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ABSTRACT 

Previous approaches to designing random pattem 
testable circuits use post-synthesis test point insertion to 
eliminate random pattern resistant (r.p.r.) faults. The 
approach taken in this paper is to consider random pattern 
testability during logic synthesis. An automated logic 
synthesis procedure is presented which takes as an input a 
two-level representation of a circuit and a constraint on the 
minimum fault detection probability (threshold below 
which faults are considered r.p.r.) and generates a 
multilevel implementation that satisfies the constraint 
while minimizing the literal count. The procedure 
identifies r.p.r. faults and attempts to “eliminate” them 
through algebraic factoring. If that is not possible, then 
test points are inserted during the synthesis process in a 
way that minimizes the number of test points that are 
required. Results are shown for benchmark circuits which 
indicate that the proposed procedure can generally reduce 
the random pattern test length by at least an order of 
magnitude with only a small area overhead. 

1. INTRODUCTION 

Random pattern testing has a number of well-known 
advantages: no deterministic test set generation cost, no 
test pattern storage requirement, higher coverage of 
non-targeted faults, and high suitability for built-in self 
test (BIST). The obvious drawback to random pattern 
testing is that longer test lengths are needed. For some 
circuits, the test length required to get high fault coverage 
with random patterns is unacceptably long. 

The random pattern test length required to give a 
particular fault coverage for a circuit depends on the 
detection probability of each fault in the circuit. The 
detection probability of a fault is equal to the number of 
input patterns that detect the fault divided by the total 
number of input patterns, 2n, where n is the number of 
primary inputs. Faults with very low detection 
probabilities are said to be random pattern resistant (r.p,r.) 
because they are hard to detect with random patterns 
[Eichelberger 831. A circuit that does not have any r.p.r. 
faults is random pattern testable. 

Given a circuit structure that has r,p.r. faults, two 
general solutions have been proposed. One is to use 

weighted pattern generation to bias the input patterns 
towards those that detect the r.p.r. faults. A drawback to 
this approach is that on-chip weighted pattern generators 
can be costly to implement, especially when multiple 
weight sets are required. The other alternative is to 
modify the circuit structure by adding test points to 
increase the detection probability of the r.p.r. faults so 
that they are no longer r.p.r. (i.e., “eliminate” the r.p.r. 
faults). This requires identifying the r.p.r. faults and 
trying to add as few test points as possible to eliminate 
them. Since a single test point can change the detection 
probability of a number of faults, optimal placement of 
test points has been an active area of research 
[Krishnamurthy 871, [Iyengar 893, [Seiss 911, 
[Savaria 911, [Youssef 931. 

Whereas previous methods for designing random 
pattem testable circuits involve post-synthesis test point 
insertion, this paper approaches the problem by 
considering random pattern testability during logic 
synthesis. An automated logic synthesis procedure is 
described which takes as an input a two-level 
representation of a circuit and a constraint on the 
minimum fault detection probability and generates a 
multilevel circuit implementation that satisfies the 
constraint while minimizing the literal count. The 
minimum fault detection probability constraint essentially 
defines a threshold below which a fault is considered r.p.r. 
The central strategy is to identify any r.p.r. faults in the 
two-level starting point, and then find algebraic factors 
that eliminate these faults. Once the r.p.r. faults have 
been eliminated, normal logic optimization using random 
pattern testability preserving logic transformations 
(defined in Sec. 3) can then proceed since such 
transformations will not introduce new r.p.r. faults. 
Thus, the initial selection of algebraic factors has as its 
primary goal the elimination of r.p.r. faults, and then once 
all the r.p.r. faults have been eliminated, subsequent 
factors are chosen on the basis of reducing the literal count 
or optimizing for other synthesis criteria (e.g., delay). 

As the minimum fault detection probability threshold 
is increased, a point is reached where some r.p.r. faults 
cannot be eliminated by algebraic factoring alone. When 
this is the case, test points are inserted during the 
synthesis process in order to generate a random pattern 
testable implementation. Factors are chosen to enable 
each test point to eliminate several r.p.r. faults so that the 
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total number of test points needed is minimized. Results 
are shown which indicate that the minimum fault 
detection probability can be significantly increased by 
adding just a few test points during synthesis. Thus, the 
procedure described in this paper can be used to design 
circuits which require a much shorter random pattern test 
length without substantial overhead. 

The paper is organized as follows: In Sec. 2, a 
technique that utilizes special properties of algebraic 
factorization to efficiently compute fault detection 
probabilities is described. In Sec. 3, random pattern 
testability preserving transformations are defined and are 
shown to be a superset of test-set preserving 
transformations. In Sec. 4, the proposed logic synthesis 
procedure is presented. In Sec. 5 ,  an automated procedure 
is described for inserting test points during the synthesis 
process. In Sec. 6, results for benchmark circuits are 
shown and discussed. Section 7 is a summary and 
conclusion. 

The following terminology is used in this paper: A 
literal is a boolean variable or its complement. A cube is 
a set of literals interpreted here as a product of literals. A 
cover is a set of cubes interpreted here as a sum-of- 
products expression. 

2. COMPUTING FAULT DETECTION 
PROBABILITIES 

The proposed logic synthesis procedure involves 
identifying r.p.r. faults and finding factors that eliminate 
these faults. This requires computing fault detection 
probabilities which is an NP-hard problem 
[Krishnamurthy 861. Many methods exist for trading off 
accuracy to reduce computation time. However, during 
logic synthesis, the structure of the circuit is constantly 
changing which presents additional difficulty. To cope 
with this problem, the proposed procedure relies on the 
following property of algebraic factorization. 

Definition 1: The detecting set for a fault is the 
set of input patterns that detect the fault. 

Definition 2: Two faults are equivalent if they 
have the same detecting set. 

Property 1: Each stuck-at fault in a multilevel 
circuit derived through algebraic factorization of a 
two-level circuit is equivalent to some set of stuck-at 
faults in the original two-level circuit. 

Hachtel et al. proved this property for algebraic 
factoring without the use of the complement [Hachtel92]. 
Bryan et al. showed that this property holds for a 
constrained version of algebraic factoring with the use of 
the complement (see [Bryan 901 for details). 

This property provides some important advantages in 
computing fault detection probabilities. Cube calculus 
operations can be used to find the detecting set (represented 
as a cover) of each fault in the initial two-level circuit. 
These detecting sets can then be used to quickly compute 

the detection probability of any fault in any multilevel 
circuit derived through algebraic factorization. Thus, the 
key feature is that the detecting sets for the initial 
two-level circuit need only be computed once, and then 
they can be used to compute fault detection probabilities 
during any stage of the factoring process. This technique 
will be explained in detail. 

2 . 1  Computing Detecting Sets in a 
Tw 0- Le 11 el Circuit  

The detecting set for a fault is computed by finding 
the faulty logic function, logic function of  the circuit in 
the presence of the fault, and comparing it with the 
fault-free logic function, logic function of the circuit 
without any faults. The detecting set is equal to the set of 
input vectors for which the faulty logic function differs 
from the fault-free logic function. 

Given the cover C corresponding to a single-output 
two-level circuit (i.e., each cube in C corresponds to an 
AND gate in the circuit), a cover for the detecting set of 
each fault in the circuit can be computed using cube 
calculus operations. Each fault in a two-level circuit, 
with the exception of the faults at the primary inputs 
(PI’S) and prim,ary output (PO), is equivalent to an input 
of an AND gate being stuck-at-1 (s-a-1) or the output of 
an AND gate being stuck-at-0 (s-a-0) and hence causes a 
faulty logic function in which a cube in C either expands 
or is removed. The faulty logic function for a s-a-1 fault 
at the input of an AND gate can be found by expanding 
the corresponding cube in C by removing the literal that 
is s-a-l. The detecting set is given by the intersection of 
the expanded cube with the complement of the cover C’ 
since this gives the input vectors for which the faulty 
logic function differs from the fault-free logic function. 
The faulty logic function for a s-a-0 fault at the output of 
an AND gate can be computed by removing the 
corresponding cube d in the cover C. Let (C - d)’denote 
the complement of the cover formed by C minus the 
removed cube ti, then the detecting set is given by the 
intersection of ihe removed cube d with (C - d)’. For a 
s-a-1 (s-a-0) fault at primary input x ,  the detecting set is 

dC dC given by the intersection of x ’ ( x )  with ;i;; (where 

denotes the boolean difference of the cover C with respect 
to input x ) .  For the s-a-1 (s-a-0) fault at the PO, the 
detecting set is simply C ’ ( C ) .  

For a multi-output two-level circuit where no AND 
gate fans out to more than one PO, the detecting set for 
each fault is computed by treating each PO as a single- 
output two-level circuit and performing the calculations 
described above. Then for each fault at a PI that can be 
detected at more than one PO, its complete detecting set is 
formed by taking the union of its detecting sets at each 
PO. The detecting sets are represented as covers, so the 
union is formed by simply logically ORing the covers 
together. 
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2 . 2  Mapping Faults in Multilevel Circuit to 
Faults in Two-Level Circuit 

As was stated in Property 1, given a stuck-at fault in 
a multilevel circuit derived through algebraic factorization 
of a two-level circuit, there exists a set of stuck-at faults 
in the two-level circuit that is equivalent. One way to 
determine this “mapping” of faults in the multilevel 
circuit (“multilevel faults”) to faults in the two-level 
circuit (“two-level faults”) is to use a multilevel circuit 
representation called the equivalent normal form (ENF)  
which is described in [Armstrong 661 (see also 
[Devadas 921). The ENF of a circuit is a two-level 
representation in which each literal in the sum-of-products 
(SOP) expressions for each PO is annotated by its path 
through the circuit. It is best explained by looking at an 
example. In Fig. 1, a multilevel circuit is shown along 
with its ENF representation. The gates are numbered in 
topological order, and the ENF is constructed by visiting 
each gate in ascending order and replacing the gate with a 
SOP expression for the gate output in terms of the SOP 
expressions that exist for each of its inputs. When 
forming the SOP expression for each gate output, De 
Morgan’s laws and distributivity are used without making 
any Boolean reductions such as (a+a’= l), (a+a E a).  
(a.a = a). or (a.a’= 0), and the gate number is appended 
to the annotation list for each literal. For example, in the 
circuit in Fig. 1, the SOP expression at the output of 
gate 8 is ( E 8  + Fa), and at the output of gate 11 it is 
( C l l  D l l  E8,11 + C I 1  D I l  ). When all of the gates 
have been visited, a SOP expression with annotated 
literals will exist for each primary output; this constitutes 
the ENF of the multilevel circuit. In this paper, two 
syntactical additions are made to the ENF notation to 
simplify later definitions: PI’S are numbered (using 
numbers lower than any gate number) and inserted at the 
beginning of the annotation list for each ENF literal, and 
a prime sign is placed on a gate number if a logic 
inversion occurs in the gate. 

Figure 1. Example of Multilevel Circuit Represented 
in ENF 

Each ENF literal has the form l p  where the annotated 
list P specifies a path through the multilevel circuit. If a 
stuck-at fault occurs at some node in the multilevel 
circuit, the logic value at that node is fixed to either 
0 or 1. This changes the logic function of the circuit by 
fixing the logic value of each ENF literal whose path goes 
through that node to either 0 or 1 depending on the 
inversion parity of the path from the fault site to the 
primary output. Because it provides a simple relationship 
between a multilevel fault and the resulting faulty logic 
function, the ENF representation can be used to map a 
multilevel fault to an equivalent set of two-level faults. 
Before looking at an example, inversion parity needs to be 
defined 

Definition 3: The inversion parity of a path 
through a circuit is even (odd) if the number of logic 
inversions along the path is even (odd). 

The inversion parity for the path specified by an ENF 
literal’s annotated list P starting at PI g or gate output g. 
which will be denoted IP(P,g),  is even (odd) if the number 
of primed gate numbers greater than g in I‘ is even (odd). 
For example, if P is the annotated list for the ENF literal 
c],4’,6,7’,9, then / P ( P , l )  is even, IP(P,4) is odd, /P(P,(i)  is 
odd, IP(P,7) is even, and IP(P,9) is even. 

Now consider the circuit in Fig. 1. If the output of 
gate 8 is s-a-1, then the faulty logic function can be 
constructed by setting each ENF literal whose annotated 
list includes gate 8 to logic value 1 since the inversion 
parity along each path from gate 8 to a PO is even. Thus, 
E4,8,11,13 and F~,~ ,11 ,13  are effectively removed from the 
sum-of-products expression for Z 1 ,  and E4,8,12 and F5,8,12 

are removed from the sum-of-products expression for Z 2 .  
This faulty logic function is identical to the one that 
occurs if there were four s-a-1 faults in the two-level 
circuit at the inputs to the AND gates corresponding to 
the four literals that were removed. If the output of gate 8 
is s-a-0, then the faulty logic function is constructed by 
setting those same four literals to logic value 0. This is 
equivalent to s-a-0 faults in the two-level circuit at the 
inputs to the AND gates corresponding to the four literals. 
If a s-a-1 fault occurs at the input of gate 6 that comes 
from PI C(2), then each ENF literal whose annotated list 
includes both PI 2 and gate 6 is affected; the only such 
literal is C>,6,7,,,o,13. Notice that in this case, the 
inversion parity along the path from the fault site to the 
PO is odd, therefore the literal c;,6,7’,]0,13 is s-a-0 which 
is the opposite polarity from the fault which was s-a-1. 

Now, the mapping process will be formally defined. 
The operation fmulr  + F,,, maps a stuck-at fault in a 
multilevel circuit, fmu l f ,  to an equivalent set of faults in 
the two-level circuit, F,,, = { ftwo,l , ... , ftw,,,}. Each 
two-level fault,f,,,i, is a s-a-1 or s-a-0 fault at the input 
of an AND gate in the two-level circuit described by the 
ENF SOP expressions. For each PO, let each cube in its 
ENF SOP expression be ordered and each ENF literal in 
each cube be ordered, then s-a-O[z,iJ], s-a-l[z,i;], and 
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P[z,iJ], will denote the s-a-0 fault, s-a-1 fault, and 
annotated list, respectively, for the j-th ENF literal in the 
i-th cube of the ENF SOP expression for PO z. Using 
this notation, the mapping fmul t  -+ F,,, is derived as 
follows: 

iffmul, is a s-a-1 (s-a-0) fault at PI g or at the output 
of gate g, then 

F~~ = s-a-l[z,i,j1 I g E p[z,i,j] 
and IP (P[z,iJ, g) is even (odd) ] 

U { s-a-~[z,i,;l I g E P[Z,~,JI 
and IP ( P [ z , i j I ,  g) is odd (even) ) 

iffmul, is a s-a-1 (s-a-0) fault at the input of gate g 

I;,,, = { s-a-l[z,ijl I f~ P[Z,~JI ,  g E P [ Z , ~ J I ,  
that comes directly from PIfor gatef, then 

and IP (P[z,i,J,fl is even (odd) ] 
U { s-a-~[z,i,;l I f E  P[Z,~JI ,  g E P[Z,~JI ,  

and IP (P[z,ij],fl is odd (even) ) 

2 . 3  Computing Fault Detection Probabilities 
for Multilevel Circuit 

Givcn a fault in a multilevel circuit that is derived 
through algebraic factorization of a two-level circuit, the 
ENF can be used, as was shown, to map the multilevel 
fault to an equivalent set of faults in the two-level circuit, 
fmult + F,,,. Assuming that the detecting set for each 
faul t  in the initial two-level circuit has been computed, 
the next step is to compose the detecting set for the 
multilevel fault from the detecting sets for the two-level 
faults. If the multilevel fault is at a PI or PO, then the 
detecting set is just the same as the two-level detecting set 
for the same fault. For all other faults, the detecting set 
for the multilevel fault is composed by simply taking the 
union of the detecting sets for each two-level fault in F,,, 
however, there are two cases where this is not true. 

Case 1: If two or more faults in F,, are in the same 
PO function and cause literals in two non-disjoint cubes 
to be s-a-0. This case involves two overlapping cubes in 
the cover C for some PO, which are both removed by the 
multilevel fault. The two-level detecting sets assumed 
only one cube would be removed at a time, so their union 
may understate the actual detecting set. A simple example 
is a primary output function with two cubes, a b  + b c. 
The detecting set for a literal in cube a b  being s-a-0 is 
a b c’and the detecting set for a literal in cube b c being 
s-a-0 is a‘b c. If literals in both cubes are s-a-0, then the 
union of the detecting sets suggests ( a  b c ’, a ’b c ] , 
however, the full detecting set is { a  b c’, a‘b c, a b c ) .  
Not computing the full detecting set for this case always 
provides a lower bound on the fault detection probability. 
The full detecting set can be computed by adding in the 
missing tests. The missing tests can be found by forming 
the cover Q consisting of the overlapping cubes, and then 
taking the intersection of Q with (C - e)‘. Note that if a 
check is being made to see if fmull is r.p.r., then if the 
lower bound is above the r.p.r. threshold, it is not 
necessary to compute the full detecting set. 

-- Case 2; If there is reconvergent fan-out with different 
inversion parity, then it is possible for two or more faults 
in F,, to be in the same PO function and have opposite 
polarity, i.e., one or more is s-a-1 (causing cubes to 
expand) and one or more is s-a-0 (causing cubes to be 
removed). Then if an expanded cube is non-disjoint from 
a removed cube, part of the two-level detecting set for the 
remawed cube: may not detect the multilevel fault. This 
case involves a cube that expands such that it partially 
coveirs a cube that is removed thereby eliminating some of 
the tests for the removed cube. In this case, the union of 
the two-level detecting sets may overstate the detecting set 
for the multilevel fault. Since tests for the expanded 
cubes will always detect the multilevel fault, the union of 
the two-level detecting se~s  for the s-a-1 faults in F,, are 
a subset of the detecting set for the multilevel fault and 
hence form a lower bound. The full detecting set can be 
computed lby adding in the missing tests. The missing 
tests can be found by foriming the cover E consisting of 
the expanded cubes, and tlhen taking the intersection of E’ 
with the union of the detecting sets for the s-a-0 faults in 
Fwo; this gives the tests for the portion of the removed 
cubes that is not covered by the expanded cubes. As with 
case 1, if a check is being made to see if fmul ,  is r.p.r., 
then if the lower bound is above the r.p.r. threshold, it is 
not necessary 1.0 compute the full detecting set. 

Note that case 2 will not occur for algebraic factoring 
without thle use of the complement or where the 
complemenlt is used only if a factor and its complement 
fan out to different PO’s. This type of factoring will 
avoid reconvergent fan-out with different inversion parity 
except for the faults at the PI’s. However, the detecting 
sets for faults at the PI’s are computed in the two-level 
circuit as shown in Sec. 2.1, i.e., they are not computed 
by composiing detecting sets. Therefore, for this type of 
algebraic factoring, case 2 need not be considered. 

So, the. detecting set for the multilevel fault fmult is 
composed by laking the union of the two-level detecting 
sets for each fault in F,,,. If case 1 or 2 occurs, then 
some additional calculation may be required to get the full 
detecting set for fmull. After the detecting set for the 
multilevel lFaultfmul, has been composed, the last step is 
to determine the fault detection probability. Since the 
detecting set is represented as a cover, it is necessary to 
determine how many input combinations satisfy the cover 
(i.e., how many minterms are elements of some cube in 
the cover). This can be computed exactly by using an 
algorithm such1 as the one in [Falkowski 901 to make the 
cover disjoint and then summing up the sizes of each 
cube, or it can be estimated using the Karp-Luby 
algorithm [Karp 831 which is a Monte-Carlo algorithm 
for boolean functions in disjunctive normal form that runs 
in pollynomial time. The number of input combinations 
that detect the fault is then divided by the total number of 
input combinations, 2”, where n is the number of 
primary inputs, to give the fault detection probability. 
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3. RANDOM PATTERN TESTABILITY 
PRESERVING TRANSFORMATIONS 

The strategy in the proposed logic synthesis procedure 
is to first factor the initial two-level circuit so that it is 
random pattern testable, and then use random pattern 
testability preserving transformations to optimize the 
circuit without introducing r.p.r. faults. 

Definition 4: Let T be a transformation which 
transforms circuit K1 into circuit K2. If the minimum 
fault detection probability in K2 is greater than or equal to 
the minimum fault detection probability in K1, for some 
fault class F ,  then the transformation T is random pattern 
testability preserving for fault class F.  

Applying random pattern testability preserving 
transformations to a circuit that doesn't have any r.p.r. 
faults will never produce a circuit that has r.p.r. faults. 
The following theorem states that random pattern 
testability preserving transformations are a superset of 
test-set preserving transformations. 

Definition 5: If a test set includes a test for each 
fault in a circuit for some fault class F ,  then it is a 
complete test set with respect to fault class F .  

Definition 6: Let T be a transformation which 
transforms circuit KI into circuit Kz.  If any complete test 
set for K1 is also a complete test set for K2,  with respect 
to fault class F ,  then the transformation T is test-set 
preserving for fault class F.  

Theorem 1: If a transformation is test-set 
preserving for fault class F ,  then it is also random pattern 
testability preserving for fault class F.  

Proof: Consider faults in fault class F :  If a test-set 
preserving transformation is used to transform circuit KI 
into circuit K2, then any complete test set for KI is also a 
complete test set for K2. The detecting set of each 
fault in Kz must contain the detecting set of at least one 
fault in K1. If this were not the case, then it would be 
possible to construct a complete test set for KI that did 
not detect some fault in K z .  Therefore, the detection 
probability for each fault in K2 is greater than or equal to 
the detection probability of at least one fault in K I .  Thus, 
the minimum fault detection probability in K2 is greater 
than or equal to the minimum fault detection probability 
in K I .  

A number of test-set preserving transformations for 
single stuck-at faults have been identified in [Rajski 921 
and [Batek 921. Tree-covering technology mapping 
procedures [Keutzer 871, [Detjens 871, are test-set 
preserving for both single and multiple stuck-at faults 
[Hachtel 921. Based on Theorem 1, all of these 
transformations are random pattern testability preserving 
as well. 

Note that adding an observation point is random 
pattern testability preserving, however, adding a control 
point is not. It is possible for a control point to reduce 
the detection probability for some faults. This will be 
explained further in Sec. 5. 

4. LOGIC SYNTHESIS PROCEDURE 

The proposed logic synthesis procedure is described in 
this section. The procedure generates a multilevel 
implementation under the constraint that the detection 
probability for each fault is above a given threshold. 

Input: Two-level representation of circuit and 
minimum fault detection probability threshold 

Output: Multilevel circuit with no r.p.r. faults 

Step 1: Use a two-level minimizer to form a prime and 
irredundant cover for circuit 

Since algebraic factoring is used, this will ensure that 
no redundant single or multiple faults will occur in the 
multilevel implementation [Bryan 903. 

Step 2: Identify r.p.r. faults 
This is done by computing the fault detection 

probabilities (using the method described in Sec. 2) and 
comparing them with the given threshold. If the detection 
probability for a fault is below the threshold, then the 
fault is marked as r.p.r. 

Step 3: Identify algebraic factors that eliminate 
r.p.r. faults 

The two types of algebraic factors are kernels and 
common cubes [Brayton 871. Factoring out a common 
cube affects the detection probability of faults associated 
with each instance of the cube. Consider the example of 
extracting a common cube shown in Fig. 2. The 
detecting sets for each fault associated with the common 
cube are listed. In the original network, some of the 
faults associated with the common cube had a detection 
probability of k. For example, the s-a-1 fault on the 
input of gate 2 coming from primary input B can only be 
detected by one input combination, A B  'CD. However, 
after the common cube is extracted, all of the faults 
associated with the common cube have a detection 
probability of at least &. The technique described in 
Sec. 2 can be used to quickly check what the resulting 
detection probabilities for faults associated with a 
common cube would be if the cube were factored out: by 
so doing, cube factors that eliminate r.p.r. faults can be 
identified. 

A kernel k of an expression f is the quotient off and 
a cube d which is called the co-kernel; k = f I d orf = d k. 
Factoring out a kernel affects the detection probability for 
faults associated with each instance of co-kernel d, and if 
the kernel k is common to multiple expressions, then the 
detection probability of faults associated with each 
instance of the kernel k are also affected. Consider the 
example in Fig. 3. In the original network, all of the 
faults associated with the co-kernel have a detection 
probability of i$ , however, after the kernel K is extracted, 
all the faults associated with the co-kemel have a detection 
probability of &. If the kernel K is common to other 
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D 

D !* B 

Z l  

z 2  

DS [Bi, s-a-11 = A B’ C D 
DS [Cl,  s-a-l] = A B C’ D 
DS [BlCl,  s-a-01 = A B C D 
DS [B2, s-a-1] = A B’ C D’ 
DS [C2, s-a-l] = A B C’ 
DS [B2C2, s-a-O] = A B C 

D 

Cube Extract 
I 

B 
C 

DS [BO, s-a-1] = A B’ C 
DS [CO, S-a-1] = A B C’ 
DS [Y, s-a-1] = A B’ + A C’ 
DS [y, s-a-O] = A B C 

Figure 2. Example of Effect of Extracting a Common Cube on Detecting Sets 

A 
B wz D C 

DS [A2, S-a-1] = A’ B C’ D 
DS [B2, s-a-l] = A B’ C‘ D 
DS [A2B2, s-a-O] = A B C’ D 
DS [A3, s-a-1] = A’ B C D’ 
DS [B3, s-a-1] = A B’ C D’ 
DS [A3B3, s-a-01 = A B C D’ 

Kernel Extract 

Figure 3. Example of Effect of Extracting a1 Kernlel on Detecting Sets 

expressions, then it may fan out which would increase the 
observability of faults associated with it lhereby affecting 
their detection probabilities. Again, the technique in 
Sec. 2 can be used to quickly check how the affected 
detection probabilities would change if a kernel were 
extracted and therefore kernel factors that eliminate r.p.r. 
faults can be identified. 

During the normal kernel and cube extraction 
procedures in MIS [Brayton 871, kernels and common 
cubes are enumerated and chosen on the basis of literal 
count reduction. This same enumeration process can be 
used to find kernels and common cubes sol that each can be 
checked to see which, if any, r.p.r. faults would be 
eliminated if it were extracted. 

Step 4: Extract a set of factors that eliminate all 
r.p.r. faults and minimize literal count 
as much as possible 

Given the list of factors and thc r.p.r. faults that each 
eliminates, a set of these factors is extracted such that all 

z l  

z 2  

I 
I 

DS [As, s-a-1] = A‘ B C’ D + A‘ B C D’ 
DS [B5, s-a-1] = A B’ C’ D + A B’ C D’ 
DS [A5B5, s-a-0] = A B C’ D + A B C D’ 
DS [IC, s-a-1] = A B C D + A B C’ D’ 
DS [EL, s-a-0] = A B C’ D + A B C D’ 

rqx .  faults are eliminated, and as a secondary goal, the 
literal count is reduced as much as possible. Note that 
some factors which actually increase the literal count may 
in fact be lchosen to satisfy the primary criteria of 
eliminating ,all r.p.r. faults. Of course, in some cases it 
may not be possible to eliminate all r.p.r. faults by 
algebraic factoring alone. In those cases, test points will 
need to be inserted. This is discussed in Sec. 5 where an 
automated procedure for inserting test points is presented 
as an extension to the techniques used in this step. 

Step 5: Onltirrnize with random pattern testability: 
=:serving logic transformations 

As was :shown in Sec. 3, random pattern testability 
preserving logic transformations may be performed 
without concern of introducing new r.p.r. faults. 
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5.  TEST POINT INSERTION DURING 
SYNTHESIS 

As the minimum fault detection probability threshold 
is increased for a circuit, a point is reached where some 
r.p.r. faults cannot be eliminated through algebraic 
factoring. When this is the case, test. points are inserted 
in order to generate an implementation that satisfies the 
minimum detection probability constraint. Test inputs 
(for control points) and/or test outputs (for observation 
points) are added in such a way tha.t they can be used 
during testing to increase fault detection probabilities, but 
during normal operation the test inputs can be set to a 
specific logic value that allows the circuit to operate as 
intended. The advantage of adding test points during 
synthcsis is that factors can be specially chosen so that a 
single test point can eliminate a number of r.p.r. faults. 
In post-synthesis test point insertion, factoring has already 
been completed so it is fortuitous if a test point can be 
placcd so as to eliminate multiple r.p.r. faults. 

Test point insertion is performed during step 4 of the 
procedure in Sec. 4. During that step, an attempt is made 
to find a set of factors that eliminate all r.p.r. faults. If it 
is found that some r.p.r. faults cannot be eliminated with 
factoring alone then one or more test points must be 
inscrted to eliminate these faults. One cause of r.p.r. 
faults are cubes with large fan-in which result in poor 
observability at their inputs and poor controllability at 
their outputs, so test points are needed to “break up” 
these cubcs. By finding common factors among large 
fan-in cubes, a single test point can be inserted to break 
up several large fan-in cubes thus eliminating a number of 
r.p.r. faults. Examples of factors that enable this are 
shown in Figs. 4, 5 ,  and 6. In Fig. 4, the general form 
can be seen for cxtracting a kernel and adding an 
observation point at the output of the kernel. Since a 
kcrncl breaks up multiple cubes, this type of factoring 
increases the effectiveness of a single observation point. 
Extracting a common cube c and adding an observation 
point at its output does not help, however, because the 
controllability at the output of c is not improved so the 
fault detection probabilities associated with the cubes for 
which c is a fan-in are not improved. In Fig. 5 ,  the 
general form can be seen for extracting either a cube or a 
kcrnel factor Y and adding a control point at its output. 
The control point improves the co:ntrollability at the 
output of Y and thus improves the observability of the 
inputs of each cube for which Y is a fan-in. In Fig. 6, 
the general form can be seen for extracting either a cube or 
a kernel faclor Y and adding both a control point and an 
observation point. In the example in Fig. 4, a small fan- 
in cube provided good controllability at the output of the 
kernel, and in the example in Fig. 5 ,  a small fan-in cube 
provided good observability at the output of the extracted 
cubc Y ,  however, in the example of Fig. 6, all of the 
cubes have large fan-in, so both a control point and an 
observation point are required. 

Extracting a common cube and adding a control point 
and observation point is an effeciiive technique for 

A 

H 
I 
J 
A 
B 
K L Eb A 

Min. Detect. Prob. = 180 4096 Min. Detect. Prob. = 45 4096 
Figure 4. Example of Kernel Extraction with 

Observation Point 

8% 
Ctr-point 

Min. Detect. Rob. = 2 Min. Detect. Prob. = - 2.56 - - - 128 4096 8192 4096 
Figure 5. Example of Cube Extraction with Control 

Point (same form applies if Y is a kernel) 

Min. Detect. Prob. = 2 
Figure 6. Example of Cube Extraction with Control and 

Observation Point (same form applies if Y is a kernel) 

eliminating all of the r.p.r. faults with few test points. 
The reason for this is that it is often possible to find a 
common cube among many large fan-in cubes, thus 
enabling a single control and observation point to break 
up several large fan-in cubes. In some circuits, only a few 
common cubes need to be factored out and augmented with 
test points to break up all the large fan-in cubes and 
eliminate all r p r .  faults. In other circuits, good kernels 
exist such that only observation points are needcd to 

Min. Detect. Prob. = 448 = 224 
4096 8192 4096 
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eliminate all r.p.r. faults. So, it is advantageous to 
consider all of the options when inserting test points 
during synthesis. 

In the proposed logic synthesis procedure, test point 
insertion is performed by first identifying factors that 
allow a single test point to eliminate several r.p.r. faults 
that require test points (i.e., that cannot be eliminated by 
factoring alone). These factors can be. found by again 
enumerating the kernels and common cubes and 
computing the relevant fault detection probabilities to 
determine which r.p.r. faults each factor plus a control 
point or observation point or both will eliminate. Once 
all of these factors have been identified, a set of them are 
chosen and augmented by the appropriate test points such 
that all r.p.r. faults requiring test points are eliminated 
using as few test points as possible. 

Computing the fault detection probabilities when 
identifying which r.p.r. faults each factor plus test point 
eliminates is complicated by the fact that test points 
change the two-level detecting sets. An observation point 
adds a new PO, so its ENF and two-level detection sets 
must be computed in order to use the technique described 
in Sec. 2. Control points pose a more difficult challenge 
because the ENF and two-level detecting se& change for 
each PO that the control point has a. path to. This 
presents two problems: (1) adding a control point can 
lower the detection probability for any fault that has a 
path to some primary output that the control point has a 
path to, and (2) recomputing the two-level detecting sets 
each time a control point is considered can be 
computationally expensive. The first problem need not be 
a major concern during the factor selection process. In 
most cases, adding control points will not significantly 
lower any fault detection probabilities. At one logic 
value, h e  control point has no effect on the circuit so the 
detection probabilities remain the same. At the other 
logic value, the control point can raise or lower the 
detection probabilities for some faults. Thus adding .a 
control point can reduce the detection .probability for a 
fault by no more than a factor of 2, but il. can increase the 
detection probability many times over. After a control 
point is added, fault detection probabilities can be verified 
to make sure that none of them have slipped below the 
minimum detection probability threshold. In the rare 
event that this has occurred, the procedure can backtrack 
and find an alternative. Regarding the second problem of 
recomputing two-level detecting sets, only the two-level 
detecting sets that are needed to check if any r.p.r. faults 
are eliminated by the control point need 1.0 be recomputed 
during the factor selection process. 

Another important issue is minimizing the number of 
test inputs and test outputs that are needed to support the 
test points. Each test input and test output has some 
overhead associated with it. Each test input requires larger 
input patterns to be generated, and each test output 
requires more output response analysis. Observation 

points can be “condensed” using techniques such as those 
in [Fox 771, to reduce the number of test outputs. If 
at-speed testing is to be used, care must be taken in 
designing the condensation network so that the delay isn’t 
longeir than a clock period. When the logic synthesis 
procedure adds an observation point, a check can be made 
to see if it can be condensed without significantly reducing 
any fault detection probabilities. Multiple control points 
can bt: derived from the same test input. When the logic 
synthesis procedure adds a new control point, a check can 
be made to see if it can be derived from one of the 
previously ,added primary inputs without significantly 
reducing any fault detection probabilities. 

6. RESULTS 

The logic synthesis procedure described in this paper 
has bcen incorporated into SIS 1.1 (an updated version of 
MIS [Brayton 871) and used to generate multilevel 
impleimentations for several benchmark circuits that have 
long random pattern test lengths. The results are shown 
in Table 1. Under the first. major heading, information is 
given about each benchmark circuit: name, number of 
primary inputs, and number of primary outputs. Under 
the next three major headings, results are given for the 
multilevel circuits generated using two scripts that are 
distributed with SIS, script.algebraic, which uses only 
algebraic transformations, and script.rugged, which 
uses both boolean and algebraic transformations, and the 
multilevel circuits generated using the proposed logic 
synthesis procedure with different minimum fault 
detection probability constraints. Three things are shown 
under each of tlnese major headings: 

Pdet (log2) - Lowest fault detection probability for 
any fault i n  the circuit. It is computed exactly and 
expressed as a log base 2. 

Test Length - Test length which was obtained by 
averaging the number of random patterns needed to reach 
100% fault coverage for 50 simulation experiments using 
LFSR’s with 5 different characteristic polynomials and 10 
different seeds. The number of stages in the LFSR was 
equal to the number of PI’S. 

For the multilevel circuits generated using the proposed 
procedure, the inumber of test inputs and test outputs that 
were added to Ihe circuit (necessitated by test points) are 
listed under the columns labeled Test PI and Test PO. 
Control points were derived from the same test input 
when possible, and observation points were condensed 
when possible. The area for the condensation network is 
included in the literal count. Under the last two major 
headings, the multilevel circuit implementations generated 
by the proposed procedure are compared with those 
generated by the algebraic and rugged scripts. The first 

lits - Factored form literal count for the circuit. 
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Table 1. Results for Benchmark Circuits 

column gives the test length reduction factor, and the 
second gives the percentage of area overhead. They are 
comDuted as follows: 

script test length) ( 
(procedure test length) Test Length Reduction Factor = 

x 100 rocedure lits) - (script lits) 
% Area Overhead = (’ (script lits) 

The minimum fault detection probability constraints 
were chosen for the proposed procedure to show a range of 
area versus test length reduction tradeoffs. For almost all 
the circuits, implementations were found which reduced 
the test length by at least a factor 10 with only one test 
output and in some cases one test input. In some circuits, 
very little area overhead was required to achieve a 
significant reduction in random pattern test length. In 
comparing the implementations generated by the algebraic 
script versus the rugged script, the rugged script produced 
smaller implementations, however, in some cases the 
required test length is longer. This is due to the fact that 
the rugged script uses boolean transformations which may 
generate circuit structures that have faults with lower 
detection probabilities than the original starting point. 

4.7% 36 
11% 275 

0.2% 2.1 
0.2% 10 
1.4% 25 
5.5% 8.1 
12% 31 
17% 131 
12% 1.8 
15% 4.7 
21% 11 
2.4% 1.2 
17% 4.6 
8.7% 7.3 
33% 14 
0% 2.5 
11% 4.6 
21% 38 
0% 3.7 
25% 24 
12% 3.2 
24% 6.1 
48% 182 
3.9% 36 
14% 87 

4.4% 3.2 
11% 6.7 

Area 
lvrhd 
28% 
33% 
41% 
1.4% 
1.4% 
2.6% 
9.5% 
17% 
22% 
49% 
55% 
62% 
43% 
63 % 
18% 
44 96 
6.3% 
18% 
28% 
10% 
38% 
26% 
39% 
61% 
10% 
21% 
20% 
27 % 

- - 

- 

- 

- 

- 
- 

- 

- 

- 

- 

- 

- 
The minimum fault detection probability constraint 

that could be satisfied without inserting test points 
(i.e., no test inputs or test outputs) was found for each 
circuit. For most circuits, no appreciable improvement 
was obtained compared with the algebraic script, hence 
results for this case are shown only for duke2, in2, misg, 
and vg2. 

By carefully choosing kernels to increase 
controllability, the proposed procedure was able to use 
only observation points to significantly reduce the random 
pattern test length for many of the circuits. The 
observation points were condensed so that only one test 
output was needed. When control points were required, it 
was often possible to share test inputs. In almost all 
cases, only one test input was needed. 

7. SUMMARY AND CONCLUSIONS 

An automated logic synthesis procedure for designing 
random pattern testable circuits was presented in this 
paper. The procedure relies on properties of algcbraic 
factoring to simplify fault detection probability 
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calculations. By so doing, algebraic factors that eliminate 
r.p.r. faults can be quickly identified. If it is not possible 
to eliminate some r.p.r. faults via algebraic factoring 
alone, then test points are inserted during synthesis. This 
enables factors to be chosen so as to minimize the number 
of test points that are required. Results show significant 
decreases in random pattern test length with few test 
inputs and outputs and small area overhead. 

This method for synthesizing randorn pattern testable 
circuits requires a two-level representation as a starting 
point thereby limiting its application to control circuits 
and other circuits that can be flattened (i.e., two-level 
representation is not exponential). Control circuits are an 
important application because they can contain large 
fan-in cubes that cause r.p.r. faults. Note that this method 
can be used for non-flattenable circuits by partitioning the 
circuit into flattenable logic blocks which are logically 
isolated during testing. 

Another limitation of this method is that it uses only 
algebraic transformations. However, in a large system 
design, this method need only be used to generate the 
logic blocks for which other synthesis methods do not 
produce random pattern testable implementations. Thus, 
the area overhead associated with algebraic transformations 
is incurred for only a portion of the overall design. 

An area for future research is to extend the techniques 
described in this paper to allow for a multilevel starting 
point and the use of boolean factoring. 
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