
SYNTHESIS OF MAPPING LOGIC FOR GENERATI 
TRANSFORMED PSEUDO-RANDOM PATTERNS FOR 

Nur A. Touba and Edward J. McCluskey 

Center for Reliable Computing 
Departments of Electrical Engineering and Computer Science 

Stanford University 
Stanford, California 94305-4055 

ABSTRACT 

During built-in self-test (BIST), the set of patterns 
generated by a pseudo-random pattern generator may not 
provide a sufficiently high fault coverage. This paper 
presents a new technique for synthesizing combinational 
mapping logic to transform the set of patterns that are 
generated. The goal is to satisfy test length and fault 
coverage requirements while minimizing area overhead. 
For a given pseudo-random pattern generator and circuit 
under test, there are many possible mapping functions that 
will provide a desired fault coverage for a given test 
length. This paper formulates the problem of finding a 
mapping function that can be implemented with a small 
number of gates as a one of finding a minimum rectangle 
cover in a binate matrix. A procedure is described for 
selecting a mapping function and synthesizing mapping 
logic to implement it. Experimental results for the 
procedure are compared with published results for other 
methods. It is shown that by performing iterative global 
operations, the procedure described in this paper generates 
mapping logic that requires less hardware overhead to 
achieve the same fault coverage for the same test length. 

1. INTRODUCTION 

Pseudo-random pattern testing is used in built-in 
self-test (BIST) because of its low hardware overhead. A 
linear feedback shift register (LFSR) or cellular 
automaton (CA) can be used to generate the 
pseudo-random patterns. LFSR’s and CA’s have simple 
structures which require small area overhead, and they can 
also be used as output response analyzers thereby serving 
a dual purpose. BIST techniques such as circular BIST 
[Krasniewski 891 and BILBO registers [Konemann 791 
make use of these advantages to reduce overhead. 
Unfortunately, the pseudo-random patterns that are 
generated do not always provide a high enough fault 
coverage for a reasonable test length. There are two ways 
to solve this problem. One is to increase the fault 
detection probabilities in the CUT by inserting test points 
[Eichelberger 831 or by redesigning it [Touba 941, and the 
other is to add logic to “bias” the patterns that are 
generated. As illustrated in Fig. 1, one approach for 
biasing the pseudo-random patterns is to add mapping 

logic at the output of the pseudo-random pattern generator 
to transform the original set of patterns produced by the 
generator into a new set of patterns that provides the 
desired fault coverage. Note that this is similar to 
weighted pseudo-random pattern testing [Bardell 871 
except that the “weight” logic is generalized to be any 
function (not just those that weight signal probabilities). 
The architecture in Fig. 1 has the following advantages: 
it allows parallel test pattern application (“a test per 
clock”), it is easy to insert into an existing design (the 
mapping logic is simply placed between the pattern 
generating circuit and the CUT), and it can be used with 
any pattern generating circuit (e.g., LFSR, CA, BILBO 
register, etc.). This paper presents a new method for 
synthesizing the mapping logic so that it satisfies fault 
coverage requirements while minimizing area overhead. 

Original Test Patterns 

Transformed Test Patterns 

I I 

Figure 1. Block Diagram for Generation of 
Transformed Patterns 

The original set of patterns produced by the pattern 
generating circuit for a given test length will be referred to 
as the original pattern set, and the set of patterns that is 
produced at the output of the mapping logic block will be 
referred to as the transformed pattern set. For a given 
original pattern set and CUT, there are many possible 
mapping functions that will produce a transformed pattern 
set that provides the desired fault coverage. Finding a 
mapping function that can be implemented with a small 
number of gates is a challenging problem. In the past, 
the set of mapping functions considered was limited to 
those that weight signal probabilities at the inputs of the 
CUT thereby generating weighted pseudo-random patterns 
[Schnurmann 751, [Bardell 871, [Pomeranz 931, 
[Hartmann 931. The advantage of using these mapping 
functions is that they can be determined through 
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probabilistic techniques and can be implemented with a 
reasonably small number of gates. Much research has 
been done on determining weights sets for a given CUT 
[Wunderlich 881, [Waicukauski 891, [Muradali 901, 
[Miranda 931. Many circuits require multiple weight sets 
to satisfy test length and fault coverage requirements 
[Wunderlich 881. Thus, the area overhead of the mapping 
logic required to implement the weight sets can be 
substantial. 

Recent research considers a broader class of mapping 
functions in an attempt to reduce the area overhead required 
by the mapping logic. Two papers that describe methods 
for designing mapping logic were presented at the 1995 
IEEE VLSI Test Symposium: [Touba95] and 
[Chatterjee 953. In [Chatterjee 951, a procedure is given 
for designing mapping logic that maps patterns in the 
original pattern set into new patterns that detect 
hard-to-detect faults. The heuristic of minimizing the 
number of inputs to the combinational unit for each CUT 
input is used to choose the mapping function. In 
[Touba 951, a procedure is described for designing 
mapping logic that is based on a special class of 
transformations called “cube mappings.” Each cube 
mapping transforms a set of patterns in the original 
pattern set that doesn’t detect any new faults into a new 
set of patterns that detects hard-to-detect faults. The 
mapping logic is designed to implement a set of cube 
mappings that is selected to satisfy fault coverage 
requirements. The advantages of using cube mappings are 
that sets of patterns are easier to decode than single 
patterns, and 100% fault coverage can be guaranteed 
because only patterns that don’t detect any new faults are 
transformed. A procedure is described in pufaza 951 for 
designing mapping logic for a mixed-mode scheme. An 
LFSR is used to generate pseudo-random patterns, and 
then it is reconfigured as a ring counter to generate 
deterministic patterns through a network of OR gates. 

This paper presents a more effective method for 
finding a mapping function to minimize overhead. The 
problem of choosing a mapping function is formulated as 
one of finding a minimum rectangle cover in a binate 
matrix. A heuristic procedure involving EXPAND, 
IRREDUNDANT, and REDUCE operations (analogous to 
what is used in ESPRESSO [Brayton84]), is used to 
minimize a rectangle cover that corresponds to a mapping 
function that can be implemented by a small amount of 
mapping logic. By performing global operations, the 
procedure is able to find better mapping functions thereby 
synthesizing mapping logic that requires less hardware 
overhead than other methods. 

The paper is organized as follows: In Sec. 2, a 
method for specifying a mapping function that satisfies 
test length and fault coverage requirements is described. In 
Sec. 3, it is shown how the mapping logic can be 
constructed from bit-fixing transformations that 
correspond to a set of rectangles in a binate matrix. In 
Sec. 4, the procedure for selecting a mapping function that 
minimizes area overhead is described. In Sec. 5, the 

Pattems 
ThatDrop 

Faults 

process of synthesizing the mapping logic is explained. 
In Sec. 6, experimental results are presented and compared 
with previously published results. Sec. 7 is a conclusion. 

0 1 0 0 1 : 1  -+ 0 1 0 0 1 1  
0 1 1 0 0 0  + 0 1  1 0 0 0  
1 0 1 1 0  1 -+ 1 0 1 1  0 1 
0 1 0 1 1 0  -+ 0 1 0 1 1 0  
1 0 1 1 0 1  -+ 1 0 1 1 0 1  

2. SPECIFYING A MAPPING FUNCTION 

This section describes a procedure for specifying a 
function that maps the original pattern set into a new 
pattern set. The mapping function is specified in a way 
that guarantees that it will produce a new pattern set that 
achieves a desired fault coverage for a given pattern 
generating circuit and test length. 

The first step is to simulate the pattern generating 
circuit for the given test length to generate the original 
pattern set. Then fault simula,tion is performed on the 
CUT for the original pattern set to identify the undetected 
faults and the set of patterns that caused faults to be 
dropped (i.e., be detected for the first time). An automatic 
test pattern generation (ATPG) tool is then used to obtain 
test cubes (i.e., test patterns in which the unspecified 
inputs are left as don’t cares) for the undetected faults. 

Given a set of test cubes for the undetected faults, the 
original set of patterns, and the set of patterns that 
dropped faults, a mapping function can be specified by 
assigning to each test cube <a pattern in the original 
pattern set that didn’t drop any faults. Each original 
pattern that caused a fault to be dropped is mapped to 
itself, each original pattern assigned to a test cube is 
mapped to the test cube, and the remaining patterns are 
don’t cares. Fig. 2 shows an example of specifying a 
mapping function that maps the original pattern set into a 
new transformed pattern set that provides a 100% fault 
coverage. The original patterns that caused faults to be 

Original Patterns Transformed Patterns 
x1 x2x3 x4 x5 x6 X I  x2 x3x4 x.5 x6 

Pattems 
Assignedto 
Testcubes 

Unassigned 
Pattems 

1 0 1 0 1  1 + O O l O X l  
0 1 1 1 0 1 -+ X 0 1 1 0 0 
1 0 0 1 1 1 -+ 1 X X O  1 X 
1 0 0  1 1  10 + x x x x x x  
0 0 1 1  0 1 -+ x x x x x x  
0 1 0  1 1  1 -+ X X X X X X  
1 1  0 1 0  0 -+ X X X X X X  
1 0 0 0 0 1 + x x x x x x  
1 1 1 0 0 1 - + x x x x x x  
0 0 1 0 1 0  + x x x x x x  
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dropped are mapped to themselves to ensure that all of the 
faults that were detected by the original pattem set are also 
detected by the transformed pattem set. The pattems that 
were assigned to test cubes are mapped to a pattem that 
matches the test cube so that all of the faults that are not 
detected by the original pattem set will be detected by the 
transformed pattern set. These mappings are sufficient to 
ensure that the transformed pattem set will detect all faults, 
so it doesn’t matter what the remaining original patterns 
are mapped to. 

There are many possible mapping functions 
depending on how the original pattems are assigned to the 
test cubes. The amount of logic required to implement 
each possible mapping function varies greatly. Thus, the 
problem of minimizing the mapping logic involves 
careful selection of the mapping function. 

3. MAPPING LOGIC MINIMIZATION 

In order to map pattern X into pattem Y ,  each bit in 
pattern X that differs from the corresponding bit in pattem 
Y must be “fixed” so that it matches. For example, if the 
pattem 0010 is being mapped into the pattern 1000, then 
the first bit must be fixed to a ‘1’, and the third bit must 
be fixed to a ‘0’. So for original pattems that are mapped 
into different pattems (i.e., those assigned to test cubes), 
the mapping logic must fix the value of some of the bits 
so that the original pattern matches the test cube. An 
example of “bit-fixing” logic is shown in Fig. 3. There 
is some “bit-fixing function” that is active for some set of 
original patterns (in this case, 0010,0101, and 0111). 
When the bit-fixing function is active, it fixes some of 
the outputs to a specific logic value (in this case, xl = ‘I1, 
x3 = ‘U,  x4 = ‘0’). So in this example, the bit-fixing 

logic maps the original pattems 0010,0101, and 01 11 
into the pattems 1000,1100, and 1100, respectively. The 
strategy for minimizing the mapping logic is to select the 
mapping function in a way that minimizes the number of 
bit-fixing functions that are required. This section 
describes a technique for finding a set of bit-fixing 
functions to implement a given mapping function, and 
based on this technique, the next section gives an iterative 
procedure for selecting a mapping function that minimizes 
the number of bit-fixing functions. 

The problem of finding the minimum number of 
bit-fixing functions required to implement a given 
mapping function can be formulated as one of finding a 
minimum rectangle cover in a binate matrix (a similar 
idea to what is done in [Brayton 871). A binate matrix B ,  
where Bij E {OJJ,  is formed in which each test cube is 
represented by a row. There is a complemented and 
uncomplemented column corresponding to each input in 
the test cube. If an input in a test cube is a ‘O’, then its 
corresponding complemented and uncomplemented 
column entries are set equal to 1 and 0, respectively. If an 
input in a test cube is a ‘I1, then its corresponding 
complemented and uncomplemented column entries are set 
equal to 0 and 1, respectively. If an input in a test cube is 
a don’t care (‘X’), then its corresponding complemented 
and uncomplemented column entries are both set equal to 
1. An entry in B is stared if it corresponds to a bit 
difference between the assigned original pattern and the 
test cube. A rectangle in B is a subset of rows R and a 
subset of columns C such that Bij = 1 for all i E R and 
j E C .  A rectangle in B corresponds to a common 
bit-fixing function among the outputs of the mapping 
logic. In the example in Fig. 3, the rectangle that 

Original Patterns Test Cubes 
x1 x2 x3 x4 x1 x2 x3 x4 X1‘ 

1 1 1 1 ~ 0 0 1 1  1* 

o o 1 o + x o o o  1 
0 1 0 1 + 1 x x o  0 
0 1  1 1  + 1 l o x  0 

B-Matrix 
x; x3’ xq/ x1 x2 x3 x4 
1 * 0  0 0 0 1 1  

0 0 0  
1 1 0  1 

0 l L 2  1* 1 * 1 0  1 

Figure 3. Example of a Rectangle in the B-Matrix and its Corresponding Bit-Fixing Logic 
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is shown corresponds to a bit-fixing function that is 
active if any of the assigned patterns that correspond to 
the rows in the rectangle, i.e., 0010,0101, and 0111, are 
applied to the mapping logic. When the bit-fixing 
function is active, it fixes the outputs that correspond to 
the columns in the rectangle to a specific logic value, i.e., 
xz = ‘I’, x3 = ‘O’, x4 = ‘0’. Thus, the rectangle in 
Fig. 3 corresponds to a transformation in which the 
original patterns 0010,0101, and 0111 are mapped into 
the patterns 1000,1100, and 1100, respectively, which 
detect the faults corresponding to the test cubes XOOO, 
IXXO, and IIOX, respectively. So each rectangle in B 
corresponds to a transformation that can be implemented 
by bit-fixing logic that forces specific logic values at a set 
of outputs. In order for the mapping logic to transform 
all of the assigned patterns so that they match their 
respective test cubes, each bit difference (which 
corresponds to a stared entry in B )  must be contained in a 
rectangle that is implemented by the mapping logic. The 
mapping logic can be designed by finding a set of 
rectangles that covers all of the stared entries in B and then 
constructing bit-fixing logic to implement the 
transformations corresponding to those rectangles. 

4. SELECTING A MAPPING FUNCTION 

In the previous section, it was shown how 
mapping logic can be constructed by finding a set of 
rectangles that cover all of the stared entries in B where 
each rectangle corresponds to some bit-fixing logic. Based 
on this correspondence, the problem of minimizing the 
mapping logic can be formulated as one of finding a 
minimum set of rectangles that cover all of the stared 
entries in B .  The set of stared entries in B depends on 
which original pattern is assigned to each test cube. 
Therefore, the problem of selecting a mapping function to 
minimize the amount of mapping logic corresponds to 
assigning original patterns to each test cube in a way that 
minimizes the number of rectangles required to cover all 
the resulting stared entries. A heuristic procedure for 
solving this problem is described in this section. 

4 . 1  Procedure for Minimizing Mapping Logic 
The procedure begins with a set of rectangles, R, that 

covers all the stared entries in the B-matrix. Then it 
iterates using an EXPAND, IRREDUNDANT, REDUCE 
sequence analogous to what is used in ESPRESSO 
[Brayton 841 to reduce the number of rectangles. The key 
step is that after the set of rectangles is made prime and 
irredundant by the EXPAND and IRREDUNDANT 
procedures, the mapping function is changed by 
reassigning original patterns to test cubes in order to 
eliminate the need for some of the rectangles in R,  This 
process continues until no further reduction in the number 
of rectangles in R is achieved. The steps of the procedure 
are described below: 
1. Form the B matrix from the set of test cubes. 

Each test cube corresponds to a row in the B-matrix. 

2. Do an initial assignment 0-0 
test cubes based on minimiz- 
differences. 

Each test cube is compared with the set of unassigned 
patterns in the original pattern set, and the pattern that 
differs in the smallest number of bits is assigned to the 
test cube. This minimizes the total number of stared 
entries in the B-matrix. 
3. L e t e n t r y  in the 
-. 

This ensures that the initial set of rectangles covers 
all of the stared entries. 
4. EXPANDU?) - expand eacl- 
&he rectangles are prime rectangles, 

A prime rectangle is a rectangle that is not contained 
in another rectangle. The EXPAND procedure uses the 
heuristic of expanding each rectangle so that it covers as 
many other rectangles as possible. 
5. IRREDUNDANYR) - eliminate rectangles in R that 
z-m R. 

The IRREDUNDANT procedure goes through each 
rectangle in R from the smallest to the largest and checks 
to see if the rectangle covers any stared entries that are not 
covered by any other rectangles. If not, then the rectangle 
can be removed without uncovering any stared entries, so 
it is eliminated from R. 
6 .  Reassign the original patte- 
on eliminating as manv rectanQ.Ies in R as possible. 

An attempt is made to eliminate the need for some 
rectangles in R by changing the location of the stared 
entries. This is done by reassigning the original patterns 
to the test cubes. For each rectangle in R, an attempt is 
made to eliminate all of the stared entries that it alone 
covers by reassigning the original patterns to the test 
cubes. A new original pattern can be assigned to a test 
cube provided the resulting stared entries are all covered by 
rectangles in R .  If a new assignment can be found such 
that some rectangle in R no longer covers any stared 
entries, then that rectangle can be removed from R. 
7. REDUCE(R1 - reduce eacl-s 
p-g all stared entries in the 
B-matrix, 

Each prime rectangle in R is reduced as much as 
possible so that it can be either re-expanded in the next 
iteration or implemlented by th~e mapping logic. 
8. LooD back to step 4 if the number of rectangles in R 
has decreased, 

The procedure keeps looping back until no further 
reduction in the number of rectangles in R is obtained. 

The procedure selects the mapping function by 
reassigning original patterns to test cubes in a way that 
minimizes the number of rectangles in R .  When the 
procedure is complete, the mapping logic can be synthesized 
so that it implements the transformations corresponding 
to each rectangle in R; this is explained in Sec. 5. 
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4 . 2  Example 
An example will be shown to illustrate the steps of 

the procedure. The initial set of rectangles corresponding 
to a B-Matrix is shown in Fig. 4. There is one rectangle 
for each stared entry. The EXPAND procedure is 
performed on the initial set of rectangles to expand them 
into prime rectangles. Fig. 5 shows the prime rectangles 
that are generated by the EXPAND procedure. The 
IRREDUNDANT procedure is performed to eliminate any 
rectangles that can be removed without uncovering any 
stared entries. The result of the IRREDUNDANT 
procedure is shown in Fig. 6 -- one rectangle was 
eliminated. Then an attempt is made to reassign the 

original patterns that are matched with each test cube in 
order to change the location of the stared entries so that 
rectangles can be eliminated. The result of the reassign 
step is shown in Fig. 7. By assigning the pattern 0111 
to the test cube 1 I 0 X  (therefore replacing the pattern 
l o l l ) ,  the stared entries for the last row in the rectangle 
are changed such that a rectangle can be eliminated. The 
REDUCE procedure is performed to reduce the size of the 
rectangles as much as possible without uncovering any 
stared entries. The result of the REDUCE operation is 
shown in Fig. 8 -- one rectangle was reduced in size. The 
procedure can then be repeated on the resulting set of 
rectangles to try to further minimize it. 

Original Patterns Test Cubes B-Matrix 
x1 x2 x3 x4 x1 x2 x3 x4 XI' X2I x3' x4' x1 x2 x3 x4 
1 1 1  l + O O l l  j - i q r i q o  0 0 0 1 1 

o o 1 o + x o o o  1 1 [ 1 * ) 1 1 0 0 0  

0 1 0  1 -+ l X X O  0 l l " 1 1 0  

1 0  1 1  -+ 1 1  o x  0 o m 1  l a 0  1 
Figure 4. Initial Set of Rectangles. 

Original Patterns Test Cubes B-Matrix 
x1 x2 x3 x4 x1 x2 x3 x4 XI'  x i  x3' x4' XI x2 x3 x4 

1 1 1 1 - + 0 0 1 1  

0 0  1 0  - + x o o o  
0 1 0  1 -+ l X X O  
1 0 1 1 + 1 1 o x  

-10 0 0 0 1 1  

0 o I I 1 *  1 1 1  1* l o  1 
L I 

Figure 5. Set of Rectangles after EXPAND. 

Original Patterns Test Cubes B-Mamix 
x1 x2 x3 x4 x1 x2 x3 x4 XI' x i  x3' x4' x1 x2 x3 x4 
1 1 1 1 + 0 0 1 1  

0 0 1 0 ~ x 0 0 0  

0 1 0  1 + l X X O  1" 1* 
1 0 1  1 + 1 l o x  

Figure 6. Set of Rectangles after IRREDUNDANT. 

Original Patterns Test Cubes B-Matrix 
x1 x2 x3 x4 x1 x2 x3 x4 XI' x i  x3' x4' x1 x2 x3 x4 
1 1 1 1 + 0 0 1 1  

o o 1 o + x o o o  
0 1 0 1 + 1 x x o  0 1  
0 1 1  1 + l l 0 X  
Figure 7. Set of Rectangles after Reassigning Original Patterns (1 0 1 I replaced by 0 1 1 1). 

0 0 0 1 1  

0 0 0  
1 1 0  
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Original Patterns Test Cubes B-Matrh. 
x1 x2 x3 x4 XI x2 x3 x4 XI’ x; x3‘ x4‘ XI x2 x:) x4 

o o 1 o - + x o o o  0 0 
0 1 0  1 -+ l X X 0  0 1  
0 1 1  1 - 3  1 l o x  

1 1 1 1 + 0 0 1 1  -10 0 0 0 1 1  

Figure 8. Set of Rectangles after REDUCE. 

5. SYNTHESIZING THE MAPPING LOGIC 

After the mapping function has been selected and the 
set of rectangles that covers all the stared entries in the 
B-matrix has been minimized, the mapping logic can be 
synthesized. This is best explained with an example. In 
Fig. 9, the bit-fixing functions corresponding to the two 
rectangles in Fig. 8 are specified. For each rectangle, the 
assigned original patterns corresponding to the rows in the 
rectangle are placed in the on-set since the bit-fixing 
function must be active for those patterns. The patterns 
that drop faults and the patterns that are assigned to other 
test cubes should not be transformed because otherwise the 
fault coverage may be reduced, so the bit-fixing function 
shouldn’t be active for those patterns, therefore they are 
added to the off-set. The on-set and off-set specify the 
bit-fixing function and can be passed to a logic synthesis 
tool to generate a logic implementation. 

Fig. 10 shows an implementation for the set of 
rectangles in Fig. 8. The bit-fixing functions were derived 
as shown in Fig. 9. Each bit-fixing function forces the 
logic value at the outputs corresponding to the columns in 
its rectangle. When bit-fixing function 1, (xz x2) ,  is 
active, it forces xz = ‘0’ and x2 = ‘0’. This is 
implemented by adding AND gates to xz and&. When 
bit-fixing function 2, [xz‘ (x2’+ q)], is active, it forces 
XI  = 1 , x3 = 0 and x4 = ‘0’. This is implemented by 
adding an OR gate to xZ, and AND gates to q and x4. 

, e  I 9  

Pattems that Drop Faults: 0100, 0110, 1011 

Pattems Assigned to Test Cubes: 1111, 0010, 0101, 

Bit-Fixing Function 1: 
On-Set = 1111 
Off-Set = 0100,0110,1011,0010,0101,0111 
Synthesized Logic c X I ,  xz , x3, x4> = XI  x2 

0111 

Bit-Fixing Function 2: 
On-Set = 0010,0101,0111 
Off-set = 0100,0110,1011,1111 
Synthesized Logic e x l ,  x2 x3, x4> = XI ‘  (x2 ‘ + x4) 

Figure 9. Bit-Fixing Functions Corresponding to Set of 
Rectangles in Figure 8 

One option for disabling t’he mapping logic during 
system operation is to AND in st test mode line with each 
bit-fixing function; this is shown in Fig. 10. An 
important issue is the delay during system operation. The 
delay through the mapping logic can be optimized by a 
logic synthesis tool. However, if the delay is 
unacceptable for some of the inputs, then another option 
is to bypass the mapping logic for those inputs during 
system operation by using multiplexors. 

test 
mode 

I Circuit Under Test I 
Figure 10. Implementation ad Mapping Logic for Set 

of Rectangles in Figure 8 

6. EXPERIMENTAL RESULTS 

The method described in this paper was used to 
generate mapping logic to reduce the pseudo-random 
pattem test length for some of the ISCAS 85 [Brglez 851 
and ISCAS 89 [Brglez 891 benchmark circuits that require 
over a million test. patterns. There are three important 
factors in choosing a test pattern generator for BIST test 
time, test quality, and hardware area. To evaluate the test 
pattern generators that are designed by the method in this 
paper, a comparison was m;ade with other published 
results using three measures: test length (for test time), 
fault coverage (for test quality), and gate equivalents plus 
flip-flop count (for lhardware area). 
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6 . 1  Comparison with Weighted 
Pseudo-Random Pattern Methods 

Table 1 compares the “rectangle mapping” method 
described in this paper with weighted pseudo-random 
pattern methods. The fault coverage is the same for all 
methods: 100% of detectable single stuck-at faults. 
Parallel test pattern application (“a test per clock”) is 
assumed for all techniques. The first column gives the 
circuit names, the second column shows the number of 
primary inputs, and the third column shows the test 
length for pseudo-random pattem testing using an LFSR 
alone. Then results are given for 3 different methods plus 
the rectangle mapping method. The test length and 
hardware overhead is shown for each method. In some 
cases, results are given for two different test lengths to 
show the tradeoff between test time and hardware overhead. 
The hardware overhead is the hardware required in addition 
to what is needed for pseudo-random pattern testing with 
an LFSR. Flip-flops and gates are counted separately. 
The gates are measured by gate equivalents (GE’s) using 
the same method suggested in [Hartmann 931 to reflect a 
static CMOS technology: (0.5)(n) GE’s for a n-input 
NAND or NOR, (2.5)(n-1) GE’s for a n-input XOR, and 
1.5 GE’s for a 2-to-1 MUX (realized by transmission 
gates). The hardware overhead for each method is an 
estimate that is computed as follows: 
Multiule Weight Sets: The weight sets from 
[Bershteyn 931 are used. The number of weight sets 
required is shown under the column WS. It is assumed that 
the best case occurs in which no stages have to be added to 
the LFSR to avoid correlation that increases test length. 
Thus, extra flip-flops are needed only to keep track of 
which weight set is being used. The logic required for 
each input to the CUT is conservatively estimated to be a 
total of 4 gates to generate the weighted signals and WS 
2-to-1 MUXes to select the weighted signals based on 
which weight set is currently active. 

FF’s = Iog2(number of weight sets) 
GE’s = [4 + (1.5) (WS)] (number of inputs in CUT) 

3-Weight Method: This method was proposed by 
Pomeranz and Reddy in [Pomeranz 931. 3-gate modules 
are used to fix the value of certain inputs while random 
patterns are being applied thus forming “expanded tests”. 
Extra flip-flops are needed to keep track of which expanded 
test is being used. The logic required by the 3-gate 
modules depends on the fan-in. One of the gates is a two- 
input gate, and the average fan-in for the other two is 
given in [Pomeranz 931 (results are not available for the 
ISCAS 89 circuits). 

FF’s = log2(number of expanded tests) 
GE’s = (number of 3-gate modules) ( I  + average fun-in) 

Fixed-Biased Method: This method was proposed by 
AlShaibi and Kime in [AlShaibi 941. It generates patterns 
using a weighted bit stream and fixing the value of some 
bits. A ROM is required to store configuration sequences 
that are periodically loaded during testing, but for sake of 
comparison, it is assumed that the configuration sequences 
are stored off-chip even though this would impact test 
time. A 17-stage LFSR plus some weight logic is used 
to generate the weighted bit stream. Each fixed bit 
requires one extra flip-flop, four 2-to-1 MUXes, and a 
two-input NAND gate; the number of fixed bits for each 
circuit is given in [AlShaibi 941. 

FF’s = I 7  + (number of fixed bits) 
GE’s = [(4)(1.5) + I ]  (number offixed bits) 

The rectangle mapping method requires no additional flip- 
flops. It adds only combinational logic between the 
LFSR and the CUT. Assuming that flip-flops require 4 
gate equivalents or more, the rectangle mapping method 
requires the least hardware overhead for a given test length 
compared with the other methods. In many cases, the 
rectangle mapping method reduces the test length 
significantly more than the other methods while using 
much less hardware. 

Table 1. Comparison with Weighted Pseudo-Random Pattern Methods 

9 24 

12 24 
5 23 
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6 . 2  Comparison with Cube Mapping Method 7. CONCLUSIONS 
Table 2 compares results for the rectangle mapping 

method presented here with results for the cube mapping 
method presented in [Touba 951. The test length and gate 
equivalents are shown for each circuit. The fault coverage 
is 100% of detectable faults for both methods. The cube 
mapping method uses a greedy approach for selecting cube 
mappings based on simulation. The rectangle mapping 
method performs iterative operations to select the 
mapping function based on more general bit-fixing 
transformations. Because the transformations used by the 
rectangle mapping method are more general and the 
selection process is iterative as opposed to greedy, the 
rectangle mapping method finds better mapping functions 
that result in less hardware overhead. 

Table 2. Comparison with Cube Mapping Method. 

6 . 3  Comparison with Method in [Chatterjee 951 
Table 3 compares results for the rectangle mapping 

method with the results given in [Chatterjee 951. The test 
length, fault coverage for detectable faults, and gate 
equivalents are shown for both methods. Note that the 
method in [Chatterjee 951 doesn’t achieve 100% fault 
coverage for some circuits. The rectangle mapping 
method uses more global operations in selecting the 
mapping function than the method in [Chatterjee 951. 
This results in mapping logic that requires less hardware 
overhead. 

Table 3. Comparison with Method in [Chatterjee 951. 

On-chip generation of weighted pseudo-random 
patterns involves adding weight logic to the output of the 
pseudo-random pattern generator to increase the 
probability that the hard-to-detect faults will be detected. 
The method described in this paper improves upon that 
idea in two ways: (1) the weight logic is generalized to 
be any mapping function, and (2) a deterministic 
procedure is used to synthesize the mapping logic to 
guarantee detection of all faults. By using an iterative 
procedure involving global operations, the synthesis 
method described in this paper generates mapping logic 
that requires less hardware overhead than previous methods 
(as indicated by the experimental results). In addition to 
reducing the overhead required for BIST, it provides the 
following advantages: allows parallel test pattern 
application, is easy to insert into an existing design (the 
mapping logic is simply placed between a pattern 
generating circuit and the CUT), and can be used with any 
pattern generating circuit (e.g.. LFSR, CA, BILBO 
register). 

Results in [Ma 951 indicate that test sets in which 
each single stuck-at fault is detected multiple times 
provide high defect coverage. The procedure described in 
this paper can be easily extended to transform a 
pseudo-random pattern set into one that detects each single 
stuck-at fault at least n times by simply specifying 
additional transforms in the mapping function. 
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