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Abstract 

This paper presents a logic synthesis tool called 
BETSY (BIST Environment Testable Synthesis) for  
synthesizing circuits that achieve complete (100%) fault 
coverage in a user specified BIST environment. Instead 
of optimizing the circuit fo r  a generic pseudo-random test 
pattern generator (by maximizing its random pattern 
testability), the circuit is optimized for  a specific test 
pattem generator, e.g., an LFSR with a specific 
characteristic polynomial and initial seed. This solves 
the problem of having to estimate fault detection 
probabilities during synthesis and guarantees that the 
resulting circuit achieves 100% fault coverage. BETSY 
considers the exact set of patterns that will be applied to 
the circuit during BIST and applies various 
transfomations to generate an implementation that is fully 
tested by those patterns. When needed, BETSY inserts 
test points early in the synthesis process in an optimal 
way and accounts for  them in satisfying timing constraints 
and other synthesis criteria. Experimental results are 
shown which demonstrate the benefits of optimizing a 
circuit for  a particular test pattern generator. 

1. Introduction 
In a built-in self-test (BIST) environment, on-chip 

hardware is used to apply test patterns to the circuit- 
under-test (CUT). The most common approach is to use a 
pseudo-random test pattern generator (e.g., an LFSR) 
because of its low hardware overhead. The set of patterns 
that are applied to the CUT during BIST will be referred 
to as the “BIST pattern set.” The BIST pattern set 
depends on the test pattern generator and on the test 
length. One problem that arises is that the BIST pattern 
set may not detect all of the faults in the CUT. If the fault 
coverage is insufficient, then steps must be taken to either 
add test points to the CUT to enable more faults to be 
detected by the BIST pattern set, or to modify the test 
pattern generator to change the BIST pattern set so that 
more faults are detected. In many cases, a substantial 
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amount of hardware overhead must be added to obtain 
sufficient fault coverage with logic BIST. 

The conventional approach for designing a circuit with 
BIST is to first synthesize the circuit, and then add a test 
pattern generator (e.g., an LFSR feeding a scan chain) 
and perform fault simulation for the BIST pattern set. If 
the fault coverage is insufficient, then test points must be 
inserted until the fault coverage requirement is achieved. 

Chiang and Gupta [Chiang 94abl observed that 
synthesized circuits typically require much longer random 
pattern test lengths to achieve high fault coverage 
compared with manually-optimized circuits even though 
the circuits implement the same logic function. These 
results indicate that the structure of a circuit greatly 
influences its random pattern testability. 

One approach for improving the fault coverage for 
pseudo-random BIST is to consider random pattern 
testability during the synthesis process. The idea is to 
guide the synthesis process so that it minimizes the 
number of random pattern resistant faults in the resulting 
implementation. This results in higher fault coverage for 
the BIST pattern set and thus reduces the overhead and 
complexity of the test point circuitry required for satisfying 
fault coverage requirements in a BIST environment. 
Synthesis procedures that attempt to maximize random 
pattern testability have been proposed in [Touba 941, 
[Chiang 94b1, and [Chatterjee 951. One of the major 
difficulties in trying to maximize random pattern 
testability is that evaluating the random pattern testability 
of a circuit is very difficult. It requires determining the 
detection probabilities of the faults in the circuit. To 
reduce the complexity of this problem, the procedures 
described in [Touba 941 and [Chiang 94b] require that the 
starting point for the synthesis be a two-level circuit so 
that cube calculus operations can be used to determine the 
detection probabilities. However, some circuits have an 
exponential two-level representation and thus these 
techniques cannot be used in that case. The procedure 
described in [Chatterjee 951 does not require a two-level 
starting point, but rather uses techniques to estimate the 
detection probabilities. The drawback of this approach is 
that the estimations can be very inaccurate at times which 
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1 Figure 1. Example of Decision Between Two Options for Factoring Logic 

specific BIST test pal ator. Instead of optimizing 
the circuit for a g eudo-random test pattern 
generator (by maxim s random pattern testability), 
the circuit is optii r a specific test pattern 

1. Better decisions 

rn generator already. For 
of an LFSR can be chosen so 

that it detects son e r.p.r. faults. Thus, there is 

BETSY is illustrated by the simple example in Fig. 1. 
There are two options for factoring the circuit on the 
left-hand side. Both options have the same literal 
count and same random pattern testability (i.e., same 
fault detection probabilities), however, if the BIST 
pattern set contains the pattern 00110, but does not 
contain any pattern of the form IOlXX, then the 
stuck-at 1 fault that is shown would be detected in 
option 1, but would be undetected in option 2. If 
option 2 were chosen, a test point would need to be 
inserted to achieve 100% coverage, whereas if option 1 
is chosen, no test point would be required. This is a 
very simple example of how considering the BIST 
pattern set during the synthesis process enables better 
optimization decisions to be made. 

2. No need to compute fault detection probabilities. Since 
the exact BIST pattern set is known by BETSY, fault 
simulation can be done to determine exactly which 
faults in the circuit structure are not detected. The 
synthesis process can then be directed towards logic 
optimizations that change the circuit structure in a 
way that enables the undetected faults to be detected. 
There is no need to determine fault detection 
probabilities, and hence there are no misdirected 
synthesis decisions due to inaccurate estimates of fault 
detection probabilities. Moreover, the synthesis 
procedure can guarantee the final fault coverage. 
Previous techniques only optimize fault detection 
probabilities and thus cannot guarantee the final fault 
coverage: the fault coverage must be verified after 
synthesis and additional test points must be inserted if 
it is insufficient. 
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Test Doint insertion can be done early in the synthesis 
process. BETSY can analyze the faults that are not 
detected by the BIST pattern set and determine 
whether it is possible to factor the logic in a way that 
will eliminate the faults. For undetected faults that 
cannot be eliminated through factoring, and thus will 
require test points in the final implementation, the test 
points can be inserted very early in the synthesis 
process. This provides two benefits: one is that it 
allows the logic to be restructured in a way that 
maximizes the effectiveness of each test point, and the 
other is that it allows the test points to be taken into 
consideration when the synthesis procedure optimizes 
delay. Conventional “post-synthesis’’ test point 
insertion procedures, which modify the circuit after 
synthesis, can cause timing problems. 
Applicable for any type of test Dattern generator, not 
just pseudo-random. Because BETSY is not based on 
detection probability, but rather based on the exact 
BIST pattern set, there is no requirement that the 
BIST patterns be pseudo-random. Thus, BETSY can 
be used in the case where a multiple-input signature 
register (MISR) is used as a test pattern generator, or 
even where the output patterns from some module A 
(which may have many correlations) are used to test 
module B.  BETSY can optimize the testability of the 
circuit for any BIST pattern set. 
There are two ways that BETSY can be used. One way 

is to start with an unoptimized circuit description and usk 
BETSY globally to generate an optimized implementation. 
BETSY directly generates an implementation that will 
satisfy fault coverage requirements in the specified BIST 
environment. If test points are required, BETSY inserts 
them early in the synthesis process in an optimal way and 
accounts for them in satisfymg timing constraints and 
other synthesis criteria. Considering testability 
requirements during synthesis (as opposed to the 
traditional approach of making back-end modifications 
after an implementation has already been generated), 
reduces design time, design mistakes, and test overhead. 

The other way that BETSY can be used is as a 
replacement for conventional test point insertion 
procedures. Given an already optimized circuit (which 
may have been synthesized by another tool or may have 
been manually-designed) for which a BIST test pattern 
generator cannot provide sufficient fault coverage, 
BETSY can be used to modify the circuit to improve the 
fault coverage. Fault simulation can be performed to 
identify regions in the circuit where many faults are not 
detected by the BIST pattern set. The logic in those 
regions can be locally “resynthesized” using the proposed 
procedure in order to minimize the number of test points 
needed to satisfy fault coverage requirements. Rather 

than using conventional test point insertion procedures to 
insert test points in a fixed circuit structure, the idea here 
is to restructure local regions in the circuit to minimize 
the number of test points that need to be inserted. BETSY 
uses flexibility in restructuring logic to minimize the 
number of test points required, and thus minimize BIST 
overhead. 

This paper is organized as follows: Section 2 defines 
some of the terms and concepts used in the paper. 
Section 3 describes the transformations used by BETSY to 
improve testability. Section 4 presents BETSY’S global 
synthesis procedure for systematically applying 
transformations to satisfy fault coverage requirements. 
Section 5 describes how BETSY can be used as a 
replacement for conventional test point insertion 
procedures to locally resynthesize an optimized circuit to 
improve its testability. Section 6 shows experimental 
results for using BETSY on random-pattern-resistant 
benchmark circuits. Section 7 is a conclusion. 

2. Preliminaries 
A multilevel logic circuit can be represented by a 

Boolean network [Brayton 901 in which each node is a 
sum-of-products. Multilevel logic synthesis involves 
factorizing the Boolean network to restructure and 
optimize it. There are many different ways to factorize a 
given Boolean network which lead to different 
implementations. Various criteria (e.g., area, delay, 
power, etc.) are used to guide the factorization process to 
satisfy design objectives. If the circuit is to be tested in a 
BIST environment, then one of the design objectives is to 
obtain an implementation that can be adequately tested by 
the BIST hardware (as well as satisfying area, timing, 
power, and other constraints). 

Logic transformations can be classified as Boolean 
transformations and algebraic transformations. Boolean 
transfomtions make use of the fact that (a + a’ = 1) and 
(aa’ = 0), while algebraic transfomtions do not. 
Boolean transformations are much more difficult to 
identify than algebraic transformations. 

Fanout in a Boolean network occurs only at the output 
of nodes (primary inputs are considered nodes). Each 
node itself is a fanout-free subcircuit that implements a 
sum-of-products. Thus, each fault in a Boolean network 
is equivalent (i.e., detected by the same set of test vectors) 
to one of the following four types of faults: a literal in the 
sum-of-products for a node being stuck-at 1 (S-A-1), a 
cube in the sum-of-products for a node being stuck-at 0 
(S-A-0), or the output of a node being S-A-1 or S-A-0. 
Assuming a tree-covering technology mapping procedure 
[Keutzer 871, [Detjens 871, is used, then each fault in the 
final implementation will be equivalent to a fault in the 
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Boolean network. 
described above need 

A fault is said to 
the BIST pattern sot, 
Given the BIST 
performed to identify 
Boolean network. 
Boolean network for 
constraint that the fi 
fault coverage 
is to do normal 
synthesis” test point 
coverage. In thti 
approach, only two 
improve BIST fatlt 
insertion and 
points and observs.tion 
elements to be addttd 
points and to capture 
points). BETSY L 
much more efficient 
The transformation!r 
process to better 

Thus, only the four types of faults 
to be considered. 

be “BIST detected” if it is detected by 
and “BIST undetected” if it is not. 

pattern set, fault simulation can be 
all BIST undetected faults in a 

‘.%e goal of BETSY is to optimize the 
area, delay, power, etc., under the 

nal implementation must satisfy BIST 
requirements. The conventional approach 

synthesis and then perform “post- 
insertion to improve the BIST fault 
conventional test point insertion 

types of transformations are used to 
coverage, namely control point 

observation point insertion. Both control 
points require additional scan 

to the design (to drive the control 
the response of the observation 

ses several transformations that are 
for improving BIST fault coverage. 
are integrated with the factorization 

optimize the resulting implementation. 

Algebraic Divisors 

faults in I ,  and l2 

faults in the original Boolean 

3. Logic Transf 
BIST Fault 
This section 

that are used by 
Systematic procedures 
to satisfy fault 
the overall design 
sections. The 
the Boolean netwo 

a b c  b c d  c d e  

armations For Improving 
Coverage 

describes several logic transformations 
BETSY to improve BIST fault coverage. 

for applying these transformations 
covlxage requirements while optimizing 

will be described in subsequent 
transformations described here restructure 

k in a way that eliminates BIST 

L;’ 

b c  

Figure 2. Factoring Out Single Cube: If literal I ,  S-A-1 
or literal 1, S-A-1 is BIST detected, then literal 1, S-A-1 

will be BIST detected. 

3.2 Factoring Double Cube Algebraic Divisors 
Factoring out a common double cube divisor among 

two nodes can be used to eliminate both BIST undetected 
S-A-1 faults in literals as well as BIST undetected S-A-0 
faults in cubes. Consider the example shown in Fig. 3. If 
either the S-A-0 fault in cube cI (c2) or cube c3 (c4) is 
BIST detected in the original Boolean network, then the 
S-A-0 fault c, (cb) will be BIST detected in the common 
double cube divisor after factoring it out. Moreover, if 
either the S-A-0 fault in cube c, (c3) or cube c2 (c4) is 
BIST detected in the original Boolean network, then the 
S-A-0 fault c, (cd) will be BIST detected. So given a 
BIST undetected S-A-0 fault in some cube c, in a node n,, 
it can be eliminated by factoring out a double cube divisor 
that it has in common with another node n, provided the 
S-A-0 fault in the second cube of the double cube divisor 
is BIST detected and the S-A-0 fault in the corresponding 
cube in the node n, is BIST detected. 

3.3 Boolean Resubstitution 
Boolean resubstitution involves creating a fanout from 

node n, to another node n2. This is possible if node n1 is a 
Boolean divisor of node n2 [Brayton 901. Efficient 
techniques for checking for special types of Boolean 
resubstitution using ATPG [Entrena 951, [Chang 961, or 
recursive learning [Chatterjee 951 have been developed. 
These techniques involve making a connection from one 
node to the input of another node in a way that the logic 
function of the Boolean network is unchanged. This 

network is BIST de results in some lines becoming redundant which are then 
common cube will BIST detected. So given a subsequently r~moved with a redundancy “ W a l  
BIST undetected S-  procedure. In some cases, Boolean resubstitution reduces 

sum-of-products fol 
Creating fanout from node nl to another 

node n2 increases the observability of node n, and thus 

then the 1, S-A-1 fault in the 

in literal 1 of cube C, in a 
it can be eliminated by the size of the Boolean network and in other cases it 

increases it. 

may eliminate BIST undetected faults in the cone of logic 
feeding node nl .  However, unlike algebraic factoring, 

that it has in 
1 S-A-1 is BIST 

detected. 
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Figure 3. Factoring Out Double Cube: If cube CI S-A-0 or cube c3 S-A-0 is BIST detected, then cube ca S-A-0 will be 
BIST detected. If cube c1 S-A-0 or cube c2 S-A-0 is BIST detected, then cube Cd S-A-0 will be BIST detected. 

+ 

Boolean resubstitution does not monotonically increase 
the detectability of faults in the circuit. It may cause some 
faults to have better detectability and others to have worse 
detectability. Boolean resubstitution must be used 
carefully to eliminate existing BIST undetected faults 
without causing several other faults to become BIST 
undetected. Techniques for beneficially exploiting the 
power of Boolean resubstitution will be described in 
subsequent sections. 

i. 

3.4 Factoring Out Algebraic Divisors with 
Observation Points 

When a BIST redundant fault cannot be eliminated by 
factoring, then test points must be inserted. Conventional 
test point insertion procedures select an existing line in 
the circuit to insert either a control or observation point. 
BETSY identifies BIST redundant faults that require test 
points early in the synthesis process before the circuit has 
been fully factorized. One advantage of this is that if 
several BIST redundant faults require test points in order 
to be detected, common factors that contain those faults 
can be factored out such that the effectiveness of an 
observation point in eliminating BIST redundant faults 
can be maximized. This results in fewer test points in the 
final implementation. 

3.5 Factoring Out Algebraic Divisor with Control 
Points 

As with observation point insertion, combining control 
point insertion with factoring can be used to increase the 
effectiveness of each control point. Consider the example 
in Fig. 4. By factoring out a common cube, a single 
control point can be used to increase the controllability of 
all three nodes x, y ,  and z. 

One issue with inserting control points is that 
depending on how the pseudo-random pattern generator is 

configured, adding an additional scan element to drive the 
control point may alter the pseudo-random patterns that 
are applied to the circuit which would then change the 
BIST pattern set. This problem can be avoided by using 
either the multi-phase control point scheme described in 
[Tamarapalli 961, or using pattern decoding logic to drive 
the control points as described in [Touba 961. Neither of 
those techniques require the insertion of additional scan 
elements. The scheme in [Tamarapalli 961 activates the 
control points as a function of the pattern counter, and the 
scheme in [Touba 963 activates the control points as a 
function of other primary inputs. 

control 

... I X  ... IY . . . I z  

Figure 4. Factoring Out Common Cube Enables Control 
Point to Improve Controllability at x, y ,  and z 

4. Global Synthesis Procedure 

Given a Boolean network and a BIST pattern set, 
BETSY can be used to synthesize an optimized 
implementation that satisfies BIST fault coverage 
requirements. The initial Boolean network may be flat, or 
it may have an initial structure. Conventional synthesis 
procedures factorize the Boolean network based on 
optimizing various criteria such as area, delay, power, etc. 
The concurrent decomposition and factorization procedure 
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described in [Rajski 
all single and double 
be factored out one 
criteria. For examrle, 
divisors that reduce 
factored out first. I: 
factorization procedure 
that the factorized 
same set of test vect 
Thus, the factorizat:.on 
BIST undetected faults. 
first transform the 
undetected faults, 
network can be 
conventional factori;:ation 
other synthesis criteria 
undetected faults. 
Boolean network will 

The first step in 
the BIST pattern 
Boolean network are 
earlier, there are only 
considered. S-A-1 iil 
the output of a node 
Note that the only 
out) in the circuit are 

921 can be used to efficiently identify 
cube divisors. The divisors can then 
at a time based on the synthesis 

if optimizing for area, then the 
the literal count the most could be 
was shown in [Rajski 921 that the 
is test-set preserving which means 

Boolean network can be tested by the 
x s  as the original Boolean network. 

process will not introduce new 
The strategy used in BETSY is to 

Boolean network to eliminate the BIST 
tfen once all faults in the Boolean 
tested by the BIST pattern set, 

can proceed to optimize the 
without introducing new BIST 

All faults in the final optimized 
be detected by the BIST pattern set. 

BETSY is to do fault simulation for 
s:t to identify which faults in the 

BIST undetected. As was explained 
4 types of faults that need to be 

a literal, S-A-0 in a cube, S-A-1 at 
and S-A-0 at the output of a node. 

si.emfuuZts (faults on a line that fans 
at the outputs of a node. 

p i  reconverges with another path from n through pj  with 
different inversion parity. In this case, the fault at the 
output of node n is a non-dominating stem fault. If node n 
is not a primary input, then BETSY collapses node n into 
nodes p I . .  .pn (by substituting the sum-of-products for 
node n into the sum-of-products €or nodes pI...pn), 
thereby eliminating node n. This does not eliminate the 
BIST undetected fault, but rather collapses it into nodes 
p I . .  .pn so that it is possible to subsequently factor those 
nodes in a different way which would not lead to a BIST 
undetected fault or would lead to fewer test points in the 
final implementation. For example, consider the circuit 
shown back in Fig. 1,  if the original Boolean network was 
like option 2, then by collapsing it and factoring it again, 
it could be transformed to option 1 where there are no 
BIST undetectable faults. 
Case 4: Primarv inDut or Drimarv outDut fault - If node n 
is a primary input or feeds a primary output, then the fault 
will require a test point in order to be detected. The set of 
test vectors that detects a fault at the primary inputs or 
primary outputs is a property of the Boolean function and 
is not implementation-dependent; the fault would be BIST 
undetected in any implementation of the Boolean 
function. The only way to enable such a fault to be 
detected by the BIST pattern set is to augment the Boolean 
function by inserting a test point. Thus, BETSY marks 
the fault as requiring a test point. 

then BETSY transforms 
them. BIST undeteci.ed 
a node can be eliminated 
BIST undetected faults 

Consider a BIST 
node n. There are 4 
Case 1: No fanout .. 
directly to the input 
this case, the fault is 
a cube S-A-0 in node 
consideration. 

4.2 Eliminating BIST Undetected Faults within Nodes 
Once all of the BIST undetected faults at the output of 

a node have been either collapsed or marked as requiring 
a test point, then all the remaining BIST undetected faults 
are either literal or cube faults in a node. BETSY 
determines which of those faults can be eliminated 
through factoring and which will require test points. This 
is done by identifymg single and double cube divisors that 
can be factored out to eliminate each BIST undetected 
fault. Concurrent decomposition [Rajski 921 is used to 
quickly identify all such factors. BIST undetected faults 
that cannot be eliminated through factoring are marked as 
requiring test points. 

the Boolean network to eliminate 
faults in either a literal or cube of 

through algebraic factoring, but 

undetected fault at the output of a 
cases: 

The output of the node n connects 
of another node p with no fanout. In 
equivalent to either a literal S-A-1 or 

p .  Thus, it can be removed from 

at the output of a node cannot. 

4.3 Boolean Resubstitution 
For the faults marked as requiring test points, BETSY 

attempts to eliminate them through Boolean resubstitution. 
BETSY does fault simulation of the BIST pattern set only 
for the faults requiring test points and records the nodes 
that the effects of each fault propagate to. Increasing the 
observability of those nodes may allow the faults to be 
detected without test points, so Boolean resubstitution is 
considered for those nodes. Boolean resubstitution 
creates additional fanout from those nodes which increases 
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their observability. The transformations described in 
[Chatterjee 951 are performed for the candidate nodes and 
redundancy removal is used to eliminate the resulting 
redundant lines. Unlike single and double cube 
factorization [Rajski 921, Boolean resubstitution may 
cause other faults to become BIST undetected. Thus, 
BETSY performs fault simulation to evaluate the resulting 
Boolean network. If the new Boolean network has fewer 
BIST undetected faults requiring test points, then the 
transformations are kept. If not, then BETSY reverts back 
to the original Boolean network. By evaluating where the 
new BIST undetected faults appeared after performing the 
previous set of Boolean resubstitutions, BETSY can 
iteratively choose a different set of Boolean resubstitutions 
to try the next time. The number of times Boolean 
resubstitution is attempted can be limited by the user to 
control runtime. BETSY only keeps the transformations 
if the resulting Boolean network is an improvement over 
the original. 

4.4 Inserting Test Points 
For the faults marked as requiring test points, BETSY 

identifies factors that minimize the number of test points 
that need to be inserted. Observation points are preferred 
because they do not have as much effect on timing. 
However, some BIST undetected faults may not be 
provoked by the BIST pattern set and thus require control 

a b c d  b c e  c d e  

option 1 < 
option 2 

points in order to be detected. BETSY does fault 
simulation of the BIST pattern set for the faults requiring 
test points and determines if each fault is provoked to the 
output of a gate and if so it records all the nodes that the 
effects of the fault propagate to. For BIST undetected 
faults that require control points, BETSY uses concurrent 
decomposition [Rajski 921 to find single and double cube 
divisors that maximize the number of faults that are 
provoked by each control point and thereby minimize the 
number of control points that are required. 

After all the necessary control points have been 
inserted, BETSY does fault simulation of the BIST pattern 
set to verify that all faults are provoked and to record the 
nodes that the effect of each BIST undetected fault 
propagates to. If an observation point is inserted on a 
path that the effect of a fault propagates to (for the BIST 
pattern set), then the fault will be detected. Each fault has 
some set of nodes that it propagates to. Conventional 
observation point insertion procedures use a set covering 
procedure to select the minimum number of observation 
points that cover all the faults [Iyengar 891. However, 
BETSY factors the Boolean network in a way that further 
reduces the number of observation points that are 
required. Consider the example in Fig. 5. There are three 
BIST undetected faults shown. The path that the effects 
of each fault propagate down are highlighted in bold (fault 
propagation is blocked at the OR gates in all three cases). 

c d  

ObSeNe 

b c  

Observe1 Observe2 Observe3 

Figure 5. Example of Reducing Number of Observation Points Through Factoring (Bold Lines Indicate Fault 
Propagation Path for Some Test Pattern in the BIST Pattern Set) 
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point is sufficient to 
However, if the 
observation points 
undetected fault, 
[Rajski 921 to factor 
reduce the number 
inserted. 

then the circuit is 
BIST undetected 
have been elimimted, 
proceed to optimize 
introducing new BI!iT 

After a sufficienk 

5. Local Transfibrmation Procedure 

allow all three faults to be detected. 
c ~ b e  bc was factored out, then three 

would be needed. For each BIST 
BETSY uses concurrent decomposition 

single and double cube divisors that 
of observation points that need to be 

set of test points has been inserted, 
factorized to eliminate all remaining 

faults. Once all BIST undetected faults 
conventional factorization can 

the other synthesis criteria without 
undetected faults. All faults in the 

In some cases, it may not be desirable to globally 
synthesize a circuit with BETSY. In that case, BETSY 
can be used as a re lacement for conventional test point 
insertion procedures. The idea is to identify regions that 
contain BIST undetc i cted faults and use BETSY to locally 
transform those reg'ons to minimize the number of test 

The simplest aplblication is to use BETSY to attempt 
Boolean resubstitution. The procedure described in 
Sec. 4.3 can be usedl Fault simulation identifies the nodes 
that the effects of BI1 T undetected fault propagate to, and 
Boolean resubstitutic n is attempted for those nodes. If the 
resulting Boolean nc twork requires fewer test points, then 
it is kept. If not, th n BETSY analyzes the effects of the 
set of Boolean resub 1 titutions and tries to identify a better 
set of Boolean res bstitutions. This process can be 
iterated as desired to find the best Boolean network. 

A more power 1 application of BETSY is to 
selectively collapse 1 arts of the initial optimized Boolean 
network and then ri synthesize it. The key is to choose 
which nodes to col1 pse so as not to alter the optimized 

accomplishes this in the following way. It first does fault 
simulation of the B I ST pattern set to identify the BIST 
undetected faults. B~IST undetected faults at the output of 
nodes are eliminatled by collapsing as described in 
Sec. 4.1. For literall and cube faults, BETSY traces back 
from the fault site tl the first fanout branch point. The 
node whose output t is the stem of the fanout branch is 
collapsed into all oj the nodes that it fans out to. The 
number of times tl I at this backtracing and collapsing 
process is repeated cbn be specified by the user depending 

Q 
points. t 

Boolean network 1 more than necessary. BETSY 

on how much restructuring of the initial optimized 
Boolean network is desired. After collapsing the logic 
closely related to the BIST undetected faults, BETSY 
resynthesizes that portion of the Boolean network using 
the procedure described in the previous section. This 
allows factorization and test point insertion to be 
combined in a way that better optimizes the final 
implementation compared to using conventional test point 
insertion procedures. 

6. Experimental Results 
Experiments were performed to compare BETSY with 

conventional post-synthesis test point insertion. In 
Table 1, results are shown for synthesizing unoptimized 
benchmark circuits with SIS (which is an updated version 
of MIS [Brayton 871) using scriptxugged (which uses the 
concurrent decomposition and factorization procedure 
[Rajski 921). The pseudo-random test length required to 
achieve 100% fault coverage  for each implementation is 
shown along with the literal count (number of factored- 
form literals in the Boolean network). All of the 
benchmark circuits in Table 1 synthesized with SIS 
require a test length of over lOOK patterns. A test point 
insertion tool was then used to insert a sufficient set of test 
points in each circuit to achieve 100% fault coverage for a 
pseudo-random BIST pattern set containing 10K patterns. 
The number of control and observation points inserted for 
each circuit is shown in Table 1. The same BIST pattern 
set and the initial circuit description was then given as an 
input to BETSY. An implementation was generated by 
BETSY which provides 100% fault coverage. The literal 
count and number of control and observation points is 
shown. As can be seen, BETSY generated 
implementations that require fewer test points with only a 
modest increase in the total literal count. The increase in 
the literal count results from choosing some factors on the 
basis of minimizing the number of test points instead of 
minimizing the literal count. 

In Table 2, results are shown for using BETSY as a 
replacement for conventional test point insertion 
procedures. BETSY was used to locally transform some 
large benchmark circuits so that they achieved 100% fault 
coverage for a pseudo-random BIST pattern set with 32K 
patterns. The literal count and number of control and 
observation points that were inserted are shown for the 
implementations generated by BETSY. The results 
published in [Tamarapalli 961 are shown for comparison. 
These results demonstrate the power of optimizing a 
circuit for the particular test pattern generator that will be 
used. 
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Table 1. Results for Global Synthesis Procedure on Unoptimized Benchmark Circuits 
(Fault Coverage = 100%) 

Table 2. Results for Local Transformations on Optimized Benchmark Circuits 
(Fault Coverage = 100%) 

7. Conclusions 
Merging test point insertion into the synthesis process 

provides a number of advantages in terms of reducing the 
number of test points required and allowing better area 
and timing optimizations to be done. Knowledge of the 
BIST pattern set can be used to overcome the difficulties 
of predicting random pattern testability during synthesis. 
The techniques used by BETSY exploit the knowledge of 
the BIST pattern set to make better synthesis decisions. 
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