
AUTOMATED LOGIC SYNTHESIS OF RANDOM PATTERN
TESTABLE CIRCUITS

Nur A. Touba and Edward J. McCluskey

Center for Reliable Computing
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305-4055

ABSTRACT

Previous approaches to designing random pattem
testable circuits use post-synthesis test point insertion to
eliminate random pattern resistant (r.p.r.) faults. The
approach taken in this paper is to consider random pattern
testability during logic synthesis. An automated logic
synthesis procedure is presented which takes as an input a
two-level representation of a circuit and a constraint on the
minimum fault detection probability (threshold below
which faults are considered r.p.r.) and generates a
multilevel implementation that satisfies the constraint
while minimizing the literal count. The procedure
identifies r.p.r. faults and attempts to “eliminate” them
through algebraic factoring. If that is not possible, then
test points are inserted during the synthesis process in a
way that minimizes the number of test points that are
required. Results are shown for benchmark circuits which
indicate that the proposed procedure can generally reduce
the random pattern test length by at least an order of
magnitude with only a small area overhead.

1. INTRODUCTION

Random pattern testing has a number of well-known
advantages: no deterministic test set generation cost, no
test pattern storage requirement, higher coverage of
non-targeted faults, and high suitability for built-in self
test (BIST). The obvious drawback to random pattern
testing is that longer test lengths are needed. For some
circuits, the test length required to get high fault coverage
with random patterns is unacceptably long.

The random pattern test length required to give a
particular fault coverage for a circuit depends on the
detection probability of each fault in the circuit. The
detection probability of a fault is equal to the number of
input patterns that detect the fault divided by the total
number of input patterns, 2n, where n is the number of
primary inputs. Faults with very low detection
probabilities are said to be random pattern resistant (r.p,r.)
because they are hard to detect with random patterns
[Eichelberger 831. A circuit that does not have any r.p.r.
faults is random pattern testable.

Given a circuit structure that has r,p.r. faults, two
general solutions have been proposed. One is to use

weighted pattern generation to bias the input patterns
towards those that detect the r.p.r. faults. A drawback to
this approach is that on-chip weighted pattern generators
can be costly to implement, especially when multiple
weight sets are required. The other alternative is to
modify the circuit structure by adding test points to
increase the detection probability of the r.p.r. faults so
that they are no longer r.p.r. (i.e., “eliminate” the r.p.r.
faults). This requires identifying the r.p.r. faults and
trying to add as few test points as possible to eliminate
them. Since a single test point can change the detection
probability of a number of faults, optimal placement of
test points has been an active area of research
[Krishnamurthy 871, [Iyengar 893, [Seiss 911,
[Savaria 911, [Youssef 931.

Whereas previous methods for designing random
pattem testable circuits involve post-synthesis test point
insertion, this paper approaches the problem by
considering random pattern testability during logic
synthesis. An automated logic synthesis procedure is
described which takes as an input a two-level
representation of a circuit and a constraint on the
minimum fault detection probability and generates a
multilevel circuit implementation that satisfies the
constraint while minimizing the literal count. The
minimum fault detection probability constraint essentially
defines a threshold below which a fault is considered r.p.r.
The central strategy is to identify any r.p.r. faults in the
two-level starting point, and then find algebraic factors
that eliminate these faults. Once the r.p.r. faults have
been eliminated, normal logic optimization using random
pattern testability preserving logic transformations
(defined in Sec. 3) can then proceed since such
transformations will not introduce new r.p.r. faults.
Thus, the initial selection of algebraic factors has as its
primary goal the elimination of r.p.r. faults, and then once
all the r.p.r. faults have been eliminated, subsequent
factors are chosen on the basis of reducing the literal count
or optimizing for other synthesis criteria (e.g., delay).

As the minimum fault detection probability threshold
is increased, a point is reached where some r.p.r. faults
cannot be eliminated by algebraic factoring alone. When
this is the case, test points are inserted during the
synthesis process in order to generate a random pattern
testable implementation. Factors are chosen to enable
each test point to eliminate several r.p.r. faults so that the

Paper 6.3
174

INTERNATIONAL TEST CONFERENCE 1994
0-7803-21 02-2/94 $4.00 1994 IEEE

total number of test points needed is minimized. Results
are shown which indicate that the minimum fault
detection probability can be significantly increased by
adding just a few test points during synthesis. Thus, the
procedure described in this paper can be used to design
circuits which require a much shorter random pattern test
length without substantial overhead.

The paper is organized as follows: In Sec. 2, a
technique that utilizes special properties of algebraic
factorization to efficiently compute fault detection
probabilities is described. In Sec. 3, random pattern
testability preserving transformations are defined and are
shown to be a superset of test-set preserving
transformations. In Sec. 4, the proposed logic synthesis
procedure is presented. In Sec. 5 , an automated procedure
is described for inserting test points during the synthesis
process. In Sec. 6, results for benchmark circuits are
shown and discussed. Section 7 is a summary and
conclusion.

The following terminology is used in this paper: A
literal is a boolean variable or its complement. A cube is
a set of literals interpreted here as a product of literals. A
cover is a set of cubes interpreted here as a sum-of-
products expression.

2. COMPUTING FAULT DETECTION
PROBABILITIES

The proposed logic synthesis procedure involves
identifying r.p.r. faults and finding factors that eliminate
these faults. This requires computing fault detection
probabilities which is an NP-hard problem
[Krishnamurthy 861. Many methods exist for trading off
accuracy to reduce computation time. However, during
logic synthesis, the structure of the circuit is constantly
changing which presents additional difficulty. To cope
with this problem, the proposed procedure relies on the
following property of algebraic factorization.

Definition 1: The detecting set for a fault is the
set of input patterns that detect the fault.

Definition 2: Two faults are equivalent if they
have the same detecting set.

Property 1: Each stuck-at fault in a multilevel
circuit derived through algebraic factorization of a
two-level circuit is equivalent to some set of stuck-at
faults in the original two-level circuit.

Hachtel et al. proved this property for algebraic
factoring without the use of the complement [Hachtel92].
Bryan et al. showed that this property holds for a
constrained version of algebraic factoring with the use of
the complement (see [Bryan 901 for details).

This property provides some important advantages in
computing fault detection probabilities. Cube calculus
operations can be used to find the detecting set (represented
as a cover) of each fault in the initial two-level circuit.
These detecting sets can then be used to quickly compute

the detection probability of any fault in any multilevel
circuit derived through algebraic factorization. Thus, the
key feature is that the detecting sets for the initial
two-level circuit need only be computed once, and then
they can be used to compute fault detection probabilities
during any stage of the factoring process. This technique
will be explained in detail.

2 . 1 Computing Detecting Sets in a
Tw 0- Le 11 el Circuit

The detecting set for a fault is computed by finding
the faulty logic function, logic function of the circuit in
the presence of the fault, and comparing it with the
fault-free logic function, logic function of the circuit
without any faults. The detecting set is equal to the set of
input vectors for which the faulty logic function differs
from the fault-free logic function.

Given the cover C corresponding to a single-output
two-level circuit (i.e., each cube in C corresponds to an
AND gate in the circuit), a cover for the detecting set of
each fault in the circuit can be computed using cube
calculus operations. Each fault in a two-level circuit,
with the exception of the faults at the primary inputs
(PI’S) and prim,ary output (PO), is equivalent to an input
of an AND gate being stuck-at-1 (s-a-1) or the output of
an AND gate being stuck-at-0 (s-a-0) and hence causes a
faulty logic function in which a cube in C either expands
or is removed. The faulty logic function for a s-a-1 fault
at the input of an AND gate can be found by expanding
the corresponding cube in C by removing the literal that
is s-a-l. The detecting set is given by the intersection of
the expanded cube with the complement of the cover C’
since this gives the input vectors for which the faulty
logic function differs from the fault-free logic function.
The faulty logic function for a s-a-0 fault at the output of
an AND gate can be computed by removing the
corresponding cube d in the cover C. Let (C - d)’denote
the complement of the cover formed by C minus the
removed cube ti, then the detecting set is given by the
intersection of ihe removed cube d with (C - d)’. For a
s-a-1 (s-a-0) fault at primary input x , the detecting set is

dC dC given by the intersection of x ’ (x) with ;i;; (where

denotes the boolean difference of the cover C with respect
to input x) . For the s-a-1 (s-a-0) fault at the PO, the
detecting set is simply C ’ (C) .

For a multi-output two-level circuit where no AND
gate fans out to more than one PO, the detecting set for
each fault is computed by treating each PO as a single-
output two-level circuit and performing the calculations
described above. Then for each fault at a PI that can be
detected at more than one PO, its complete detecting set is
formed by taking the union of its detecting sets at each
PO. The detecting sets are represented as covers, so the
union is formed by simply logically ORing the covers
together.

Paper 6.3
175

2 . 2 Mapping Faults in Multilevel Circuit to
Faults in Two-Level Circuit

As was stated in Property 1, given a stuck-at fault in
a multilevel circuit derived through algebraic factorization
of a two-level circuit, there exists a set of stuck-at faults
in the two-level circuit that is equivalent. One way to
determine this “mapping” of faults in the multilevel
circuit (“multilevel faults”) to faults in the two-level
circuit (“two-level faults”) is to use a multilevel circuit
representation called the equivalent normal form (ENF)
which is described in [Armstrong 661 (see also
[Devadas 921). The ENF of a circuit is a two-level
representation in which each literal in the sum-of-products
(SOP) expressions for each PO is annotated by its path
through the circuit. It is best explained by looking at an
example. In Fig. 1, a multilevel circuit is shown along
with its ENF representation. The gates are numbered in
topological order, and the ENF is constructed by visiting
each gate in ascending order and replacing the gate with a
SOP expression for the gate output in terms of the SOP
expressions that exist for each of its inputs. When
forming the SOP expression for each gate output, De
Morgan’s laws and distributivity are used without making
any Boolean reductions such as (a+a’= l), (a+a E a).
(a.a = a). or (a.a’= 0), and the gate number is appended
to the annotation list for each literal. For example, in the
circuit in Fig. 1, the SOP expression at the output of
gate 8 is (E 8 + Fa), and at the output of gate 11 it is
(C l l D l l E8,11 + C I 1 D I l). When all of the gates
have been visited, a SOP expression with annotated
literals will exist for each primary output; this constitutes
the ENF of the multilevel circuit. In this paper, two
syntactical additions are made to the ENF notation to
simplify later definitions: PI’S are numbered (using
numbers lower than any gate number) and inserted at the
beginning of the annotation list for each ENF literal, and
a prime sign is placed on a gate number if a logic
inversion occurs in the gate.

Figure 1. Example of Multilevel Circuit Represented
in ENF

Each ENF literal has the form l p where the annotated
list P specifies a path through the multilevel circuit. If a
stuck-at fault occurs at some node in the multilevel
circuit, the logic value at that node is fixed to either
0 or 1. This changes the logic function of the circuit by
fixing the logic value of each ENF literal whose path goes
through that node to either 0 or 1 depending on the
inversion parity of the path from the fault site to the
primary output. Because it provides a simple relationship
between a multilevel fault and the resulting faulty logic
function, the ENF representation can be used to map a
multilevel fault to an equivalent set of two-level faults.
Before looking at an example, inversion parity needs to be
defined

Definition 3: The inversion parity of a path
through a circuit is even (odd) if the number of logic
inversions along the path is even (odd).

The inversion parity for the path specified by an ENF
literal’s annotated list P starting at PI g or gate output g.
which will be denoted IP(P,g), is even (odd) if the number
of primed gate numbers greater than g in I‘ is even (odd).
For example, if P is the annotated list for the ENF literal
c],4’,6,7’,9, then / P (P , l) is even, IP(P,4) is odd, /P(P,(i) is
odd, IP(P,7) is even, and IP(P,9) is even.

Now consider the circuit in Fig. 1. If the output of
gate 8 is s-a-1, then the faulty logic function can be
constructed by setting each ENF literal whose annotated
list includes gate 8 to logic value 1 since the inversion
parity along each path from gate 8 to a PO is even. Thus,
E4,8,11,13 and F~,~ ,11 ,13 are effectively removed from the
sum-of-products expression for Z 1 , and E4,8,12 and F5,8,12

are removed from the sum-of-products expression for Z 2 .
This faulty logic function is identical to the one that
occurs if there were four s-a-1 faults in the two-level
circuit at the inputs to the AND gates corresponding to
the four literals that were removed. If the output of gate 8
is s-a-0, then the faulty logic function is constructed by
setting those same four literals to logic value 0. This is
equivalent to s-a-0 faults in the two-level circuit at the
inputs to the AND gates corresponding to the four literals.
If a s-a-1 fault occurs at the input of gate 6 that comes
from PI C(2), then each ENF literal whose annotated list
includes both PI 2 and gate 6 is affected; the only such
literal is C>,6,7,,,o,13. Notice that in this case, the
inversion parity along the path from the fault site to the
PO is odd, therefore the literal c;,6,7’,]0,13 is s-a-0 which
is the opposite polarity from the fault which was s-a-1.

Now, the mapping process will be formally defined.
The operation fmulr + F,,, maps a stuck-at fault in a
multilevel circuit, fmu l f , to an equivalent set of faults in
the two-level circuit, F,,, = { ftwo,l , ... , ftw,,,}. Each
two-level fault,f,,,i, is a s-a-1 or s-a-0 fault at the input
of an AND gate in the two-level circuit described by the
ENF SOP expressions. For each PO, let each cube in its
ENF SOP expression be ordered and each ENF literal in
each cube be ordered, then s-a-O[z,iJ], s-a-l[z,i;], and

Paper 6.3
176

P[z,iJ], will denote the s-a-0 fault, s-a-1 fault, and
annotated list, respectively, for the j-th ENF literal in the
i-th cube of the ENF SOP expression for PO z. Using
this notation, the mapping fmul t -+ F,,, is derived as
follows:

iffmul, is a s-a-1 (s-a-0) fault at PI g or at the output
of gate g, then

F~~ = s-a-l[z,i,j1 I g E p[z,i,j]
and IP (P[z,iJ, g) is even (odd)]

U { s-a-~[z,i,;l I g E P[Z,~,JI
and IP (P [z , i j I , g) is odd (even))

iffmul, is a s-a-1 (s-a-0) fault at the input of gate g

I;,,, = { s-a-l[z,ijl I f~ P[Z,~JI , g E P [Z , ~ J I ,
that comes directly from PIfor gatef, then

and IP (P[z,i,J,fl is even (odd)]
U { s-a-~[z,i,;l I f E P[Z,~JI , g E P[Z,~JI ,

and IP (P[z,ij],fl is odd (even))

2 . 3 Computing Fault Detection Probabilities
for Multilevel Circuit

Givcn a fault in a multilevel circuit that is derived
through algebraic factorization of a two-level circuit, the
ENF can be used, as was shown, to map the multilevel
fault to an equivalent set of faults in the two-level circuit,
fmult + F,,,. Assuming that the detecting set for each
faul t in the initial two-level circuit has been computed,
the next step is to compose the detecting set for the
multilevel fault from the detecting sets for the two-level
faults. If the multilevel fault is at a PI or PO, then the
detecting set is just the same as the two-level detecting set
for the same fault. For all other faults, the detecting set
for the multilevel fault is composed by simply taking the
union of the detecting sets for each two-level fault in F,,,
however, there are two cases where this is not true.

Case 1: If two or more faults in F,, are in the same
PO function and cause literals in two non-disjoint cubes
to be s-a-0. This case involves two overlapping cubes in
the cover C for some PO, which are both removed by the
multilevel fault. The two-level detecting sets assumed
only one cube would be removed at a time, so their union
may understate the actual detecting set. A simple example
is a primary output function with two cubes, a b + b c.
The detecting set for a literal in cube a b being s-a-0 is
a b c’and the detecting set for a literal in cube b c being
s-a-0 is a‘b c. If literals in both cubes are s-a-0, then the
union of the detecting sets suggests (a b c ’, a ’b c] ,
however, the full detecting set is { a b c’, a‘b c, a b c) .
Not computing the full detecting set for this case always
provides a lower bound on the fault detection probability.
The full detecting set can be computed by adding in the
missing tests. The missing tests can be found by forming
the cover Q consisting of the overlapping cubes, and then
taking the intersection of Q with (C - e)‘. Note that if a
check is being made to see if fmull is r.p.r., then if the
lower bound is above the r.p.r. threshold, it is not
necessary to compute the full detecting set.

-- Case 2; If there is reconvergent fan-out with different
inversion parity, then it is possible for two or more faults
in F,, to be in the same PO function and have opposite
polarity, i.e., one or more is s-a-1 (causing cubes to
expand) and one or more is s-a-0 (causing cubes to be
removed). Then if an expanded cube is non-disjoint from
a removed cube, part of the two-level detecting set for the
remawed cube: may not detect the multilevel fault. This
case involves a cube that expands such that it partially
coveirs a cube that is removed thereby eliminating some of
the tests for the removed cube. In this case, the union of
the two-level detecting sets may overstate the detecting set
for the multilevel fault. Since tests for the expanded
cubes will always detect the multilevel fault, the union of
the two-level detecting se~s for the s-a-1 faults in F,, are
a subset of the detecting set for the multilevel fault and
hence form a lower bound. The full detecting set can be
computed lby adding in the missing tests. The missing
tests can be found by foriming the cover E consisting of
the expanded cubes, and tlhen taking the intersection of E’
with the union of the detecting sets for the s-a-0 faults in
Fwo; this gives the tests for the portion of the removed
cubes that is not covered by the expanded cubes. As with
case 1, if a check is being made to see if fmul , is r.p.r.,
then if the lower bound is above the r.p.r. threshold, it is
not necessary 1.0 compute the full detecting set.

Note that case 2 will not occur for algebraic factoring
without thle use of the complement or where the
complemenlt is used only if a factor and its complement
fan out to different PO’s. This type of factoring will
avoid reconvergent fan-out with different inversion parity
except for the faults at the PI’s. However, the detecting
sets for faults at the PI’s are computed in the two-level
circuit as shown in Sec. 2.1, i.e., they are not computed
by composiing detecting sets. Therefore, for this type of
algebraic factoring, case 2 need not be considered.

So, the. detecting set for the multilevel fault fmult is
composed by laking the union of the two-level detecting
sets for each fault in F,,,. If case 1 or 2 occurs, then
some additional calculation may be required to get the full
detecting set for fmull. After the detecting set for the
multilevel lFaultfmul, has been composed, the last step is
to determine the fault detection probability. Since the
detecting set is represented as a cover, it is necessary to
determine how many input combinations satisfy the cover
(i.e., how many minterms are elements of some cube in
the cover). This can be computed exactly by using an
algorithm such1 as the one in [Falkowski 901 to make the
cover disjoint and then summing up the sizes of each
cube, or it can be estimated using the Karp-Luby
algorithm [Karp 831 which is a Monte-Carlo algorithm
for boolean functions in disjunctive normal form that runs
in pollynomial time. The number of input combinations
that detect the fault is then divided by the total number of
input combinations, 2”, where n is the number of
primary inputs, to give the fault detection probability.

Paper 6.3
177

3. RANDOM PATTERN TESTABILITY
PRESERVING TRANSFORMATIONS

The strategy in the proposed logic synthesis procedure
is to first factor the initial two-level circuit so that it is
random pattern testable, and then use random pattern
testability preserving transformations to optimize the
circuit without introducing r.p.r. faults.

Definition 4: Let T be a transformation which
transforms circuit K1 into circuit K2. If the minimum
fault detection probability in K2 is greater than or equal to
the minimum fault detection probability in K1, for some
fault class F , then the transformation T is random pattern
testability preserving for fault class F.

Applying random pattern testability preserving
transformations to a circuit that doesn't have any r.p.r.
faults will never produce a circuit that has r.p.r. faults.
The following theorem states that random pattern
testability preserving transformations are a superset of
test-set preserving transformations.

Definition 5: If a test set includes a test for each
fault in a circuit for some fault class F , then it is a
complete test set with respect to fault class F .

Definition 6: Let T be a transformation which
transforms circuit KI into circuit Kz. If any complete test
set for K1 is also a complete test set for K2, with respect
to fault class F , then the transformation T is test-set
preserving for fault class F.

Theorem 1: If a transformation is test-set
preserving for fault class F , then it is also random pattern
testability preserving for fault class F.

Proof: Consider faults in fault class F : If a test-set
preserving transformation is used to transform circuit KI
into circuit K2, then any complete test set for KI is also a
complete test set for K2. The detecting set of each
fault in Kz must contain the detecting set of at least one
fault in K1. If this were not the case, then it would be
possible to construct a complete test set for KI that did
not detect some fault in K z . Therefore, the detection
probability for each fault in K2 is greater than or equal to
the detection probability of at least one fault in K I . Thus,
the minimum fault detection probability in K2 is greater
than or equal to the minimum fault detection probability
in K I .

A number of test-set preserving transformations for
single stuck-at faults have been identified in [Rajski 921
and [Batek 921. Tree-covering technology mapping
procedures [Keutzer 871, [Detjens 871, are test-set
preserving for both single and multiple stuck-at faults
[Hachtel 921. Based on Theorem 1, all of these
transformations are random pattern testability preserving
as well.

Note that adding an observation point is random
pattern testability preserving, however, adding a control
point is not. It is possible for a control point to reduce
the detection probability for some faults. This will be
explained further in Sec. 5.

4. LOGIC SYNTHESIS PROCEDURE

The proposed logic synthesis procedure is described in
this section. The procedure generates a multilevel
implementation under the constraint that the detection
probability for each fault is above a given threshold.

Input: Two-level representation of circuit and
minimum fault detection probability threshold

Output: Multilevel circuit with no r.p.r. faults

Step 1: Use a two-level minimizer to form a prime and
irredundant cover for circuit

Since algebraic factoring is used, this will ensure that
no redundant single or multiple faults will occur in the
multilevel implementation [Bryan 903.

Step 2: Identify r.p.r. faults
This is done by computing the fault detection

probabilities (using the method described in Sec. 2) and
comparing them with the given threshold. If the detection
probability for a fault is below the threshold, then the
fault is marked as r.p.r.

Step 3: Identify algebraic factors that eliminate
r.p.r. faults

The two types of algebraic factors are kernels and
common cubes [Brayton 871. Factoring out a common
cube affects the detection probability of faults associated
with each instance of the cube. Consider the example of
extracting a common cube shown in Fig. 2. The
detecting sets for each fault associated with the common
cube are listed. In the original network, some of the
faults associated with the common cube had a detection
probability of k. For example, the s-a-1 fault on the
input of gate 2 coming from primary input B can only be
detected by one input combination, A B 'CD. However,
after the common cube is extracted, all of the faults
associated with the common cube have a detection
probability of at least &. The technique described in
Sec. 2 can be used to quickly check what the resulting
detection probabilities for faults associated with a
common cube would be if the cube were factored out: by
so doing, cube factors that eliminate r.p.r. faults can be
identified.

A kernel k of an expression f is the quotient off and
a cube d which is called the co-kernel; k = f I d orf = d k.
Factoring out a kernel affects the detection probability for
faults associated with each instance of co-kernel d, and if
the kernel k is common to multiple expressions, then the
detection probability of faults associated with each
instance of the kernel k are also affected. Consider the
example in Fig. 3. In the original network, all of the
faults associated with the co-kernel have a detection
probability of i$, however, after the kernel K is extracted,
all the faults associated with the co-kemel have a detection
probability of &. If the kernel K is common to other

Paper 6.3
178

D

D !* B

Z l

z 2

DS [Bi, s-a-11 = A B’ C D
DS [Cl, s-a-l] = A B C’ D
DS [BlCl, s-a-01 = A B C D
DS [B2, s-a-1] = A B’ C D’
DS [C2, s-a-l] = A B C’
DS [B2C2, s-a-O] = A B C

D

Cube Extract
I

B
C

DS [BO, s-a-1] = A B’ C
DS [CO, S-a-1] = A B C’
DS [Y, s-a-1] = A B’ + A C’
DS [y, s-a-O] = A B C

Figure 2. Example of Effect of Extracting a Common Cube on Detecting Sets

A
B wz D C

DS [A2, S-a-1] = A’ B C’ D
DS [B2, s-a-l] = A B’ C‘ D
DS [A2B2, s-a-O] = A B C’ D
DS [A3, s-a-1] = A’ B C D’
DS [B3, s-a-1] = A B’ C D’
DS [A3B3, s-a-01 = A B C D’

Kernel Extract

Figure 3. Example of Effect of Extracting a1 Kernlel on Detecting Sets

expressions, then it may fan out which would increase the
observability of faults associated with it lhereby affecting
their detection probabilities. Again, the technique in
Sec. 2 can be used to quickly check how the affected
detection probabilities would change if a kernel were
extracted and therefore kernel factors that eliminate r.p.r.
faults can be identified.

During the normal kernel and cube extraction
procedures in MIS [Brayton 871, kernels and common
cubes are enumerated and chosen on the basis of literal
count reduction. This same enumeration process can be
used to find kernels and common cubes sol that each can be
checked to see which, if any, r.p.r. faults would be
eliminated if it were extracted.

Step 4: Extract a set of factors that eliminate all
r.p.r. faults and minimize literal count
as much as possible

Given the list of factors and thc r.p.r. faults that each
eliminates, a set of these factors is extracted such that all

z l

z 2

I
I

DS [As, s-a-1] = A‘ B C’ D + A‘ B C D’
DS [B5, s-a-1] = A B’ C’ D + A B’ C D’
DS [A5B5, s-a-0] = A B C’ D + A B C D’
DS [IC, s-a-1] = A B C D + A B C’ D’
DS [EL, s-a-0] = A B C’ D + A B C D’

rqx . faults are eliminated, and as a secondary goal, the
literal count is reduced as much as possible. Note that
some factors which actually increase the literal count may
in fact be lchosen to satisfy the primary criteria of
eliminating ,all r.p.r. faults. Of course, in some cases it
may not be possible to eliminate all r.p.r. faults by
algebraic factoring alone. In those cases, test points will
need to be inserted. This is discussed in Sec. 5 where an
automated procedure for inserting test points is presented
as an extension to the techniques used in this step.

Step 5: Onltirrnize with random pattern testability:
=:serving logic transformations

As was :shown in Sec. 3, random pattern testability
preserving logic transformations may be performed
without concern of introducing new r.p.r. faults.

Paper 6.3
179

5. TEST POINT INSERTION DURING
SYNTHESIS

As the minimum fault detection probability threshold
is increased for a circuit, a point is reached where some
r.p.r. faults cannot be eliminated through algebraic
factoring. When this is the case, test. points are inserted
in order to generate an implementation that satisfies the
minimum detection probability constraint. Test inputs
(for control points) and/or test outputs (for observation
points) are added in such a way tha.t they can be used
during testing to increase fault detection probabilities, but
during normal operation the test inputs can be set to a
specific logic value that allows the circuit to operate as
intended. The advantage of adding test points during
synthcsis is that factors can be specially chosen so that a
single test point can eliminate a number of r.p.r. faults.
In post-synthesis test point insertion, factoring has already
been completed so it is fortuitous if a test point can be
placcd so as to eliminate multiple r.p.r. faults.

Test point insertion is performed during step 4 of the
procedure in Sec. 4. During that step, an attempt is made
to find a set of factors that eliminate all r.p.r. faults. If it
is found that some r.p.r. faults cannot be eliminated with
factoring alone then one or more test points must be
inscrted to eliminate these faults. One cause of r.p.r.
faults are cubes with large fan-in which result in poor
observability at their inputs and poor controllability at
their outputs, so test points are needed to “break up”
these cubcs. By finding common factors among large
fan-in cubes, a single test point can be inserted to break
up several large fan-in cubes thus eliminating a number of
r.p.r. faults. Examples of factors that enable this are
shown in Figs. 4, 5 , and 6. In Fig. 4, the general form
can be seen for cxtracting a kernel and adding an
observation point at the output of the kernel. Since a
kcrncl breaks up multiple cubes, this type of factoring
increases the effectiveness of a single observation point.
Extracting a common cube c and adding an observation
point at its output does not help, however, because the
controllability at the output of c is not improved so the
fault detection probabilities associated with the cubes for
which c is a fan-in are not improved. In Fig. 5 , the
general form can be seen for extracting either a cube or a
kcrnel factor Y and adding a control point at its output.
The control point improves the co:ntrollability at the
output of Y and thus improves the observability of the
inputs of each cube for which Y is a fan-in. In Fig. 6,
the general form can be seen for extracting either a cube or
a kernel faclor Y and adding both a control point and an
observation point. In the example in Fig. 4, a small fan-
in cube provided good controllability at the output of the
kernel, and in the example in Fig. 5 , a small fan-in cube
provided good observability at the output of the extracted
cubc Y , however, in the example of Fig. 6, all of the
cubes have large fan-in, so both a control point and an
observation point are required.

Extracting a common cube and adding a control point
and observation point is an effeciiive technique for

A

H
I
J
A
B
K L Eb A

Min. Detect. Prob. = 180 4096 Min. Detect. Prob. = 45 4096
Figure 4. Example of Kernel Extraction with

Observation Point

8%
Ctr-point

Min. Detect. Rob. = 2 Min. Detect. Prob. = - 2.56 - - - 128 4096 8192 4096
Figure 5. Example of Cube Extraction with Control

Point (same form applies if Y is a kernel)

Min. Detect. Prob. = 2
Figure 6. Example of Cube Extraction with Control and

Observation Point (same form applies if Y is a kernel)

eliminating all of the r.p.r. faults with few test points.
The reason for this is that it is often possible to find a
common cube among many large fan-in cubes, thus
enabling a single control and observation point to break
up several large fan-in cubes. In some circuits, only a few
common cubes need to be factored out and augmented with
test points to break up all the large fan-in cubes and
eliminate all r p r . faults. In other circuits, good kernels
exist such that only observation points are needcd to

Min. Detect. Prob. = 448 = 224
4096 8192 4096

Paper 6.3
180

eliminate all r.p.r. faults. So, it is advantageous to
consider all of the options when inserting test points
during synthesis.

In the proposed logic synthesis procedure, test point
insertion is performed by first identifying factors that
allow a single test point to eliminate several r.p.r. faults
that require test points (i.e., that cannot be eliminated by
factoring alone). These factors can be. found by again
enumerating the kernels and common cubes and
computing the relevant fault detection probabilities to
determine which r.p.r. faults each factor plus a control
point or observation point or both will eliminate. Once
all of these factors have been identified, a set of them are
chosen and augmented by the appropriate test points such
that all r.p.r. faults requiring test points are eliminated
using as few test points as possible.

Computing the fault detection probabilities when
identifying which r.p.r. faults each factor plus test point
eliminates is complicated by the fact that test points
change the two-level detecting sets. An observation point
adds a new PO, so its ENF and two-level detection sets
must be computed in order to use the technique described
in Sec. 2. Control points pose a more difficult challenge
because the ENF and two-level detecting se& change for
each PO that the control point has a. path to. This
presents two problems: (1) adding a control point can
lower the detection probability for any fault that has a
path to some primary output that the control point has a
path to, and (2) recomputing the two-level detecting sets
each time a control point is considered can be
computationally expensive. The first problem need not be
a major concern during the factor selection process. In
most cases, adding control points will not significantly
lower any fault detection probabilities. At one logic
value, h e control point has no effect on the circuit so the
detection probabilities remain the same. At the other
logic value, the control point can raise or lower the
detection probabilities for some faults. Thus adding .a
control point can reduce the detection .probability for a
fault by no more than a factor of 2, but il. can increase the
detection probability many times over. After a control
point is added, fault detection probabilities can be verified
to make sure that none of them have slipped below the
minimum detection probability threshold. In the rare
event that this has occurred, the procedure can backtrack
and find an alternative. Regarding the second problem of
recomputing two-level detecting sets, only the two-level
detecting sets that are needed to check if any r.p.r. faults
are eliminated by the control point need 1.0 be recomputed
during the factor selection process.

Another important issue is minimizing the number of
test inputs and test outputs that are needed to support the
test points. Each test input and test output has some
overhead associated with it. Each test input requires larger
input patterns to be generated, and each test output
requires more output response analysis. Observation

points can be “condensed” using techniques such as those
in [Fox 771, to reduce the number of test outputs. If
at-speed testing is to be used, care must be taken in
designing the condensation network so that the delay isn’t
longeir than a clock period. When the logic synthesis
procedure adds an observation point, a check can be made
to see if it can be condensed without significantly reducing
any fault detection probabilities. Multiple control points
can bt: derived from the same test input. When the logic
synthesis procedure adds a new control point, a check can
be made to see if it can be derived from one of the
previously ,added primary inputs without significantly
reducing any fault detection probabilities.

6. RESULTS

The logic synthesis procedure described in this paper
has bcen incorporated into SIS 1.1 (an updated version of
MIS [Brayton 871) and used to generate multilevel
impleimentations for several benchmark circuits that have
long random pattern test lengths. The results are shown
in Table 1. Under the first. major heading, information is
given about each benchmark circuit: name, number of
primary inputs, and number of primary outputs. Under
the next three major headings, results are given for the
multilevel circuits generated using two scripts that are
distributed with SIS, script.algebraic, which uses only
algebraic transformations, and script.rugged, which
uses both boolean and algebraic transformations, and the
multilevel circuits generated using the proposed logic
synthesis procedure with different minimum fault
detection probability constraints. Three things are shown
under each of tlnese major headings:

Pdet (log2) - Lowest fault detection probability for
any fault i n the circuit. It is computed exactly and
expressed as a log base 2.

Test Length - Test length which was obtained by
averaging the number of random patterns needed to reach
100% fault coverage for 50 simulation experiments using
LFSR’s with 5 different characteristic polynomials and 10
different seeds. The number of stages in the LFSR was
equal to the number of PI’S.

For the multilevel circuits generated using the proposed
procedure, the inumber of test inputs and test outputs that
were added to Ihe circuit (necessitated by test points) are
listed under the columns labeled Test PI and Test PO.
Control points were derived from the same test input
when possible, and observation points were condensed
when possible. The area for the condensation network is
included in the literal count. Under the last two major
headings, the multilevel circuit implementations generated
by the proposed procedure are compared with those
generated by the algebraic and rugged scripts. The first

lits - Factored form literal count for the circuit.

Paper 6.3
181

Table 1. Results for Benchmark Circuits

column gives the test length reduction factor, and the
second gives the percentage of area overhead. They are
comDuted as follows:

script test length) (
(procedure test length) Test Length Reduction Factor =

x 100 rocedure lits) - (script lits)
% Area Overhead = (’ (script lits)

The minimum fault detection probability constraints
were chosen for the proposed procedure to show a range of
area versus test length reduction tradeoffs. For almost all
the circuits, implementations were found which reduced
the test length by at least a factor 10 with only one test
output and in some cases one test input. In some circuits,
very little area overhead was required to achieve a
significant reduction in random pattern test length. In
comparing the implementations generated by the algebraic
script versus the rugged script, the rugged script produced
smaller implementations, however, in some cases the
required test length is longer. This is due to the fact that
the rugged script uses boolean transformations which may
generate circuit structures that have faults with lower
detection probabilities than the original starting point.

4.7% 36
11% 275

0.2% 2.1
0.2% 10
1.4% 25
5.5% 8.1
12% 31
17% 131
12% 1.8
15% 4.7
21% 11
2.4% 1.2
17% 4.6
8.7% 7.3
33% 14
0% 2.5
11% 4.6
21% 38
0% 3.7
25% 24
12% 3.2
24% 6.1
48% 182
3.9% 36
14% 87

4.4% 3.2
11% 6.7

Area
lvrhd
28%
33%
41%
1.4%
1.4%
2.6%
9.5%
17%
22%
49%
55%
62%
43%
63 %
18%
44 96
6.3%
18%
28%
10%
38%
26%
39%
61%
10%
21%
20%
27 %

- -

-

-

-

-
-

-

-

-

-

-

-
The minimum fault detection probability constraint

that could be satisfied without inserting test points
(i.e., no test inputs or test outputs) was found for each
circuit. For most circuits, no appreciable improvement
was obtained compared with the algebraic script, hence
results for this case are shown only for duke2, in2, misg,
and vg2.

By carefully choosing kernels to increase
controllability, the proposed procedure was able to use
only observation points to significantly reduce the random
pattern test length for many of the circuits. The
observation points were condensed so that only one test
output was needed. When control points were required, it
was often possible to share test inputs. In almost all
cases, only one test input was needed.

7. SUMMARY AND CONCLUSIONS

An automated logic synthesis procedure for designing
random pattern testable circuits was presented in this
paper. The procedure relies on properties of algcbraic
factoring to simplify fault detection probability

Paper 6.3
182

calculations. By so doing, algebraic factors that eliminate
r.p.r. faults can be quickly identified. If it is not possible
to eliminate some r.p.r. faults via algebraic factoring
alone, then test points are inserted during synthesis. This
enables factors to be chosen so as to minimize the number
of test points that are required. Results show significant
decreases in random pattern test length with few test
inputs and outputs and small area overhead.

This method for synthesizing randorn pattern testable
circuits requires a two-level representation as a starting
point thereby limiting its application to control circuits
and other circuits that can be flattened (i.e., two-level
representation is not exponential). Control circuits are an
important application because they can contain large
fan-in cubes that cause r.p.r. faults. Note that this method
can be used for non-flattenable circuits by partitioning the
circuit into flattenable logic blocks which are logically
isolated during testing.

Another limitation of this method is that it uses only
algebraic transformations. However, in a large system
design, this method need only be used to generate the
logic blocks for which other synthesis methods do not
produce random pattern testable implementations. Thus,
the area overhead associated with algebraic transformations
is incurred for only a portion of the overall design.

An area for future research is to extend the techniques
described in this paper to allow for a multilevel starting
point and the use of boolean factoring.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. LaNae Avra and
Siyad Ma for their helpful comments and suggestions.
This work was supported in part by the Innovative
Science and Technology Office of the Strategic Defense
Initiative Organization and administered through the
Office of Naval Research under Contract No. N00014-92-
5-1782, and by the National Science Foundation under
Grant No. MIP-9107760.

REFERENCES

[Armstrong 661 Armstrong, D.B., “On Finding a Nearly
Minimal Set of Fault Detection Tests for
Combinational Logic Networks,” IEEE Trans. Elect.
Computers, Vol. EC-15, pp. 66-73, Feb. 1966.

[Batek 921 Batek, M.J., and J.P. Hayes, “Test-Set
Preserving Logic Transformations,” Proc. of the 29th
Design Automution Conference, pp. 454-457, 1992.

[Brayton 871 Brayton, R.K., R. Rudell, A. Sangiovanni-
Vincentelli, A.R. Wang, “MIS: A Multiple-Level
Logic Optimization System,” IEEE Trans. Computer-
Aided Design, Vol. 6, pp. 1062-1081, Nov. 1987.

[Detjens 871 Detjens, E., G. Gannot, R. Rudell, A.
Sangiovanni-Vincentelli, and A. Wang, “Technology
Mapping in MIS,” Proc. of Int. Conference on
Computer-Aided Design (ICCAD), pp. 116-1 19, 1987.

[Devadas 921 Devadas, S . , and K. Keutzer, “Synthesis of
robust delay-fault-testable circuits: Practice,” ZEEE
Transacr’ions on Com,puter-Aided Design, vol. 11,

[Eichelberger 831 Eichelberger, E.B., and E. Lindbloom,
“Randorn-Pattern Coverage Enhancement and
Diagnosis for LSSD L’ogic Self-Test,” IBM Journal
ofResea!rch and Development, Vol. 27, No. 3,
pp., 265-1272!, May 19813.

[Falkowski 901 Falkowski, B.J., I. Schafer, and M.A.
Perkowski, “A Fast Computer Algorithm for the
Generation of Disjoint Cubes for Completely and
Incompletely Specified Boolean Functions,” Proc. of
33rd Midwest Symposiium on Circuits and Systems,

[Fox 773 Fox, J.R., “Test-point Condensation in the
Diagnosis of Digital Circuits,” Proceedings of the IEE,
Val. 124, No. 2, pp. 89-94, Feb. 1977.

[Hachtel92] Hachtel, G.D., R.M. Jacoby, K. Keutzer, and
C.R. Morrison, “On Properties of Algebraic
Transformations and the Synthesis of Multifault-
Irredundant Circuits,” IEEE Trans. on Computer-Aided
Design, ‘Vol. 11, No. 3, pp. 313-320, Mar. 1992.

[Iyengar 8911 Iyengar, V.S., and D. Brand, “Synthesis of
Pseudo-Fkandom Pattern Testable Designs,” Proc. of
International Test Conference, pp. 501-508, 1989.

[Karp 831 .Kairp, R.M., and M. Luby, “Monte-Carlo
Algorithms for Enumeration and Reliability
Problems,’“ Proc. of Annual Symposium on
Foundations of Computer Science, pp. 56-64, 1983.

[Keutzer 8711 Keutzer, K., “‘Dagon: Technology Binding
and Local Optimization by DAG Matching,” Proc. of
24th Design Automation Conf., pp. 341-347, 1987.

[Krishlnamurthy 861 Krishnamurthy, B., and I. Tollis,
“Improved Techniques for Estimating Signal
Probabilities,” Proc. International Test Conference,

[Krishnamurthy 871 Krislhnamurthy, B., “A Dynamic
Programming Approach to the Test Point Insertion
Problem.,” Proc. of t,he 24th Design Automation
Conference, pp. 695-704, 1987.

[Rajski 921 Rajski, J., and J. Vasudevamurthy, “The
Testability-Preserving Concurrent Decomposition and
Factorization of Boolean Expressions,” I E E E
Transactions on Computer-Aided Design, Vol. 11,

[Savaria 911 Savaria, Y., M. Youssef, B. Kaminska, and
M. Koudil, ‘‘Automatic Test Point Insertion for
Pseudo-Ranldom Testing,” Proc. of Int. Symp. on
Circuits and Systems, pip. 1960-1963, 1991.

[Seiss 911 Seiss, B.H., P.M. Trouborst, and M.H.
Schulz, “Test Point Insertion for Scan-Based BIST,”
Proc. of European Test Conf., pp. 253-262, 1991.

[Youssef 93:l Youssef, M., Y. Savaria, and B. Kaminska,
“Methodology for Efficiently Inserting and Condensing
Test Points,” ZEEE Pro,ceedings-E, Vol. 140, No. 3,
pp. 154-160, May 1993.

pp., 277-300, Mar. 199%.

pp. 11 19-1 122, 1990.

pp. 244-;!51, 1984.

NO. 6, pp. 778-793, Jun. 1992.

Paper 6.3
183

