
JOURNAL OF ELECTRONIC TESTING: Theory and Applications 18, 503–514, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Deterministic Test Vector Compression/Decompression
for Systems-on-a-Chip Using an Embedded Processor

ABHIJIT JAS AND NUR A. TOUBA
Computer Engineering Research Center, Department of Electrical and Computer Engineering,

Engineering Science Building, University of Texas at Austin, Austin, TX 78712-1084, USA
touba@ece.utexas.edu

Received August 31, 2001; Revised January 15, 2002

Editor: Krishnendu Chakrabarty

Abstract. A novel approach for using an embedded processor to aid in deterministic testing of the other compo-
nents of a system-on-a-chip (SOC) is presented. The tester loads a program along with compressed test data into the
processor’s on-chip memory. The processor executes the program which decompresses the test data and applies it
to scan chains in the other components of the SOC to test them. The program itself is very simple and compact, and
the decompression is done very rapidly, hence this approach reduces both the amount of data that must be stored on
the tester and reduces the test time. Moreover, it enables at-speed scan shifting even with a slow tester (i.e., a tester
whose maximum clock rate is slower than the SOC’s normal operating clock rate). A procedure is described for
converting a set of test cubes (i.e., test vectors where the unspecified inputs are left as X’s) into a compressed form.
A program that can be run on an embedded processor is then given for decompressing the test cubes and applying
them to scan chains on the chip. Experimental results indicate a significant amount of compression can be achieved
resulting in less data that must be stored on the tester (i.e., smaller tester memory requirement) and less time to
transfer the test data from the tester to the chip.

Keywords: system-on-chip testing, test data compression, deterministic testing

1. Introduction

Printed circuit board (PCB) based systems are being re-
placed by widespread use of systems-on-a-chip (SOC).
All the functionality found in a complete system is put
together on a single chip. A wide variety of electronic
devices ranging from embedded processors, embedded
memories, logic elements, communication peripherals,
and various analog components can be integrated to-
gether on a single piece of silicon. The high level of in-
tegration has made the manufacturing process simpler
thus driving down the manufacturing costs. However,
the advent of SOC technology has rapidly increased the
complexity of testing these chips. One of the increas-
ingly difficult challenges in testing SOCs is dealing

with the large amount of test data that must be trans-
ferred between the tester and the chip [25]. The entire
set of test vectors for all components of the SOC must
be stored on the tester and transferred to the chip dur-
ing testing. This poses a serious problem in terms of
ATE (automated test equipment) throughput because
of the cost and limitations of ATE. Testers have limited
speed, channel capacity, and memory. The amount of
time required to test a chip depends on how much test
data needs to be transferred to the chip and how fast the
data can be transferred (i.e., the test data bandwidth).
This depends on the speed and channel capacity of the
tester and the organization of the scan chains on the
chip. Both test time and test storage are major concerns
for SOCs.



504 Jas and Touba

There are usually quite a few computing resources
available on an SOC chip, and if this computing power
is harnessed effectively, it could be used to greatly re-
duce the overhead of testing. As test cost is becoming a
significant percentage of the manufacturing cost, chip
vendors are looking into sophisticated DFT techniques
to contain the exploding test cost.

This paper presents a novel approach for using an
embedded processor to aid in deterministic testing of
the other components of the SOC (preliminary results
were published in [17]). The basic idea is that the tester
loads a program along with compressed test data into
the processor’s on-chip memory. The processor exe-
cutes the program which decompresses the test data
and applies it to scan chains in the other components
of the SOC to test them. This approach reduces both
the amount of data that must be stored on the tester
and reduces the test time. Moreover, it can enable at-
speed shifting using a slow tester (i.e., a tester whose
maximum clock rate is slower than the SOC’s normal
operating clock rate).

The compression/decompression scheme presented
in this paper is very well suited for implementation on
an embedded processor. The decompression process
requires very few processor instructions and thus can
be done very quickly. The decompression process is
pipelined to maximize the throughput of decompressed
test vectors and thereby minimize the test time.

The paper is organized as follows: Section 2 dis-
cusses previous research that relates to the work
presented here. Section 3 describes the proposed com-
pression scheme. Section 4 explains the implemen-
tation details for the proposed scheme. Section 5
discusses ordering heuristics for the test vectors to max-
imize compression. Section 6 discusses techniques for
avoiding memory overflow. Section 7 analyzes the test
time reduction that can be obtained using this scheme.
Section 8 discusses hardware overhead for the pro-
posed scheme. Section 9 presents experimental results
for benchmark circuits. Section 10 is a conclusion.

2. Related Work

Previous research in using embedded processors to
aid in testing has focused primarily on performing
memory tests [19, 20], or pseudo-random built-in self-
test (BIST). Techniques for generating pseudo-random
patterns and compacting test responses using simple
programs have been proposed in [1, 9, 18, 21–23].
Techniques for mixed-mode BIST using embedded

processors have been described in [7] and [10]. In [19],
an embedded microprocessor is used to perform em-
bedded memory test using the march algorithm and
also to test other embedded function specific cores like
D/A converters (DACs). A self-test methodology for
bus-based programmable SOCs is described in [11].
The approach presented here is a fully deterministic
test approach which supports either external testing or
mixed-mode BIST. The advantage of decompressing
deterministic vectors is that a targeted fault coverage
can be achieved with a short test time. The number of
vectors that need to be applied to the circuit is much less
than that required for pseudo-random BIST. Moreover,
it supports structured delay fault testing and testing of
intellectual property (IP) blocks. In some cases, an IP
provider may not be willing to provide any information
of the internal logic of an IP block and thus fault simula-
tion is not possible thereby precluding pseudo-random
BIST.

Previous research has also been done in com-
pressing/decompressing deterministic test data. Novel
approaches for compressing test data using the
Burrows-Wheeler transform and run-length coding
were presented in [12, 24]. These schemes were de-
veloped for reducing the time to transfer test data from
a workstation to a tester (not for use on chips). Iyengar
et al. [13] presented the idea of statistically encoding
test data. They described a BIST scheme for non-scan
circuits based on statistical coding using comma codes
(very similar to Huffman codes) and run-length cod-
ing. A scheme for compression/decompression of test
data using cyclical scan chains is described in [16].
It uses careful ordering of the test set and formation
of cyclical scan chains to achieve compression with
run-length codes. A general technique for statistically
encoding test vectors for full scan circuits using se-
lective Huffman coding is presented in [14]. Chandra
and Chakrabarty have proposed test vector compres-
sion techniques based on Golomb codes [3, 4] and
frequency directed run-length (FDR) codes [5]. Test
vector compression based on hybrid BIST techniques
have been described in [6] and [15]. In [8], a test vec-
tor compression technique based on geometric prim-
itives is proposed. In this technique, test vectors are
optimally reordered and divided into blocks and then
encoded based on geometric shapes. Although the tech-
nique achieves high compression, the authors have not
discussed the implementation details of the scheme and
assumed that an embedded processor will be used to
decode the test vectors. However, the complexity of

140



Deterministic Test Vector Compression/Decompression 505

the decoding process in [8] is a severe limitation of
the approach and may result in long test times. The
compression/decompression scheme described in this
paper can be very efficiently implemented using an em-
bedded processor. The decompression program is very
simple and compact and performs the decompression
on the fly so that both the test data and test time are
significantly reduced.

3. Proposed Scheme

The compression/decompression scheme described in
this paper is based on generating the next test vector
from the previous one by storing only the information
about how the vectors differ. In this scheme, each test
vector is divided into fixed length blocks as shown in
Fig.1. The size of the test vector blocks depends on the
word size of the processor. The way this block size is
determined will be explained later. The next test vector
is built from the previous test vector by replacing the
blocks in which they differ. For example, in Fig. 1, the
blocks in which test vector t +1 differs from test vector
t are shaded. Hence test vector t + 1 can be built from
the t-th one by replacing only the shaded blocks.

Because of the structural relationship among faults
in a circuit, there will be a lot of similarity between
the test vectors. The test vectors can be ordered in an
optimal way such that two successive test vectors will
differ in a relatively fewer number of blocks. Hence
the amount of information required to store these dif-
ferences will be less than that required for storing the
entire test vector. These differences are represented by
“replacement words” which are encoded pieces of in-
formation that tell the processor how to build the next
test vector from the previous one. Each replacement
word has three fields as shown in Fig. 2. A single bit
field called the last flag, a log2 N bit field called the
block number (where N is the number of blocks into
which the test vector is divided) and a b bit field called
the new block pattern. The block number field con-
tains the address of the block that is to be replaced
with the new pattern contained in the new block pattern
field. If two successive test vectors differ in x blocks

Fig. 1. Dividing test vector into blocks.

Fig. 2. Replacement words.

Fig. 3. Replacement words for example in Fig. 2.

then this information is represented as a sequence of
x replacement words where the last flag field of the
x-th replacement word (the last replacement word in
the sequence) has its last flag bit set (1). All other re-
placement words have their last flags turned off (0).
The sequence of replacement words for the example
of Fig. 1 is shown in Fig. 3. The processor reads these
replacement words and then replaces the appropriate
blocks with the new block patterns. When it sees the
last flag bit set, then it knows that the next test vector
formation has been completed. It then shifts the test
vector into the scan chain(s) and applies it to the core-
under-test. The block size, b, is chosen in such a way
that

1 + �log2 N� + b = W (1)

where W is the word size of the processor.
There are several advantages to selecting the block

size in the way as explained above. This leads to the
most efficient packing of the replacement words in the
memory as each replacement word fits completely into
one memory word. Not only does it lead to the most
efficient utilization of storage but also the decoding
becomes easier as the processor has to just read one
word, mask the index and the last flag bit and update
the appropriate memory block with the block pattern.
Choosing a block size that is too small would necessi-
tate double packing of multiple replacement words into

141



506 Jas and Touba

one memory location to save storage. Doing so would
also complicate the decoding of the replacement words.
If single replacement words are packed into each mem-
ory word then there will be waste of space as each re-
placement word will now be much less than W bits.
On the other hand choosing a block size that is too big
would necessitate a replacement word to be split across
multiple memory words, which will make the decoding
process more time consuming and complicated.

As mentioned before, if successive test vectors differ
in a small number of blocks, then the total number of
bits required for representing all the replacement words
(to build the next test vector) will be less than that re-
quired for representing the entire test vector (which
is the same as the number of bits in a test vector),
thus resulting in compression. Note that the amount of
compression depends on the ordering of the test vec-
tors. The better the ordering, the fewer the number of
blocks in which successive test vectors differ and con-
sequently the fewer the number of replacement words.
In Section 5, compression results are shown for differ-
ent ordering heuristics to study the effect of ordering
on the compression achieved.

4. Performing Decompression Using
Embedded Processor

The compression/decompression technique described
in the previous section can be implemented by using an
embedded processor in an SOC. This section describes
the implementation details.

The block diagram in Fig. 4 gives an overview of
the architectural set-up of this scheme. The processor

Fig. 4. Block diagram of test architecture with serializers as sepa-
rate registers.

is used to concurrently load multiple scan chains on
the chip. The on-chip memory holds the instructions
that the processor executes and also the data on which
the processor operates. The tester initially downloads a
software program into the memory which the processor
executes. The tester then supplies the processor with
a stream of encoded data (replacement words) about
blocks that are to be replaced with new patterns to pro-
duce the next test vector. The processor just decodes
the replacement words and acts accordingly.

In the initialization phase (before testing begins) the
tester downloads the software program (compiled ma-
chine code) into the on-chip memory. Then a fixed set
of locations are reserved in the memory for the tester to
continuously download the encoded data (replacement
words) which the program uses. For example, let us
assume that memory locations 0, 1, . . . , M − 1 are M
memory locations which are reserved for the tester to
write encoded data into in a modulo M manner, i.e., the
tester first writes encoded data into locations 0, 1, . . . ,

M −1 and then again starts from 0. After the initializa-
tion phase is over, the tester starts loading replacement
words into the specified memory locations. The pro-
cessor now starts running the program. The program is
very simple. It directs the processor to routinely read
the replacement words from the memory locations 0, 1,
. . . , M −1 in a modulo M manner and act accordingly.
While the processor is running the program, which re-
sults in test vectors being generated on the chip and
being applied to the scan chains, the tester continues to
load the memory with new replacement words for the
processor to work on.

Note that, in general, there will be a memory I/O
controller on the SOC for interfacing with the outside
world during normal system operation. This memory
I/O controller is used by the tester to load the data
into the memory during testing. The memory I/O con-
troller is typically capable of handling a slower clock
rate when interfacing with the outside world. Thus, the
tester can run at a slower clock rate than the normal
system clock rate of the processor. Thus the processor
can be operating at-speed even though the tester may be
slower. Because of the tremendous cost of high-speed
ATE equipment, this is a major advantage because it
allows at-speed scan shifting while using slower (and
cheaper) ATE equipment.

The current set of blocks is stored in the memory
along with the replacement words. The program that
runs on the processor causes the processor to execute a
while loop until the end of the test data. In each iteration

142



Deterministic Test Vector Compression/Decompression 507

Fig. 5. Block diagram of test architecture with serializers as part
of scan chains.

of the loop, it fetches a replacement word from the next
memory location from which it is supposed to read
the data and replaces the appropriate block. When the
processor sees that the last flag bit is set, it knows that
it has seen the last replacement word for that particular
test vector and now needs to apply the test vector to the
scan chain. The mechanism for applying a test vector to
a scan chain is controlled by a serializer. The processor
downloads each block to the appropriate serializer one
at a time and the serializer shifts the block into the
scan chain. The serializer is a register with a small
finite state machine (FSM) controller which shifts in
one bit per clock cycle into the scan chain and stops
the shifting when all the bits have been shifted out.
The shift register portion of each serializer can either
be a separate entity that is not part of the scan chain

Fig. 6. Organization of data in memory.

(as shown in Fig. 4), or it can be formed from the scan
elements in the scan chain (i.e., be part of the scan
chain itself, as shown in Fig. 5). When the entire test
vector has been loaded into the scan chain, the system
clock is applied and the response is loaded back into
the scan chain. The response is shifted out into a multi-
input signature register (MISR) for compaction as the
next test vector is shifted into the scan chain. If the
serializers are part of the scan chains, then the contents
of the serializer after scan capture must first be shifted
out before the serializer is loaded in parallel with the
next block of data.

As shown in Fig. 6, a test vector is stored as N words
in the memory (where N is the number of blocks into
which the test vectors have been divided). Note that
there are two distinct areas (sequence of addresses)
in the memory from which the processor reads/writes
data. There is one area from which the processor only
reads the data. This is one area into which the tester
writes the replacement words and the processor reads
it to update the blocks. The other area is where the
patterns for the blocks of the test vector are stored.
The processor both reads and writes data from and to
this area. It writes data into this area when it is re-
placing a block with a new pattern, and it reads data
from this area when it downloads them to the serial-
izers for shifting them into the scan chains. When the
processor sees the last flag bit set, it begins the process
of applying the vector by downloading the 0th block
into the serializer for the 0th scan chain and starts the
serializer. The serializer then starts shifting the block
into the scan chain. While it is doing so the processor
continues to download the 1st block into the serializer

143



508 Jas and Touba

Fig. 7. Pseudo-code for program running on processor.

for the 1st scan chain and so on and so forth. Thus if
there are k scan chains and N blocks (k < N ) then the
i-th block gets downloaded into the (i% k)-th serial-
izer, where % denotes the modulo operator. When the
processor has finished downloading the block into the
k-th serializer, it comes back to the 0th serializer. Now
there can be two situations. If the 0th serializer has
finished shifting in the earlier block the processor can
immediately download the next block and start the se-
rializer again. Otherwise it has to wait for the serializer
to finish shifting before it can download another block
into it. The FSM controller associated with the serial-
izer controls this mechanism through a “ready” signal,
which is checked by the processor before it downloads
a particular block. Once the last block has been down-
loaded and shifted in, the test vector is applied to the
scan chains and the processor again continues to read
replacement words from the memory and update the
blocks.

In Fig. 7, ‘C’ like pseudo-code for the decompres-
sion program that runs on the processor is given. It is
a high level view of how the assembly code for the
program running on the processor may look like. Note
that it is just an abstraction and tries to convey the

basic algorithm for the decoding. The macro calls in
most cases will be just a few processor instructions.
For example, the write memory is actually a repre-
sentative of a LOAD instruction with indirect regis-
ter addressing (base and offset register). The variable
mem index is an offset that points to the address from
which the processor should get the next data to decode.
MEM START is defined to be the starting location
for reading the replacement words. It is assumed that
the very last instruction of the test session causes the
processor to set some kind of a flag which is abstracted
by the condition of the while loop. MEM SIZE is the
total size of the address space reserved for the tester
to write the replacement words i.e., the tester writes
to locations MEM START, (MEM START + 1), . . . ,
(MEM START + MEM SIZE − 1). The read memory
macro implements reading a replacement block from a
memory location and obtains the information about the
address of the block to replace, pattern with which to re-
place, and whether it is the last block for that test vector.
The load serializer from memory macro downloads
a block from the memory location addressed by the
block number as offset from some base address, into
the serializer for that scan chain and starts the serializer

144



Deterministic Test Vector Compression/Decompression 509

(by setting an indicator line abstracted by the start
serializer routine) to shift that into the scan chain.

5. Ordering Heuristics for Test Vectors
to Maximize Compression

As mentioned earlier, the amount of compression
achieved in the proposed scheme depends on the order-
ing of the test vectors (which determines the number
of replacement words). There are n! different ways of
ordering a set of n test vectors. Hence it is impractical
to examine all possible orderings for large values of
n. Thus some heuristics must be used in selecting the
ordering. In this section, we describe several ordering
heuristics that we studied and show experimental re-
sults (number of replacement words) for each. We tried
three different initial orderings, and then for each ini-
tial ordering, we tried using a greedy reordering heuris-
tic. The first initial ordering we tried is simply the de-
fault order (which is the order produced by the ATPG
tool). The second initial ordering we tried is having
the test vector set ordered in ascending number of speci-
fied bits, i.e., test vectors with fewer specified bits (i.e.,
more don’t care bits) precede those with more spec-
ified bits. The third initial ordering we tried is hav-
ing the test vector set ordered in descending number
of specified bits, i.e., test vectors with more speci-
fied bits precede those with fewer specified bits. For
each of these three initial orderings, we computed the
number of replacement words that would be required.
This is shown in Table 1 under the subheading “No
Reorder.”

We then tried reordering the test vectors with a
greedy heuristic. We started with the first test vector
in the initial ordering and computed the number of re-
placement words that would result if each of the other
n − 1 vectors were placed after it. The test vector that

Table 1. Number of replacement words for different ordering heuristics.

Default order Least specified first Most specified first

Circuit No reorder Greedy reorder No reorder Greedy reorder No reorder Greedy reorder

s5378 494 398 491 411 494 401

s9234 730 572 722 596 722 568

s13207 801 737 803 749 801 741

s15850 837 751 841 742 843 758

s38417 3177 2983 3206 2995 3209 2980

s38584 2901 2717 2901 2737 2898 2716

resulted in the fewest number of replacement words
was then placed after the first vector. For each of the
non-replaced words between the first and second test
vector, the don’t care bits were specified as necessary
so that the two vectors matched. This process was then
repeated by comparing the second test vector with each
of the remaining n−2 vectors, and so forth. The results
for using this greedy reordering procedure on each of
the three initial orderings are shown in Table 1 under
the subheading “Greedy Reorder.”

In Table 1, the lowest number of replacement words
(i.e., the best compression) for each of the bench-
mark circuits is shown in bold. As can be seen from
the results, the greedy reordering procedure improved
the results in all cases. The block size b in each case
was chosen according to Eq. (1) as explained earlier in
Section 3.

Note that this technique is primarily targeted for
stuck-at scan vectors where the ordering of the test vec-
tors does not matter. However, for test sets where the
ATPG generated ordering needs to be maintained, this
technique could still be used at the cost of some loss in
compression. On an average the compression produced
by the “default order−no reorder” case is 6.46% worse
than the corresponding best case for each of the circuits
above.

6. Avoiding Memory Overflow

Since the tester is constantly transferring replacement
words to the on-chip memory, one potential problem
is that if the processor falls too far behind in process-
ing the replacement words, there could be a “memory
overflow.” This would result in the tester overwriting
a replacement word in the memory that has not yet
been processed. Care must be taken to ensure that no
memory overflow will occur.

145



510 Jas and Touba

The possibility for a memory overflow depends on
the relative speed of the processor to the tester. The rate
at which the tester puts data into the memory depends
on the tester clock rate and the number of channels.
The rate at which the processor processes data in the
memory depends on its clock rate, word size, and in-
struction set. The instruction set determines how many
clock cycles are required to process the replacement
words.

The tester continuously writes test data in a cyclic
fashion into locations 0, 1, . . . , M − 1 of the memory.
So after every MW (where W is the word size) bits, each
location of the memory gets overwritten by the tester.
Hence the processor should finish processing all the
replacement words in locations 0, 1, . . . , M −1 within
the time taken by the tester to shift in MW bits to the
scan chains. If the tester has n scan channels and has
a clock period TT , the time taken by the tester to shift
in MW bits is [WM/n]TT . Hence the processor should
process all M replacement words within this time. All
the processor does for each replacement word is to read
the new pattern and the block address and replace the
appropriate block. However for the blocks which have
the last flag set, the processor has to download all the
blocks into the serializers to shift them into the scan
chains. This is the most time consuming part for the
processor. So the speed at which the processor can pro-
cess M replacement words depends on how many of
them have their last flag set. Let this be denoted by e.
Then the time taken by the processor to process M
replacement words is [Mu + (eNb/k)]TP where TP is
the clock period of the processor, and u is the number
of cycles taken by the processor to read a replacement
word and replace the appropriate block. The value of u
depends on the instruction set architecture of the pro-
cessor. No memory overflow will occur if the following
condition is satisfied:

[Mu + (eNb/k)]TP < [WM/n]TT (2)

If the condition above is not satisfied, then for a given
compressed test set, a quick check can be made to see
if a memory overflow will occur. If a memory overflow
would occur, then something must be done to avoid
this. One solution would be to reorder the test vectors
when constructing the compressed test set so that e
will become smaller. This will likely result in less test
data compression, but it will avoid memory overflow.
Another solution may be to insert NOP’s (no operation
instructions) in the tester program at carefully selected

locations to slow it down so that no memory overflow
will occur, or to simply run the tester at a slower clock
rate that ensures no memory overflow. These solutions
would not reduce the amount of test data compression
(and thus would still minimize tester memory require-
ments), however they could potentially result in less
test time reduction.

Note that if the processor is sufficiently faster than
the tester, then the above condition will be satisfied and
the maximal reduction of both test data and test time
can be achieved. Note also that as the number of scan
chains (i.e., k) is increased, the condition becomes eas-
ier to satisfy. Lastly, if there is enough memory on the
chip to store all the replacement words then no memory
overflow will occur irrespective of all the parameters in
Eq. (2) above. The results shown in the following para-
graph help to understand the effect of all the parameters
in the context of memory overflow.

Equation (2) can be alternatively represented as:

Fp/Ft > n/W [u + e/M(S/k)] (3)

where Fp (=1/Tp) is the processor frequency, Ft (=
1/Tt ) is the tester frequency and S = Nb is the length of
the scan vector. Equation (3) establishes a lower bound
for the processor frequency to tester frequency ratio to
prevent any memory overflow. Table 2 shows the Fp/Ft

ratio for the benchmark circuits for different values of
M . In each case, values of the other parameters are kept
constant. The k/n value for each circuit has been care-
fully chosen to prevent a very high value of the Fp/Ft

ratio. Also the ordered test set chosen in each case is
the one that produces the best compression as shown in
Table 1. The values of the parameters that are held con-
stant for all the circuits are W = 32, u = 3. The value
of e depends on the ordered test set and M . The scan
length S depends on the benchmark. Note that W and u

Table 2. Variation of Fp/Ft for different values of M .

M

Circuit k/n 256 512 1024 2048 4096

s5378 8/4 1.62 NA NA NA NA

s9234 8/4 1.82 1.42 NA NA NA

s13207 8/1 2.26 1.31 NA NA NA

s15850 8/2 1.74 1.17 NA NA NA

s38417 8/4 2.10 1.90 1.62 1.34 NA

s38584 8/2 2.24 1.64 1.20 0.85 NA

146



Deterministic Test Vector Compression/Decompression 511

are two parameters on which the system integrator will
most likely have the least amount of control (as they
are tightly integrated to the processor/memory micro-
architecture). In Table 2 their values have been fixed for
all the circuits at realistic values. The k/n ratio chosen
for each circuit is also shown in the table with the actual
values of k and n. The results of Table 2 illustrate how
by carefully tuning the different parameters on which
the system designer has control, the memory overflow
can be avoided.

The entries “NA” in the above table corresponds to
cases where there will be no memory overflow because
of enough memory being present to store all the re-
placement words. Also in most cases if the processor is
sufficiently faster than the tester as given by the table
entries above, the memory overflow can be avoided.

7. Test Time Reduction

The total reduction in test time that can be obtained
using the proposed scheme can be analytically esti-
mated given the ordering of the test set and the other
parameters that define the test architecture. In conven-
tional scan based testing, the total test time consists
of mostly the scan shifting time since the test appli-
cation time (launch and capture cycle) is usually neg-
ligible compared to the scan shifting time. The scan
shifting time on the other hand depends on the total
amount of test data, the number of tester channels and
the speed of the tester. Following the notations that are
being used in this paper this time can be denoted by
Tconventional = (SV TT )/n where V is the number of test
vectors. Let Tscheme denote the total test time in the pro-
posed scheme. Thus the percentage reduction in total
test time using this scheme is given by

(1 − Tscheme/Tconventional) × 100.

The following paragraphs explain how Tscheme can be
calculated based on the test architecture. Tscheme con-
sists of two components, Ttransfer and Tapplication. Ttransfer

is the time taken by the tester to transfer the compressed
data and Tapplication is the time taken by the processor
to apply the test vectors to the core-under-test. Un-
like conventional scan testing in this case Tapplication is
not negligible and contributes significantly towards the
total test application time. However, the effect is not
additive because of the inherent parallelism in the op-
erations of the tester and the processor. This means
that Tscheme < Ttransfer + Tapplication. It is obvious that

Ttransfer < Tconventional (since the tester has to transfer
less test data in this scheme) with the percentage re-
duction being directly proportional to the amount of
test data compression. Hence the total reduction in test
data is directly related to how much parallelism can
be obtained between the operations of the tester and
the processor. Note that Ttransfer is affected by the tester
frequency whereas Tapplication is affected by the proces-
sor frequency. The following paragraph shows how the
parallelism can be maximized and also derives some
formulas for calculating Tscheme.

Let R be the total number of replacement words.
Starting at time t = 0, let W1, W2, . . . , Wi , . . . , WR

denote the times when the tester finishes writing the
first, second, i-th and the R-th replacement words re-
spectively. Maximum parallelism can be achieved if
the processor can process the i-th replacement word as
soon as the tester writes it. The processor can process a
replacement word only after the tester has written that
replacement word and the processor has finished pro-
cessing all the previous replacement words. The time
taken by the processor to process a replacement word is
uTp if the replacement word does not have the last flag
bit set (because in this case all the processor has to do
is to read it and update the appropriate block in mem-
ory), and [u + S/k]Tp if the replacement word has the
last flag bit set (because in this case besides updating
the necessary block in memory it has to download the
blocks into the serializer and apply them). Let this be
denoted by c, a constant for a given test architecture.
Starting at time t = 0, let P1, P2, . . . , Pi , . . . , PR de-
note the earliest possible times at which the processor
can start processing a replacement word. The Pi ’s
can be easily computed using the following iterative
formula.

P1 = (S/k)Tp (4)

and Pi = max {Wi , Pi−1 + c} (5)

Equation (5) basically means that the processor can
start processing the i-th replacement word only after
the tester has written it AND it has finished process-
ing all the previous replacement words. Equation (4) is
determined by the fact that the processor can start pro-
cessing the first replacement word after the very first
test vector has been applied to the core-under-test. It is
very easy to compute the Wi ’s as it depends on n, TT

and W and is given by

W1 = (S/n)Tt (6)

and Wi = Wi−1 + (W/n)Tt (7)

147



512 Jas and Touba

Equation (6) is determined by the fact that the tester
has to first write the memory block patterns required
for the very first test vector and subsequently a con-
stant amount of time for every other replacement word
determined by the number of tester channels and its fre-
quency. Note that each replacement word is W bits (this
is how the block size b is chosen, so that each replace-
ment word completely fits within a memory word). As-
suming that both the processor and the tester is ready
to start operation at t = 0, the time at which the test-
ing process is completed is given by PR + c, which is
when the final replacement word is processed by the
processor. Hence, Tscheme = PR + c. Once Tscheme has
been determined, the percentage reduction in test time
can be determined from the formula mentioned above.

8. Hardware Overhead of the Scheme

In terms of the extra hardware that is required, this
scheme is very efficient requiring only a small area
overhead due only to the serializers. As mentioned ear-
lier, the serializers consist of two components. One is a
shift register and the other is a finite state machine con-
troller that controls the operation of the shift registers
along with the clocking mechanism. Part of the scan
chains can be configured as the shift register (as shown
in Fig. 5). The complexity of the finite state controller
is independent of the size of the design or the size of
the test vector set. The complexity of the controller is
totally determined by the block size. This is because the
controller has to keep track of the number of bits be-
ing shifted out and hence has a counter associated with
it whose size depends on the block size. This means
that the percentage of hardware overhead due to the
serializers becomes less as the design size increases.
Note that the processor and the memory are not be-
ing considered as part of the test hardware as they are
assumed to be already present in the system-on-chip.
As mentioned earlier, the main objective of the paper
is to show how existing hardware in a system-on-chip
(processor and memory) can be utilized to reduce the
cost of testing other cores on the chip.

To give an idea of the hardware overhead, Table 3
shows the area overhead as a percentage of the area of
the benchmark circuits. The serializers were designed
in verilog and synthesized along with the benchmark
circuits. The resulting area (in terms of standard library
gate equivalents) was then compared to the synthesized
area of the benchmarks without the serializers. The
resulting area overhead is shown in Table 3 below. The

Table 3. Hardware requirements of the proposed scheme.

Percentage overhead Memory required for
Circuit due to serializer replacement words (Kbytes)

s5378 5.15 1.592

s9234 3.96 2.272

s13207 1.60 2.948

s15850 1.69 2.968

s38417 0.53 11.980

s38584 0.58 10.948

area overhead is calculated as (Ascheme/Abenchmark −
1) ∗ 100 where Ascheme is the area of the benchmark
circuits with the serializers and Abenchmark is the area of
the benchmark circuits without the serializers. Also the
amount of memory required to store all the replacement
words for the best results obtained in each case (based
on Table 1) is shown. Since each replacement word is
W bits and in all the experiments W has been assumed
to be 32, the memory required is four times the number
of replacement words (in bytes).

As can be seen from the results in Table 3, the area
overhead of a single serializer is very small compared
to the benchmark circuits. In fact, the area overhead
becomes almost negligible for the largest benchmark
circuits.

9. Experimental Results

The proposed scheme was used to compress test sets for
the largest ISCAS 89 [2] circuits. A commercial ATPG
tool was used to generate test cubes that provided 100%
coverage of detectable faults in each circuit. Unspeci-
fied input assignments were left as X’s to enable better
compression. The block size in each case was derived
according to Eq. (1). The results obtained in Table 4
are for W = 32.

For each circuit, Table 4 shows the size of the scan
chain for each circuit and the number of bits in each
block. The number of test vectors and total number of
bits of test data is shown for the original test set. For
the compressed test data, the number of replacement
words that are required is shown along with the total
number of bits of test data. The second to last column
shows the percentage reduction in test data (amount of
compression) that is achieved which is computed as:

(1 − Compressed Bits/Original Bits) × 100

148



Deterministic Test Vector Compression/Decompression 513

Table 4. Compression obtained for ISCAS benchmark circuits using proposed scheme.

Original test data Compressed test data

Circuit Scan size Block size (bits) Num. vectors Num. bits Rep. words Num. bits
% Reduction
of test data

% Reduction
of test time

s5378 214 28 119 25466 398 12950 49.15 48.75

s9234 247 27 147 36309 568 18423 49.26 48.87

s13207 700 26 239 167300 737 24284 85.48 85.48

s15850 611 26 120 73320 742 24355 66.78 66.46

s38417 1664 24 95 158080 2995 97024 38.62 37.99

s38584 1464 25 131 191784 2737 88376 53.92 53.60

The last column shows the percentage reduction in test
time that can be achieved using this scheme. The re-
sults are based on the calculations shown in Section 7.
The test architecture used to compute the test time re-
duction is given by the parameters M = 3072 (12 KB
Memory), FP/FT = 2, u = 3,and k/n ratios based on
Table 2.

The results in Table 4 are the best results obtained
from the ordering heuristics as shown in Table 1. As
can be seen from the results, a significant amount
of compression can be achieved with the proposed
scheme. Also note that it is possible to achieve an al-
most equal amount of test time reduction by tuning the
test architecture.

In order to see the effect of block size on the per-
centage of compression, experiments were done with
varying block sizes on the four largest benchmark cir-
cuits. In each case the same test set was used as the one
in Table 4 above. The results are shown in Table 5. As
can be seen, there is a clear trend of decreasing com-
pression with increasing block size. This is expected.
With increasing block size, the number of blocks that
are similar between two test vectors decreases. Also
from the results in Table 4 it is evident that there is not
much loss in compression in our present scheme due
to the restrictions imposed on the block size because
of implementation.

To give an idea of how the amount of test data com-
pression for the proposed scheme compares with other

Table 5. Variation of percentage compression with block size.

Block size

Circuit 8 16 24 32 40 48

s13207 87.20 87.06 85.67 84.32 82.53 82.16

s15850 69.68 68.52 66.92 64.49 63.63 61.72

s38417 41.86 42.86 38.62 38.77 34.34 29.81

s38584 53.30 53.22 53.44 50.39 48.61 46.95

Table 6. Comparison of final test data volume.

Test data in [5] Test data in proposed
Circuit (bits) scheme (bits)

s5378 12306 12950

s9234 22152 18423

s13207 30880 24284

s15850 26000 24355

s38417 93466 97024

s38584 77812 88376

schemes, results are shown in Table 6 comparing the
final test data volume for the proposed scheme with
the results in [5] (compression obtained using Td ). Note
that this is not really a direct comparison as different test
sets were used. As can be seen, the final results are fairly
similar. The advantage of the proposed scheme is that
it can be efficiently implemented using an embedded
processor.

10. Conclusion

The proposed approach supports external testing of
embedded cores using deterministic test vectors. It
harnesses the computational power of an embedded
processor (already present for functional purposes) to
perform test data compression/decompression in soft-
ware. The decompression processes is pipelined so that
the latency is minimized. Hence, it reduces both the
amount of test storage and test time, thereby reducing
the tester memory and channel capacity requirements.
Such techniques are needed to keep down the cost of
the ATE equipment needed to test future SOC’s.

This paper presents the basic framework for how
an embedded processor can be used for decompress-
ing test data. One specific compression/decompression
algorithm, which gives good results, is described.
However, there is a lot of scope for future research in

149



514 Jas and Touba

other compression/decompression algorithms for test
data. The ability to use a processor to perform the
decompression in software opens the door to many
possible techniques.

Acknowledgments

This material is based on work supported in part
by the National Science Foundation under Grant No.
MIP-9702236, and in part by the Texas Advanced
Technology Program under Grant No. 003658-0644-
1999.

References

1. D. Bakalis, D. Nikolos, and X. Kavousianos, “Test Response
Compaction by an Accumulator Behaving as a Multiple Input
Non-Linear Feedback Shift Register,” in Proc. of International
Test Conference, 2000, pp. 804–811.

2. F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profiles
of Sequential Benchmark Circuits,” in Proc. of International
Symposium on Circuits and Systems, 1989, pp. 1929–1934.

3. A. Chandra and K. Chakrabarty, “Test Data Compression for
System-on-a-Chip Using Golomb Codes,” in Proc. of VLSI Test
Symposium, 2000, pp. 113–120.

4. A. Chandra and K. Chakrabarty, “Efficient Test Data Com-
pression and Decompression for System-on-a-Chip Using
Internal Scan Chains and Golomb Coding,” in Proc. of Design,
Automation, and Test in Europe (DATE), 2001.

5. A. Chandra and K. Chakrabarty, “Frequency-Directed Run-
Length Codes with Application to System-on-a-Chip Test Data
Compression,” in Proc. of VLSI Test Symposium, 2001, pp. 42–
47.

6. D. Das and N.A. Touba, “Reducing Test Data Volume Using
External/LBIST Hybrid Test Patterns,” in Proc. of International
Test Conference, 2000, pp. 115–122.

7. R. Dorsch and H.-J. Wunderlich, “Accumulator Based Deter-
ministic BIST,” in Proc. of International Test Conference, 1998,
pp. 412–421.

8. A. El-Maleh, S. al Zahir, and E. Khan, “A Geometric-Primitives-
Based Compression Scheme for Testing Systems-on-a-Chip,” in
Proc. of VLSI Test Symposium, 2001, pp. 54–59.

9. S. Gupta, J. Rajski, and J. Tyszer, “Test Pattern Generation Based
on Arithmetic Operations,” in Proc. of International Conference
on Computer-Aided Design (ICCAD), 1994, pp. 117–124.

10. S. Hellebrand, H.-J. Wunderlich, and A. Hertwig, “Mixed-Mode
BIST Using Embedded Processors,” in Proc. of International
Test Conference, 1996, pp. 195–204.

11. J.-R. Huang, M.K. Iyer, and K.-T. Cheng, “A Self-Test Method-
ology for IP Cores in Bus-Based Programmable SOCs,” in Proc.
of VLSI Test Symposium, 2001, pp. 198–203.

12. M. Ishida, D.S. Ha, and T. Yamaguchi, “COMPACT: A Hybrid
Method for Compressing Test Data,” in Proc. of VLSI Test Sym-
posium, 1998, pp. 62–69.

13. V. Iyengar, K. Chakraborty, and B.T. Murray, “Built-in Self
Testing of Sequential Circuits Using Precomputed Test Sets,”
in Proc. of VLSI Test Symposium, 1998, pp. 418–423.

14. A. Jas, J. Ghosh-Dastidar, and N.A. Touba, “ScanVector Com-
pression/Decompression Using Statistical Coding,” in Proc. of
VLSI Test Symposium, 1999, pp. 114–120.

15. A. Jas, C.V. Krishna, and N.A. Touba, “Hybrid BIST Based
on Weighted Pseudo-Random Testing: A New Test Resource
Partitioning Scheme,” in Proc. of VLSI Test Symposium, 2001,
pp. 114–120.

16. A. Jas and N.A. Touba, “Test Vector Decompression Via Cycli-
cal Scan Chains and Its Application to Testing Core-Based
Designs,” in Proc. of International Test Conference, 1998,
pp. 458–464.

17. A. Jas and N.A. Touba, “Using an Embedded Processor for Ef-
ficient Deterministic Testing of Systems-on-a-Chip,” in Proc. of
International Conference on Computer Design, 1999, pp. 418–
423.

18. J. Rajski and J. Tyszer, “Accumulator-Based Compaction of Test
Responses,” IEEE Transactions on Computers, vol. 42, no. 6,
pp. 643–650, June 1993.

19. R. Rajsuman, “Testing a System-on-a-Chip with Embedded Mi-
croprocessor,” in Proc. of International Test Conference, 1999,
pp. 499–508.

20. J. Saxena, P. Ploicke, K. Cyr, A. Benavides, and M. Malpass,
“Test Strategy for TI’s TMS320AV7100 Device,” in IEEE Int.
Workshop on Testing Embedded Core Based Systems, 1998.

21. A.P. Stroele, “A Self-Test Approach Using Accumulators as Test
Pattern Generators,” in Proc. of International Symposium on
Circuits and Systems, 1995, pp. 2010–2013.

22. A.P. Stroele, “Test Response Compaction Using Arithmetic
Functions,” in Proc. of VLSI Test Symposium, 1996, pp. 380–
386.

23. A.P. Stroele, “Bit Serial Pattern Generation and Response
Compaction Using Arithmetic Functions,” in Proc. of VLSI Test
Symposium, 1998, pp. 78–84.

24. T. Yamaguchi, M. Tilgner, M. Ishida, and D.S. Ha, “An Efficient
Method for Compressing Test Data,” in Proc. of International
Test Conference, 1996, pp. 191–199.

25. Y. Zorian, “Test Requirements for Embedded Core-Based
Systems and IEEE P1500,” in Proc. of International Test
Conference, 1996, pp. 191–199.

Abhijit Jas received the B.E. degree in computer science and en-
gineering from Jadavpur University, Calcutta, India in 1996. He re-
ceived the university gold medal for standing first in the college of
engineering. He received the M.S. and Ph.D. degrees in electrical en-
gineering from the University of Texas at Austin in 1999 and 2001,
respectively. He currently works as a Sr. CAD Engineer at Intel Cor-
poration in Austin, TX. His research interests are in VLSI testing,
computer-aided design, and formal hardware verification.

Nur A. Touba received the B.S. degree in electrical engineering from
the University of Minnesota where he graduated summa cum laude
in 1990, and the M.S. and Ph.D. degrees in electrical engineering
from Stanford University in 1991 and 1996, respectively. He is cur-
rently an Associate Professor at the University of Texas at Austin. His
research interests are in VLSI testing, computer-aided design, and
fault-tolerant computing. He received a National Science Founda-
tion (NSF) Early Faculty CAREER Award in 1997. He serves on the
Technical Program Committees of the International Test Conference,
International Conference on Computer Design, International Test
Synthesis Workshop, and International On-Line Testing Workshop.

150


