
BETSY: Synthesizing Circuits for a Specified BIST Environment

Zhe Zhao’, Bahram Pouya’,’, and Nur A. Touba’

‘Computer Engineering Research Center
Dept. of Electrical and Computer Engineering

University of Texas, Austin, TX 78712

Abstract

This paper presents a logic synthesis tool called
BETSY (BIST Environment Testable Synthesis) for
synthesizing circuits that achieve complete (100%) fault
coverage in a user specified BIST environment. Instead
of optimizing the circuit fo r a generic pseudo-random test
pattern generator (by maximizing its random pattern
testability), the circuit is optimized for a specific test
pattem generator, e.g., an LFSR with a specific
characteristic polynomial and initial seed. This solves
the problem of having to estimate fault detection
probabilities during synthesis and guarantees that the
resulting circuit achieves 100% fault coverage. BETSY
considers the exact set of patterns that will be applied to
the circuit during BIST and applies various
transfomations to generate an implementation that is fully
tested by those patterns. When needed, BETSY inserts
test points early in the synthesis process in an optimal
way and accounts for them in satisfying timing constraints
and other synthesis criteria. Experimental results are
shown which demonstrate the benefits of optimizing a
circuit for a particular test pattern generator.

1. Introduction
In a built-in self-test (BIST) environment, on-chip

hardware is used to apply test patterns to the circuit-
under-test (CUT). The most common approach is to use a
pseudo-random test pattern generator (e.g., an LFSR)
because of its low hardware overhead. The set of patterns
that are applied to the CUT during BIST will be referred
to as the “BIST pattern set.” The BIST pattern set
depends on the test pattern generator and on the test
length. One problem that arises is that the BIST pattern
set may not detect all of the faults in the CUT. If the fault
coverage is insufficient, then steps must be taken to either
add test points to the CUT to enable more faults to be
detected by the BIST pattern set, or to modify the test
pattern generator to change the BIST pattern set so that
more faults are detected. In many cases, a substantial

’Test Technology Group
Advanced Products Research & Development Lab

Motorola, Austin, TX 78721

amount of hardware overhead must be added to obtain
sufficient fault coverage with logic BIST.

The conventional approach for designing a circuit with
BIST is to first synthesize the circuit, and then add a test
pattern generator (e.g., an LFSR feeding a scan chain)
and perform fault simulation for the BIST pattern set. If
the fault coverage is insufficient, then test points must be
inserted until the fault coverage requirement is achieved.

Chiang and Gupta [Chiang 94abl observed that
synthesized circuits typically require much longer random
pattern test lengths to achieve high fault coverage
compared with manually-optimized circuits even though
the circuits implement the same logic function. These
results indicate that the structure of a circuit greatly
influences its random pattern testability.

One approach for improving the fault coverage for
pseudo-random BIST is to consider random pattern
testability during the synthesis process. The idea is to
guide the synthesis process so that it minimizes the
number of random pattern resistant faults in the resulting
implementation. This results in higher fault coverage for
the BIST pattern set and thus reduces the overhead and
complexity of the test point circuitry required for satisfying
fault coverage requirements in a BIST environment.
Synthesis procedures that attempt to maximize random
pattern testability have been proposed in [Touba 941,
[Chiang 94b1, and [Chatterjee 951. One of the major
difficulties in trying to maximize random pattern
testability is that evaluating the random pattern testability
of a circuit is very difficult. It requires determining the
detection probabilities of the faults in the circuit. To
reduce the complexity of this problem, the procedures
described in [Touba 941 and [Chiang 94b] require that the
starting point for the synthesis be a two-level circuit so
that cube calculus operations can be used to determine the
detection probabilities. However, some circuits have an
exponential two-level representation and thus these
techniques cannot be used in that case. The procedure
described in [Chatterjee 951 does not require a two-level
starting point, but rather uses techniques to estimate the
detection probabilities. The drawback of this approach is
that the estimations can be very inaccurate at times which

Paper 7.1
144

INTERNATIONAL TEST CONFERENCE
0-7803-5092-8198 $10.00 0 1998 IEEE

a b c d e

a b c d e
option 1

option 2

a b c d e

s-a-I LQ& s-a-I LRJ
T

1 Figure 1. Example of Decision Between Two Options for Factoring Logic

specific BIST test pal ator. Instead of optimizing
the circuit for a g eudo-random test pattern
generator (by maxim s random pattern testability),
the circuit is optii r a specific test pattern

1. Better decisions

rn generator already. For
of an LFSR can be chosen so

that it detects son e r.p.r. faults. Thus, there is

BETSY is illustrated by the simple example in Fig. 1.
There are two options for factoring the circuit on the
left-hand side. Both options have the same literal
count and same random pattern testability (i.e., same
fault detection probabilities), however, if the BIST
pattern set contains the pattern 00110, but does not
contain any pattern of the form IOlXX, then the
stuck-at 1 fault that is shown would be detected in
option 1, but would be undetected in option 2. If
option 2 were chosen, a test point would need to be
inserted to achieve 100% coverage, whereas if option 1
is chosen, no test point would be required. This is a
very simple example of how considering the BIST
pattern set during the synthesis process enables better
optimization decisions to be made.

2. No need to compute fault detection probabilities. Since
the exact BIST pattern set is known by BETSY, fault
simulation can be done to determine exactly which
faults in the circuit structure are not detected. The
synthesis process can then be directed towards logic
optimizations that change the circuit structure in a
way that enables the undetected faults to be detected.
There is no need to determine fault detection
probabilities, and hence there are no misdirected
synthesis decisions due to inaccurate estimates of fault
detection probabilities. Moreover, the synthesis
procedure can guarantee the final fault coverage.
Previous techniques only optimize fault detection
probabilities and thus cannot guarantee the final fault
coverage: the fault coverage must be verified after
synthesis and additional test points must be inserted if
it is insufficient.

Paper 7.1
145

Test Doint insertion can be done early in the synthesis
process. BETSY can analyze the faults that are not
detected by the BIST pattern set and determine
whether it is possible to factor the logic in a way that
will eliminate the faults. For undetected faults that
cannot be eliminated through factoring, and thus will
require test points in the final implementation, the test
points can be inserted very early in the synthesis
process. This provides two benefits: one is that it
allows the logic to be restructured in a way that
maximizes the effectiveness of each test point, and the
other is that it allows the test points to be taken into
consideration when the synthesis procedure optimizes
delay. Conventional “post-synthesis’’ test point
insertion procedures, which modify the circuit after
synthesis, can cause timing problems.
Applicable for any type of test Dattern generator, not
just pseudo-random. Because BETSY is not based on
detection probability, but rather based on the exact
BIST pattern set, there is no requirement that the
BIST patterns be pseudo-random. Thus, BETSY can
be used in the case where a multiple-input signature
register (MISR) is used as a test pattern generator, or
even where the output patterns from some module A
(which may have many correlations) are used to test
module B. BETSY can optimize the testability of the
circuit for any BIST pattern set.
There are two ways that BETSY can be used. One way

is to start with an unoptimized circuit description and usk
BETSY globally to generate an optimized implementation.
BETSY directly generates an implementation that will
satisfy fault coverage requirements in the specified BIST
environment. If test points are required, BETSY inserts
them early in the synthesis process in an optimal way and
accounts for them in satisfymg timing constraints and
other synthesis criteria. Considering testability
requirements during synthesis (as opposed to the
traditional approach of making back-end modifications
after an implementation has already been generated),
reduces design time, design mistakes, and test overhead.

The other way that BETSY can be used is as a
replacement for conventional test point insertion
procedures. Given an already optimized circuit (which
may have been synthesized by another tool or may have
been manually-designed) for which a BIST test pattern
generator cannot provide sufficient fault coverage,
BETSY can be used to modify the circuit to improve the
fault coverage. Fault simulation can be performed to
identify regions in the circuit where many faults are not
detected by the BIST pattern set. The logic in those
regions can be locally “resynthesized” using the proposed
procedure in order to minimize the number of test points
needed to satisfy fault coverage requirements. Rather

than using conventional test point insertion procedures to
insert test points in a fixed circuit structure, the idea here
is to restructure local regions in the circuit to minimize
the number of test points that need to be inserted. BETSY
uses flexibility in restructuring logic to minimize the
number of test points required, and thus minimize BIST
overhead.

This paper is organized as follows: Section 2 defines
some of the terms and concepts used in the paper.
Section 3 describes the transformations used by BETSY to
improve testability. Section 4 presents BETSY’S global
synthesis procedure for systematically applying
transformations to satisfy fault coverage requirements.
Section 5 describes how BETSY can be used as a
replacement for conventional test point insertion
procedures to locally resynthesize an optimized circuit to
improve its testability. Section 6 shows experimental
results for using BETSY on random-pattern-resistant
benchmark circuits. Section 7 is a conclusion.

2. Preliminaries
A multilevel logic circuit can be represented by a

Boolean network [Brayton 901 in which each node is a
sum-of-products. Multilevel logic synthesis involves
factorizing the Boolean network to restructure and
optimize it. There are many different ways to factorize a
given Boolean network which lead to different
implementations. Various criteria (e.g., area, delay,
power, etc.) are used to guide the factorization process to
satisfy design objectives. If the circuit is to be tested in a
BIST environment, then one of the design objectives is to
obtain an implementation that can be adequately tested by
the BIST hardware (as well as satisfying area, timing,
power, and other constraints).

Logic transformations can be classified as Boolean
transformations and algebraic transformations. Boolean
transfomtions make use of the fact that (a + a’ = 1) and
(aa’ = 0), while algebraic transfomtions do not.
Boolean transformations are much more difficult to
identify than algebraic transformations.

Fanout in a Boolean network occurs only at the output
of nodes (primary inputs are considered nodes). Each
node itself is a fanout-free subcircuit that implements a
sum-of-products. Thus, each fault in a Boolean network
is equivalent (i.e., detected by the same set of test vectors)
to one of the following four types of faults: a literal in the
sum-of-products for a node being stuck-at 1 (S-A-1), a
cube in the sum-of-products for a node being stuck-at 0
(S-A-0), or the output of a node being S-A-1 or S-A-0.
Assuming a tree-covering technology mapping procedure
[Keutzer 871, [Detjens 871, is used, then each fault in the
final implementation will be equivalent to a fault in the

Paper 7.1
146

Boolean network.
described above need

A fault is said to
the BIST pattern sot,
Given the BIST
performed to identify
Boolean network.
Boolean network for
constraint that the fi
fault coverage
is to do normal
synthesis” test point
coverage. In thti
approach, only two
improve BIST fatlt
insertion and
points and observs.tion
elements to be addttd
points and to capture
points). BETSY L
much more efficient
The transformation!r
process to better

Thus, only the four types of faults
to be considered.

be “BIST detected” if it is detected by
and “BIST undetected” if it is not.

pattern set, fault simulation can be
all BIST undetected faults in a

‘.%e goal of BETSY is to optimize the
area, delay, power, etc., under the

nal implementation must satisfy BIST
requirements. The conventional approach

synthesis and then perform “post-
insertion to improve the BIST fault
conventional test point insertion

types of transformations are used to
coverage, namely control point

observation point insertion. Both control
points require additional scan

to the design (to drive the control
the response of the observation

ses several transformations that are
for improving BIST fault coverage.
are integrated with the factorization

optimize the resulting implementation.

Algebraic Divisors

faults in I , and l2

faults in the original Boolean

3. Logic Transf
BIST Fault
This section

that are used by
Systematic procedures
to satisfy fault
the overall design
sections. The
the Boolean netwo

a b c b c d c d e

armations For Improving
Coverage

describes several logic transformations
BETSY to improve BIST fault coverage.

for applying these transformations
covlxage requirements while optimizing

will be described in subsequent
transformations described here restructure

k in a way that eliminates BIST

L;’

b c

Figure 2. Factoring Out Single Cube: If literal I , S-A-1
or literal 1, S-A-1 is BIST detected, then literal 1, S-A-1

will be BIST detected.

3.2 Factoring Double Cube Algebraic Divisors
Factoring out a common double cube divisor among

two nodes can be used to eliminate both BIST undetected
S-A-1 faults in literals as well as BIST undetected S-A-0
faults in cubes. Consider the example shown in Fig. 3. If
either the S-A-0 fault in cube cI (c2) or cube c3 (c4) is
BIST detected in the original Boolean network, then the
S-A-0 fault c, (cb) will be BIST detected in the common
double cube divisor after factoring it out. Moreover, if
either the S-A-0 fault in cube c, (c3) or cube c2 (c4) is
BIST detected in the original Boolean network, then the
S-A-0 fault c, (cd) will be BIST detected. So given a
BIST undetected S-A-0 fault in some cube c, in a node n,,
it can be eliminated by factoring out a double cube divisor
that it has in common with another node n, provided the
S-A-0 fault in the second cube of the double cube divisor
is BIST detected and the S-A-0 fault in the corresponding
cube in the node n, is BIST detected.

3.3 Boolean Resubstitution
Boolean resubstitution involves creating a fanout from

node n, to another node n2. This is possible if node n1 is a
Boolean divisor of node n2 [Brayton 901. Efficient
techniques for checking for special types of Boolean
resubstitution using ATPG [Entrena 951, [Chang 961, or
recursive learning [Chatterjee 951 have been developed.
These techniques involve making a connection from one
node to the input of another node in a way that the logic
function of the Boolean network is unchanged. This

network is BIST de results in some lines becoming redundant which are then
common cube will BIST detected. So given a subsequently r~moved with a redundancy “ W a l
BIST undetected S- procedure. In some cases, Boolean resubstitution reduces

sum-of-products fol
Creating fanout from node nl to another

node n2 increases the observability of node n, and thus

then the 1, S-A-1 fault in the

in literal 1 of cube C, in a
it can be eliminated by the size of the Boolean network and in other cases it

increases it.

may eliminate BIST undetected faults in the cone of logic
feeding node nl . However, unlike algebraic factoring,

that it has in
1 S-A-1 is BIST

detected.

Paper 7.1
147

a e f g

I l l
a b c d a e d f g

I I I
a e h f g h a c

& & & &

Figure 3. Factoring Out Double Cube: If cube CI S-A-0 or cube c3 S-A-0 is BIST detected, then cube ca S-A-0 will be
BIST detected. If cube c1 S-A-0 or cube c2 S-A-0 is BIST detected, then cube Cd S-A-0 will be BIST detected.

+

Boolean resubstitution does not monotonically increase
the detectability of faults in the circuit. It may cause some
faults to have better detectability and others to have worse
detectability. Boolean resubstitution must be used
carefully to eliminate existing BIST undetected faults
without causing several other faults to become BIST
undetected. Techniques for beneficially exploiting the
power of Boolean resubstitution will be described in
subsequent sections.

i.

3.4 Factoring Out Algebraic Divisors with
Observation Points

When a BIST redundant fault cannot be eliminated by
factoring, then test points must be inserted. Conventional
test point insertion procedures select an existing line in
the circuit to insert either a control or observation point.
BETSY identifies BIST redundant faults that require test
points early in the synthesis process before the circuit has
been fully factorized. One advantage of this is that if
several BIST redundant faults require test points in order
to be detected, common factors that contain those faults
can be factored out such that the effectiveness of an
observation point in eliminating BIST redundant faults
can be maximized. This results in fewer test points in the
final implementation.

3.5 Factoring Out Algebraic Divisor with Control
Points

As with observation point insertion, combining control
point insertion with factoring can be used to increase the
effectiveness of each control point. Consider the example
in Fig. 4. By factoring out a common cube, a single
control point can be used to increase the controllability of
all three nodes x, y , and z.

One issue with inserting control points is that
depending on how the pseudo-random pattern generator is

configured, adding an additional scan element to drive the
control point may alter the pseudo-random patterns that
are applied to the circuit which would then change the
BIST pattern set. This problem can be avoided by using
either the multi-phase control point scheme described in
[Tamarapalli 961, or using pattern decoding logic to drive
the control points as described in [Touba 961. Neither of
those techniques require the insertion of additional scan
elements. The scheme in [Tamarapalli 961 activates the
control points as a function of the pattern counter, and the
scheme in [Touba 963 activates the control points as a
function of other primary inputs.

control

... I X ... IY . . . I z

Figure 4. Factoring Out Common Cube Enables Control
Point to Improve Controllability at x, y , and z

4. Global Synthesis Procedure

Given a Boolean network and a BIST pattern set,
BETSY can be used to synthesize an optimized
implementation that satisfies BIST fault coverage
requirements. The initial Boolean network may be flat, or
it may have an initial structure. Conventional synthesis
procedures factorize the Boolean network based on
optimizing various criteria such as area, delay, power, etc.
The concurrent decomposition and factorization procedure

Paper 7.1
148

described in [Rajski
all single and double
be factored out one
criteria. For examrle,
divisors that reduce
factored out first. I:
factorization procedure
that the factorized
same set of test vect
Thus, the factorizat:.on
BIST undetected faults.
first transform the
undetected faults,
network can be
conventional factori;:ation
other synthesis criteria
undetected faults.
Boolean network will

The first step in
the BIST pattern
Boolean network are
earlier, there are only
considered. S-A-1 iil
the output of a node
Note that the only
out) in the circuit are

921 can be used to efficiently identify
cube divisors. The divisors can then
at a time based on the synthesis

if optimizing for area, then the
the literal count the most could be
was shown in [Rajski 921 that the
is test-set preserving which means

Boolean network can be tested by the
x s as the original Boolean network.

process will not introduce new
The strategy used in BETSY is to

Boolean network to eliminate the BIST
tfen once all faults in the Boolean
tested by the BIST pattern set,

can proceed to optimize the
without introducing new BIST

All faults in the final optimized
be detected by the BIST pattern set.

BETSY is to do fault simulation for
s:t to identify which faults in the

BIST undetected. As was explained
4 types of faults that need to be

a literal, S-A-0 in a cube, S-A-1 at
and S-A-0 at the output of a node.

si.emfuuZts (faults on a line that fans
at the outputs of a node.

p i reconverges with another path from n through pj with
different inversion parity. In this case, the fault at the
output of node n is a non-dominating stem fault. If node n
is not a primary input, then BETSY collapses node n into
nodes p I . . .pn (by substituting the sum-of-products for
node n into the sum-of-products €or nodes pI...pn),
thereby eliminating node n. This does not eliminate the
BIST undetected fault, but rather collapses it into nodes
p I . . .pn so that it is possible to subsequently factor those
nodes in a different way which would not lead to a BIST
undetected fault or would lead to fewer test points in the
final implementation. For example, consider the circuit
shown back in Fig. 1, if the original Boolean network was
like option 2, then by collapsing it and factoring it again,
it could be transformed to option 1 where there are no
BIST undetectable faults.
Case 4: Primarv inDut or Drimarv outDut fault - If node n
is a primary input or feeds a primary output, then the fault
will require a test point in order to be detected. The set of
test vectors that detects a fault at the primary inputs or
primary outputs is a property of the Boolean function and
is not implementation-dependent; the fault would be BIST
undetected in any implementation of the Boolean
function. The only way to enable such a fault to be
detected by the BIST pattern set is to augment the Boolean
function by inserting a test point. Thus, BETSY marks
the fault as requiring a test point.

then BETSY transforms
them. BIST undeteci.ed
a node can be eliminated
BIST undetected faults

Consider a BIST
node n. There are 4
Case 1: No fanout ..
directly to the input
this case, the fault is
a cube S-A-0 in node
consideration.

4.2 Eliminating BIST Undetected Faults within Nodes
Once all of the BIST undetected faults at the output of

a node have been either collapsed or marked as requiring
a test point, then all the remaining BIST undetected faults
are either literal or cube faults in a node. BETSY
determines which of those faults can be eliminated
through factoring and which will require test points. This
is done by identifymg single and double cube divisors that
can be factored out to eliminate each BIST undetected
fault. Concurrent decomposition [Rajski 921 is used to
quickly identify all such factors. BIST undetected faults
that cannot be eliminated through factoring are marked as
requiring test points.

the Boolean network to eliminate
faults in either a literal or cube of

through algebraic factoring, but

undetected fault at the output of a
cases:

The output of the node n connects
of another node p with no fanout. In
equivalent to either a literal S-A-1 or

p . Thus, it can be removed from

at the output of a node cannot.

4.3 Boolean Resubstitution
For the faults marked as requiring test points, BETSY

attempts to eliminate them through Boolean resubstitution.
BETSY does fault simulation of the BIST pattern set only
for the faults requiring test points and records the nodes
that the effects of each fault propagate to. Increasing the
observability of those nodes may allow the faults to be
detected without test points, so Boolean resubstitution is
considered for those nodes. Boolean resubstitution
creates additional fanout from those nodes which increases

Paper 7.1
149

their observability. The transformations described in
[Chatterjee 951 are performed for the candidate nodes and
redundancy removal is used to eliminate the resulting
redundant lines. Unlike single and double cube
factorization [Rajski 921, Boolean resubstitution may
cause other faults to become BIST undetected. Thus,
BETSY performs fault simulation to evaluate the resulting
Boolean network. If the new Boolean network has fewer
BIST undetected faults requiring test points, then the
transformations are kept. If not, then BETSY reverts back
to the original Boolean network. By evaluating where the
new BIST undetected faults appeared after performing the
previous set of Boolean resubstitutions, BETSY can
iteratively choose a different set of Boolean resubstitutions
to try the next time. The number of times Boolean
resubstitution is attempted can be limited by the user to
control runtime. BETSY only keeps the transformations
if the resulting Boolean network is an improvement over
the original.

4.4 Inserting Test Points
For the faults marked as requiring test points, BETSY

identifies factors that minimize the number of test points
that need to be inserted. Observation points are preferred
because they do not have as much effect on timing.
However, some BIST undetected faults may not be
provoked by the BIST pattern set and thus require control

a b c d b c e c d e

option 1 <
option 2

points in order to be detected. BETSY does fault
simulation of the BIST pattern set for the faults requiring
test points and determines if each fault is provoked to the
output of a gate and if so it records all the nodes that the
effects of the fault propagate to. For BIST undetected
faults that require control points, BETSY uses concurrent
decomposition [Rajski 921 to find single and double cube
divisors that maximize the number of faults that are
provoked by each control point and thereby minimize the
number of control points that are required.

After all the necessary control points have been
inserted, BETSY does fault simulation of the BIST pattern
set to verify that all faults are provoked and to record the
nodes that the effect of each BIST undetected fault
propagates to. If an observation point is inserted on a
path that the effect of a fault propagates to (for the BIST
pattern set), then the fault will be detected. Each fault has
some set of nodes that it propagates to. Conventional
observation point insertion procedures use a set covering
procedure to select the minimum number of observation
points that cover all the faults [Iyengar 891. However,
BETSY factors the Boolean network in a way that further
reduces the number of observation points that are
required. Consider the example in Fig. 5. There are three
BIST undetected faults shown. The path that the effects
of each fault propagate down are highlighted in bold (fault
propagation is blocked at the OR gates in all three cases).

c d

ObSeNe

b c

Observe1 Observe2 Observe3

Figure 5. Example of Reducing Number of Observation Points Through Factoring (Bold Lines Indicate Fault
Propagation Path for Some Test Pattern in the BIST Pattern Set)

Paper 7.1
150

point is sufficient to
However, if the
observation points
undetected fault,
[Rajski 921 to factor
reduce the number
inserted.

then the circuit is
BIST undetected
have been elimimted,
proceed to optimize
introducing new BI!iT

After a sufficienk

5. Local Transfibrmation Procedure

allow all three faults to be detected.
c ~ b e bc was factored out, then three

would be needed. For each BIST
BETSY uses concurrent decomposition

single and double cube divisors that
of observation points that need to be

set of test points has been inserted,
factorized to eliminate all remaining

faults. Once all BIST undetected faults
conventional factorization can

the other synthesis criteria without
undetected faults. All faults in the

In some cases, it may not be desirable to globally
synthesize a circuit with BETSY. In that case, BETSY
can be used as a re lacement for conventional test point
insertion procedures. The idea is to identify regions that
contain BIST undetc i cted faults and use BETSY to locally
transform those reg'ons to minimize the number of test

The simplest aplblication is to use BETSY to attempt
Boolean resubstitution. The procedure described in
Sec. 4.3 can be usedl Fault simulation identifies the nodes
that the effects of BI1 T undetected fault propagate to, and
Boolean resubstitutic n is attempted for those nodes. If the
resulting Boolean nc twork requires fewer test points, then
it is kept. If not, th n BETSY analyzes the effects of the
set of Boolean resub 1 titutions and tries to identify a better
set of Boolean res bstitutions. This process can be
iterated as desired to find the best Boolean network.

A more power 1 application of BETSY is to
selectively collapse 1 arts of the initial optimized Boolean
network and then ri synthesize it. The key is to choose
which nodes to col1 pse so as not to alter the optimized

accomplishes this in the following way. It first does fault
simulation of the B I ST pattern set to identify the BIST
undetected faults. B~IST undetected faults at the output of
nodes are eliminatled by collapsing as described in
Sec. 4.1. For literall and cube faults, BETSY traces back
from the fault site tl the first fanout branch point. The
node whose output t is the stem of the fanout branch is
collapsed into all oj the nodes that it fans out to. The
number of times tl I at this backtracing and collapsing
process is repeated cbn be specified by the user depending

Q
points. t

Boolean network 1 more than necessary. BETSY

on how much restructuring of the initial optimized
Boolean network is desired. After collapsing the logic
closely related to the BIST undetected faults, BETSY
resynthesizes that portion of the Boolean network using
the procedure described in the previous section. This
allows factorization and test point insertion to be
combined in a way that better optimizes the final
implementation compared to using conventional test point
insertion procedures.

6. Experimental Results
Experiments were performed to compare BETSY with

conventional post-synthesis test point insertion. In
Table 1, results are shown for synthesizing unoptimized
benchmark circuits with SIS (which is an updated version
of MIS [Brayton 871) using scriptxugged (which uses the
concurrent decomposition and factorization procedure
[Rajski 921). The pseudo-random test length required to
achieve 100% fault coverage for each implementation is
shown along with the literal count (number of factored-
form literals in the Boolean network). All of the
benchmark circuits in Table 1 synthesized with SIS
require a test length of over lOOK patterns. A test point
insertion tool was then used to insert a sufficient set of test
points in each circuit to achieve 100% fault coverage for a
pseudo-random BIST pattern set containing 10K patterns.
The number of control and observation points inserted for
each circuit is shown in Table 1. The same BIST pattern
set and the initial circuit description was then given as an
input to BETSY. An implementation was generated by
BETSY which provides 100% fault coverage. The literal
count and number of control and observation points is
shown. As can be seen, BETSY generated
implementations that require fewer test points with only a
modest increase in the total literal count. The increase in
the literal count results from choosing some factors on the
basis of minimizing the number of test points instead of
minimizing the literal count.

In Table 2, results are shown for using BETSY as a
replacement for conventional test point insertion
procedures. BETSY was used to locally transform some
large benchmark circuits so that they achieved 100% fault
coverage for a pseudo-random BIST pattern set with 32K
patterns. The literal count and number of control and
observation points that were inserted are shown for the
implementations generated by BETSY. The results
published in [Tamarapalli 961 are shown for comparison.
These results demonstrate the power of optimizing a
circuit for the particular test pattern generator that will be
used.

' Paper 7.1
151

Table 1. Results for Global Synthesis Procedure on Unoptimized Benchmark Circuits
(Fault Coverage = 100%)

Table 2. Results for Local Transformations on Optimized Benchmark Circuits
(Fault Coverage = 100%)

7. Conclusions
Merging test point insertion into the synthesis process

provides a number of advantages in terms of reducing the
number of test points required and allowing better area
and timing optimizations to be done. Knowledge of the
BIST pattern set can be used to overcome the difficulties
of predicting random pattern testability during synthesis.
The techniques used by BETSY exploit the knowledge of
the BIST pattern set to make better synthesis decisions.

Acknowledgements

This material is based on work supported in part by
the Defense Advanced Research Projects Agency
(DARPA) under Contract No. DAJ3T63-94-C-0045, in
part by the National Science Foundation under Grant No.
MIP-9702236, and in part by the Texas Advanced
Research Program under Grant No. 1997-003658-369.

References
[Brayton 871 Brayton, R.K., R. Rudell, A. Sangiovanni-

Vincentelli, A.R. Wang, “MIS: A Multiple-Level Logic
Optimization System,” IEEE Transactions on Computer-
Aided Design, Vol. 6, Nov. 1987, pp. 1062-1081.

prayton 901 Brayton, R.K., G.D. Hachtel, and A.L.
Sangiovanni-Vincentelli, “Multilevel Logic Synthesis,”
Proceedings of the IEEE, Vol. 78, No. 2, pp. 264-300,
Feb. 1990.

[Chatterjee 951 Chatterjee, M., D.K. Pradhan, and W. Kunz,
“LOT Logic Optimization with Testability - New
Transformations using Recursive Learning,” Proc. of Int.
Conj on Computer-Aided Design (ICCAD), pp. 31 8-325,
1995.

[Chang 961 Chang, S.C., M. Marek-Sadowska, and K.-T. Cheng,
“Perturb and Simplify: Multilevel Boolean Network
Optimizer,” IEEE Trans. on Computer-Aided Design,
Vol. 15, No. 12, pp. 1494-1504, Dec. 1996.

[Chiang 94a] Chiang C.-H., and S.K. Gupta, “Random Pattern
Testable Logic Synthesis,” Technical Report CENG 94-08,
University of Southern California, 1994.

[Chiang 94b] Chiang, C.-H., and S.K. Gupta, “Random Pattern
Testable Logic Synthesis,” Proc. of Int. Conference on
Computer-Aided Design (ICCAD), pp. 125-128, 1994.

Petjens 871 Detjens, E., G. Gannot, R. Rudell, A. Sangiovanni-
Vincentelli, and A. Wang, “Technology Mapping in MIS,”
Proc. of Int. Conference on Computer-Aided Design

[Entrena 951 Entrena, L.A., and K.T. Cheng, “Combinational
and Sequential Logic Optimization by Redundancy Addition
and Removal,” IEEE Transactions on Computer-Aided
Design, Vol. 14, No. 7, pp. 909-916, July 1995.

(ICCAD), pp. 116-119, 1987.

Paper 7.1
152

[Keutzer 871 Keutzer K., “Dagon: Technology Binding and
Local Optimization by DAG Matching,” Proc. of 24th
Design Automatic n Con$, pp. 341-347, 1987.

.S., and D. Brand, “Synthesis of Pseudo-
Random Pattern ‘p Testable Designs,” Proc. International
Test Conference, bp. 501-508, 1989.

[Rajski 921 Rajski, J., and J. Vasudevamurthy, “The Testability-
Preserving Conct/rrent Decomposition and Factorization of
Boolean Express/ons,” IEEE Trans. on Computer-Aided
Design, Vol. 11,]Po. 6, Jun. 1992, pp. 778-793.

:
[Iyengar 891 Iyengar,

pamarapalli 961 Tamarapalli, N., and J. Rajski, “Constructive
Multi-Phase Test Point Insertion for Scan-Based BIST,”
Proc. of International Test Conference, pp. 649-658, 1996.

[Touba 941 Touba, N.A., and E.J. McCluskey, “Automated Logic
Synthesis of Random Pattern Testable Circuits,” Proc. of
International Test Conference, pp. 174-1 83, 1994.

[Touba 961 Touba, N.A., and E.J. McCluskey, “Test Point
Insertion Based on Path Tracing,” Proc. of VLSI Test
Symposium, pp. 2-8, 1996.

Paper 7.1
153

