
SYNTHESIS OF MAPPING LOGIC FOR GENERATI
TRANSFORMED PSEUDO-RANDOM PATTERNS FOR

Nur A. Touba and Edward J. McCluskey

Center for Reliable Computing
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305-4055

ABSTRACT

During built-in self-test (BIST), the set of patterns
generated by a pseudo-random pattern generator may not
provide a sufficiently high fault coverage. This paper
presents a new technique for synthesizing combinational
mapping logic to transform the set of patterns that are
generated. The goal is to satisfy test length and fault
coverage requirements while minimizing area overhead.
For a given pseudo-random pattern generator and circuit
under test, there are many possible mapping functions that
will provide a desired fault coverage for a given test
length. This paper formulates the problem of finding a
mapping function that can be implemented with a small
number of gates as a one of finding a minimum rectangle
cover in a binate matrix. A procedure is described for
selecting a mapping function and synthesizing mapping
logic to implement it. Experimental results for the
procedure are compared with published results for other
methods. It is shown that by performing iterative global
operations, the procedure described in this paper generates
mapping logic that requires less hardware overhead to
achieve the same fault coverage for the same test length.

1. INTRODUCTION

Pseudo-random pattern testing is used in built-in
self-test (BIST) because of its low hardware overhead. A
linear feedback shift register (LFSR) or cellular
automaton (CA) can be used to generate the
pseudo-random patterns. LFSR’s and CA’s have simple
structures which require small area overhead, and they can
also be used as output response analyzers thereby serving
a dual purpose. BIST techniques such as circular BIST
[Krasniewski 891 and BILBO registers [Konemann 791
make use of these advantages to reduce overhead.
Unfortunately, the pseudo-random patterns that are
generated do not always provide a high enough fault
coverage for a reasonable test length. There are two ways
to solve this problem. One is to increase the fault
detection probabilities in the CUT by inserting test points
[Eichelberger 831 or by redesigning it [Touba 941, and the
other is to add logic to “bias” the patterns that are
generated. As illustrated in Fig. 1, one approach for
biasing the pseudo-random patterns is to add mapping

logic at the output of the pseudo-random pattern generator
to transform the original set of patterns produced by the
generator into a new set of patterns that provides the
desired fault coverage. Note that this is similar to
weighted pseudo-random pattern testing [Bardell 871
except that the “weight” logic is generalized to be any
function (not just those that weight signal probabilities).
The architecture in Fig. 1 has the following advantages:
it allows parallel test pattern application (“a test per
clock”), it is easy to insert into an existing design (the
mapping logic is simply placed between the pattern
generating circuit and the CUT), and it can be used with
any pattern generating circuit (e.g., LFSR, CA, BILBO
register, etc.). This paper presents a new method for
synthesizing the mapping logic so that it satisfies fault
coverage requirements while minimizing area overhead.

Original Test Patterns

Transformed Test Patterns

I I

Figure 1. Block Diagram for Generation of
Transformed Patterns

The original set of patterns produced by the pattern
generating circuit for a given test length will be referred to
as the original pattern set, and the set of patterns that is
produced at the output of the mapping logic block will be
referred to as the transformed pattern set. For a given
original pattern set and CUT, there are many possible
mapping functions that will produce a transformed pattern
set that provides the desired fault coverage. Finding a
mapping function that can be implemented with a small
number of gates is a challenging problem. In the past,
the set of mapping functions considered was limited to
those that weight signal probabilities at the inputs of the
CUT thereby generating weighted pseudo-random patterns
[Schnurmann 751, [Bardell 871, [Pomeranz 931,
[Hartmann 931. The advantage of using these mapping
functions is that they can be determined through

Paper 30.1
674

INTERNATIONAL TEST CONFERENCE
0-7803-2991-9/95 $4.00 0 1995 IEEE

probabilistic techniques and can be implemented with a
reasonably small number of gates. Much research has
been done on determining weights sets for a given CUT
[Wunderlich 881, [Waicukauski 891, [Muradali 901,
[Miranda 931. Many circuits require multiple weight sets
to satisfy test length and fault coverage requirements
[Wunderlich 881. Thus, the area overhead of the mapping
logic required to implement the weight sets can be
substantial.

Recent research considers a broader class of mapping
functions in an attempt to reduce the area overhead required
by the mapping logic. Two papers that describe methods
for designing mapping logic were presented at the 1995
IEEE VLSI Test Symposium: [Touba95] and
[Chatterjee 953. In [Chatterjee 951, a procedure is given
for designing mapping logic that maps patterns in the
original pattern set into new patterns that detect
hard-to-detect faults. The heuristic of minimizing the
number of inputs to the combinational unit for each CUT
input is used to choose the mapping function. In
[Touba 951, a procedure is described for designing
mapping logic that is based on a special class of
transformations called “cube mappings.” Each cube
mapping transforms a set of patterns in the original
pattern set that doesn’t detect any new faults into a new
set of patterns that detects hard-to-detect faults. The
mapping logic is designed to implement a set of cube
mappings that is selected to satisfy fault coverage
requirements. The advantages of using cube mappings are
that sets of patterns are easier to decode than single
patterns, and 100% fault coverage can be guaranteed
because only patterns that don’t detect any new faults are
transformed. A procedure is described in pufaza 951 for
designing mapping logic for a mixed-mode scheme. An
LFSR is used to generate pseudo-random patterns, and
then it is reconfigured as a ring counter to generate
deterministic patterns through a network of OR gates.

This paper presents a more effective method for
finding a mapping function to minimize overhead. The
problem of choosing a mapping function is formulated as
one of finding a minimum rectangle cover in a binate
matrix. A heuristic procedure involving EXPAND,
IRREDUNDANT, and REDUCE operations (analogous to
what is used in ESPRESSO [Brayton84]), is used to
minimize a rectangle cover that corresponds to a mapping
function that can be implemented by a small amount of
mapping logic. By performing global operations, the
procedure is able to find better mapping functions thereby
synthesizing mapping logic that requires less hardware
overhead than other methods.

The paper is organized as follows: In Sec. 2, a
method for specifying a mapping function that satisfies
test length and fault coverage requirements is described. In
Sec. 3, it is shown how the mapping logic can be
constructed from bit-fixing transformations that
correspond to a set of rectangles in a binate matrix. In
Sec. 4, the procedure for selecting a mapping function that
minimizes area overhead is described. In Sec. 5, the

Pattems
ThatDrop

Faults

process of synthesizing the mapping logic is explained.
In Sec. 6, experimental results are presented and compared
with previously published results. Sec. 7 is a conclusion.

0 1 0 0 1 : 1 -+ 0 1 0 0 1 1
0 1 1 0 0 0 + 0 1 1 0 0 0
1 0 1 1 0 1 -+ 1 0 1 1 0 1
0 1 0 1 1 0 -+ 0 1 0 1 1 0
1 0 1 1 0 1 -+ 1 0 1 1 0 1

2. SPECIFYING A MAPPING FUNCTION

This section describes a procedure for specifying a
function that maps the original pattern set into a new
pattern set. The mapping function is specified in a way
that guarantees that it will produce a new pattern set that
achieves a desired fault coverage for a given pattern
generating circuit and test length.

The first step is to simulate the pattern generating
circuit for the given test length to generate the original
pattern set. Then fault simula,tion is performed on the
CUT for the original pattern set to identify the undetected
faults and the set of patterns that caused faults to be
dropped (i.e., be detected for the first time). An automatic
test pattern generation (ATPG) tool is then used to obtain
test cubes (i.e., test patterns in which the unspecified
inputs are left as don’t cares) for the undetected faults.

Given a set of test cubes for the undetected faults, the
original set of patterns, and the set of patterns that
dropped faults, a mapping function can be specified by
assigning to each test cube <a pattern in the original
pattern set that didn’t drop any faults. Each original
pattern that caused a fault to be dropped is mapped to
itself, each original pattern assigned to a test cube is
mapped to the test cube, and the remaining patterns are
don’t cares. Fig. 2 shows an example of specifying a
mapping function that maps the original pattern set into a
new transformed pattern set that provides a 100% fault
coverage. The original patterns that caused faults to be

Original Patterns Transformed Patterns
x1 x2x3 x4 x5 x6 X I x2 x3x4 x.5 x6

Pattems
Assignedto
Testcubes

Unassigned
Pattems

1 0 1 0 1 1 + O O l O X l
0 1 1 1 0 1 -+ X 0 1 1 0 0
1 0 0 1 1 1 -+ 1 X X O 1 X
1 0 0 1 1 10 + x x x x x x
0 0 1 1 0 1 -+ x x x x x x
0 1 0 1 1 1 -+ X X X X X X
1 1 0 1 0 0 -+ X X X X X X
1 0 0 0 0 1 + x x x x x x
1 1 1 0 0 1 - + x x x x x x
0 0 1 0 1 0 + x x x x x x

Paper 30.1
675

dropped are mapped to themselves to ensure that all of the
faults that were detected by the original pattem set are also
detected by the transformed pattem set. The pattems that
were assigned to test cubes are mapped to a pattem that
matches the test cube so that all of the faults that are not
detected by the original pattem set will be detected by the
transformed pattern set. These mappings are sufficient to
ensure that the transformed pattem set will detect all faults,
so it doesn’t matter what the remaining original patterns
are mapped to.

There are many possible mapping functions
depending on how the original pattems are assigned to the
test cubes. The amount of logic required to implement
each possible mapping function varies greatly. Thus, the
problem of minimizing the mapping logic involves
careful selection of the mapping function.

3. MAPPING LOGIC MINIMIZATION

In order to map pattern X into pattem Y , each bit in
pattern X that differs from the corresponding bit in pattem
Y must be “fixed” so that it matches. For example, if the
pattem 0010 is being mapped into the pattern 1000, then
the first bit must be fixed to a ‘1’, and the third bit must
be fixed to a ‘0’. So for original pattems that are mapped
into different pattems (i.e., those assigned to test cubes),
the mapping logic must fix the value of some of the bits
so that the original pattern matches the test cube. An
example of “bit-fixing” logic is shown in Fig. 3. There
is some “bit-fixing function” that is active for some set of
original patterns (in this case, 0010,0101, and 0111).
When the bit-fixing function is active, it fixes some of
the outputs to a specific logic value (in this case, xl = ‘I1,
x3 = ‘U, x4 = ‘0’). So in this example, the bit-fixing

logic maps the original pattems 0010,0101, and 01 11
into the pattems 1000,1100, and 1100, respectively. The
strategy for minimizing the mapping logic is to select the
mapping function in a way that minimizes the number of
bit-fixing functions that are required. This section
describes a technique for finding a set of bit-fixing
functions to implement a given mapping function, and
based on this technique, the next section gives an iterative
procedure for selecting a mapping function that minimizes
the number of bit-fixing functions.

The problem of finding the minimum number of
bit-fixing functions required to implement a given
mapping function can be formulated as one of finding a
minimum rectangle cover in a binate matrix (a similar
idea to what is done in [Brayton 871). A binate matrix B ,
where Bij E {OJJ, is formed in which each test cube is
represented by a row. There is a complemented and
uncomplemented column corresponding to each input in
the test cube. If an input in a test cube is a ‘O’, then its
corresponding complemented and uncomplemented
column entries are set equal to 1 and 0, respectively. If an
input in a test cube is a ‘I1, then its corresponding
complemented and uncomplemented column entries are set
equal to 0 and 1, respectively. If an input in a test cube is
a don’t care (‘X’), then its corresponding complemented
and uncomplemented column entries are both set equal to
1. An entry in B is stared if it corresponds to a bit
difference between the assigned original pattern and the
test cube. A rectangle in B is a subset of rows R and a
subset of columns C such that Bij = 1 for all i E R and
j E C . A rectangle in B corresponds to a common
bit-fixing function among the outputs of the mapping
logic. In the example in Fig. 3, the rectangle that

Original Patterns Test Cubes
x1 x2 x3 x4 x1 x2 x3 x4 X1‘

1 1 1 1 ~ 0 0 1 1 1*

o o 1 o + x o o o 1
0 1 0 1 + 1 x x o 0
0 1 1 1 + 1 l o x 0

B-Matrix
x; x3’ xq/ x1 x2 x3 x4
1 * 0 0 0 0 1 1

0 0 0
1 1 0 1

0 l L 2 1* 1 * 1 0 1

Figure 3. Example of a Rectangle in the B-Matrix and its Corresponding Bit-Fixing Logic

Paper 30.1
676

is shown corresponds to a bit-fixing function that is
active if any of the assigned patterns that correspond to
the rows in the rectangle, i.e., 0010,0101, and 0111, are
applied to the mapping logic. When the bit-fixing
function is active, it fixes the outputs that correspond to
the columns in the rectangle to a specific logic value, i.e.,
xz = ‘I’, x3 = ‘O’, x4 = ‘0’. Thus, the rectangle in
Fig. 3 corresponds to a transformation in which the
original patterns 0010,0101, and 0111 are mapped into
the patterns 1000,1100, and 1100, respectively, which
detect the faults corresponding to the test cubes XOOO,
IXXO, and IIOX, respectively. So each rectangle in B
corresponds to a transformation that can be implemented
by bit-fixing logic that forces specific logic values at a set
of outputs. In order for the mapping logic to transform
all of the assigned patterns so that they match their
respective test cubes, each bit difference (which
corresponds to a stared entry in B) must be contained in a
rectangle that is implemented by the mapping logic. The
mapping logic can be designed by finding a set of
rectangles that covers all of the stared entries in B and then
constructing bit-fixing logic to implement the
transformations corresponding to those rectangles.

4. SELECTING A MAPPING FUNCTION

In the previous section, it was shown how
mapping logic can be constructed by finding a set of
rectangles that cover all of the stared entries in B where
each rectangle corresponds to some bit-fixing logic. Based
on this correspondence, the problem of minimizing the
mapping logic can be formulated as one of finding a
minimum set of rectangles that cover all of the stared
entries in B . The set of stared entries in B depends on
which original pattern is assigned to each test cube.
Therefore, the problem of selecting a mapping function to
minimize the amount of mapping logic corresponds to
assigning original patterns to each test cube in a way that
minimizes the number of rectangles required to cover all
the resulting stared entries. A heuristic procedure for
solving this problem is described in this section.

4 . 1 Procedure for Minimizing Mapping Logic
The procedure begins with a set of rectangles, R, that

covers all the stared entries in the B-matrix. Then it
iterates using an EXPAND, IRREDUNDANT, REDUCE
sequence analogous to what is used in ESPRESSO
[Brayton 841 to reduce the number of rectangles. The key
step is that after the set of rectangles is made prime and
irredundant by the EXPAND and IRREDUNDANT
procedures, the mapping function is changed by
reassigning original patterns to test cubes in order to
eliminate the need for some of the rectangles in R, This
process continues until no further reduction in the number
of rectangles in R is achieved. The steps of the procedure
are described below:
1. Form the B matrix from the set of test cubes.

Each test cube corresponds to a row in the B-matrix.

2. Do an initial assignment 0-0
test cubes based on minimiz-
differences.

Each test cube is compared with the set of unassigned
patterns in the original pattern set, and the pattern that
differs in the smallest number of bits is assigned to the
test cube. This minimizes the total number of stared
entries in the B-matrix.
3. L e t e n t r y in the
-.

This ensures that the initial set of rectangles covers
all of the stared entries.
4. EXPANDU?) - expand eacl-
&he rectangles are prime rectangles,

A prime rectangle is a rectangle that is not contained
in another rectangle. The EXPAND procedure uses the
heuristic of expanding each rectangle so that it covers as
many other rectangles as possible.
5. IRREDUNDANYR) - eliminate rectangles in R that
z-m R.

The IRREDUNDANT procedure goes through each
rectangle in R from the smallest to the largest and checks
to see if the rectangle covers any stared entries that are not
covered by any other rectangles. If not, then the rectangle
can be removed without uncovering any stared entries, so
it is eliminated from R.
6 . Reassign the original patte-
on eliminating as manv rectanQ.Ies in R as possible.

An attempt is made to eliminate the need for some
rectangles in R by changing the location of the stared
entries. This is done by reassigning the original patterns
to the test cubes. For each rectangle in R, an attempt is
made to eliminate all of the stared entries that it alone
covers by reassigning the original patterns to the test
cubes. A new original pattern can be assigned to a test
cube provided the resulting stared entries are all covered by
rectangles in R . If a new assignment can be found such
that some rectangle in R no longer covers any stared
entries, then that rectangle can be removed from R.
7. REDUCE(R1 - reduce eacl-s
p-g all stared entries in the
B-matrix,

Each prime rectangle in R is reduced as much as
possible so that it can be either re-expanded in the next
iteration or implemlented by th~e mapping logic.
8. LooD back to step 4 if the number of rectangles in R
has decreased,

The procedure keeps looping back until no further
reduction in the number of rectangles in R is obtained.

The procedure selects the mapping function by
reassigning original patterns to test cubes in a way that
minimizes the number of rectangles in R . When the
procedure is complete, the mapping logic can be synthesized
so that it implements the transformations corresponding
to each rectangle in R; this is explained in Sec. 5.

Paper 30.1
677

4 . 2 Example
An example will be shown to illustrate the steps of

the procedure. The initial set of rectangles corresponding
to a B-Matrix is shown in Fig. 4. There is one rectangle
for each stared entry. The EXPAND procedure is
performed on the initial set of rectangles to expand them
into prime rectangles. Fig. 5 shows the prime rectangles
that are generated by the EXPAND procedure. The
IRREDUNDANT procedure is performed to eliminate any
rectangles that can be removed without uncovering any
stared entries. The result of the IRREDUNDANT
procedure is shown in Fig. 6 -- one rectangle was
eliminated. Then an attempt is made to reassign the

original patterns that are matched with each test cube in
order to change the location of the stared entries so that
rectangles can be eliminated. The result of the reassign
step is shown in Fig. 7. By assigning the pattern 0111
to the test cube 1 I 0 X (therefore replacing the pattern
l o l l) , the stared entries for the last row in the rectangle
are changed such that a rectangle can be eliminated. The
REDUCE procedure is performed to reduce the size of the
rectangles as much as possible without uncovering any
stared entries. The result of the REDUCE operation is
shown in Fig. 8 -- one rectangle was reduced in size. The
procedure can then be repeated on the resulting set of
rectangles to try to further minimize it.

Original Patterns Test Cubes B-Matrix
x1 x2 x3 x4 x1 x2 x3 x4 XI' X2I x3' x4' x1 x2 x3 x4
1 1 1 l + O O l l j - i q r i q o 0 0 0 1 1

o o 1 o + x o o o 1 1 [1 *) 1 1 0 0 0

0 1 0 1 -+ l X X O 0 l l " 1 1 0

1 0 1 1 -+ 1 1 o x 0 o m 1 l a 0 1
Figure 4. Initial Set of Rectangles.

Original Patterns Test Cubes B-Matrix
x1 x2 x3 x4 x1 x2 x3 x4 XI' x i x3' x4' XI x2 x3 x4

1 1 1 1 - + 0 0 1 1

0 0 1 0 - + x o o o
0 1 0 1 -+ l X X O
1 0 1 1 + 1 1 o x

-10 0 0 0 1 1

0 o I I 1 * 1 1 1 1* l o 1
L I

Figure 5. Set of Rectangles after EXPAND.

Original Patterns Test Cubes B-Mamix
x1 x2 x3 x4 x1 x2 x3 x4 XI' x i x3' x4' x1 x2 x3 x4
1 1 1 1 + 0 0 1 1

0 0 1 0 ~ x 0 0 0

0 1 0 1 + l X X O 1" 1*
1 0 1 1 + 1 l o x

Figure 6. Set of Rectangles after IRREDUNDANT.

Original Patterns Test Cubes B-Matrix
x1 x2 x3 x4 x1 x2 x3 x4 XI' x i x3' x4' x1 x2 x3 x4
1 1 1 1 + 0 0 1 1

o o 1 o + x o o o
0 1 0 1 + 1 x x o 0 1
0 1 1 1 + l l 0 X
Figure 7. Set of Rectangles after Reassigning Original Patterns (1 0 1 I replaced by 0 1 1 1).

0 0 0 1 1

0 0 0
1 1 0

Paper 30.1
678

Original Patterns Test Cubes B-Matrh.
x1 x2 x3 x4 XI x2 x3 x4 XI’ x; x3‘ x4‘ XI x2 x:) x4

o o 1 o - + x o o o 0 0
0 1 0 1 -+ l X X 0 0 1
0 1 1 1 - 3 1 l o x

1 1 1 1 + 0 0 1 1 -10 0 0 0 1 1

Figure 8. Set of Rectangles after REDUCE.

5. SYNTHESIZING THE MAPPING LOGIC

After the mapping function has been selected and the
set of rectangles that covers all the stared entries in the
B-matrix has been minimized, the mapping logic can be
synthesized. This is best explained with an example. In
Fig. 9, the bit-fixing functions corresponding to the two
rectangles in Fig. 8 are specified. For each rectangle, the
assigned original patterns corresponding to the rows in the
rectangle are placed in the on-set since the bit-fixing
function must be active for those patterns. The patterns
that drop faults and the patterns that are assigned to other
test cubes should not be transformed because otherwise the
fault coverage may be reduced, so the bit-fixing function
shouldn’t be active for those patterns, therefore they are
added to the off-set. The on-set and off-set specify the
bit-fixing function and can be passed to a logic synthesis
tool to generate a logic implementation.

Fig. 10 shows an implementation for the set of
rectangles in Fig. 8. The bit-fixing functions were derived
as shown in Fig. 9. Each bit-fixing function forces the
logic value at the outputs corresponding to the columns in
its rectangle. When bit-fixing function 1, (xz x2) , is
active, it forces xz = ‘0’ and x2 = ‘0’. This is
implemented by adding AND gates to xz and&. When
bit-fixing function 2, [xz‘ (x2’+ q)], is active, it forces
XI = 1 , x3 = 0 and x4 = ‘0’. This is implemented by
adding an OR gate to xZ, and AND gates to q and x4.

, e I 9

Pattems that Drop Faults: 0100, 0110, 1011

Pattems Assigned to Test Cubes: 1111, 0010, 0101,

Bit-Fixing Function 1:
On-Set = 1111
Off-Set = 0100,0110,1011,0010,0101,0111
Synthesized Logic c X I , xz , x3, x4> = XI x2

0111

Bit-Fixing Function 2:
On-Set = 0010,0101,0111
Off-set = 0100,0110,1011,1111
Synthesized Logic e x l , x2 x3, x4> = XI ‘ (x2 ‘ + x4)

Figure 9. Bit-Fixing Functions Corresponding to Set of
Rectangles in Figure 8

One option for disabling t’he mapping logic during
system operation is to AND in st test mode line with each
bit-fixing function; this is shown in Fig. 10. An
important issue is the delay during system operation. The
delay through the mapping logic can be optimized by a
logic synthesis tool. However, if the delay is
unacceptable for some of the inputs, then another option
is to bypass the mapping logic for those inputs during
system operation by using multiplexors.

test
mode

I Circuit Under Test I
Figure 10. Implementation ad Mapping Logic for Set

of Rectangles in Figure 8

6. EXPERIMENTAL RESULTS

The method described in this paper was used to
generate mapping logic to reduce the pseudo-random
pattem test length for some of the ISCAS 85 [Brglez 851
and ISCAS 89 [Brglez 891 benchmark circuits that require
over a million test. patterns. There are three important
factors in choosing a test pattern generator for BIST test
time, test quality, and hardware area. To evaluate the test
pattern generators that are designed by the method in this
paper, a comparison was m;ade with other published
results using three measures: test length (for test time),
fault coverage (for test quality), and gate equivalents plus
flip-flop count (for lhardware area).

Paper 30.1
679

6 . 1 Comparison with Weighted
Pseudo-Random Pattern Methods

Table 1 compares the “rectangle mapping” method
described in this paper with weighted pseudo-random
pattern methods. The fault coverage is the same for all
methods: 100% of detectable single stuck-at faults.
Parallel test pattern application (“a test per clock”) is
assumed for all techniques. The first column gives the
circuit names, the second column shows the number of
primary inputs, and the third column shows the test
length for pseudo-random pattem testing using an LFSR
alone. Then results are given for 3 different methods plus
the rectangle mapping method. The test length and
hardware overhead is shown for each method. In some
cases, results are given for two different test lengths to
show the tradeoff between test time and hardware overhead.
The hardware overhead is the hardware required in addition
to what is needed for pseudo-random pattern testing with
an LFSR. Flip-flops and gates are counted separately.
The gates are measured by gate equivalents (GE’s) using
the same method suggested in [Hartmann 931 to reflect a
static CMOS technology: (0.5)(n) GE’s for a n-input
NAND or NOR, (2.5)(n-1) GE’s for a n-input XOR, and
1.5 GE’s for a 2-to-1 MUX (realized by transmission
gates). The hardware overhead for each method is an
estimate that is computed as follows:
Multiule Weight Sets: The weight sets from
[Bershteyn 931 are used. The number of weight sets
required is shown under the column WS. It is assumed that
the best case occurs in which no stages have to be added to
the LFSR to avoid correlation that increases test length.
Thus, extra flip-flops are needed only to keep track of
which weight set is being used. The logic required for
each input to the CUT is conservatively estimated to be a
total of 4 gates to generate the weighted signals and WS
2-to-1 MUXes to select the weighted signals based on
which weight set is currently active.

FF’s = Iog2(number of weight sets)
GE’s = [4 + (1.5) (WS)] (number of inputs in CUT)

3-Weight Method: This method was proposed by
Pomeranz and Reddy in [Pomeranz 931. 3-gate modules
are used to fix the value of certain inputs while random
patterns are being applied thus forming “expanded tests”.
Extra flip-flops are needed to keep track of which expanded
test is being used. The logic required by the 3-gate
modules depends on the fan-in. One of the gates is a two-
input gate, and the average fan-in for the other two is
given in [Pomeranz 931 (results are not available for the
ISCAS 89 circuits).

FF’s = log2(number of expanded tests)
GE’s = (number of 3-gate modules) (I + average fun-in)

Fixed-Biased Method: This method was proposed by
AlShaibi and Kime in [AlShaibi 941. It generates patterns
using a weighted bit stream and fixing the value of some
bits. A ROM is required to store configuration sequences
that are periodically loaded during testing, but for sake of
comparison, it is assumed that the configuration sequences
are stored off-chip even though this would impact test
time. A 17-stage LFSR plus some weight logic is used
to generate the weighted bit stream. Each fixed bit
requires one extra flip-flop, four 2-to-1 MUXes, and a
two-input NAND gate; the number of fixed bits for each
circuit is given in [AlShaibi 941.

FF’s = I 7 + (number of fixed bits)
GE’s = [(4)(1.5) + I] (number offixed bits)

The rectangle mapping method requires no additional flip-
flops. It adds only combinational logic between the
LFSR and the CUT. Assuming that flip-flops require 4
gate equivalents or more, the rectangle mapping method
requires the least hardware overhead for a given test length
compared with the other methods. In many cases, the
rectangle mapping method reduces the test length
significantly more than the other methods while using
much less hardware.

Table 1. Comparison with Weighted Pseudo-Random Pattern Methods

9 24

12 24
5 23

Paper 30.1
680

6 . 2 Comparison with Cube Mapping Method 7. CONCLUSIONS
Table 2 compares results for the rectangle mapping

method presented here with results for the cube mapping
method presented in [Touba 951. The test length and gate
equivalents are shown for each circuit. The fault coverage
is 100% of detectable faults for both methods. The cube
mapping method uses a greedy approach for selecting cube
mappings based on simulation. The rectangle mapping
method performs iterative operations to select the
mapping function based on more general bit-fixing
transformations. Because the transformations used by the
rectangle mapping method are more general and the
selection process is iterative as opposed to greedy, the
rectangle mapping method finds better mapping functions
that result in less hardware overhead.

Table 2. Comparison with Cube Mapping Method.

6 . 3 Comparison with Method in [Chatterjee 951
Table 3 compares results for the rectangle mapping

method with the results given in [Chatterjee 951. The test
length, fault coverage for detectable faults, and gate
equivalents are shown for both methods. Note that the
method in [Chatterjee 951 doesn’t achieve 100% fault
coverage for some circuits. The rectangle mapping
method uses more global operations in selecting the
mapping function than the method in [Chatterjee 951.
This results in mapping logic that requires less hardware
overhead.

Table 3. Comparison with Method in [Chatterjee 951.

On-chip generation of weighted pseudo-random
patterns involves adding weight logic to the output of the
pseudo-random pattern generator to increase the
probability that the hard-to-detect faults will be detected.
The method described in this paper improves upon that
idea in two ways: (1) the weight logic is generalized to
be any mapping function, and (2) a deterministic
procedure is used to synthesize the mapping logic to
guarantee detection of all faults. By using an iterative
procedure involving global operations, the synthesis
method described in this paper generates mapping logic
that requires less hardware overhead than previous methods
(as indicated by the experimental results). In addition to
reducing the overhead required for BIST, it provides the
following advantages: allows parallel test pattern
application, is easy to insert into an existing design (the
mapping logic is simply placed between a pattern
generating circuit and the CUT), and can be used with any
pattern generating circuit (e.g.. LFSR, CA, BILBO
register).

Results in [Ma 951 indicate that test sets in which
each single stuck-at fault is detected multiple times
provide high defect coverage. The procedure described in
this paper can be easily extended to transform a
pseudo-random pattern set into one that detects each single
stuck-at fault at least n times by simply specifying
additional transforms in the mapping function.

ACKNOWLEDGEMENTS

This work was supported in part by the Advanced
Research Projects Agency under prime contract
No. DABT63-94-C-0045, and by the Ballistic Missle
Defense Organization, Innovative Science and Technology
(BMDODST) Directorate administered through the
Department of Navy, Office of Naval Research under
Grant No. N0001.4-92-J- 1782, and by the National
Science Foundation under Grant No. MIP-9 107760.

REFERENCES

[AlShaibi 941 AlShaibi, M.F., and C.R. Kime, “Fixed-
Biased Pseudorandom Built-In Self-Test for Random
Pattem Resistant Circuits,” Proc. oflnternational Test
Conference, pp. 929-938, 1994.

[Bardell 871 Bardell, P.H., W.H. McAnney, and J. Savir,
Built-In Test jhr VLSI: Pseudorandom Techniques,

[Bershteyn 931 Bershteyn, M., “Calculation of Multiple
Sets of Weights for Weighled Random Testing,” Proc.
of International Test Conference, pp. 1031-1040, 1993.

~

1 New York: Wiley, 1987.
1

I

1

Paper 30.1
681

[Brayton 841 Brayton, R.K., G.D. Hachtel, C. McMullen,
and A. Sangiovanni-Vincentelli, Logic Minimization
Algorithms fo r VLSI Synthesis, Boston: Kluwer
Academic Publishers. 1984.

[Brayton 871 Brayton, R.K., R. Rudell, A. Sangiovanni-
Vincentelli, A.R. Wang, “Multi-Level Logic
Optimization and The Rectangular Covering Problem,”
Proc. of International Conference on Computer-Aided
Design (ICCAD), pp. 66-69, 1987.

[Brglez 851 Brglez, F., and H. Fujiwara, “A Neutral Netlist
of 10 Combinational Benchmark Circuits and a Target
Translator in Fortan,” Proc. of International Symposium
on Circuits and Systems, pp. 663-698, 1985.

[Brglez 891 Brglez, F., D. Bryan, and K. Kozminski,
“Combinational Profiles of Sequential Benchmark
Circuits,” Proc. of International Symposium on
Circuits and Systems, pp. 1929-1934, 1989.

[Chatterjee 951 Chatterjee, M., and D.K. Pradhan, “A New
Pattern Biasing Technique for BIST”, Proc. of VLSI
Test Symposium, pp. 417-425, 1995.

[Dufaza 951 Dufaza, C., H. Viallon, and C. Chevalier,
“BIST Hardware Generator for Mixed Test Scheme,”
Proc. of European Design and Test Conference, 1995.

[Eichelberger 831 Eichelberger, E.B., and E. Lindbloom,
“Random-Pattern Coverage Enhancement and
Diagnosis for LSSD Logic Self-Test,” IRM Journal of
Research and Development, Vol. 27, No. 3,
pp. 265-272, May 1983.

[Hartmann 931 Hartmann, J., and G. Kemnitz, “How to
Do Weighted Random Testing for BIST,” Proc. of
International Conference on Computer-Aided Design

[Konemann 791 Konemann, B., J. Mucha, and G.
Zwiehoff, “Built-in Logic Block Observation
Technique,” Proc. of International Test Conference,

[Krasniewski 891 Krasniewski, A., and S. Pilarski,
“Circular Self-Test Path: A Low-Cost BIST Technique
for VLSI Circuits,” IEEE Transactions on Computer-
Aided Design, Vol. 8, No. 1, pp. 46-55, Jan. 1989.

(ICCAD), pp. 568-571, 1993.

pp. 140-150, 1979.

[Ma 951 Ma, S.C., P. Franco, and E.J. McCluskey, “An
Experimental Test Chip to Evaluate Test Techniques:
Experimental Results,” Proc. of International Test
Conference, 1995.

[Miranda 931 Miranda, M.A., and C.A. Lopez-Barrio,
“Generation of Single Distributions of Weights for
Random Built-In Self-Test,’’ Proc. of International Test
Conference, pp. 1023-1030,1993.

Muradali 901 Muradali, F., V.K. Agarwal, B. Nadeau-
Dostie, “A New Procedure for Weighted Random Built-
In Self-Test,” Proc. of International Test Conference,

Pomeranz 931 Pomeranz, I., and S.M. Reddy, “3-Weight
Pseudo-Random Test Generation Based on a
Deterministic Test Set for Combinational and Sequential
Circuits,” IEEE Transactions on Computer-Aided
Design, Vol. 12, No. 7, pp. 1050-1058, Jul. 1993.

[Schnurmann 751 Schnurmann, H.D., E. Lindbloom, and
R.G. Carpenter, “The Weighted Random Test-Pattern
Generator,” IEEE Transactions on Computers,

[Touba 941 Touba, N.A., and E.J. McCluskey,
“Automated Logic Synthesis of Random Pattern
Testable Circuits,” Proc. of International Test
Conference, pp. 174-183, 1994.

[Touba 951 Touba, N.A., and E.J. McCluskey,
“Transformed Pseudo-Random Patterns for BIST,”
Proc. of VLSI Test Symposium, pp. 410-416, 1995.

Waicukauski 891 Waicukauski, J.A., E. Lindbloom, and
0. Forlenza, “A Method for Generating Weighted
Random Test Patterns,” IBM Journal of Research and
Develop., Vol. 33, No. 2, pp. 149-161, March 1989.

[Wunderlich 881 Wunderlich, H.-J., “Multiple
Distributions for Biased Random Test Patterns,” Proc.
of International Test Conference, pp. 236-244, 1988.

pp. 660-668, 1990.

Vol. C-24, NO. 7, pp. 695-700, Jul. 1975.

Paper 30.1
682

