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ABSTRACT 1. Modify Circuit-Under-Test; The circuit-under-test 
is modified by either inserting test points 

This paper presents a low-overhead scheme for built-in [Eichelberger 831, [Cheng 951, [Touba 961, or by 
self-test of circuits with scan. Complete (100%) fault redesigning it [Touba 941, [Chiang 941, [Chatterjee 951 to 
coverage is obtained without modifying the function logic improve the fault detection probabilities. These techniques 
and without degrading system performance (beyond using generally add extra levels of logic to the circuit which may 
scan). Deterministic test cubes that detect the random- degrade system performance. Moreover, in some cases it is 
pattern-resistant faults are bedded in a pseudo-random not possible or not desirable to modify the function logic 
sequence of bits generated by a linear feedback shift register (e.g., macrocells, cores, proprietary designs). 
(LFSR). This is accomplished by altering the 2. & Logic is 
Pseudo-random sequence by adding logic at the LFSRs added to change the probability of each bit in the sequence 
serial output to “fix” certain bits. A procedure for being a ‘1’ or a ‘0’ in a way that biases the patterns that 
synthesizing the bit-fixing logic for embedding the test are generated towards those that detect the r.p.r. faults. The 
cubes is described. Experimental results indicate that weight logic can be either at the input of the Scan 
complete fault coverage can be obtained with low hardware [ ~ ~ ~ l ~ ~  89bl or in the individual scan cells 
overhead. Also, the Proposed approach Permits the “se of themselves [Muradali 901. Multiple weight sets are 
small LFSR’s for generating the Pseudo-random bit usually required due to conflicting input values needed to 
sequence. The faults that are not detected because of linear detect r.p.r. faults [Wunderlich 901. The weight sets need 
dependencies in the LFSR can be detected by embedding to be stored and control logic is required to switch between 
deterministic cubes at the expense of additional bit-fixing them, so the hardware overhead 
logic. Data is presented showing how much additional 3. Mixed-Mode: Deterministic patterns are used to 
logic is required for different size LFSRs. detect the faults that the pseudo-random patterns miss. 

Storing deterministic patterns in a ROM requires a large 
amount of hardware overhead. Koenemann, in 
[Koenemann 911, proposed a technique based on reseeding 

be large. 

1. INTRODUCTION 

In built-in self-test (BIST), internal hardware is used to 
generate test patterns that are applied to the 
circuit-under-test and to analyze the output response. A 
low-overhead approach for BIST in circuits with scan is to 
use a linear feedback shift register (LFSR) to shift a 
pseudo-random sequence of bits into the scan chain. When 
a pattern has been shfted into the scan chain, it is applied 
to the circuit-under-test and the response is loaded back into 
the scan chain and shifted out into a serial signature 
register for compaction as the next pattern is shifted into 
the scan chain. Figure 1 shows a block diagram for this 
“test-per-scan” BIST scheme. Unfortunately, many 
circuits contain random-pattern-resistant (r.p.r) faults 
[Eichelberger 831 which limit the fault coverage that can 
be achieved with this approach. Three methods for 
improving the fault coverage for a test-per-scan BIST 
scheme are: 

an LFSR that reduces the storage requirements. The LFSR 
that is used for generating the pseudo-random patterns is 
also used to generate deterministic test cubes (test patterns 
with unspecified inputs) by loading it with computed 
seeds. The number of bits that need to be stored is reduced 
by storing a set of seeds instead of a set of deterministic 
patterns. Hellebrand et al., in [Hellebrand 921, 
[Venkataraman 931, and [Hellebrand 95a], proposed an 
improved technique that uses a multiple-polynomial LFSR 
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Figure 1 . “Test-Per-Scan” BIST Scheme 
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Figure 2 .  Logic for Altering the Pseudo-Random Bit 
Sequence 

for encoding a set of deterministic test cubes. By 
“merging” and “concatenating” the test cubes, they further 
reducethe number of bits that need to be stored. Even 
further reduction can be achieved by using variable-length 
seeds [Zacharia95] and a special ATPG algorithm 
[Hellebrand 95bl. 

This paper presents a new mixed-mode approach in 
which deterministic test cubes are embedded in the 
pseudo-random sequence of bits. Logic is added at the 
serial output of the LFSR to alter the pseudo-random bit 
sequence so that it contains patterns that detect the r.p.r. 
faults. This is accomplished by “fixing” certain bits in the 
sequence. As illustrated in Fig. 2, logic is added to 
generate a bit-fixing sequence that alters the pseudo-random 
sequence by causing certain bits to be fixed to either a ‘1’ 
or a ‘0’. A procedure is described for designing the 
bit-fixing sequence generator in a way that reduces area 
overhead. 

The new test-per-scan BIST scheme presented in this 
paper is sort of a hybrid approach. It is different from 
weighted pattern testing because it is not based on 
probability. It guarantees that certain test cubes will be 
applied to the circuit-under-test during a specified test 
length. Also, it doesn’t require a multi-phase test in which 
control logic is needed to switch to different weight sets for 
each phase. The control is very simple because there is 
only one phase. 

The scheme presented in this paper is also different 
from previous mixed-mode schemes for test-per-scan BIST. 
Previous mixed-mode schemes for test-per-scan BIST have 
been based on storing compressed data in a ROM. In the 
proposed scheme, no data is stored in a ROM, rather a 
multilevel circuit is used to dynamically fix bits in a way 
that exploits bit correlation (same specified values in 
particular bit positions) among the test cubes for the r.p.r. 
faults. Small numbers of correlated bits are fixed in 
selected pseudo-random patterns to make the 
pseudo-random patterns match the test cubes. So rather 
than trying to compress the test cubes themselves, the 
proposed scheme compresses the bit differences between 
the test cubes and a selected set of pseudo-random patterns. 
Since there are so many pseudo-random patterns to choose 
from, a significant amount of compression can be achieved 
resulting in low overhead. 

Schemes based on reseeding an LFSR require that the 
LFSR have at least as many stages as the maximum 
number of bits specified in any test cube. A hardware 
tradeoff that is made possible by the scheme presented in 
this paper is that a smaller LFSR can be used for 

generating the pseudo-random bit sequence. This may 
cause some faults to not be detected because of linear 
dependencies in the patterns that are generated, but 
deterministic test cubes for those faults can be embedded at 
the expense of additional logic in the bit-fixing sequence 
generator. Data is presented showing how much additional 
logic is required for different size LFSRs. 

The paper is organized as follows: In Sec. 2, the 
architecture of the bit-fixing sequence generator is 
described. In Sec. 3, the procedure for designing the 
bit-fixing sequence generator is presented. In Sec. 4, 
experimental results are shown for benchmark circuits. 
Sec. 5 is a conclusion. 

2. ARCHITECTURE OF BIT-FIXING 
SEQUENCE GENERATOR 

The purpose of the bit-fixing sequence generator is to 
alter the pseudo-random sequence of bits that is shifted into 
the scan chain in order to embed deterministic test cubes in 
the sequence. This is done by generating a sequence of 
fix-to-1 and fix-to-0 control signals that fix certain bits to 
either ‘1’ or ‘U. The architecture of the bit-fixing sequence 
generator is shown in Fig. 3. For a scan chain of length 
m , there is a Mod-(m+l) Counter that counts the number 
of bits that have been shifted into the scan chain. After m 
bits, the scan chain is full, so when the counter reaches the 
(m+l) state, the pattern in the scan chain is applied to the 
circuit-under-test and the response is loaded back into the 
scan chain. At this point, the LFSR contains the starting 
state for the next pattern that will be shifted into the 
LFSR. The Bit-Fixing Sequence Selection Logic decodes 
the starting state in the LFSR and selects the bit-fixing 
sequence that will be used for the next pattern. The 
selected bit-fixing sequence identifier is loaded into the 
Sequence ID Register. As the counter counts through the 
next m bits that are shifted into the scan chain, the 
Bit-Fixing Sequence Generation Logic generates the 
fix-to-1 and fix-to-0 control signals based on the bit-fixing 
sequence identifier stored in the Sequence ID Register and 
the value of the counter (see Fig. 6 for a specific example). 

One thing that should be pointed out is that the 
Mod-(m+l) Counter is not additional overhead. It is 
needed in the control logic for any test-per-scan BIST 
technique to generate a control signal to clock the 
circuit-under-test when the scan chain is full. Thus, this 
scheme takes advantage of existing BIST control logic. 

For each pattern that is shifted into the scan chain, the 
bit-fixing sequence generator is capable of generating one 
of 2n different bit-fixing sequences where n is the size of 
the Sequence ID Register. A deterministic test cube for an 
r.p.r. fault can be shifted into the scan chain by generating 
an appropriate bit-fixing sequence for a pseudo-random 
pattern generated by the LFSR. The bit-fixing sequence 
fixes certain bits in the pseudo-random pattern such that 
the resulting pattern that is shifted into the scan chain 
detects the r.p.r. fault. The bit-fixing sequence generator 
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Figure 3 . Architecture of Bit-Fixing Sequence Generator 

must be designed so that it generates enough deterministic 
test cubes to satisfy the fault coverage requirement. The 
key to minimizing the area overhead for this approach is 
careful selection of the bit-fixing sequences that are 
generated. 

One characteristic of the test cubes for r.p.r. faults is 
that subsets of them often have the same specified values 
in particular bit positions (this will be referred to as "bit 
correlation"). For example, the test cubes 1101 1, 11x00, 
and 1XOX0, are correlated in the lst, 2nd, and 3rd bit 
positions, but not in the 4th and 5th. That is because all 
of the specified bits in the 1st and 2nd bit positions are 
l's, and all of the specified bits in the 3rd bit position are 
0's. However, the 4th and 5th bit positions have conflicts 
because some of the specified values are 1's and some are 
0's. Note that the unspecified values (Xs) don't matter. 
The reason why a significant amount of bit correlation 
often exists among the test cubes for the r.p.r. faults is 
probably due to the fact that several r.p.r. faults may be 
caused by a single random pattern resistant structure in the 
circuit. For example, if there is a large fan-in AND gate 
in a circuit, then that may cause all of the input stuck-at 1 
faults and the output stuck-at 0 fault of the gate to be r.p.r. 
Many of the specified values in particular bit positions of 
the test cubes for these r.p.r. faults will be the same. 
Thus, there will be a significant amount of bit correlation 
among the test cubes. This phenomenon is seen in 
weighted pattern testing where biasing certain bit positions 
results in detecting a significant number of r.p.r. faults. 

In the scheme presented in this paper, bit correlation 
among the test cubes for the r.p.r. faults is used to 
minimize both the number of different bit-fixing sequences 
that are required and the amount of decoding logic. A 
procedure for designing the bit-fixing sequence generator is 
described in the next section. 

3. DESIGNING BIT-FIXING SEQUENCE 
GENERATOR 

For a given LFSR and circuit-under-test, this section 
describes an automated procedure for designing a bit-fixing 
sequence generator to satisfy test length and fault coverage 

requirements. The bit-fixing sequence generator is designed 
to alter the pseudo-random bit sequence generated by the 
LFSR to achieve the desired fault coverage for the given 
test length (number of scan patterns applied to the 
circuit-under-test). 

3 .1  Obtaining Test Cubes 
The first step is to simulate the r-stage LFSR for the 

given test length L to determine the set of pseudo-random 
patterns that are applied to the circuit-under-test. For each 
of the L patterns that are generated, the starting r-bit state 
of the LFSR is recorded (i.e., the contents of the LFSR 
right before shifting the first bit of the pattern into the 
scan chain). Fault simulation is then performed on the 
circuit-under-test for the pseudo-random patterns to see 
which faults are detected and which are not. The pattern 
that drops each fault from the fault list (i.e., detects the 
fault for the first time) is recorded. The faults that are not 
detected are the faults that require altering of 
pseudo-random bit sequence. The pseudo-random bit 
sequence must be altered to generate test cubes that detect 
the undetected faults. An automatic test pattern generation 
(ATPG) tool is used to obtain test cubes for the undetected 
faults by leaving unspecified inputs as X's .  

A simple contrived design example will be used to 
illustrate the procedure described in this paper. A 
bit-fixing sequence generator will be designed to provide 
100% fault coverage for a test length of 12 patterns 
(L= 12) generated by a 5-stage LFSR (-5) and shifted into 
a 12 bit scan chain (m=12). Figure 4 shows the 12 
patterns that are generated by the LFSR and applied to the 
circuit-under-test through the scan chain. For each pattern, 
the starting state of the LFSR is shown and the number of 
faults that are dropped from the fault list is shown. Five 
of the patterns drop faults while the other 7 do not. The 
pseudo-random patterns detect 16 out of 20 possible faults 
giving a fault coverage of 80%. An ATPG tool is used to 
obtain test cubes for the 4 undetected faults. The 
bit-fixing sequence generator must be designed so that it 
alters the pseudo-random bit sequence in a way that all 4 
test cubes are generated in the scan chain. 
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Starting State 
0 1 0 1 1  -+ 
1 1 0 1 0  + 
1 1 0 0 0  + 
0 0 0 0 1  + 
1 1 1 0 0  -+ 
0 1 1 1 0  -+ 
0 1 0 0 1  -+ 
0 0 0 1 1  -+ 
0 0 1 0 1  + 
1 0 0 1 1  -+ 
1 1 0 1 1  + 
0 0 1 0 0  + 

Test Cubes for Undetected Faults: 

Pattern Shifted into Scan Chain 
0 1 0 0 0 0 1 0 1 0 1 1  
1 1 1 1 1 0 0 1 1 0 1 0  
0 1 0 1  1 1 0 1  1 0 0 0  
1 1  0 1 0 0  1 0 0 0 0  1 
1 1 0 0 0 1 1 1 1 1 0 0  
0 0 0 0 1 0 1 0 1 1 1 0  
1 1 1 0 0 1 1 0 1 0 0 1  
0 1  1 1 0 1  1 0 0 0 1  1 
0 1 0 0 1 0 0 0 0 1 0 1  
0 0 0 1 1 1 1 1 0 0 1 1  
0 0 1 0 1 0 1 1 1 0 1 1  
1 0 0 1  1 0 1 0 0 1 0 0  

1 1  l x o o x x x x o o  
1 0  1 x 1 o x x x x o x  
o o o x x l x x x x o o  
0 l x x o l x x x x l o  

Num. of Faults Dropped 
7 
5 
2 
0 
1 
0 
0 
0 
0 
1 
0 
0 
16/20 

Fault Coverage = 80% 

Figure 4 .  Design Example (r=5, L=12, m=12): Obtaining the Test Cubes 

Starting LFSR states for Patterns that Drop Faults: 0101 1, 11010, 11000, 11 100, 1001 1 

F’ = (0101 1 + 11010 + 11000 + 11 100 + 1001 1)’ 

Largest Implicant in F’: O O X X X  

Starting LFSR State 
Patterns Decoded by OOXXX: 0 0 0 0 1  + 

0 0 0 1 1  -+ 
0 0 1 0 1  -+ 
0 0 1 0 0  -+ 

Consider all 4 Test Cubes 
1 l l x o o x x x x o o  Test Cubes 
1 0 1 x 1 0 x x x x  0 x 
0 0 0 x x 1 x x x x 0 0  
0 1 x x  0 1 x x  x x  1 0 

0 Bits to Fix 
-1 

1 1 0 1 0 0 1 0 0 0 0 0  Resulting 
0 1 1 1 0 1 1 0 0 0 1 0  Scan Patterns 
0 1 0 0 1 0 0 0 0 1 0 0  
1 0 0 1  1 0 1 0 0 1 0 0  

1 Test Cube Embedded 

Corresponding Scan Pattern 
1 1 0 1 0 0 1 0 0 0 0 1  
0 1  1 1 0 1 1 0 0 0 1 1  
0 1 0 0 1 0 0 0 0 1 0 1  
1 0 0 1 1 0 1 0 0 1 0 0  

Eliminate One Test Cube 
1 1  l x o o x x x x o o  
1 0  1 x 1 o x x x x o x  
O l X X O l  x x x  x 1 0  

1 0 
1 -1 

1 1  1 1  0 0 1  0 0 0 0 0  
0 1  1 1  0 1 1  0 0 0  1 0  
0 1 1 0 1 0 0 0 0 1 0 0  
1 0 1  1 1 0 1  0 0  1 0 0  

3 Test Cubes Embedded 
~~~ ~ 

Figure 5 . Design Example: Finding Decoding Function and Set of Bits to Fix for the New Sequence ID Register Bit 
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3 . 2  Embedding Test Cubes 
Once the set of test cubes for the undetected faults has 

been obtained, the bit-fixing sequence generator is then 
designed to embed the test cubes in the pseudo-random bit 
sequence. The test cubes are embedded in a way that 
guarantees that faults that are currently detected by the 
pseudo-random bit sequence will remain detected after the 
test cubes are embedded. This is done by only altering 
patterns that don’t drop any faults. As long as the patterns 
that drop faults are not altered, the dropped faults are 
guaranteed to remain detected. This ensures that fault 
coverage will not be lost in the process of embedding the 
test cubes. 

The goal in designing the bit-fixing sequence 
generator is to embed the test cubes with a minimal 
amount of hardware. A hill-climbing strategy is used in 
which one bit at a time is added to the Sequence ID 
Register based on maximizing the number of test cubes 
that are embedded each time. Bits continue to be added to 
the Sequence ID Register until a sufficient number of test 
cubes have been embedded to satisfy the fault coverage 
requirement. Complete fault coverage can be obtained by 
embedding test cubes for all of the undetected faults. 

For each bit that is added to the Sequence ID Register, 
the first step is to determine for which patterns the bit will 
be active (i.e., which patterns it will alter). In order not to 
reduce the fault coverage, it is important to choose a set of 
patterns that don’t currently drop any faults in the 
circuit-under-test. In order to minimize the Bit-Fixing 
Sequence Selection Logic, it is important to choose a set 
of patterns that are easy to decode. The set of patterns for 
which the new Sequence ID Register bit will be active are 
decoded from the starting state of the LFSR for each 
pattern. Let F be a Boolean function equal to the sum of 
the minterms corresponding to the starting state for each 
pattern that drops faults. Then an implicant in F’ 
corresponds to a set of patterns that don’t drop faults and 
can be decoded by an n-input AND gate where n is the 
number of literals in the implicant. A binate covering 
procedure can be used to choose the largest implicant in F’ 
(see [Touba 951). The largest implicant requires the least 
logic to decode and corresponds to the largest set of 
pseudo-random patterns that don’t drop any faults and thus 
is most desirable. These are the patterns that will activate, 
and hence be altered by, the new Sequence ID Register bit. 

In the design example, there are 5 starting LFSR 
states that correspond to the patterns that drop faults. 
They are listed at the top of Fig. 5. The function F is 
formed, and the largest implicant in the complement of F 
is found. The largest implicant is OOXXX.  Whenever the 
first two bits in a starting state of the LFSR are both ‘O’, 
then the new Sequence ID Register bit is activated. Thus, 
there are 4 patterns for which the new Sequence ID 
Register bit will be activated. 

After the set of patterns that activate the new Sequence 
ID Register bit have been determined, the next step is to 
determine which bits in the patterns will be fixed when the 

new Sequence ID Register bit is activated. The goal is to 
fix the bits in a way that embeds as many test cubes as 
possible. The strategy is to find some good candidate sets 
of bits to fix and then compute how many test cubes 
would be embedded if each were used. The candidate that 
embeds the largest number of test cubes is then selected. 

The candidate sets of bits to fix are determined by 
looking at bit correlation among the test cubes. For 
example, if the two test cubes lOlOXand 00x11 are to be 
embedded, then fixing the 2nd bit position to a ‘O’, the 3rd 
bit position to a ‘l’, and the 5th bit position to a ‘1’ 
would help to embed both test cubes in the pseudo-random 
bit sequence. But, fixing the 1st bit to a ‘1’ or fixing the 
4th bit to a ’0’ would only help to embed the first test 
cube; it would prevent the second test cube from being 
embedded. The reason for this is that the two test cubes 
have conflicting values in the 1st and 4th bit. So given a 
set of test cubes to embed, the best bits to fix are the ones 
in which there are no conflicting values among the test 
cubes. The procedure for selecting the set of bits to fix is 
as follows (the procedure is illustrated for the design 
example at the bottom of Fig. 5): 

1. Place all test cubes to be embedded into the initial set of 
test cubes. 

Begin by considering all of the test cubes that need to 
be embedded. 

[In the design example in Fig. 5, all 4 test 
cubes are considered initially.] 

2. 
among the test cubes. 

Look at each bit position. If one or more test cubes 
has a ‘1’ and one or more test cubes has a ‘0’ in the bit 
position then there is a conflict. If all of the test cubes 
have either a ‘1’ (‘0’) or an ‘X’, then the bit can be fixed to 
a ‘1’ (‘0’). 

[In the design example in Fig. 5,  when all 4 
test cubes are considered, only the last bit 
position has no conflicting values. All 4 of the 
test cubes have either a ‘0’ or an ‘X’ in the last 
bit position.] 

3. Com 
embedded by fixing this candidate set of bits. 

For each pattern that activates the new Sequence ID 
Register bit, fix the set of bits that was determined in 
step 2. Count the number of test cubes that are embedded 
in the resulting patterns. 

[In the design example in Fig. 5 ,  when the 
last bit position is fixed to a ‘0’ in the 4 scan 
patterns that activate the new Sequence ID 
Register bit, it enables the test cube 
OlXXOlXXXXlO to be embedded in the 
pseudo-random pattern 01 I1 01 I0001 1 .] 

Paper 7.1 
171 



4. If the number of test cubes embedded is larger than that 
of the best candidate. then mark this as the best candidate. 

The goal is choosing the set of bits to fix is to embed 
as many test cubes as possible. 

5. Remove the test cube that will eliminate the mosf 
conflicts. 

One test cube is removed from consideration in order 
to increase the number of bits that can be fixed. The test 
cube that is removed is chosen based on reducing the 
number of conflicting bits in the remaining set of test 
cubes. 

[In the design example in Fig. 5, if the third 
test cube is eliminated from consideration, the 
remaining 3 test cubes have two specified bit 
positions where there are no conflicts. The third 
bit can be fixed to a ‘1’ in addition to fixing the 
last bit to a ‘O’.] 

6. If the number of test cubes that are embedded by the 
best candidate is greater than the number of test cubes that 
remain. then select the best candidate. Otherwise. loog 
back to step 2. 

The next candidate set of bits to fix will only help to 
embed the remaining set of test cubes, and therefore has 
limited potential. If it is not possible for the next 
candidate to embed more test cubes than the best candidate, 
then the best candidate is selected as the set of bits to fix. 

7. Eliminate as many fixed bits as possible without 
reducinp the number of embedded test cubes. 

In order to minimize hardware area, it is desirable to 
fix as few bits as possible. It may be possible to embed 
the test cubes without fixing all of the bits in the selected 
set. An attempt is made to reduce the number of fixed bits 
by eliminating one bit at a time and checking to see if the 
same test cubes are embedded. 

The bit-fixing sequence generator is designed so that 
when the new Sequence ID Register bit is activated, the set 
of bits selected by the procedure above is fixed. The 
pseudo-random patterns that are altered to embed each test 
cube are added to the set of patterns that drop faults (one 
pattern per embedded test cube). This is done to ensure 
that those patterns are not further altered such that they 
would no longer embed the test cubes. If the fault 
coverage is not sufficient after adding the new Sequence ID 
Register bit, then another Sequence ID Register bit is  
added to embed more test cubes. 

In the design example in Fig. 5, when all 4 test cubes 
are considered, the only specified bit position where there 
are no conflicts is the last bit position which can be fixed 
to a ‘0’. Fixing this bit enables one test cube to be 
embedded. However, when one of the test cubes is 
eliminated from consideration then the remaining 3 test 
cubes have two specified bit positions where there are no 
conflicts. Fixing these two bits enables all 3 of the 

remaining test cubes to be embedded. Thus, this is the 
selected set of bits to fix when the new Sequence ID 
Register bit is activated. There is still one test cube that 
has not been embedded. Since complete fault coverage is 
required, another bit must be added to the Sequence ID 
Register, The three pseudo-random patterns in which the 
three test cubes were embedded are added to the set of 
patterns that drop faults, and the procedure for adding a new 
Sequence ID Register bit is repeated. 

3 .3  Synthesizing Bit-Fixing Sequence 
Generation Logic 

When enough bits have been added to the Sequence ID 
Register to provide sufficient fault coverage, the remaining 
task is to synthesize the Bit-Fixing Sequence Generation 
Logic. The Bit-Fixing Sequence Generation Logic 
generates the fix-to-I and fix-to-0 control signals to fix the 
appropriate bits in the sequence depending on which 
Sequence ID Register bits are active. For each Sequence 
ID Register bit that is active, control signals are generated 
when certain states of the counter are decoded. 

The process of constructing the Bit-Fixing Sequence 
Generation Logic is best explained with an example. The 
Bit-Fixing Sequence Generation Logic for the design 
example is shown in Fig. 6. The first bit in the Sequence 
ID Register is activated whenever the first two bits in the 
starting seed for a pattern are both ‘0’. This condition is 
decoded using a two-input AND gate and loading the 
Sequence ID Register right before shifting a new pattern 
into the scan chain. When the first bit in the Sequence ID 
Register is active, it fixes the 1st bit shifted into the scan 
chain to a ‘0’ and the 10th bit shifted into the scan chain to 
a ‘1’. This is done by generating ajix-to-0 signal when 
the counter is in the “cnt-1” state and a fix-to-1 signal 
when the counter is in “cnt-10” state. The second bit in 
the Sequence ID Register is activated whenever the 3rd and 
4th bit in the starting seed for a pattern are both ‘1’. When 
the second bit in the Sequence ID Register is activated, it 
fixes the 2nd bit shifted into the scan chain to a ‘0’. This 
is done by generating afix-to-0 signal when the counter is 
in “cnt-2” state. 

Figure 6. Design Example: Bit-Fixing Sequence 
Generation Logic Prior to Multilevel Logic Optimization 
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When constructing the Bit-Fixing Sequence 
Generation Logic, the states of the counter can be decoded 
by simply using n-input AND gates where n is equal to 
the number of bits in the counter. However, once the 
logic has been constructed, it should be minimized using a 
multilevel logic optimization tool. The don't care 
conditions due to the unused states of the counter can be 
used to minimize the logic, but more importantly, the 
logic can be factored. Because the number of inputs to the 
logic is small, factoring is very effective for significantly 
minimizing the Bit-Fixing Sequence Generation Logic. 

Since the Bit-Fixing Sequence Generation Logic is 
synthesized from a two-level starting point, it can be made 
prime and irredundant using synthesis procedures such as 
those described in [Bostick 871 and [Rajski 921. If the full 
don't care set is used (i.e., all input combinations that 
don't occur during BIST are don't cares), then the resulting 
logic will be 100% tested for single stuck-at faults by the 
patterns applied during BIST [Bartlett 881. 

4. EXPERIMENTAL RESULTS 

The procedure described in this paper has been 
implemented in Stanford CRC's synthesis-for-test tool, 
TOPS, and was used to design bit-fixing sequence 
generators for ISCAS 85 [Brglez85] and ISCAS 89 
[Brglez 89a] benchmark circuits that contain 
random-pattern-resistant faults. The primary inputs and 

flip-flops in each circuit were configured in a scan chain. 
The bit-fixing sequence generators were designed to provide 
100% fault coverage of all detectable single stuck-at faults 
for a test length of 10,000 patterns. 

The size of the 
scan chain is shown for each circuit followed by the 
maximum number of specified bits in any test cube 
contained in the test set reported in [Hellebrand 95bl. If 
the characteristic polynomial of the LFSR is primitive (as 
is the case in these results) and the number of stages in the 
LFSR is greater than or equal to the number of specified 
bits in a test cube for a fault, then the LFSR is guaranteed 
to be capable of generating patterns that detect the fault. If 
the number of stages in the LFSR is less than the number 
of specified bits in a test cube for some fault, then it may 
not be possible for the LFSR to generate a pattern that 
detects the fault due to linear dependencies in the LFSR. 
Results are shown for the bit-fixing sequence generator 
required for different size LFSRs. For each different size 
LFSR, the number of bits in the Sequence ID Register is 
shown along with the factored form literal count for the 
multilevel logic required to implement the bit-fixing 
sequence generator. For each circuit, results were shown 
for an LFSR with as many stages as the maximum 
number of specified bits. These LFSRs are guaranteed to 
be capable of generating patterns to detect all of the faults. 
For the smaller LFSRs, there are some faults that are not 
detected because of linear dependencies in the LFSR. Extra 
test cubes must be embedded in order to detect those faults 

The results are shown in Table 1.  
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thereby resulting in an increase in the area of the bit-fixing 
sequence generator. As can be seen, in some cases adding 
just a small amount of logic to the bit-fixing sequence 
generator permits the use of a much smaller LFSR. 
Consider C2670, using a 16-stage LFSR instead of a 
48-stage LFSR only requires an additional 6 literals. 
However, in some cases there is a large increase in the 
amount of logic required for using a smaller LFSR. 
Consider s.5378, using a 12-stage LFSR instead of a 
14-stage LFSR increases the amount of logic in the 
bit-fixing sequence generator by more than a factor of two. 

Results for the reseeding method presented in 
[Hellebrand 95b] are shown in Table 1 for comparison. 
The size of the LFSR and the number of bits stored in a 
ROM are shown. Note that the reseeding method requires 
that the LFSR have at least as many stages as the 
maximum number of specified bits in any test cube. It is 
difficult to directly compare the two methods because they 
are implemented differently (ROM versus multilevel logic) 
and require very different control logic. The reseeding 
method requires that the LFSR have programmable 
feedback logic and parallel load capability as well as 
additional control logic for loading the seeds from the 
ROM. 

5. CONCLUSIONS 

There are three new and important features that 
distinguish the mixed-mode scheme presented in this paper 
from other mixed-mode schemes for test-per-scan BIST. 
The first is that test cubes for the random-pattern-resistant 
faults are embedded in the pseudo-random bit sequence. 
Since there are so many possible pseudo-random patterns 
in which to embed each test cube, the bit-fixing required to 
embed a set of test cubes can be correlated in certain bit 
positions to minimize hardware. The second feature is that 
a one-phase test is used. Having only one phase 
simplifies the BIST control logic. The third feature is that 
smaller LFSR’s can be used. There is a tradeoff between 
the size of the LFSR and the amount of bit-fixing logic, 
so the LFSR size can be chosen to minimize the overall 
area. These three features make the scheme presented in 
this paper an attractive option for BIST in circuits with 
scan. 

One way to achieve an even greater overhead reduction 
may be to combine the bit-fixing technique described in 
this paper with reseeding techniques. By reseeding the 
LFSR with just a few sglected seeds to generate some of 
the least correlated test cubes that require a lot of bit-fixing 
to embed, it may be possible to significantly reduce the 
complexity of the bit-fixing sequence generator. This idea 
is currently being investigated. 

Another way to reduce the overhead would be to 
develop a special ATPG procedure that finds test cubes for 
each r.p.r. fault in a way that maximizes the bit correlation 
among the test cubes. This would reduce the amount of 
bit-fixing that is required to embed the test cubes. The 

results in [Hellebrand 95b] indicate that modifying the 
ATPG procedure can make a significant difference. This 
idea is also being investigated. 

Note that while the experimental results presented in 
this paper were for single stuck-at faults, the approach of 
embedding deterministic test cubes in a pseudo-random 
sequence works for other fault models (e.g., multiple 
stuck-at faults and bridging faults) as well. 
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