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Abstract 

Testing embedded cores is a challenge because 
access to core I/Os is limited. The user-defined logic 
(ZJDL) surrounding the core may restrict the set of test 
vectors that can be applied to the core. Consequently, 
some of the core test vectors specified by the core 
supplier may not be contained in the output space of the 
UDL that drives the core and hence cannot be justified at 
the core inputs. Conventional solutions to this problem 
involve placing multiplexers or boundary scan elements 
at the inputs of the core to provide test access. This can 
be very costly in terms of area and pel3corinance. This 
paper presents a new approach for providing test access 
to an embedded core. A procedure is described for 
inserting control points in the UDL to modify its output 
space so that it contains the specified core test vectors. 
The flexibility in selecting the location of the control 
points is used to avoid pel3cormance degradation by 
keeping test logic off the critical timing paths. 
Experimental results are shown comparing the control 
point insertion procedure with other approaches. 

1. Introduction 

process such as ATPG and fault simulation cannot be 
performed. The core vendor specifies the set of test 
vectors that must be applied to the core to guarantee a 
sufficient fault coverage. The second case where the core 
test vectors may be “fixed” is if the core is a legacy design 
(i.e., an existing design that is being re-used) for which it 
is desirable to use existing test vectors rather than 
expending new effort in test generation. In both of these 
cases, some of the core test vectors may not be contained 
in the output space of the TJDL driving the core, and 
hence some design-for-testability (DFT) is required in 
order to apply the vectors to the core. 

Chip 

[solation 
Ring 

In order to shorten product development cycles for 
integrated circuits and systems, a growing trend is to 
make use of pre-designed blocks, called cores. Testing 
cores embedded within a larger design can be a significant 
challenge because there is limited access to the core UOs. 
The set of vectors that can be justified at the inputs of a 
core is restricted to those that exist in the output space of 
the user-defined logic (UDL) driving the core. There are 
two important cases where the particular set of test vectors 
that are to be used to test a core are “fixed’ independent of 
the design in which the core is embedded (i.e., the vectors 
are not selected using an ATPG procedure that considers 
the overall circuit, core plus UDL). The first case is 
where the core supplier considers the core to be 
intellectual property and thus is not willing to give any 
information about the internal logic of the core (i.e., it is a 
black box). In that case, the traditional test generation 

Figure 1. Isolation Ring for Testing Embedded Core 

One solution to this problem is to use multiplexing to 
make the inputs of the core accessible to the chip pins 
[Immaneni 901. However, this approach adds a MUX 
delay on all paths into the core and does not provide any 
observability to the UDL driving the core thereby resulting 
in degraded fault coverage. Another solution is to put 
what is called an isolation ring around the core 
(illustrated in Fig. 1). An isolation ring i s  essentially a 
boundary scan that provides full controllability of the 
inputs of the core as well as providing full observability of 
the UDL driving the core. The drawback of using an 
isolation ring is the large area and performance overhead 
that it adds. A boundary scan element and associated 
routing is required for each input of the core, and a MUX 
delay is added to every path into the core (as illustrated in 
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Fig. 2). As a result, using a full isolation ring is 
undesirable, especially in high performance applications. 
Recently a partial isolation ring approach was presented 
in [Touba 971. It reduces the number of isolation ring 
elements while still providing the same fault coverage as a 
full isolation ring. This is accomplished by justifying part 
of each core test vector through the UDL. 

User-Defined Logic 

m o o o m  
test test- test$& 

I Embedded Core I 
Figure 2. Conventional Approach with Isolation Ring at 

Inputs of Embedded Core 

Bhatia, et. al, at CrossCheck [Bhatia 961 introduced a 
grid-based direct access methodology for testing 
core-based designs. This method differs from the 
embedded grid test method described in [Gheewala 891 
and [Chandra 911, in that it uses a “soft” netlist level grid 
as opposed to a “hard” grid embedded at the base of gate 
arrays. The “soft” netlist level grid described in 
[Bhatia 961 provides direct access to storage elements, 
observation test points, and bi-directional test points via 
the chip pins. The basic approach is to place 
bi-directional test points at the inputs and outputs of the 
embedded core, and matrix accessible storage elements 
and observation test points in the UDL to provide 
sufficient fault coverage. This approach requires new 
library cells to implement the matrix accessible storage 
elements, bi-directional test points, and I/O pads, and it 
requires global routing of the test grid. 

This paper presents a new approach for providing test 
access to an embedded core. The idea is to modify the 
output space of the UDL so that it contains all of the 
specified core test vectors (as illustrated in Fig. 3). By so 
doing, the core test vectors can be applied through the 
UDL thereby completely eliminating the need for an 
isolation ring and its associated MUX delays. Instead of 
scanning core test vectors into an isolation ring, the core 
test vectors are justified at the core inputs. The core test 
vectors are justified by controlling the inputs of the UDL. 

If the UDL contains an internal scan chain, then the 
contents of the scan chain are also controlled. If there are 
multiple cores where core A is driving core B with UDL in 
between them, then this approach can be used to eliminate 
the need for an isolation ring at the inputs of core B.  The 
core test vectors for core B can be justified at the inputs of 
core B by controlling the isolation ring at the output of 
core A (which corresponds to the inputs of the UDL 
between core A and core B).  

Note that in order to test the UDL driving the core, 
some means for observing the outputs of the UDL is 
required. This can be provided by using a space 
compactor. A space compactor combines outputs through 
combinational logic in order to simplify output response 
analysis. Instead of having one flip-flop per output, as is 
the case with an isolation ring, a space compactor can be 
used to greatly reduce the number of flip-flops that are 
needed while still providing the same fault coverage 
[Chakrabarty 941. Using a space compactor reduces area 
overhead and speeds up output response analysis without 
adding logic on any of the system paths. 

User-Defined Logic 
(With Modified Output Space) 

0 . 0  
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Figure 3. Proposed Approach with Output Space 
Modification via Control Point Insertion and Space 

Compaction for Observing UDL Outputs 

Modifying the output space of the UDL is 
accomplished by adding extra inputs that are used only 
during testing. The general idea of adding extra inputs to 
a circuit to aid in testing is known as test point insertion. 
Test point insertion was originally proposed for 
simplifying the task of automated test pattern generation 
(ATPG) in [Williams 731. Later it was proposed for 
improving the random pattern testability of a circuit in 
[Eichelberger 831. Here it is proposed for modifying the 
output space of a circuit. In particular, modifying the 
output space of the UDL in a core-based design to enable 
specified sets of test vectors to be applied to each core. 
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Figure 4. Example of Modifying Output Space by Inserting Control Points 

Whereas using an isolation ring or using MUXed 
inputs to apply test vectors to the core adds a MUX delay 
to every path, inserting control points in the UDL only 
adds delay to some of the paths. By carefully selecting the 
location of the control points, the critical timing paths can 
be avoided so that system performance is not degraded. 
Putting multiplexers on every output of the UDL is a 
simple brute force way to modify the output space, but it is 
very costly in terms of area and performance. The 
technique described here is a more efficient and low-cost 
way to modify the output space of the UDL to provide test 
access to an embedded core. 

The paper is organized as follows: In Sec. 2, the use 
of control points for modifying the output space of the 
UDL is described. In Sec. 3, the concepts and strategies 
that form the basis for the proposed control point insertion 
procedure are explained. In Sec. 4, a step by step 
description of the control point insertion procedure is 
given. Each step is illustrated on an example circuit. In 
Section 5,  experimental results are shown for the control 
point insertion procedure and the overhead is compared 
with that for using full and partial isolation rings. Section 
6 is a summary and conclusion. 

2. Modifying Output Space 

The technique described in this paper involves 
modifying the output space of the UDL while still 
allowing it to perform its intended function during system 
mode. The means for accomplishing this is to insert 
control points in the UDL which can be used during test 
mode to control the value at certain nodes in order to 
justify particular output vectors. In the example in Fig. 4, 
the output space of the circuit contains only 9 of the 16 
possible patterns. A control point is inserted to fix the 
logic value at the input of gates GI and G2 to a 1 when 
the control point is activated (this is called a control-1 

I "  

point), and a control point is also added to fix the logic 
value at the input of gate G4 to a 0 when the control point 
is activated (this is called a control-0 point). These two 
control points allow all 16 possible patterns to be justified 
during test mode. During system mode, the tJ and t2 
inputs are set to 0, so the control points are not activated 
and thus don't affect the system function. However, 
control points do add an extra level of logic to some paths 
in the circuit. If a control point is placed on a critical 
timing path, it can increase the delay through the circuit, 
so care must be taken in selecting the location of the 
control points. 

3. Strategy For Inserting Control Points 

This section describes several important concepts and 
strategies that form the basis for the proposed control 
point insertion procedure for modifying the output space 
of the UDL. Given a specified core test vector that cannot 
be justified through the UDL, there are two basic steps: 
the first is to identify conflicts that arise when trying to 
justify the vector, and the second is to insert control points 
to remove those conflicts so that the vector can be 
justified. 

3.1 Identifying Conflicts 
For each core test vector that is to be justified through 

the UDL, the values of the primary outputs are set to the 
corresponding values and backtracing towards the primary 
inputs is performed. If a fanout stem is reached where the 
values that are assigned on its branches are not all the 
same, a conflict occurs. If backtracing can be completed 
all the way to the primary inputs with no conflicts, then 
the output vector can be justified through the UDL using 
the input vector corresponding to the final values assigned 
to the primary inputs. Notice that if there is no fanout in 
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the circuit, no conflicts can occur. Hence, the output 
space of a fanout-free circuit contains all possible output 
vectors. 

In backtracing through the circuit, two types of gates 
are encountered: “decision gates” and “imply gates.” If 
the value assigned to the output of a multi-input gate can 
be justified by assigning a value to only one of the inputs 
(e.g., justiwing a 0 at the output of an AND gate), then 
the gate is said to be a decision gate since there is more 
than one way to backtrace through the gate. If justifymg 
the value assigned to the output of a gate requires 
assigning values to all of the inputs (e.g., justifying a 1 at 
the output of an AND gate), then the gate is said to be an 
imply gate. In the example in Fig. 5,  for output vector 
0110, gates G I ,  G2, G3, and G5 are imply gates, while 
gate G6 is a decision gate. 

Figure 5. Example of Backward Implications from 
Primary Outputs 

If a conflict occurs during backtracing, then it may be 
possible to avoid the conflict by choosing to backtrace 
down a different path in some decision gate. If all 
possible paths for backtracing result in a conflict(s), then 
a control point must be inserted to remove the conflict(s) 
to permit the core test vector to be justified through the 
UDL. 

3.2 Imply and Decision Conflicts 
Each conflict that is encountered during backtracing 

can be classified as either an “imply conflict” or a 
“decision conflict.” An imply conflict is one that occurs 
due to backtracing through imply gates only (i.e., no 
backtracing is done through decision gates), whereas a 
decision conflict is one that occurs due to backtracing 
through one or more decision gates and any number of 
imply gates. A decision conflict can be avoided by 
backtracing down a different path in some decision gate, 
whereas an imply conflict cannot be avoided because there 
are no decision gates between the primary outputs and the 
fanout point where the conflict occurs. In Fig. 5, the 
conflict at primary input X I  is an imply conflict because 
inconsistent values are implied on the fanout branches 
through imply gates only. For the decision gate G6, if 

backtracing is done down the input towards gate G3, then 
a decision conflict occurs at the output of gate G3, 
however, if backtracing is done down the other input 
towards gate G4, then a decision conflict occurs at 
primary input X4.  

All imply conflicts must be removed with control 
points in order to justify the output vector. Some decision 
conflicts may also need to be removed, but there is more 
than one option as to which decision conflict is removed 
for justifymg a particular output vector. When inserting 
control points to justify a set of vectors, a good strategy is 
to first insert control points to remove all of the imply 
conflicts for all of the vectors (since they must be removed 
in any solution) before removing decision conflicts. 
Consider the case where vector V I  can be justified by 
either removing decision conflict cl or decision conflict 
c2, but for vector v2, conflict c2 is an imply conflict. Any 
solution will require that conflict c2 be removed, so 
removing conflict cI would be superfluous. It is better to 
defer the selection of which decision conflicts to remove 
until all imply conflicts have been removed. 

3.3 Removing Imply Conflicts 
A conflict involves a fanout point in which some of 

the fanout branches have a 0 implied on them and some 
have a 1 implied on them. A control point must be 
inserted in order to change the implied values on the 
fanout branches so that they are all consistent (either all 
1’s and X’s, or all 0’s and X’s). A conflict at a fanout 
point can be removed with a single control point. The set 
of branches with a 1 (0) can be controlled by a single 
control-1 (control-0) point that is placed between the 
fanout stem and the set of branches. Then all of the 
branches in the original fanout point will either have a 0 
(1) or an X implied on them resulting in a consistent set 
of values with a 0 (1) being implied on the stem. 

Figure 6. Removing a Conflict with Either a Control-1 
Point or a Control-0 Point. 

Note that for any conflict, there are two ways to 
remove the conflict with a single control point: either a 
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control-1 point can be inserted to control all of the 
branches with a 1, or a control-0 point can be inserted to 
control all of the branches with a 0 (as illustrated in 
Fig. 6) .  If one or more of the branches is on a critical 
timing path, then the decision on which way to remove 
the conflict can be made based on minimizing the 
performance impact by keeping the control point off the 
critical timing paths if possible (it will always be possible 
if only one branch is on a critical timing path, but it may 
not be possible if multiple branches are on the critical 
timing path and have opposite logic values implied on 
them). If none of the branches are on the critical timing 
path, then the decision on which way to remove the 
conflict can be based on which value is better to imply on 
the stem. If it is easier to control the stem to a 1 (O), then 
a control-0 (control-1) point should be inserted to remove 
the conflict. Many methods for determining heuristic 
controllability values exist [Rutman 721, [Breuer 781, 
[Goldstein 791, [Brglez 841, etc. These controllability 
values can be used to determine whether it is easier to 
control a particular node in the circuit to a 1 or to a 0. 

If the control point needs to be inserted on only one of 
the branches (i.e., only one branch has a conflicting logic 
value from the rest of the branches), then rather than 
inserting the control point right after the fanout point 
where the conflict occurs, it is better to insert the control 
point further down the circuit towards the primary 
outputs. The reason for this is that the control point 
reduces the number of backward implications that are 
made in the circuit as illustrated in Fig. 7. The question 
then is how far towards the primary outputs should the 
control point be placed. If the fanout branch where the 
conflict occurs propagates to only one primary output, 
then the best location to place the control point is right at 
the primary output. If the fanout branch where the 
conflict occurs (call it FBconflict) propagates to multiple 
primary outputs then that means there is another fanout 
point (call it FPno-conflict) further down the circuit where 
the path branches out towards multiple primary outputs. 
In that case, the strategy is to place the control point right 
before FPno-conflict (as illustrated in Fig. 7), because 
otherwise multiple control points would be needed to 

x5 

Figure 7. Backward Implications Removed by the 
Control Point (Gate G7) are Shown in Parenthesis. 

change the value on each branch of FPno-conflicr in order to 
change the value that is implied on the stem at FPno-conflict 
(which is necessary to remove the conflict at FBcongicr). So 
the idea is to use only one control point to remove the 
conflict at FBconflicr, and to place that control point as far 
down the circuit towards the primary outputs as possible 
in order to remove as many backwards implications in the 
circuit as possible. The fewer backwards implications 
there are, the less chance there is for additional conflicts. 

3.4 Removing Decision Conflicts 
Once the imply conflicts have been removed for all of 

the core test vectors, then for the remaining vectors that 
still cannot be justified at the output of the UDL, some 
decision conflicts must be removed with control points. 
Unlike the case with imply conflicts, there is some 
flexibility in choosing which decision conflicts to remove. 
This flexibility can be used to avoid inserting control 
points on critical timing paths. The first criteria in 
selecting which decision conflicts to remove involves 
checking to see which can be removed without inserting 
logic on critical timing paths. As was described before, a 
conflict can be removed from a fanout point without 
adding logic on a critical timing path provided the fanout 
point does not have multiple branches that are on critical 
timing paths with opposite logic values implied on them. 
The decision conflicts that cannot be removed without 
inserting logic on critical timing paths should be avoided 
if possible. For the remaining decision conflicts, the 
strategy is to remove the conflicts one at a time until all of 
the vectors can be justified. The heuristic that is used for 
selecting which decision conflict to remove is to choose 
the one whose fanout branches have the worst 
controllability (one of the many methods for determining 
heuristic controllability values can be used to estimate 
which has the worst controllability). The idea behind this 
selection heuristic is that inserting a control point reduces 
the number of backward implications, so placing the 
control point at the harder to control nodes is more likely 
to reduce the number of additional conflicts. Once the 
decision conflict to be removed has been selected, then the 
procedure for inserting a single control point to remove 
the conflict is the same as was previously described for 
imply conflicts. Decision conflicts continue to be removed 
one at a time until all of the core test vectors can be 
justified at the outputs of the UDL. 

3.5 Reducing Number of Test Inputs in UDL 
Extra primary inputs, called test inputs, must be 

added to the UDL to drive the control points. During test 
mode, the test inputs are used to justify the specified core 
test vectors through the UDL, and during system mode, 
the test inputs are simply set to 0 so that the control points 
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don't affect the system function. Rather than having one 
test input driving eacb control point, in many cases it is 
possible to have a test input drive several control points. 
This is obviously advantageous because it reduces the size 
of the test vectors that need to be applied to the inputs of 
the UDL during testing hence reducing the cost of test 
application. 

Reducing the number of test inputs in the UDL can be 
done by simply checking whether one test input can be 
combined with another while still being able to justify all 
of the specified core test vectors through the UDL. If so, 
then the two test inputs are replaced by one which drives 
the combined set of control points. Test inputs can 
continue to be combined until a point is reached where no 
pair of test points can be combined without causing some 
specified core test vector to not be justifiable. 

4. Control Point Insertion Procedure 

The control point insertion procedure is described 
step by step in this section. A running example of 
inserting control points in the small circuit shown in 
Fig. 8 to justify only the one vector 0110 at its outputs will 
be used to illustrate each step (of course in practice a 
whole set of vectors would be considered for each step). 
The critical timing paths in the circuit in Fig. 8 are shown 
in bold. 

h u t :  UDL and Specified Set of Core Test Vectors 

Output: UDL with Modified Output Space and UDL 
Input Vectors that Justify Core Test Vectors 

Step 1: Identify ali implv conflicts for all vectors 
This is done by setting the primary outputs of the 

UDL to correspond to each specified core test vector and 
backtracing through imply gates only. Any fanout point 
whose branches have inconsistent values is marked as an 
imply conflict. 

Zl 
Imply Conflict, I 0 

XI-. X. z, 

x5 

Figure 8. Example Circuit with Backtracing Through 
Imply Gates (Critical Timing Paths Shown in Bold) 

In the example in Fig. 8, backtracing through the 
imply gates is done for the vector 0110. Notice, for 
example, that no values are implied on the inputs of gate 
G6 because it is a decision gate. There is one imply 
conflict which is at the fanout point at primary input X I .  

Step 2: Insert control points to remove all imply conflicts 
One control point is inserted for each imply conflict. 

Either a control-0 point is inserted to control all of the 0 
branches, or a control-1 point is inserted to control all of 
the 1 branches. If one or more of the conflicting branches 
is on a critical timing path, then this decision about which 
type of control point to insert is made based on not adding 
logic on the critical timing path. Otherwise, the decision 
about which type of control point to add is made based on 
whether it is easier to control the stem to a 1 or to a 0. If 
the control point needs to be inserted on only one branch, 
then it is placed as far towards the primary outputs as 
possible as described in Sec. 3.3. 

In the example in Fig. 8, the 1 branch is on a critical 
timing path, so a control-0 point is inserted to remove the 
conflict. The resulting circuit with the control-0 point 
(gate G7) inserted is shown in Fig. 9. 

:onflict 

Figure 9. Example Circuit with Control Point (Gate G7) 
Inserted to Remove Imply Conflict. 

Step 3:  Insert control Doints to remove decision conflicts 
one at a time until all vectors can be justified 

The decision conflicts are removed one at a time 
based on two criteria. The first is to avoid inserting 
control points on critical timing paths, and the second is 
to choose the one whose fanout branches have the worst 
controllability. 

In the example in Fig. 9, there are two decision 
conflicts. One at the output of gate G3, and the other at 
primary input X,. Both can be removed without inserting 
a control point on critical timing paths, so the one at the 
output of gate G3 is selected because it has the worst 
controllability. It is removed by inserting a control-0 
point. Since there is only one branch, the control point 
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(gate G8) is placed as close to the primary outputs as 
possible (which in this case is right at the primary 
output&). The resulting circuit is shown in Fig. 10. 
Now there are no more conflicts. 

# 

Figure 10. Example Circuit with Control Point (Gate G8) 
Inserted to Remove Decision Conflict 

UDL Core 
Name I Inputs Name I Inputs I Faults I Vectors 

Step 4: Reduce the number of test inuuts 
A check is made to see if any two test inputs can be 

combined while still being able to justify all of the vectors. 
If so, then the two test inputs are replaced by a single test 
input which drives the combined set of control points. 
This process continues until a point is reached where no 
pair of test points can be combined without causing some 
of the vectors to not be justifiable. 

In the example in Fig. 10, a check is made to see if 
the two test inputs, tj and tz, can be combined. Since 
there is only one test vector that needs to be justified and 
both control points are activated to justify that vector, the 
test inputs can be combined such that there is only one test 
input that drives both of the control points. The final 
circuit is shown in Fig. 11. The output vector 0110 can be 
justified by applying the input vector < tj,Xl,X2,X3,X4,X, > 
= 11 01 1X to the circuit. 

tl  

0 - - Z,  

Figure 11. Example Circuit After the Control Point 
Insertion Procedure Completes 

5. Experimental Results 

The control point insertion procedure described in 
this paper was used to modify the UDL in some designs 
that were constructed from the MCNC benchmark 
circuits. In each design, one of the benchmark circuits 
was considered to be a core while another benchmark 
circuit was considered to be the UDL driving the core. 
Two of the benchmark circuits, (2531.5 and C7552, were 
partitioned into two parts where one part was considered 
to be a core and the other part was considered to be the 
UDL. 

Table 1 gives information about the designs that were 
used. For each design, the name of the UDL driving the 
core is shown followed by the name of the core. The 
number of inputs to the core, number of faults in the core, 
and number of specified test vectors for the core are 
shown (the test vectors were obtained by doing ATPG on 
the core alone). 

Table 2 shows results for each of the designs in 
Table 1. The area overhead for different approaches are 
compared in terms of gate equivalents (GE’s) where a 
MUX is counted as 1.5 GE’s and a two-input gate is 
counted as 1 GE. Results are shown for three cases: (1) 
using either a full isolation ring or MUXed inputs (both 
require one MUX per core input), (2) using a partial 
isolation ring (as described in [Touba 97]), and (3) using 
the control point insertion procedure described here. For 
each of the first two approaches, the number of MUXes 
and the corresponding number of gate equivalents are 
shown. For the control point insertion procedure, three 
things are shown: the number of control points that are 
inserted in the UDL, the number of test inputs (i.e., extra 
primary inputs) that are added to drive the control points, 
and the corresponding number of gate equivalents (there 
is one 2-input gate for each control point). Note that in 
all three cases, the fault coverage is 100%. 
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Table 2. Comparison of Different Approaches for Applying Specified Set of Core Test Vectors 

As can be seen from the results, in many cases fewer 
control points are needed than the number of MUXes 
required in a partial isolation ring. Each control point is 
implemented with a single two-input gate and requires 
routing of one control line, whereas MUXes require 
routing of both a control line and a data line. Moreover, 
the number of test inputs needed to drive the control 
points is very small which translates into reduced test 
application costs. 

6. Summary and Conclusions 

A new approach for providing test access to the 
inputs of an embedded core was presented. Given a 
specified set of core test vectors, an automated procedure 
was presented for efficiently inserting control points to 
modify the output space of the UDL so that all of the 
vectors can be justified through the UDL. This approach 
of justifying the specified core test vectors through the 
UDL eliminates the need for placing MUXes at the inputs 
of the core to directly control them. 

Inserting control points in the UDL is a very efficient 
and flexible way to provide test access to the inputs of an 
embedded core. This fact can be exploited to reduce the 
cost of DFT in core-based design in the following ways: 

Avoiding performance degradation - The flexibility in 
selecting the location of control points can be used to 
keep test logic off of critical timing paths. 
Techniques for accomplishing this were described in 
this paper. 
Reducing test auulication costs - Control points 
provide a means for maximizing the effectiveness of 
each test input. A single test input can drive multiple 
control points and thus have a bigger impact in 
justifying the specified core test vectors. This results 
in fewer test inputs, less test data, and faster test time. 

Reducing, DFT logic - Control points are very 
efficient to implement requiring only a single 
two-input gate. 
Reducing DFT routing - A major concern about DFT 
in core-based designs is the amount of routing that it 
adds. The flexibility in selecting the location of the 
control points provides a means for reducing routing 
complexity. This paper did not address the issue of 
routing, but that is an area for further investigation. 
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