
ALTERING A PSEUDO-RANDOM BIT SEQUENCE
FOR SCAN-BASED BIST

Nur A. Touba* and Edward J. McCluskey

Center for Reliable Computing
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, Califomia 94305

ABSTRACT 1. Modify Circuit-Under-Test; The circuit-under-test
is modified by either inserting test points

This paper presents a low-overhead scheme for built-in [Eichelberger 831, [Cheng 951, [Touba 961, or by
self-test of circuits with scan. Complete (100%) fault redesigning it [Touba 941, [Chiang 941, [Chatterjee 951 to
coverage is obtained without modifying the function logic improve the fault detection probabilities. These techniques
and without degrading system performance (beyond using generally add extra levels of logic to the circuit which may
scan). Deterministic test cubes that detect the random- degrade system performance. Moreover, in some cases it is
pattern-resistant faults are bedded in a pseudo-random not possible or not desirable to modify the function logic
sequence of bits generated by a linear feedback shift register (e.g., macrocells, cores, proprietary designs).
(LFSR). This is accomplished by altering the 2. & Logic is
Pseudo-random sequence by adding logic at the LFSRs added to change the probability of each bit in the sequence
serial output to “fix” certain bits. A procedure for being a ‘1’ or a ‘0’ in a way that biases the patterns that
synthesizing the bit-fixing logic for embedding the test are generated towards those that detect the r.p.r. faults. The
cubes is described. Experimental results indicate that weight logic can be either at the input of the Scan
complete fault coverage can be obtained with low hardware [~ ~ ~ l ~ ~ 89bl or in the individual scan cells
overhead. Also, the Proposed approach Permits the “se of themselves [Muradali 901. Multiple weight sets are
small LFSR’s for generating the Pseudo-random bit usually required due to conflicting input values needed to
sequence. The faults that are not detected because of linear detect r.p.r. faults [Wunderlich 901. The weight sets need
dependencies in the LFSR can be detected by embedding to be stored and control logic is required to switch between
deterministic cubes at the expense of additional bit-fixing them, so the hardware overhead
logic. Data is presented showing how much additional 3. Mixed-Mode: Deterministic patterns are used to
logic is required for different size LFSRs. detect the faults that the pseudo-random patterns miss.

Storing deterministic patterns in a ROM requires a large
amount of hardware overhead. Koenemann, in
[Koenemann 911, proposed a technique based on reseeding

be large.

1. INTRODUCTION

In built-in self-test (BIST), internal hardware is used to
generate test patterns that are applied to the
circuit-under-test and to analyze the output response. A
low-overhead approach for BIST in circuits with scan is to
use a linear feedback shift register (LFSR) to shift a
pseudo-random sequence of bits into the scan chain. When
a pattern has been shfted into the scan chain, it is applied
to the circuit-under-test and the response is loaded back into
the scan chain and shifted out into a serial signature
register for compaction as the next pattern is shifted into
the scan chain. Figure 1 shows a block diagram for this
“test-per-scan” BIST scheme. Unfortunately, many
circuits contain random-pattern-resistant (r.p.r) faults
[Eichelberger 831 which limit the fault coverage that can
be achieved with this approach. Three methods for
improving the fault coverage for a test-per-scan BIST
scheme are:

an LFSR that reduces the storage requirements. The LFSR
that is used for generating the pseudo-random patterns is
also used to generate deterministic test cubes (test patterns
with unspecified inputs) by loading it with computed
seeds. The number of bits that need to be stored is reduced
by storing a set of seeds instead of a set of deterministic
patterns. Hellebrand et al., in [Hellebrand 921,
[Venkataraman 931, and [Hellebrand 95a], proposed an
improved technique that uses a multiple-polynomial LFSR

I
$

LFSR Scan Chain Signature Reg.

Figure 1 . “Test-Per-Scan” BIST Scheme

* Nur A. Touba is now with the Department of Electrical and Computer Engineering, University of Texas, Austin, TX

INTERNATIONAL TEST CONFERENCE
0-7803-3540-6/96 $5.00 0 1996 IEEE

Paper 7.1
167

Scan Chain LFSR
i

Fix-to- 1
Bit-Fixing Sequence

Figure 2 . Logic for Altering the Pseudo-Random Bit
Sequence

for encoding a set of deterministic test cubes. By
“merging” and “concatenating” the test cubes, they further
reducethe number of bits that need to be stored. Even
further reduction can be achieved by using variable-length
seeds [Zacharia95] and a special ATPG algorithm
[Hellebrand 95bl.

This paper presents a new mixed-mode approach in
which deterministic test cubes are embedded in the
pseudo-random sequence of bits. Logic is added at the
serial output of the LFSR to alter the pseudo-random bit
sequence so that it contains patterns that detect the r.p.r.
faults. This is accomplished by “fixing” certain bits in the
sequence. As illustrated in Fig. 2, logic is added to
generate a bit-fixing sequence that alters the pseudo-random
sequence by causing certain bits to be fixed to either a ‘1’
or a ‘0’. A procedure is described for designing the
bit-fixing sequence generator in a way that reduces area
overhead.

The new test-per-scan BIST scheme presented in this
paper is sort of a hybrid approach. It is different from
weighted pattern testing because it is not based on
probability. It guarantees that certain test cubes will be
applied to the circuit-under-test during a specified test
length. Also, it doesn’t require a multi-phase test in which
control logic is needed to switch to different weight sets for
each phase. The control is very simple because there is
only one phase.

The scheme presented in this paper is also different
from previous mixed-mode schemes for test-per-scan BIST.
Previous mixed-mode schemes for test-per-scan BIST have
been based on storing compressed data in a ROM. In the
proposed scheme, no data is stored in a ROM, rather a
multilevel circuit is used to dynamically fix bits in a way
that exploits bit correlation (same specified values in
particular bit positions) among the test cubes for the r.p.r.
faults. Small numbers of correlated bits are fixed in
selected pseudo-random patterns to make the
pseudo-random patterns match the test cubes. So rather
than trying to compress the test cubes themselves, the
proposed scheme compresses the bit differences between
the test cubes and a selected set of pseudo-random patterns.
Since there are so many pseudo-random patterns to choose
from, a significant amount of compression can be achieved
resulting in low overhead.

Schemes based on reseeding an LFSR require that the
LFSR have at least as many stages as the maximum
number of bits specified in any test cube. A hardware
tradeoff that is made possible by the scheme presented in
this paper is that a smaller LFSR can be used for

generating the pseudo-random bit sequence. This may
cause some faults to not be detected because of linear
dependencies in the patterns that are generated, but
deterministic test cubes for those faults can be embedded at
the expense of additional logic in the bit-fixing sequence
generator. Data is presented showing how much additional
logic is required for different size LFSRs.

The paper is organized as follows: In Sec. 2, the
architecture of the bit-fixing sequence generator is
described. In Sec. 3, the procedure for designing the
bit-fixing sequence generator is presented. In Sec. 4,
experimental results are shown for benchmark circuits.
Sec. 5 is a conclusion.

2. ARCHITECTURE OF BIT-FIXING
SEQUENCE GENERATOR

The purpose of the bit-fixing sequence generator is to
alter the pseudo-random sequence of bits that is shifted into
the scan chain in order to embed deterministic test cubes in
the sequence. This is done by generating a sequence of
fix-to-1 and fix-to-0 control signals that fix certain bits to
either ‘1’ or ‘U. The architecture of the bit-fixing sequence
generator is shown in Fig. 3. For a scan chain of length
m , there is a Mod-(m+l) Counter that counts the number
of bits that have been shifted into the scan chain. After m
bits, the scan chain is full, so when the counter reaches the
(m+l) state, the pattern in the scan chain is applied to the
circuit-under-test and the response is loaded back into the
scan chain. At this point, the LFSR contains the starting
state for the next pattern that will be shifted into the
LFSR. The Bit-Fixing Sequence Selection Logic decodes
the starting state in the LFSR and selects the bit-fixing
sequence that will be used for the next pattern. The
selected bit-fixing sequence identifier is loaded into the
Sequence ID Register. As the counter counts through the
next m bits that are shifted into the scan chain, the
Bit-Fixing Sequence Generation Logic generates the
fix-to-1 and fix-to-0 control signals based on the bit-fixing
sequence identifier stored in the Sequence ID Register and
the value of the counter (see Fig. 6 for a specific example).

One thing that should be pointed out is that the
Mod-(m+l) Counter is not additional overhead. It is
needed in the control logic for any test-per-scan BIST
technique to generate a control signal to clock the
circuit-under-test when the scan chain is full. Thus, this
scheme takes advantage of existing BIST control logic.

For each pattern that is shifted into the scan chain, the
bit-fixing sequence generator is capable of generating one
of 2n different bit-fixing sequences where n is the size of
the Sequence ID Register. A deterministic test cube for an
r.p.r. fault can be shifted into the scan chain by generating
an appropriate bit-fixing sequence for a pseudo-random
pattern generated by the LFSR. The bit-fixing sequence
fixes certain bits in the pseudo-random pattern such that
the resulting pattern that is shifted into the scan chain
detects the r.p.r. fault. The bit-fixing sequence generator

Paper 7.1
168

Scan Chain (m bits) I
Bit-Fixing Sequence

Selection Logic

Bit-Fixing Fix-to- 1
Generation

Logic

Figure 3 . Architecture of Bit-Fixing Sequence Generator

must be designed so that it generates enough deterministic
test cubes to satisfy the fault coverage requirement. The
key to minimizing the area overhead for this approach is
careful selection of the bit-fixing sequences that are
generated.

One characteristic of the test cubes for r.p.r. faults is
that subsets of them often have the same specified values
in particular bit positions (this will be referred to as "bit
correlation"). For example, the test cubes 1101 1, 11x00,
and 1XOX0, are correlated in the lst, 2nd, and 3rd bit
positions, but not in the 4th and 5th. That is because all
of the specified bits in the 1st and 2nd bit positions are
l's, and all of the specified bits in the 3rd bit position are
0's. However, the 4th and 5th bit positions have conflicts
because some of the specified values are 1's and some are
0's. Note that the unspecified values (Xs) don't matter.
The reason why a significant amount of bit correlation
often exists among the test cubes for the r.p.r. faults is
probably due to the fact that several r.p.r. faults may be
caused by a single random pattern resistant structure in the
circuit. For example, if there is a large fan-in AND gate
in a circuit, then that may cause all of the input stuck-at 1
faults and the output stuck-at 0 fault of the gate to be r.p.r.
Many of the specified values in particular bit positions of
the test cubes for these r.p.r. faults will be the same.
Thus, there will be a significant amount of bit correlation
among the test cubes. This phenomenon is seen in
weighted pattern testing where biasing certain bit positions
results in detecting a significant number of r.p.r. faults.

In the scheme presented in this paper, bit correlation
among the test cubes for the r.p.r. faults is used to
minimize both the number of different bit-fixing sequences
that are required and the amount of decoding logic. A
procedure for designing the bit-fixing sequence generator is
described in the next section.

3. DESIGNING BIT-FIXING SEQUENCE
GENERATOR

For a given LFSR and circuit-under-test, this section
describes an automated procedure for designing a bit-fixing
sequence generator to satisfy test length and fault coverage

requirements. The bit-fixing sequence generator is designed
to alter the pseudo-random bit sequence generated by the
LFSR to achieve the desired fault coverage for the given
test length (number of scan patterns applied to the
circuit-under-test).

3 .1 Obtaining Test Cubes
The first step is to simulate the r-stage LFSR for the

given test length L to determine the set of pseudo-random
patterns that are applied to the circuit-under-test. For each
of the L patterns that are generated, the starting r-bit state
of the LFSR is recorded (i.e., the contents of the LFSR
right before shifting the first bit of the pattern into the
scan chain). Fault simulation is then performed on the
circuit-under-test for the pseudo-random patterns to see
which faults are detected and which are not. The pattern
that drops each fault from the fault list (i.e., detects the
fault for the first time) is recorded. The faults that are not
detected are the faults that require altering of
pseudo-random bit sequence. The pseudo-random bit
sequence must be altered to generate test cubes that detect
the undetected faults. An automatic test pattern generation
(ATPG) tool is used to obtain test cubes for the undetected
faults by leaving unspecified inputs as X's .

A simple contrived design example will be used to
illustrate the procedure described in this paper. A
bit-fixing sequence generator will be designed to provide
100% fault coverage for a test length of 12 patterns
(L= 12) generated by a 5-stage LFSR (-5) and shifted into
a 12 bit scan chain (m=12). Figure 4 shows the 12
patterns that are generated by the LFSR and applied to the
circuit-under-test through the scan chain. For each pattern,
the starting state of the LFSR is shown and the number of
faults that are dropped from the fault list is shown. Five
of the patterns drop faults while the other 7 do not. The
pseudo-random patterns detect 16 out of 20 possible faults
giving a fault coverage of 80%. An ATPG tool is used to
obtain test cubes for the 4 undetected faults. The
bit-fixing sequence generator must be designed so that it
alters the pseudo-random bit sequence in a way that all 4
test cubes are generated in the scan chain.

Paper 7.1
169

Starting State
0 1 0 1 1 -+
1 1 0 1 0 +
1 1 0 0 0 +
0 0 0 0 1 +
1 1 1 0 0 -+
0 1 1 1 0 -+
0 1 0 0 1 -+
0 0 0 1 1 -+
0 0 1 0 1 +
1 0 0 1 1 -+
1 1 0 1 1 +
0 0 1 0 0 +

Test Cubes for Undetected Faults:

Pattern Shifted into Scan Chain
0 1 0 0 0 0 1 0 1 0 1 1
1 1 1 1 1 0 0 1 1 0 1 0
0 1 0 1 1 1 0 1 1 0 0 0
1 1 0 1 0 0 1 0 0 0 0 1
1 1 0 0 0 1 1 1 1 1 0 0
0 0 0 0 1 0 1 0 1 1 1 0
1 1 1 0 0 1 1 0 1 0 0 1
0 1 1 1 0 1 1 0 0 0 1 1
0 1 0 0 1 0 0 0 0 1 0 1
0 0 0 1 1 1 1 1 0 0 1 1
0 0 1 0 1 0 1 1 1 0 1 1
1 0 0 1 1 0 1 0 0 1 0 0

1 1 l x o o x x x x o o
1 0 1 x 1 o x x x x o x
o o o x x l x x x x o o
0 l x x o l x x x x l o

Num. of Faults Dropped
7
5
2
0
1
0
0
0
0
1
0
0
16/20

Fault Coverage = 80%

Figure 4 . Design Example (r=5, L=12, m=12): Obtaining the Test Cubes

Starting LFSR states for Patterns that Drop Faults: 0101 1, 11010, 11000, 11 100, 1001 1

F’ = (0101 1 + 11010 + 11000 + 11 100 + 1001 1)’

Largest Implicant in F’: O O X X X

Starting LFSR State
Patterns Decoded by OOXXX: 0 0 0 0 1 +

0 0 0 1 1 -+
0 0 1 0 1 -+
0 0 1 0 0 -+

Consider all 4 Test Cubes
1 l l x o o x x x x o o Test Cubes
1 0 1 x 1 0 x x x x 0 x
0 0 0 x x 1 x x x x 0 0
0 1 x x 0 1 x x x x 1 0

0 Bits to Fix
-1

1 1 0 1 0 0 1 0 0 0 0 0 Resulting
0 1 1 1 0 1 1 0 0 0 1 0 Scan Patterns
0 1 0 0 1 0 0 0 0 1 0 0
1 0 0 1 1 0 1 0 0 1 0 0

1 Test Cube Embedded

Corresponding Scan Pattern
1 1 0 1 0 0 1 0 0 0 0 1
0 1 1 1 0 1 1 0 0 0 1 1
0 1 0 0 1 0 0 0 0 1 0 1
1 0 0 1 1 0 1 0 0 1 0 0

Eliminate One Test Cube
1 1 l x o o x x x x o o
1 0 1 x 1 o x x x x o x
O l X X O l x x x x 1 0

1 0
1 -1

1 1 1 1 0 0 1 0 0 0 0 0
0 1 1 1 0 1 1 0 0 0 1 0
0 1 1 0 1 0 0 0 0 1 0 0
1 0 1 1 1 0 1 0 0 1 0 0

3 Test Cubes Embedded
~~~ ~ 

Figure 5 . Design Example: Finding Decoding Function and Set of Bits to Fix for the New Sequence ID Register Bit 

Paper 7.1 
170 



3 . 2  Embedding Test Cubes 
Once the set of test cubes for the undetected faults has 

been obtained, the bit-fixing sequence generator is then 
designed to embed the test cubes in the pseudo-random bit 
sequence. The test cubes are embedded in a way that 
guarantees that faults that are currently detected by the 
pseudo-random bit sequence will remain detected after the 
test cubes are embedded. This is done by only altering 
patterns that don’t drop any faults. As long as the patterns 
that drop faults are not altered, the dropped faults are 
guaranteed to remain detected. This ensures that fault 
coverage will not be lost in the process of embedding the 
test cubes. 

The goal in designing the bit-fixing sequence 
generator is to embed the test cubes with a minimal 
amount of hardware. A hill-climbing strategy is used in 
which one bit at a time is added to the Sequence ID 
Register based on maximizing the number of test cubes 
that are embedded each time. Bits continue to be added to 
the Sequence ID Register until a sufficient number of test 
cubes have been embedded to satisfy the fault coverage 
requirement. Complete fault coverage can be obtained by 
embedding test cubes for all of the undetected faults. 

For each bit that is added to the Sequence ID Register, 
the first step is to determine for which patterns the bit will 
be active (i.e., which patterns it will alter). In order not to 
reduce the fault coverage, it is important to choose a set of 
patterns that don’t currently drop any faults in the 
circuit-under-test. In order to minimize the Bit-Fixing 
Sequence Selection Logic, it is important to choose a set 
of patterns that are easy to decode. The set of patterns for 
which the new Sequence ID Register bit will be active are 
decoded from the starting state of the LFSR for each 
pattern. Let F be a Boolean function equal to the sum of 
the minterms corresponding to the starting state for each 
pattern that drops faults. Then an implicant in F’ 
corresponds to a set of patterns that don’t drop faults and 
can be decoded by an n-input AND gate where n is the 
number of literals in the implicant. A binate covering 
procedure can be used to choose the largest implicant in F’ 
(see [Touba 951). The largest implicant requires the least 
logic to decode and corresponds to the largest set of 
pseudo-random patterns that don’t drop any faults and thus 
is most desirable. These are the patterns that will activate, 
and hence be altered by, the new Sequence ID Register bit. 

In the design example, there are 5 starting LFSR 
states that correspond to the patterns that drop faults. 
They are listed at the top of Fig. 5. The function F is 
formed, and the largest implicant in the complement of F 
is found. The largest implicant is OOXXX.  Whenever the 
first two bits in a starting state of the LFSR are both ‘O’, 
then the new Sequence ID Register bit is activated. Thus, 
there are 4 patterns for which the new Sequence ID 
Register bit will be activated. 

After the set of patterns that activate the new Sequence 
ID Register bit have been determined, the next step is to 
determine which bits in the patterns will be fixed when the 

new Sequence ID Register bit is activated. The goal is to 
fix the bits in a way that embeds as many test cubes as 
possible. The strategy is to find some good candidate sets 
of bits to fix and then compute how many test cubes 
would be embedded if each were used. The candidate that 
embeds the largest number of test cubes is then selected. 

The candidate sets of bits to fix are determined by 
looking at bit correlation among the test cubes. For 
example, if the two test cubes lOlOXand 00x11 are to be 
embedded, then fixing the 2nd bit position to a ‘O’, the 3rd 
bit position to a ‘l’, and the 5th bit position to a ‘1’ 
would help to embed both test cubes in the pseudo-random 
bit sequence. But, fixing the 1st bit to a ‘1’ or fixing the 
4th bit to a ’0’ would only help to embed the first test 
cube; it would prevent the second test cube from being 
embedded. The reason for this is that the two test cubes 
have conflicting values in the 1st and 4th bit. So given a 
set of test cubes to embed, the best bits to fix are the ones 
in which there are no conflicting values among the test 
cubes. The procedure for selecting the set of bits to fix is 
as follows (the procedure is illustrated for the design 
example at the bottom of Fig. 5): 

1. Place all test cubes to be embedded into the initial set of 
test cubes. 

Begin by considering all of the test cubes that need to 
be embedded. 

[In the design example in Fig. 5, all 4 test 
cubes are considered initially.] 

2. 
among the test cubes. 

Look at each bit position. If one or more test cubes 
has a ‘1’ and one or more test cubes has a ‘0’ in the bit 
position then there is a conflict. If all of the test cubes 
have either a ‘1’ (‘0’) or an ‘X’, then the bit can be fixed to 
a ‘1’ (‘0’). 

[In the design example in Fig. 5,  when all 4 
test cubes are considered, only the last bit 
position has no conflicting values. All 4 of the 
test cubes have either a ‘0’ or an ‘X’ in the last 
bit position.] 

3. Com 
embedded by fixing this candidate set of bits. 

For each pattern that activates the new Sequence ID 
Register bit, fix the set of bits that was determined in 
step 2. Count the number of test cubes that are embedded 
in the resulting patterns. 

[In the design example in Fig. 5 ,  when the 
last bit position is fixed to a ‘0’ in the 4 scan 
patterns that activate the new Sequence ID 
Register bit, it enables the test cube 
OlXXOlXXXXlO to be embedded in the 
pseudo-random pattern 01 I1 01 I0001 1 .] 

Paper 7.1 
171 



4. If the number of test cubes embedded is larger than that 
of the best candidate. then mark this as the best candidate. 

The goal is choosing the set of bits to fix is to embed 
as many test cubes as possible. 

5. Remove the test cube that will eliminate the mosf 
conflicts. 

One test cube is removed from consideration in order 
to increase the number of bits that can be fixed. The test 
cube that is removed is chosen based on reducing the 
number of conflicting bits in the remaining set of test 
cubes. 

[In the design example in Fig. 5, if the third 
test cube is eliminated from consideration, the 
remaining 3 test cubes have two specified bit 
positions where there are no conflicts. The third 
bit can be fixed to a ‘1’ in addition to fixing the 
last bit to a ‘O’.] 

6. If the number of test cubes that are embedded by the 
best candidate is greater than the number of test cubes that 
remain. then select the best candidate. Otherwise. loog 
back to step 2. 

The next candidate set of bits to fix will only help to 
embed the remaining set of test cubes, and therefore has 
limited potential. If it is not possible for the next 
candidate to embed more test cubes than the best candidate, 
then the best candidate is selected as the set of bits to fix. 

7. Eliminate as many fixed bits as possible without 
reducinp the number of embedded test cubes. 

In order to minimize hardware area, it is desirable to 
fix as few bits as possible. It may be possible to embed 
the test cubes without fixing all of the bits in the selected 
set. An attempt is made to reduce the number of fixed bits 
by eliminating one bit at a time and checking to see if the 
same test cubes are embedded. 

The bit-fixing sequence generator is designed so that 
when the new Sequence ID Register bit is activated, the set 
of bits selected by the procedure above is fixed. The 
pseudo-random patterns that are altered to embed each test 
cube are added to the set of patterns that drop faults (one 
pattern per embedded test cube). This is done to ensure 
that those patterns are not further altered such that they 
would no longer embed the test cubes. If the fault 
coverage is not sufficient after adding the new Sequence ID 
Register bit, then another Sequence ID Register bit is  
added to embed more test cubes. 

In the design example in Fig. 5, when all 4 test cubes 
are considered, the only specified bit position where there 
are no conflicts is the last bit position which can be fixed 
to a ‘0’. Fixing this bit enables one test cube to be 
embedded. However, when one of the test cubes is 
eliminated from consideration then the remaining 3 test 
cubes have two specified bit positions where there are no 
conflicts. Fixing these two bits enables all 3 of the 

remaining test cubes to be embedded. Thus, this is the 
selected set of bits to fix when the new Sequence ID 
Register bit is activated. There is still one test cube that 
has not been embedded. Since complete fault coverage is 
required, another bit must be added to the Sequence ID 
Register, The three pseudo-random patterns in which the 
three test cubes were embedded are added to the set of 
patterns that drop faults, and the procedure for adding a new 
Sequence ID Register bit is repeated. 

3 .3  Synthesizing Bit-Fixing Sequence 
Generation Logic 

When enough bits have been added to the Sequence ID 
Register to provide sufficient fault coverage, the remaining 
task is to synthesize the Bit-Fixing Sequence Generation 
Logic. The Bit-Fixing Sequence Generation Logic 
generates the fix-to-I and fix-to-0 control signals to fix the 
appropriate bits in the sequence depending on which 
Sequence ID Register bits are active. For each Sequence 
ID Register bit that is active, control signals are generated 
when certain states of the counter are decoded. 

The process of constructing the Bit-Fixing Sequence 
Generation Logic is best explained with an example. The 
Bit-Fixing Sequence Generation Logic for the design 
example is shown in Fig. 6. The first bit in the Sequence 
ID Register is activated whenever the first two bits in the 
starting seed for a pattern are both ‘0’. This condition is 
decoded using a two-input AND gate and loading the 
Sequence ID Register right before shifting a new pattern 
into the scan chain. When the first bit in the Sequence ID 
Register is active, it fixes the 1st bit shifted into the scan 
chain to a ‘0’ and the 10th bit shifted into the scan chain to 
a ‘1’. This is done by generating ajix-to-0 signal when 
the counter is in the “cnt-1” state and a fix-to-1 signal 
when the counter is in “cnt-10” state. The second bit in 
the Sequence ID Register is activated whenever the 3rd and 
4th bit in the starting seed for a pattern are both ‘1’. When 
the second bit in the Sequence ID Register is activated, it 
fixes the 2nd bit shifted into the scan chain to a ‘0’. This 
is done by generating afix-to-0 signal when the counter is 
in “cnt-2” state. 

Figure 6. Design Example: Bit-Fixing Sequence 
Generation Logic Prior to Multilevel Logic Optimization 

Paper 7.1 
172 



When constructing the Bit-Fixing Sequence 
Generation Logic, the states of the counter can be decoded 
by simply using n-input AND gates where n is equal to 
the number of bits in the counter. However, once the 
logic has been constructed, it should be minimized using a 
multilevel logic optimization tool. The don't care 
conditions due to the unused states of the counter can be 
used to minimize the logic, but more importantly, the 
logic can be factored. Because the number of inputs to the 
logic is small, factoring is very effective for significantly 
minimizing the Bit-Fixing Sequence Generation Logic. 

Since the Bit-Fixing Sequence Generation Logic is 
synthesized from a two-level starting point, it can be made 
prime and irredundant using synthesis procedures such as 
those described in [Bostick 871 and [Rajski 921. If the full 
don't care set is used (i.e., all input combinations that 
don't occur during BIST are don't cares), then the resulting 
logic will be 100% tested for single stuck-at faults by the 
patterns applied during BIST [Bartlett 881. 

4. EXPERIMENTAL RESULTS 

The procedure described in this paper has been 
implemented in Stanford CRC's synthesis-for-test tool, 
TOPS, and was used to design bit-fixing sequence 
generators for ISCAS 85 [Brglez85] and ISCAS 89 
[Brglez 89a] benchmark circuits that contain 
random-pattern-resistant faults. The primary inputs and 

flip-flops in each circuit were configured in a scan chain. 
The bit-fixing sequence generators were designed to provide 
100% fault coverage of all detectable single stuck-at faults 
for a test length of 10,000 patterns. 

The size of the 
scan chain is shown for each circuit followed by the 
maximum number of specified bits in any test cube 
contained in the test set reported in [Hellebrand 95bl. If 
the characteristic polynomial of the LFSR is primitive (as 
is the case in these results) and the number of stages in the 
LFSR is greater than or equal to the number of specified 
bits in a test cube for a fault, then the LFSR is guaranteed 
to be capable of generating patterns that detect the fault. If 
the number of stages in the LFSR is less than the number 
of specified bits in a test cube for some fault, then it may 
not be possible for the LFSR to generate a pattern that 
detects the fault due to linear dependencies in the LFSR. 
Results are shown for the bit-fixing sequence generator 
required for different size LFSRs. For each different size 
LFSR, the number of bits in the Sequence ID Register is 
shown along with the factored form literal count for the 
multilevel logic required to implement the bit-fixing 
sequence generator. For each circuit, results were shown 
for an LFSR with as many stages as the maximum 
number of specified bits. These LFSRs are guaranteed to 
be capable of generating patterns to detect all of the faults. 
For the smaller LFSRs, there are some faults that are not 
detected because of linear dependencies in the LFSR. Extra 
test cubes must be embedded in order to detect those faults 

The results are shown in Table 1.  

Paper 7 ~ 4 
173 



thereby resulting in an increase in the area of the bit-fixing 
sequence generator. As can be seen, in some cases adding 
just a small amount of logic to the bit-fixing sequence 
generator permits the use of a much smaller LFSR. 
Consider C2670, using a 16-stage LFSR instead of a 
48-stage LFSR only requires an additional 6 literals. 
However, in some cases there is a large increase in the 
amount of logic required for using a smaller LFSR. 
Consider s.5378, using a 12-stage LFSR instead of a 
14-stage LFSR increases the amount of logic in the 
bit-fixing sequence generator by more than a factor of two. 

Results for the reseeding method presented in 
[Hellebrand 95b] are shown in Table 1 for comparison. 
The size of the LFSR and the number of bits stored in a 
ROM are shown. Note that the reseeding method requires 
that the LFSR have at least as many stages as the 
maximum number of specified bits in any test cube. It is 
difficult to directly compare the two methods because they 
are implemented differently (ROM versus multilevel logic) 
and require very different control logic. The reseeding 
method requires that the LFSR have programmable 
feedback logic and parallel load capability as well as 
additional control logic for loading the seeds from the 
ROM. 

5. CONCLUSIONS 

There are three new and important features that 
distinguish the mixed-mode scheme presented in this paper 
from other mixed-mode schemes for test-per-scan BIST. 
The first is that test cubes for the random-pattern-resistant 
faults are embedded in the pseudo-random bit sequence. 
Since there are so many possible pseudo-random patterns 
in which to embed each test cube, the bit-fixing required to 
embed a set of test cubes can be correlated in certain bit 
positions to minimize hardware. The second feature is that 
a one-phase test is used. Having only one phase 
simplifies the BIST control logic. The third feature is that 
smaller LFSR’s can be used. There is a tradeoff between 
the size of the LFSR and the amount of bit-fixing logic, 
so the LFSR size can be chosen to minimize the overall 
area. These three features make the scheme presented in 
this paper an attractive option for BIST in circuits with 
scan. 

One way to achieve an even greater overhead reduction 
may be to combine the bit-fixing technique described in 
this paper with reseeding techniques. By reseeding the 
LFSR with just a few sglected seeds to generate some of 
the least correlated test cubes that require a lot of bit-fixing 
to embed, it may be possible to significantly reduce the 
complexity of the bit-fixing sequence generator. This idea 
is currently being investigated. 

Another way to reduce the overhead would be to 
develop a special ATPG procedure that finds test cubes for 
each r.p.r. fault in a way that maximizes the bit correlation 
among the test cubes. This would reduce the amount of 
bit-fixing that is required to embed the test cubes. The 

results in [Hellebrand 95b] indicate that modifying the 
ATPG procedure can make a significant difference. This 
idea is also being investigated. 

Note that while the experimental results presented in 
this paper were for single stuck-at faults, the approach of 
embedding deterministic test cubes in a pseudo-random 
sequence works for other fault models (e.g., multiple 
stuck-at faults and bridging faults) as well. 

ACKNOWLEDGMENTS 

The authors would like to thank Vincent Lo for his 
helpful comments. This work was supported in part by 
the Ballistic Missile Defense Organization, Innovative 
Science and Technology (BMDODST) Directorate and 
administered through the Department of the Navy, Office 
of Naval Research under Grant No. N00014-92-5-1782, by 
the National Science Foundation under Grant No. MIP- 
9107760, and by the Advanced Research Projects Agency 
under prime contract No. DABT63-94-C-0045. 

REFERENCES 

[Bartlett 881 Bartlett, K.A., R.K. Brayton, G.D. Hachtel, 
R.M. Jacoby, C.R. Morrison, R.L. Rudell, A. 
Sangiovanni-Vincentelli, and A.R. Wang, “Multilevel 
Logic Minimization Using Implicit Don’t Cares,” IEEE 
Transactions on Computer-Aided Design, Vol. 7 ,  
No. 6, pp. 723-740, Jun. 1988. 

[Bostick 871 Bostick, D., G.D. Hachtel, R. Jacoby, M.R. 
Lightner, P. Moceyunas, C.R. Morrison, and D. 
Ravenscroft, “The Boulder Optimal Logic Design 
System,” Proc. of International Conference on 
Computer-Aided Design (ICCAD), pp. 62-65, 1987. 

[Brglez 851 Brglez, F., and H. Fujiwara, “A Neutral Netlist 
of 10 Combinational Benchmark Circuits and a Target 
Translator in Fortan,” Proc. of International Symposium 
on Circuits and Systems, pp. 663-698, 1985. 

[Brglez 89a] Brglez, F., D. Bryan, and K. Kozminski, 
“Combinational Profiles of Sequential Benchmark 
Circuits,” Proc. of International Symposium on 
Circuits and Systems, pp. 1929-1934, 1989. 

[Brglez 89b] Brglez, F., C. Gloster, and G. Kedem, 
“Hardware-Based Weighted Random Pattern Generation 
for Boundary Scan,” Proc. of International Test 
Conference, pp. 264-274, 1989. 

[Chatterjee 951 Chatterjee, M., D.K. Pradhan, and W. 
Kunz, “LOT: Logic Optimization with Testability - 
New Transformations using Recursive Learning,” Proc. 
of International Conference on Computer-Aided Design 
(ICCAD), pp. 318-325, 1995. 

Paper 7.1 
174 



[Chiang 941 Chiang, C.-H., and S.K. Gupta, “Random 
Pattern Testable Logic Synthesis,” Proc. of 
Intemational Conference on Computer-Aided Design 

[Cheng 951 Cheng, K.-T., and C.J. Lin, “Timing-Driven 
Test Point Insertion for Full-Scan and Partial-Scan 
BIST,” Proc. of International Test Conference 

[Eichelberger 831 Eichelberger, E.B., and E. Lindbloom, 
“Random-Pattern Coverage Enhancement and Diagnosis 
for LSSD Logic Self-Test,” IBM Journal of Research 
andDevelopment, Vol. 27, No. 3, pp. 265-272, May 
1983. 

[Hellebrand 921 Hellebrand, S., S. Tarnick, J. Rajski, and 
B. Courtois, “Generation of Vector Patterns Through 
Reseeding of Multiple-Polynomial Linear Feedback 
Shift Registers,” Proc. of International Test 
Conference, pp. 120-129, 1992. 

[Hellebrand 95a] Hellebrand, S., J. Rajski, S. Tarnick, S. 
Venkataraman and B. Courtois, ”Built-In Test for 
Circuits with Scan Based on Reseeding of Multiple 
Polynomial Linear Feedback Shift Registers,” IEEE 
Transactions on Computers, Vol. 44, No. 2, 
pp. 223-233, Feb. 1995. 

[Hellebrand95b] Hellebrand, S., B. Reeb, S. Tarnick, and 
H.-J. Wunderlich, ”Pattern Generation for a 
Deterministic BIST Scheme,” Proc. of International 
Conference on Computer-Aided Design (ICCAD), 

[Koenemann 911 Koenemann, B., “LFSR-Coded Test 
Patterns for Scan Designs,” Proc. of European Test 
Conference, pp. 237-242, 1991. 

(ICCAD), pp. 125-128, 1994. 

pp. 506-514, 1995. 

pp. 88-94, 1995. 

[Muradali 901 Muradali, F., V.K. Agarwal, B. Nadeau- 
Dostie, “A New Procedure for Weighted Random Built- 
In Self-Test,’’ Proc. of International Test Conference, 

[Rajski 921 Rajski, J., and J. Vasudevamurthy, ”The 
Testability-Preserving Concurrent Decomposition and 
Factorization of Boolean Expressions,” IEEE 
Transactions on Computer-Aided Design, Vol. 11, 
No. 6, pp. 778-793, Jun. 1992. 

[Touba 941 Touba, N.A., and E.J. McCluskey, 
“Automated Logic Synthesis of Random Pattern 
Testable Circuits,” Proc. of International Test 
Conference, pp. 174-183, 1994. 

[Touba 953 Touba, N.A., and E.J. McCluskey, 
“Transformed Pseudo-Random Patterns for BIST,” Proc. 
of VLSI Test Symposium, pp. 410-416, 1995. 

[Touba 961 Touba, N.A., and E.J. McCluskey, “Test Point 
Insertion Based on Path Tracing,” Proc. of V U I  Test 
Symposium, pp. 2-8, 1996. 

[Venkataraman 931 Venkataraman, S., J. Rajski, S. 
Hellebrand, and S. Tarnick, “An Efficient BIST Scheme 
Based on Reseeding of MultipIe Polynomial Linear 
Feedback Shift Registers,” Proc. of International 
Conference on Computer-Aided Design (ICCAD), 

[Wunderlich 901 Wunderlich, H.-J., “Multiple 
Distributions for Biased Random Test Patterns,” IEEE 
Transactions on Computer-Aided Design, Vol. 9, 
No. 6, pp. 584-593, Jun. 1990. 

[Zacharia 951 N. Zacharia, J. Rajski, J. Tyszer: 
”Decompression of Test Data Using Variable-Length 
Seed LFSRs”, Proc. of V U 1  Test Symposium, 

pp. 660-668, 1990. 

pp. 572-577, 1993. 

pp. 426-433, 1995. 

Paper 7.1 
175 


