
MODIFYING USER-DEFINED LOGIC FOR TEST ACCESS
TO EMBEDDED CORES

Bahram Pouya and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712-1084

Abstract

Testing embedded cores is a challenge because
access to core I/Os is limited. The user-defined logic
(ZJDL) surrounding the core may restrict the set of test
vectors that can be applied to the core. Consequently,
some of the core test vectors specified by the core
supplier may not be contained in the output space of the
UDL that drives the core and hence cannot be justified at
the core inputs. Conventional solutions to this problem
involve placing multiplexers or boundary scan elements
at the inputs of the core to provide test access. This can
be very costly in terms of area and pel3corinance. This
paper presents a new approach for providing test access
to an embedded core. A procedure is described for
inserting control points in the UDL to modify its output
space so that it contains the specified core test vectors.
The flexibility in selecting the location of the control
points is used to avoid pel3cormance degradation by
keeping test logic off the critical timing paths.
Experimental results are shown comparing the control
point insertion procedure with other approaches.

1. Introduction

process such as ATPG and fault simulation cannot be
performed. The core vendor specifies the set of test
vectors that must be applied to the core to guarantee a
sufficient fault coverage. The second case where the core
test vectors may be “fixed” is if the core is a legacy design
(i.e., an existing design that is being re-used) for which it
is desirable to use existing test vectors rather than
expending new effort in test generation. In both of these
cases, some of the core test vectors may not be contained
in the output space of the TJDL driving the core, and
hence some design-for-testability (DFT) is required in
order to apply the vectors to the core.

Chip

[solation
Ring

In order to shorten product development cycles for
integrated circuits and systems, a growing trend is to
make use of pre-designed blocks, called cores. Testing
cores embedded within a larger design can be a significant
challenge because there is limited access to the core UOs.
The set of vectors that can be justified at the inputs of a
core is restricted to those that exist in the output space of
the user-defined logic (UDL) driving the core. There are
two important cases where the particular set of test vectors
that are to be used to test a core are “fixed’ independent of
the design in which the core is embedded (i.e., the vectors
are not selected using an ATPG procedure that considers
the overall circuit, core plus UDL). The first case is
where the core supplier considers the core to be
intellectual property and thus is not willing to give any
information about the internal logic of the core (i.e., it is a
black box). In that case, the traditional test generation

Figure 1. Isolation Ring for Testing Embedded Core

One solution to this problem is to use multiplexing to
make the inputs of the core accessible to the chip pins
[Immaneni 901. However, this approach adds a MUX
delay on all paths into the core and does not provide any
observability to the UDL driving the core thereby resulting
in degraded fault coverage. Another solution is to put
what is called an isolation ring around the core
(illustrated in Fig. 1). An isolation ring i s essentially a
boundary scan that provides full controllability of the
inputs of the core as well as providing full observability of
the UDL driving the core. The drawback of using an
isolation ring is the large area and performance overhead
that it adds. A boundary scan element and associated
routing is required for each input of the core, and a MUX
delay is added to every path into the core (as illustrated in

Paper 3.2
60

INTERNATIONAL TEST CONFERENCE
0-7803-4209-7/97 $1 0.00 0 1997 IEEE

Fig. 2). As a result, using a full isolation ring is
undesirable, especially in high performance applications.
Recently a partial isolation ring approach was presented
in [Touba 971. It reduces the number of isolation ring
elements while still providing the same fault coverage as a
full isolation ring. This is accomplished by justifying part
of each core test vector through the UDL.

User-Defined Logic

m o o o m
test test- test$&

I Embedded Core I
Figure 2. Conventional Approach with Isolation Ring at

Inputs of Embedded Core

Bhatia, et. al, at CrossCheck [Bhatia 961 introduced a
grid-based direct access methodology for testing
core-based designs. This method differs from the
embedded grid test method described in [Gheewala 891
and [Chandra 911, in that it uses a “soft” netlist level grid
as opposed to a “hard” grid embedded at the base of gate
arrays. The “soft” netlist level grid described in
[Bhatia 961 provides direct access to storage elements,
observation test points, and bi-directional test points via
the chip pins. The basic approach is to place
bi-directional test points at the inputs and outputs of the
embedded core, and matrix accessible storage elements
and observation test points in the UDL to provide
sufficient fault coverage. This approach requires new
library cells to implement the matrix accessible storage
elements, bi-directional test points, and I/O pads, and it
requires global routing of the test grid.

This paper presents a new approach for providing test
access to an embedded core. The idea is to modify the
output space of the UDL so that it contains all of the
specified core test vectors (as illustrated in Fig. 3). By so
doing, the core test vectors can be applied through the
UDL thereby completely eliminating the need for an
isolation ring and its associated MUX delays. Instead of
scanning core test vectors into an isolation ring, the core
test vectors are justified at the core inputs. The core test
vectors are justified by controlling the inputs of the UDL.

If the UDL contains an internal scan chain, then the
contents of the scan chain are also controlled. If there are
multiple cores where core A is driving core B with UDL in
between them, then this approach can be used to eliminate
the need for an isolation ring at the inputs of core B. The
core test vectors for core B can be justified at the inputs of
core B by controlling the isolation ring at the output of
core A (which corresponds to the inputs of the UDL
between core A and core B).

Note that in order to test the UDL driving the core,
some means for observing the outputs of the UDL is
required. This can be provided by using a space
compactor. A space compactor combines outputs through
combinational logic in order to simplify output response
analysis. Instead of having one flip-flop per output, as is
the case with an isolation ring, a space compactor can be
used to greatly reduce the number of flip-flops that are
needed while still providing the same fault coverage
[Chakrabarty 941. Using a space compactor reduces area
overhead and speeds up output response analysis without
adding logic on any of the system paths.

User-Defined Logic
(With Modified Output Space)

0 . 0

output
Response

I Embedded Core

Figure 3. Proposed Approach with Output Space
Modification via Control Point Insertion and Space

Compaction for Observing UDL Outputs

Modifying the output space of the UDL is
accomplished by adding extra inputs that are used only
during testing. The general idea of adding extra inputs to
a circuit to aid in testing is known as test point insertion.
Test point insertion was originally proposed for
simplifying the task of automated test pattern generation
(ATPG) in [Williams 731. Later it was proposed for
improving the random pattern testability of a circuit in
[Eichelberger 831. Here it is proposed for modifying the
output space of a circuit. In particular, modifying the
output space of the UDL in a core-based design to enable
specified sets of test vectors to be applied to each core.

Paper 3.2
61

";,w
tz

x5

9 Patterns in Ouput Space

c G 6 - + - -

Control Point
Insertion -

x5 E

Figure 4. Example of Modifying Output Space by Inserting Control Points

Whereas using an isolation ring or using MUXed
inputs to apply test vectors to the core adds a MUX delay
to every path, inserting control points in the UDL only
adds delay to some of the paths. By carefully selecting the
location of the control points, the critical timing paths can
be avoided so that system performance is not degraded.
Putting multiplexers on every output of the UDL is a
simple brute force way to modify the output space, but it is
very costly in terms of area and performance. The
technique described here is a more efficient and low-cost
way to modify the output space of the UDL to provide test
access to an embedded core.

The paper is organized as follows: In Sec. 2, the use
of control points for modifying the output space of the
UDL is described. In Sec. 3, the concepts and strategies
that form the basis for the proposed control point insertion
procedure are explained. In Sec. 4, a step by step
description of the control point insertion procedure is
given. Each step is illustrated on an example circuit. In
Section 5, experimental results are shown for the control
point insertion procedure and the overhead is compared
with that for using full and partial isolation rings. Section
6 is a summary and conclusion.

2. Modifying Output Space

The technique described in this paper involves
modifying the output space of the UDL while still
allowing it to perform its intended function during system
mode. The means for accomplishing this is to insert
control points in the UDL which can be used during test
mode to control the value at certain nodes in order to
justify particular output vectors. In the example in Fig. 4,
the output space of the circuit contains only 9 of the 16
possible patterns. A control point is inserted to fix the
logic value at the input of gates GI and G2 to a 1 when
the control point is activated (this is called a control-1

I "

point), and a control point is also added to fix the logic
value at the input of gate G4 to a 0 when the control point
is activated (this is called a control-0 point). These two
control points allow all 16 possible patterns to be justified
during test mode. During system mode, the tJ and t2
inputs are set to 0, so the control points are not activated
and thus don't affect the system function. However,
control points do add an extra level of logic to some paths
in the circuit. If a control point is placed on a critical
timing path, it can increase the delay through the circuit,
so care must be taken in selecting the location of the
control points.

3. Strategy For Inserting Control Points

This section describes several important concepts and
strategies that form the basis for the proposed control
point insertion procedure for modifying the output space
of the UDL. Given a specified core test vector that cannot
be justified through the UDL, there are two basic steps:
the first is to identify conflicts that arise when trying to
justify the vector, and the second is to insert control points
to remove those conflicts so that the vector can be
justified.

3.1 Identifying Conflicts
For each core test vector that is to be justified through

the UDL, the values of the primary outputs are set to the
corresponding values and backtracing towards the primary
inputs is performed. If a fanout stem is reached where the
values that are assigned on its branches are not all the
same, a conflict occurs. If backtracing can be completed
all the way to the primary inputs with no conflicts, then
the output vector can be justified through the UDL using
the input vector corresponding to the final values assigned
to the primary inputs. Notice that if there is no fanout in

Paper 3.2
62

the circuit, no conflicts can occur. Hence, the output
space of a fanout-free circuit contains all possible output
vectors.

In backtracing through the circuit, two types of gates
are encountered: “decision gates” and “imply gates.” If
the value assigned to the output of a multi-input gate can
be justified by assigning a value to only one of the inputs
(e.g., justiwing a 0 at the output of an AND gate), then
the gate is said to be a decision gate since there is more
than one way to backtrace through the gate. If justifymg
the value assigned to the output of a gate requires
assigning values to all of the inputs (e.g., justifying a 1 at
the output of an AND gate), then the gate is said to be an
imply gate. In the example in Fig. 5, for output vector
0110, gates G I , G2, G3, and G5 are imply gates, while
gate G6 is a decision gate.

Figure 5. Example of Backward Implications from
Primary Outputs

If a conflict occurs during backtracing, then it may be
possible to avoid the conflict by choosing to backtrace
down a different path in some decision gate. If all
possible paths for backtracing result in a conflict(s), then
a control point must be inserted to remove the conflict(s)
to permit the core test vector to be justified through the
UDL.

3.2 Imply and Decision Conflicts
Each conflict that is encountered during backtracing

can be classified as either an “imply conflict” or a
“decision conflict.” An imply conflict is one that occurs
due to backtracing through imply gates only (i.e., no
backtracing is done through decision gates), whereas a
decision conflict is one that occurs due to backtracing
through one or more decision gates and any number of
imply gates. A decision conflict can be avoided by
backtracing down a different path in some decision gate,
whereas an imply conflict cannot be avoided because there
are no decision gates between the primary outputs and the
fanout point where the conflict occurs. In Fig. 5, the
conflict at primary input X I is an imply conflict because
inconsistent values are implied on the fanout branches
through imply gates only. For the decision gate G6, if

backtracing is done down the input towards gate G3, then
a decision conflict occurs at the output of gate G3,
however, if backtracing is done down the other input
towards gate G4, then a decision conflict occurs at
primary input X4.

All imply conflicts must be removed with control
points in order to justify the output vector. Some decision
conflicts may also need to be removed, but there is more
than one option as to which decision conflict is removed
for justifymg a particular output vector. When inserting
control points to justify a set of vectors, a good strategy is
to first insert control points to remove all of the imply
conflicts for all of the vectors (since they must be removed
in any solution) before removing decision conflicts.
Consider the case where vector V I can be justified by
either removing decision conflict cl or decision conflict
c2, but for vector v2, conflict c2 is an imply conflict. Any
solution will require that conflict c2 be removed, so
removing conflict cI would be superfluous. It is better to
defer the selection of which decision conflicts to remove
until all imply conflicts have been removed.

3.3 Removing Imply Conflicts
A conflict involves a fanout point in which some of

the fanout branches have a 0 implied on them and some
have a 1 implied on them. A control point must be
inserted in order to change the implied values on the
fanout branches so that they are all consistent (either all
1’s and X’s, or all 0’s and X’s). A conflict at a fanout
point can be removed with a single control point. The set
of branches with a 1 (0) can be controlled by a single
control-1 (control-0) point that is placed between the
fanout stem and the set of branches. Then all of the
branches in the original fanout point will either have a 0
(1) or an X implied on them resulting in a consistent set
of values with a 0 (1) being implied on the stem.

Figure 6. Removing a Conflict with Either a Control-1
Point or a Control-0 Point.

Note that for any conflict, there are two ways to
remove the conflict with a single control point: either a

Paper 3.2
63

control-1 point can be inserted to control all of the
branches with a 1, or a control-0 point can be inserted to
control all of the branches with a 0 (as illustrated in
Fig. 6) . If one or more of the branches is on a critical
timing path, then the decision on which way to remove
the conflict can be made based on minimizing the
performance impact by keeping the control point off the
critical timing paths if possible (it will always be possible
if only one branch is on a critical timing path, but it may
not be possible if multiple branches are on the critical
timing path and have opposite logic values implied on
them). If none of the branches are on the critical timing
path, then the decision on which way to remove the
conflict can be based on which value is better to imply on
the stem. If it is easier to control the stem to a 1 (O), then
a control-0 (control-1) point should be inserted to remove
the conflict. Many methods for determining heuristic
controllability values exist [Rutman 721, [Breuer 781,
[Goldstein 791, [Brglez 841, etc. These controllability
values can be used to determine whether it is easier to
control a particular node in the circuit to a 1 or to a 0.

If the control point needs to be inserted on only one of
the branches (i.e., only one branch has a conflicting logic
value from the rest of the branches), then rather than
inserting the control point right after the fanout point
where the conflict occurs, it is better to insert the control
point further down the circuit towards the primary
outputs. The reason for this is that the control point
reduces the number of backward implications that are
made in the circuit as illustrated in Fig. 7. The question
then is how far towards the primary outputs should the
control point be placed. If the fanout branch where the
conflict occurs propagates to only one primary output,
then the best location to place the control point is right at
the primary output. If the fanout branch where the
conflict occurs (call it FBconflict) propagates to multiple
primary outputs then that means there is another fanout
point (call it FPno-conflict) further down the circuit where
the path branches out towards multiple primary outputs.
In that case, the strategy is to place the control point right
before FPno-conflict (as illustrated in Fig. 7), because
otherwise multiple control points would be needed to

x5

Figure 7. Backward Implications Removed by the
Control Point (Gate G7) are Shown in Parenthesis.

change the value on each branch of FPno-conflicr in order to
change the value that is implied on the stem at FPno-conflict
(which is necessary to remove the conflict at FBcongicr). So
the idea is to use only one control point to remove the
conflict at FBconflicr, and to place that control point as far
down the circuit towards the primary outputs as possible
in order to remove as many backwards implications in the
circuit as possible. The fewer backwards implications
there are, the less chance there is for additional conflicts.

3.4 Removing Decision Conflicts
Once the imply conflicts have been removed for all of

the core test vectors, then for the remaining vectors that
still cannot be justified at the output of the UDL, some
decision conflicts must be removed with control points.
Unlike the case with imply conflicts, there is some
flexibility in choosing which decision conflicts to remove.
This flexibility can be used to avoid inserting control
points on critical timing paths. The first criteria in
selecting which decision conflicts to remove involves
checking to see which can be removed without inserting
logic on critical timing paths. As was described before, a
conflict can be removed from a fanout point without
adding logic on a critical timing path provided the fanout
point does not have multiple branches that are on critical
timing paths with opposite logic values implied on them.
The decision conflicts that cannot be removed without
inserting logic on critical timing paths should be avoided
if possible. For the remaining decision conflicts, the
strategy is to remove the conflicts one at a time until all of
the vectors can be justified. The heuristic that is used for
selecting which decision conflict to remove is to choose
the one whose fanout branches have the worst
controllability (one of the many methods for determining
heuristic controllability values can be used to estimate
which has the worst controllability). The idea behind this
selection heuristic is that inserting a control point reduces
the number of backward implications, so placing the
control point at the harder to control nodes is more likely
to reduce the number of additional conflicts. Once the
decision conflict to be removed has been selected, then the
procedure for inserting a single control point to remove
the conflict is the same as was previously described for
imply conflicts. Decision conflicts continue to be removed
one at a time until all of the core test vectors can be
justified at the outputs of the UDL.

3.5 Reducing Number of Test Inputs in UDL
Extra primary inputs, called test inputs, must be

added to the UDL to drive the control points. During test
mode, the test inputs are used to justify the specified core
test vectors through the UDL, and during system mode,
the test inputs are simply set to 0 so that the control points

Paper 3.2
64

don't affect the system function. Rather than having one
test input driving eacb control point, in many cases it is
possible to have a test input drive several control points.
This is obviously advantageous because it reduces the size
of the test vectors that need to be applied to the inputs of
the UDL during testing hence reducing the cost of test
application.

Reducing the number of test inputs in the UDL can be
done by simply checking whether one test input can be
combined with another while still being able to justify all
of the specified core test vectors through the UDL. If so,
then the two test inputs are replaced by one which drives
the combined set of control points. Test inputs can
continue to be combined until a point is reached where no
pair of test points can be combined without causing some
specified core test vector to not be justifiable.

4. Control Point Insertion Procedure

The control point insertion procedure is described
step by step in this section. A running example of
inserting control points in the small circuit shown in
Fig. 8 to justify only the one vector 0110 at its outputs will
be used to illustrate each step (of course in practice a
whole set of vectors would be considered for each step).
The critical timing paths in the circuit in Fig. 8 are shown
in bold.

h u t : UDL and Specified Set of Core Test Vectors

Output: UDL with Modified Output Space and UDL
Input Vectors that Justify Core Test Vectors

Step 1: Identify ali implv conflicts for all vectors
This is done by setting the primary outputs of the

UDL to correspond to each specified core test vector and
backtracing through imply gates only. Any fanout point
whose branches have inconsistent values is marked as an
imply conflict.

Zl
Imply Conflict, I 0

XI-. X. z,

x5

Figure 8. Example Circuit with Backtracing Through
Imply Gates (Critical Timing Paths Shown in Bold)

In the example in Fig. 8, backtracing through the
imply gates is done for the vector 0110. Notice, for
example, that no values are implied on the inputs of gate
G6 because it is a decision gate. There is one imply
conflict which is at the fanout point at primary input X I .

Step 2: Insert control points to remove all imply conflicts
One control point is inserted for each imply conflict.

Either a control-0 point is inserted to control all of the 0
branches, or a control-1 point is inserted to control all of
the 1 branches. If one or more of the conflicting branches
is on a critical timing path, then this decision about which
type of control point to insert is made based on not adding
logic on the critical timing path. Otherwise, the decision
about which type of control point to add is made based on
whether it is easier to control the stem to a 1 or to a 0. If
the control point needs to be inserted on only one branch,
then it is placed as far towards the primary outputs as
possible as described in Sec. 3.3.

In the example in Fig. 8, the 1 branch is on a critical
timing path, so a control-0 point is inserted to remove the
conflict. The resulting circuit with the control-0 point
(gate G7) inserted is shown in Fig. 9.

:onflict

Figure 9. Example Circuit with Control Point (Gate G7)
Inserted to Remove Imply Conflict.

Step 3: Insert control Doints to remove decision conflicts
one at a time until all vectors can be justified

The decision conflicts are removed one at a time
based on two criteria. The first is to avoid inserting
control points on critical timing paths, and the second is
to choose the one whose fanout branches have the worst
controllability.

In the example in Fig. 9, there are two decision
conflicts. One at the output of gate G3, and the other at
primary input X,. Both can be removed without inserting
a control point on critical timing paths, so the one at the
output of gate G3 is selected because it has the worst
controllability. It is removed by inserting a control-0
point. Since there is only one branch, the control point

Paper 3.2
65

(gate G8) is placed as close to the primary outputs as
possible (which in this case is right at the primary
output&). The resulting circuit is shown in Fig. 10.
Now there are no more conflicts.

Figure 10. Example Circuit with Control Point (Gate G8)
Inserted to Remove Decision Conflict

UDL Core
Name I Inputs Name I Inputs I Faults I Vectors

Step 4: Reduce the number of test inuuts
A check is made to see if any two test inputs can be

combined while still being able to justify all of the vectors.
If so, then the two test inputs are replaced by a single test
input which drives the combined set of control points.
This process continues until a point is reached where no
pair of test points can be combined without causing some
of the vectors to not be justifiable.

In the example in Fig. 10, a check is made to see if
the two test inputs, tj and tz, can be combined. Since
there is only one test vector that needs to be justified and
both control points are activated to justify that vector, the
test inputs can be combined such that there is only one test
input that drives both of the control points. The final
circuit is shown in Fig. 11. The output vector 0110 can be
justified by applying the input vector < tj,Xl,X2,X3,X4,X, >
= 11 01 1X to the circuit.

tl

0 - - Z,

Figure 11. Example Circuit After the Control Point
Insertion Procedure Completes

5. Experimental Results

The control point insertion procedure described in
this paper was used to modify the UDL in some designs
that were constructed from the MCNC benchmark
circuits. In each design, one of the benchmark circuits
was considered to be a core while another benchmark
circuit was considered to be the UDL driving the core.
Two of the benchmark circuits, (2531.5 and C7552, were
partitioned into two parts where one part was considered
to be a core and the other part was considered to be the
UDL.

Table 1 gives information about the designs that were
used. For each design, the name of the UDL driving the
core is shown followed by the name of the core. The
number of inputs to the core, number of faults in the core,
and number of specified test vectors for the core are
shown (the test vectors were obtained by doing ATPG on
the core alone).

Table 2 shows results for each of the designs in
Table 1. The area overhead for different approaches are
compared in terms of gate equivalents (GE’s) where a
MUX is counted as 1.5 GE’s and a two-input gate is
counted as 1 GE. Results are shown for three cases: (1)
using either a full isolation ring or MUXed inputs (both
require one MUX per core input), (2) using a partial
isolation ring (as described in [Touba 97]), and (3) using
the control point insertion procedure described here. For
each of the first two approaches, the number of MUXes
and the corresponding number of gate equivalents are
shown. For the control point insertion procedure, three
things are shown: the number of control points that are
inserted in the UDL, the number of test inputs (i.e., extra
primary inputs) that are added to drive the control points,
and the corresponding number of gate equivalents (there
is one 2-input gate for each control point). Note that in
all three cases, the fault coverage is 100%.

Paper 3.2
66

Table 2. Comparison of Different Approaches for Applying Specified Set of Core Test Vectors

As can be seen from the results, in many cases fewer
control points are needed than the number of MUXes
required in a partial isolation ring. Each control point is
implemented with a single two-input gate and requires
routing of one control line, whereas MUXes require
routing of both a control line and a data line. Moreover,
the number of test inputs needed to drive the control
points is very small which translates into reduced test
application costs.

6. Summary and Conclusions

A new approach for providing test access to the
inputs of an embedded core was presented. Given a
specified set of core test vectors, an automated procedure
was presented for efficiently inserting control points to
modify the output space of the UDL so that all of the
vectors can be justified through the UDL. This approach
of justifying the specified core test vectors through the
UDL eliminates the need for placing MUXes at the inputs
of the core to directly control them.

Inserting control points in the UDL is a very efficient
and flexible way to provide test access to the inputs of an
embedded core. This fact can be exploited to reduce the
cost of DFT in core-based design in the following ways:

Avoiding performance degradation - The flexibility in
selecting the location of control points can be used to
keep test logic off of critical timing paths.
Techniques for accomplishing this were described in
this paper.
Reducing test auulication costs - Control points
provide a means for maximizing the effectiveness of
each test input. A single test input can drive multiple
control points and thus have a bigger impact in
justifying the specified core test vectors. This results
in fewer test inputs, less test data, and faster test time.

Reducing, DFT logic - Control points are very
efficient to implement requiring only a single
two-input gate.
Reducing DFT routing - A major concern about DFT
in core-based designs is the amount of routing that it
adds. The flexibility in selecting the location of the
control points provides a means for reducing routing
complexity. This paper did not address the issue of
routing, but that is an area for further investigation.

Acknowledgments

This work is part of the TOPS project at the Center
for Reliable Computing at Stanford University and was
supported in part by the Advanced Research Projects
Agency under prime contract No. DABT63-94-C-0045,
and by the National Science Foundation under Grant No.
ME970223 6.

References

[Bhatia 961 Bhatia, S., T. Gheewala, and P. Varma, “A
Unifymg Methodology for Intellectual Property and
Custom Logic Testing,” Proc. of International Test
Conference, pp. 639-648, 1996.

[Breuer 781 Breuer, M.A., “New Concepts in Automated
Testing of Digital Circuits,” Proc. of EEC Symposium
on CAD of Digital Electronic Circuits and Systems,
pp. 69-92, 1978.

[Brglez 841 Brglez, F., “On Testability Analysis of
Combinational Networks,” Proc. of Zntemational
Symposium on Circuits and Systems, pp. 221-225,
1984.

Paper 3.2
67

[Chakrabarty 941 Chakrabarty, K., and J.P. Hayes,
“Efficient Test Response Compression for Multiple-
Output Circuits,” Proc. of International Test
Conference, pp. 501-510, 1994.

[Chandra 911 Chandra, S., T. Ferry, T. Gheewala, and K.
Pierce, “ATPG Based on a Novel Grid Addressable
Latch Element,” Proc. of 28th Design Automation
Conference, pp. 282-286, 1991.

[Eichelberger 831 Eichelberger, E.B., and E. Lindbloom,
“Random-Pattern Coverage Enhancement and
Diagnosis for LSSD Logic Self-Test,” IBM Journal of
Research d Development, vol. 27, No. 3, pp. 265-
272, May 1983.

[Gheewala 891 Gheewala, T., “Crosscheck: A Cell Based
VLSI Testability Solution,” Proc. of 26th Design
Automation Conference, pp. 706-709, 1989.

[Goldstein 791 Goldstein, L.H., “Controllability-
Observability Analysis of Digital Circuits,” IEEE
Trans. on Circuits and Systems, Vol. CAS-26, No. 9,
pp. 685-693, Sept. 1979.

[Immaneni 901 Immaneni, V., and S. Raman, “Direct
Access Test Scheme - Design of Block and Core Cells
for Embedded ASICS,” Proc. of International Test
Conference, pp. 488-492, 1990.

[Rutman 721 Rudman, R.A., “Fault Detection Test
Generation for Sequential Logic by Heuristic Tree
Search,” IEEE Computer Group Repository, Paper

[Touba 971 Touba, N.A., and B. Pouya, “Partial Isolation
Rings for Testing Embedded Cores,” Proc. of VLSI
Test Symposium, pp. 10-16, 1997.

[Williams 731 Williams, M.J.Y., and J.B. Angell,
“Enhancing Testability of Large-scale Integrated
Sequential Circuits Via Test Points and Additional
Logic,” IEEE Trans. on Computers, Vol. C-22,

NO. R-72-187, 1972.

pp. 46-60, 1973.

Paper 3.2
68

