uses non-intrusive CED 
where the functional logic is not modified.  As shown in 
[Gössel 93], this problem can be formulated as follows 
(see illustration in Fig. 1).  For a functional circuit with n 
inputs, A=ai,…,an, and m outputs Z=zi,…,zm, let 
EDF(ai,…,an, zi,…,zm) be the error detecting function 
which is a Boolean function that is equal to 0 if the output 
vector Z is error-free, equal to 1 if the output vector Z has 
an error due to a fault in the specified fault class, and 



Paper 40.3                                  INTERNATIONAL TEST CONFERENCE  
 

2

equal to X (don’t care) in all other cases (i.e., for input 
vector A, no fault can cause the output vector to be equal 
to Z).  Any implementation of the Boolean function EDF 
will detect all errors due to the specified fault class.  As 
pointed out in [Almukhaizim 04a], the EDF could be 
passed directly to a synthesis tool to produce the CED 
circuitry and if the synthesis algorithm could search 
exhaustively, it could find the optimal non-intrusive CED 
circuit.  However, synthesis tools use heuristics to search 
the large space of solutions and consequently may obtain 
a sub-optimal solution.  In fact the nature of the EDF 
function makes it particularly hard for synthesis tools to 
handle as it has a very large don’t care space and many 
exclusive-or (XOR) factors which most synthesis tools 
are not good at finding.  Thus, passing the EDF directly to 
a synthesis tool generally does not produce good results 
as shown in [Almukhaizim 04a].  Rather than trying to 
directly synthesize the EDF, researchers have explored 
structured implementations for the EDF.  The basic 
approach for this is to place a compaction circuit at the 
outputs of the function logic to reduce them from m down 
to k and then synthesize a prediction circuit that 
independently predicts the k outputs.  This is illustrated in 
Figure 2.  One approach for compacting the outputs is to 
use a parity code which XORs together different subsets 
of the outputs [Sogomonyan 74], [Fujiwara 87].  If the 
parity code is selected so that no errors are masked, then 
100% coverage can be maintained.  In [Almukhaizim 
04b], it was observed that the overhead for using a parity 
code is dominated by the prediction logic and a method 
based on entropy was proposed to guide the selection of 
the parity code to minimize the prediction logic.  A 
technique for selecting the parity code with bounded error 
masking was described in [Tarnick 94].  In [Almukhaizim 
04a], a more general design methodology that is not 
limited to parity was described for synthesizing the 
compaction circuit to ensure no error masking.    In 
[Mohanram 03], CED based on a parity code is 

selectively disabled for some input vectors to tradeoff less 
coverage for less overhead in the prediction logic.  In 
[Morozov 00], a technique for using a Berger code was 
described. 
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Figure 2.  Basic Approach for Structured Implementation 
of Non-Intrusive CED 

 
In this paper, a new method for synthesizing non-

intrusive CED circuitry is presented.  The idea is to use 
single-bit parity to detect all errors affecting an odd 
number of bits and then synthesize a circuit to detect the 
even errors.  The key concept behind this approach is that 
most of the errors in the EDF function are single-bit 
errors.  By using single-bit parity, all of the odd errors in 
the EDF function (which includes the single bit errors) 
become don’t cares leaving only the even errors.  The 
smaller number of even errors in the EDF function can be 
efficiently synthesized with most synthesis tools.  In 
effect, the proposed method forces a decomposition of the 
EDF function in which the odd errors are covered with a 
single parity function and the even errors are covered via 
conventional logic synthesis with don’t cares.  Forming 
the EDF function for even errors by exhaustive simulation 
of all input vectors and all faults can be done only for 
small circuits.  In order to handle larger circuits, a novel 
statistical sampling and expanding methodology is 
proposed.  While most CED schemes use a fixed checker 
structure based on an error detecting code that it not 
amenable to simplification without a significant impact on 
error coverage.  One of the nice features of the proposed 
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scheme is that it provides very easy and efficient tradeoffs 
between coverage and overhead.  A systematic approach 
is described for simplifying the even error detecting 
function that results in large reductions in overhead with 
only a minor loss in error coverage. 

The paper is organized as follows:  Sec. 2 provides an 
overview of the proposed scheme and its architecture.  
Sec. 3 describes the procedure for forming the even error 
detecting function.  Sec. 4 explains how the proposed 
scheme allows for very efficient tradeoffs in coverage 
versus overhead. Experimental results are presented in 
Sec. 5. Section 6 concludes the paper. 

 
2. Overview of Proposed Scheme 
 

The proposed scheme involves combining single-bit 
parity with an even error detecting circuit.  A block 
diagram for the proposed approach is shown in Fig. 3.  
The even error detecting circuit generates a two-bit error 
indication signal which normally has opposite values in 
the fault-free case and indicates an error by having equal 
values.  An XOR-tree is used to compute the parity of the 
outputs of the functional logic.  The parity predictor 
circuit predicts the complement of the parity of the 
outputs such that its output together with the XOR-tree 
output forms a two-bit error indication.  The two pairs of 
error indication signals are then merged using a two-rail 
checker. 

To simplify things, the even error detection function 
(EVEN_EDF) will be described in the rest of the paper as 
a single output function.  The process of converting it so 
that it produces a two-bit error indication signal is trivial.  
It can be done by simply extracting one XOR factor, 
inverting it, and making it a separate output (i.e., extract 
any factor E2 such that EVEN_EDF=E1⊕ E2 and use E1 
and E2’ as outputs with the XOR gate removed).  Thus, 
anytime EVEN_EDF is a 1, E1 and E2’ will have equal 
values indicating an error, and anytime EVEN_EDF is a 
0, E1 and E2’ will have opposite values which is the 
normal error-free case. 

Synthesizing the parity predictor circuit is exactly the 
same as for previously proposed methods.  Synthesizing 
the even error detecting circuit is done by forming the 
EVEN_EDF function and giving it to a synthesis tool to 
synthesize.  The challenge is how to form the EVEN_EDF 
function and that is the subject of the next section. 
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Figure 3.  Block Diagram of Proposed Scheme 
 

3. Forming EVEN_EDF Function 
 
Given a functional logic circuit F with n inputs and m 

outputs, the simplest way to get the complete EVEN_EDF 
function that provides 100% coverage of all errors would 
be to exhaustively simulate F for all input vectors and 
faults.  For each input vector, each fault is injected and 
the corresponding faulty output vector is obtained.  If the 
faulty output vector has an even number of errors, then 
the minterm corresponding to the input vector and faulty 
output vector pair would be added to the ON-set of the 
EVEN_EDF function.  This would continue until the 
complete ON-set for EVEN_EDF is formed.  The OFF-set 
for EVEN_EDF is described by the functional logic 
circuit F itself.  The DC-set includes anything that is not 
in the ON-set or OFF-set. 

Forming the exact EVEN_EDF function through 
exhaustive simulation is intractable for all but the smallest 
circuits.  Thus a less computationally complex procedure 
needs to be used for forming the EVEN_EDF function 
which will not necessarily obtain the exact ON-set.  The 
proposed method involves using statistical methods to 
approximate the ON-set.  Fortunately, good results can 
still be obtained even if the exact ON-set is not known.  If 
some extra minterms from the DC-set are included in the 
ON-set, there is no loss of coverage, but possibly the 
synthesis tool may not obtain as optimal of a result.  If 
some minterms are missing from the ON-set, there may 
be some loss of coverage.  If the approximate ON-set is 
reasonably close to the exact ON-set, the impact in terms 
of either the optimality of the synthesis or the coverage 



Paper 40.3                                  INTERNATIONAL TEST CONFERENCE  
 

4

can be kept very small.  Moreover, if one is interested in 
trading off less coverage for less overhead, this can be 
nicely facilitated by approximating the ON-set in a way 
that the missing minterms simplify the logic 
implementation.  Note that nothing from the OFF-set can 
be included in the ON-set because then the error 
indication would give a false alarm.  The proposed 
method avoids this by construction as will be seen. 

The proposed method for approximating the ON-set of 
the EVEN_EDF function involves random sampling of 
the input space for each fault combined with a bit-
stripping operation.  The procedure is described as 
follows: 

Input: Functional logic circuit F, fault list, and number 
of simulations to do per fault (L). 

Output: Approximate ON-set for EVEN_EDF function. 

Step 1: Prune fault list – All faults that have a structural 
path to only one output are pruned from the fault 
list as they will never cause even errors. 

Step 2: Randomly simulate L input vectors for each fault 
in fault list – The value of L is a parameter for 
this procedure that allows tradeoffs between 
runtime versus accuracy. 

Step 3: For any vector that causes an even error, perform 
bit-stripping – Select a bit in the input vector and 
flip its value to the opposite of its current value 
and fault simulate.  If the error is no longer even, 
then the input bit is flipped back to its original 
value.  Otherwise, the input bit is changed to an 
X since an even error occurs regardless of the 
value of that input bit.  This process is repeated 
for all the bits in the input vector one by one.  
The order in which the bits are processed is 
selected randomly each time a new vector is 
processed so that no particular order is repeated.  
The purpose of bit-stripping is to convert the 
input vector into an input cube that covers a 
large set of minterms. 

Step 4: Add to the ON-set each input cube obtained in 
step 3 along with its corresponding output cube – 
Each input cube found in step 3 is fault 
simulated to obtain its corresponding 3-valued 
output cube.  Together they specify a cube of 
minterms that are added to the ON-set of the 
EVEN_EDF function. 

The procedure above produces an approximation of 
the ON-set for the EVEN_EDF function.  Rather than 
simulating all of the input vectors for each fault (which 
would be exponential), only L vectors are simulated per 
fault where L is a user-specified value based on the 
desired level of accuracy in approximating the ON-set.  
Each input vector that causes an even error is expanded 

into a cube using bit-stripping.  The resulting cube after 
bit-stripping contains many input vectors that also cause 
an even error.  Some input vectors that cause an even 
error may not be found using this procedure because they 
may not be contained in any of the input cubes generated 
through bit-stripping.  The larger the value of L, the more 
input cubes that are generated per fault and hence the less 
chance of missing an input vector that causes an even 
error for the fault.  Missing input vectors that cause even 
errors means the ON-set for the EVEN_EDF function will 
be missing minterms which may result in some loss of 
coverage.  However, on the good side, the minterms that 
are included in the EVEN_EDF function are contained in 
cubes (due to the way they were generated) and thus may 
simplify the logic implementation of the approximate 
EVEN_EDF function compared to the exact EVEN_EDF 
function that gives 100% coverage.  The other source of 
approximation in the procedure is that one output cube is 
associated with all the input vectors contained in an input 
cube.  In reality, of course, each input vector corresponds 
to only a single output vector and not a whole cube of 
output vectors.  While the output cube is guaranteed to 
contain the correct output vector, it also contains many 
other output vectors thereby resulting in extra minterms 
being placed in the ON-set which should actually be in 
the DC-set.  There is no risk of any minterms from the 
OFF-set ending up in the ON-set since the output cube 
always contains an even error (this is ensured by the way 
the bit-stripping is done) and thus it can never contain a 
fault-free output vector.  The fact that the approximate 
ON-set contains some minterms from the DC-set does not 
impact the coverage at all.  Potentially it could make the 
logic implementation of the approximate EVEN_EDF 
function more complex compared with the exact 
EVEN_EDF, but the fact that the additional minterms in 
the ON-set are contained in cubes (due to the way they 
were generated) the impact generally will not be 
significant. 

Since the procedure is based on statistical sampling, 
no special ATPG is required to construct the EVEN_EDF 
function.  

 
4. Coverage versus Overhead Tradeoffs 

 
Because the procedure described in Sec. 3 

approximates the ON-set, there is no guarantee of what 
the final coverage will be.  Fault injection experiments are 
required to determine what coverage is achieved with the 
proposed method.  A simple approach for this would be to 
do a large number of simulations where stuck-at faults are 
randomly injected in the functional logic circuit and 
random patterns are simulated.  If an odd error results, it 
is guaranteed to be detected by the parity network.  If an 
even error results, then the even error detecting function is 
simulated to see if it detects it.  The percentage of all 
faulty output vectors that are detected gives the coverage.  
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This simple approach treats all faults as equally likely.  
More accurate results could be obtained by using a more 
sophisticated modeling (e.g., the one described in 
[Alexandrescu 02]). 

If the coverage is not high enough, the procedure 
described in Sec. 3 can be repeated with a larger value of 
L to obtain a more accurate approximation of the 
EVEN_EDF function and then the even error detecting 
circuit can re-synthesized. 

If lower overhead is desired for the CED circuitry, a 
strategy for achieving this while minimizing the loss of 
coverage is as follows.  When the input cubes are 
generated via bit-stripping in Step 3 of the procedure 
described in Sec. 3, a threshold can be set on the size of 
the cubes.  If the size of the input cube is not larger than 
the threshold, then the input cube is simply discarded and 
not added to the ON-set.  The reasoning behind this 
strategy is that small input cubes contain only a small 
number of input vectors while requiring a potentially 
large amount of logic to implement (depending on the 
extent to which they can be merged or factored with other 
cubes).  By discarding these cubes, the impact on the 
overall coverage is minimal while the benefit in reducing 
overhead is substantial.  This strategy can be very 
effective in trading off a small loss in coverage for a large 
reduction in overhead.  This is one of the key advantages 
of the proposed schemes and will be highlighted in the 
experimental results. 

 
5. Experimental Results 
 

Experiments were performed on some MCNC 
benchmark circuits [Yang 91]. The area results for the 
circuits were obtained using Synopsis Design Analyzer 
with the precompiled HTO18.db (0.18 micron) 
technology library.  The area reported is the cell area. 
     Table 1 compares the area overhead for the self-
checking circuits implemented using the duplication 
method and the proposed scheme.  Both are non-intrusive 
and hence do not require re-synthesis of the functional 
logic. The circuit information and the optimized area for 
the MCNC benchmark circuits with no CED can be found 
under the first major heading. 

  Under the second and third major headings the results 
corresponding to the duplication method and the proposed 
scheme are given, namely the area for the circuit with 
CED and the percentage area overhead compared with the 
optimized functional logic without CED.  For the 
proposed scheme different tradeoffs between area 
overhead and coverage are shown.  The last 
coverage/overhead entry for each circuit shows the case 
where no even error detecting circuit is used (i.e., where 
only single-bit parity is used).  To increase coverage, the 
even errors have to be detected.  With a sufficiently large 
value of L, 100% coverage was obtained for most circuits 
to give a reference point.  Note that the percentage area 
overhead was computed as follows: 
% overhead =( (area with CED – optimized area without 

CED) / (optimized area without CED)) ×100 

The coverage was computed in the manner described in 
Sec. 4 where faults were randomly injected in the 
functional logic and random patterns were simulated.  The 
coverage is defined as the number of output vectors that 
contained errors that were detected by the CED.  Of 
course, duplication always provides 100% coverage. 

As can be seen from the results, significant reductions 
in area overhead can be achieved with relatively small 
reductions in coverage.  It is interesting to note that in 
most cases, getting the last 1-2% of coverage is very 
expensive.  By going from 100% down to 99-98% 
coverage, a significant reduction in the CED overhead can 
be achieved.  The likely reason for this is that there are a 
number of hard to sensitize paths that lead to even errors.  
Since few patterns sensitize these paths, the probability of 
soft errors occurring along these paths is very small.  
However, detecting these soft errors requires a lot of 
hardware.  This phenomenon is illustrated in Figs. 4-6 
which are graphs of coverage versus overhead.  As can be 
seen in these graphs, the CED hardware required to 
increase the coverage rises somewhat linearly until the 
coverage reaches the high 90’s at which point a lot of 
hardware is required to detect the last few percent of soft 
errors.  The proposed method provides a very efficient 
way to take advantage of this phenomenon by allowing 
the designer the option of reducing the CED overhead 
significantly with only small loss in coverage. 
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Table 1.  Comparison of Proposed Method with Duplication 

Circuit Duplication Proposed 
Name Num. 

PI 
Num. 
PO 

Area Area Overhead 
(%) 

Area Overhead 
(%) 

Coverage 
(%) 

8252 54.3 100 
7487 40.3 99.2 
6417 20.5 88 

apla 10 12 5348 12298 130.2 

6150 11.5 72.4 
3756 30.6 100 
3402 18.3 99.8 
3258 13.3 91.2 

br1 12 8 2876 6614 129.5 

3169 10.2 76.4 
16516 103.4 99.8 
15687 93.2 98.7 
15509 91.4 96.7 

chkn 29 7 8120 18940 133.5 

15395 89.6 90 
4894 62.1 100 
3697 22.4 99.4 
3359 11.2 90.3 

dc2 8 7 3021 7046 133.2 

3217 6.5 84.6 
5846 40.4 100 
5203 24.6 97.4 
5094 22.2 80 

exp 8 18 4176 9396 131.3 

4927 18.4 70.2 
2224 80.2 100 
2007 62.4 98.9 
1928 56.3 80.2 

wim 4 7 1236 3414 176.2 

1903 54.0 74.2 
4461 92.3 100 
4245 83.6 98 
4129 78.4 88 

5xp1 7 10 2320 5220 125.0 

4036 74.0 81 
2356 110.2 100 
2391 98.4 97.3 
2379 97.6 78.4 

b12 15 9 1208 3020 150.1 

2343 94.2 72.2 
2950 150.1 100 
2430 106.4 98.2 
2289 94.3 72 

cu 14 11 1180 3068 160.2 

2230 89.7 64.2 
3557 67.5 100 
3241 52.6 97.8 
3160 48.8 82 

sao2 10 4 2124 4885 129.9 

3107 46.3 71.3 
1867 120.2 99.8 

1793.1 112.1 99.2 
1528.4 80.2 84 

misex1 8 7 849 1970 132.0 

1446.2 70.4 76 
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Figure 4.  Coverage vs. Overhead for dc2 
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Figure 5.  Coverage vs. Overhead for misex1 
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Figure 6.  Coverage vs. Overhead for br1 

6. Conclusions 
 
The proposed method provides an efficient way to 

achieve high levels of soft error protection with reduced 
overhead.  It is non-intrusive and thus does not require 
any modification to the functional logic itself.  
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