

Selecting Error Correcting Codes to Minimize Power in Memory Checker Circuits

Shalini Ghosh1, Sugato Basu2, and Nur A. Touba1

1Computer Engineering Research Center,

Dept. of Electrical and Computer Engineering,

University of Texas, Austin, TX 78712-1084.

{shalini,touba}@ece.utexas.edu

2Machine Learning Research Group,

Dept. of Computer Sciences,

University of Texas, Austin, TX 78712-1188.

sugato@cs.utexas.edu

Abstract

The approach proposed in this paper reduces power consumption in single-error correcting, double error-detecting

checker circuits that perform memory ECC. Power is minimized with little or no impact on area and delay, using the

degrees of freedom in selecting the parity check matrix of the error correcting code. The non-linear power optimization

problem is solved using two methods, genetic algorithms and simulated annealing. Both the methods are applied to two

SEC-DED codes: standard Hamming codes and odd-column-weight Hsiao codes. Experiments on actual memory traces

of Spec and MediaBench benchmarks indicate that considering power along with area and delay when selecting the

parity check matrix can result in power reductions of up to 27% for Hsiao codes and up to 41% for Hamming codes.

Experiments are also performed to motivate the choice of parameters of the non-linear optimization algorithms, using

sensitivity analysis of the low-power solutions to the choice of the different parameters of each algorithm.

Keywords: Memory error correction, Hsiao and Hamming codes, low power, non-linear optimization.

1. Introduction

As technology continues to scale with smaller features sizes, lower power supply voltages, and higher operating

frequencies, the soft error rate in logic circuits is rapidly increasing [1]. Concurrent error detection using error correcting

codes at the outputs of a circuit provides a means to detect soft errors quickly before they have a chance to propagate and

compromise the data integrity of a system. Error correcting codes (ECCs) are commonly used to protect against soft errors

and thereby enhance system reliability and data integrity [2,3]. Single-error-correcting and double-error-detecting (SEC-

DED) codes are generally used for this purpose. These codes are able to correct single-bit errors and detect double-bit

errors in a codeword. In this paper, we focus our attention to the ECC checker circuit of a specific type of concurrent error

detection: memory ECC, where error correcting codes are used to ensure data integrity during each memory read and

write cycle.

A design criterion that has become very important in recent times is power reduction. With increasing miniaturization

of devices, power has become a first-order design consideration motivating researchers to look at techniques of reducing

power consumption in all components of system design. For memory ECC, power reduction is also an important

consideration, since the ECC checker circuit is activated during each read and write access to the memory. In this work,

we focus on reducing power in memory ECC checkers. There are many ways to construct SEC-DED codes and implement

the corresponding ECC circuitry. While previous research has focused on minimizing area and delay in ECC circuitry,

this paper looks at minimizing power in addition to minimizing area and delay. By considering power during the design

of ECC circuitry, significant reductions can be achieved at little or no cost in terms of area and delay. For portable

electronics this will help extend battery life.

While conventional low power design methodologies that have been developed for general circuits can be applied to

the design of error detection circuitry in a straightforward manner, there are some special properties of error detection

circuitry that can be exploited to further reduce power consumption. One such property is the fact that error detection

circuitry typically contains large amounts of symmetry. For example, parity trees and two-rail checker trees are totally

symmetric with respect to their inputs and thus allow complete freedom in the ordering of the inputs. The inputs can be

ordered in any way with no change in the function of the circuit and no real impact on the area or delay. This property

was first exploited to minimize power in [4]. Favalli and Metra considered signal probability on a level-by-level basis to

order the inputs in two-rail checkers to minimize power (the method can also be used for parity trees). In [5], spatial

correlation among signals was used for input ordering in parity trees and Berger code checkers. A nice feature of both of

these methods is that power is reduced essentially for free as there is no impact in terms of area or delay. The only cost is

the time for computing the input ordering.

 In [6,7], the problem of reducing power consumption for fault tolerant buses with SEC codes was studied. The bus

model that was used considers mutual capacitance effects and assumes transitions between all pairs of vectors are equally

likely. The properties of both Hamming codes and dual rail codes with respect to power consumption were analyzed.

Results in [7] indicate that for small bus word sizes dual rail codes require less power, while for larger word sizes

Hamming codes are better. Another related work is [8], where Hamming codes were designed with the goal of area

minimization of the ECC checker in mind.

 The goal of this paper is to minimize a joint function of area, delay and power while designing Hamming [9] and

Hsiao [10] codes (preliminary results were published in [11]). The proposed approach selects an H-matrix that

simultaneously minimizes power, area and delay, using non-linear optimization techniques. The paper is organized as

follows: Section 2 gives an overview of the proposed method; Section 3 discusses the ECC memory hardware details;

Section 4 gives the details of the optimization algorithms used; Section 5 explains the experimental methodology, the

results of which are discussed in Section 6; Section 7 describes experiments performing sensitivity analysis of the results

based on variation of parameters of the non-linear optimization algorithms, while Section 8 concludes our discussion and

outlines promising areas of future work.

2. Overview of Proposed Method

The focus of our work is reducing power consumption in memory ECC circuitry that provides SEC-DED. Such circuits

are widely used in industry in all types of memories including caches and embedded memories. The key design issue is

selecting the code that is used. A (n,k) linear SEC-DED block code has n bits in each codeword consisting of k data bits

and n-k check bits. The code can be represented by a parity-check matrix, H, having n-k rows, one for each check bit, and

n columns, one for each bit in the codeword. In order for the code to be SEC-DED, the H-matrix must be formed in a way

that the minimum distance between any codewords is 4. Two well-known methods for constructing a SEC-DED H-

matrix were described by Hamming and Hsiao. Different H-matrices result in different area, delay, and power.

2.1 Key Idea

The main idea in this paper is to select the H-matrix in a way that minimizes power, area and delay in the ECC

checker. Once the H-matrix has been selected, the corresponding ECC circuitry for implementing the code can be

synthesized. The space of H-matrices that provide SEC-DED capability is large. In [10], Hsiao showed that an H-matrix

that satisfies the following three constraints provides SEC-DED capability:

1. There are no all-0 columns.

2. Every column is distinct.

3. Every column contains an odd number of 1’s (i.e., has odd weight).

Hsiao showed that by using minimum odd weight columns, the number of 1’s in the H-matrix could be minimized (and

made less than a Hamming SEC-DED code). This translates to less hardware area in the corresponding ECC circuitry.

Furthermore, by selecting the odd weight columns in a way that balances the number of 1’s in each row of the H-matrix,

the delay of the checker can be minimized (as the delay is constrained by the maximum weight row).

 In this paper, power consumption is considered as an additional factor in selecting the H-matrix. For odd-weight-

column codes, there are two degrees of freedom in selecting the H-matrix that can be used to reduce power with little to

no impact on area and delay. The first degree of freedom is simply permuting the columns. This has no impact on area

or delay as it does not change either the total number of 1’s in the H-matrix or the balancing of 1’s among the rows. The

second degree of freedom is in selecting the odd-weight-columns that are included in the matrix. To minimize area and

delay, the smallest odd weight columns should be used first (i.e., weight-1, then weight-3, then weight-5, etc.). However,

note that in general, only a subset of the largest odd weight columns will be used. For example, for a (72,64) odd-weight-

column code, all 8
1C = 8 of the weight-1 and all 8

3C = 56 of the weight-3 columns will be used, but only 8 of the 8
5C = 56

possible weight-5 columns will be used. Selecting which 8 of the 56 possible weight-5 columns are used in the H-matrix

is a degree of freedom that can be used for minimizing power with little to no impact on area or delay.

 How much power can be reduced using the degrees of freedom in selecting the H-matrix will depend on the

characteristics of the data stored in the memory. The more correlated the data in successive memory reads and writes is,

the more power can be reduced through careful selection of the H-matrix. The switching activity (and hence power

consumption) in the encoding and decoding logic corresponding to a particular H-matrix depends on which bit transitions

occur in the data between successive memory reads and writes.

2.2 Useful Characteristics of Memory Data

In memory data, typically the high order data bit is more likely to be a 0 than a 1 whereas the low order data bit is

more likely to have an even distribution between 0 and 1. Sparsity in higher order bits is a very common phenomenon for

multimedia applications. In fact, special purpose compilers and architectures with support for variable bitwidth have been

studied in order to exploit this characteristic of the multimedia applications [12]. Thus, since the low order bit is more

likely to transition in successive memory accesses than the high order bit, it would be better that the low order bit

correspond to a lower weight column in the H-matrix and the high order bit correspond to a higher weight column in the

H-matrix. This would reduce the switching activity that occurs in the encoding/decoding logic and thereby reduce power.

This is a simplistic example to show how selection of the H-matrix can be used to exploit correlations in the data stored in

the memory. More elaborate forms of spatial and temporal correlations in the data can be exploited with the proposed

methodology.

 How much correlation exists in the data stored in a memory will depend on the purpose and function of the memory.

Some embedded memories for certain applications may have very correlated data and thus the proposed method for

selecting the H-matrix can be very effective in reducing power. Others may have less correlation. The types of data that

are stored in different memories ranges broadly. Instruction caches and other memories that primarily contain instructions

will tend to have a lot of correlation, as the frequency of execution of different instructions tends to be very skewed.

Memories that contain a lot of numerical data will tend to have a lot of spatial correlations among higher order bit

positions as the range of the numerical values may be limited and/or skewed. Some embedded controllers and sensors

may spend a lot of time executing in a loop and thus have a lot of temporal correlations. No matter what the nature of the

memory is, not all transitions will be equally likely, so there will be some scope for power reduction using the proposed

method. The actual amount of power reduction will however depend on the extent of the correlation.

2.3 Proposed Method

The proposed technique consists of two steps. The first is to acquire information about the spatial and temporal

correlations of the data in memory accesses. The second step is to use that information to select the H-matrix for the odd-

weight-column SEC-DED code. Information about the spatial and temporal correlations is acquired by analyzing a sample

trace of the memory accesses for a typical workload. The application that will use the memory, or a representative sample

of the applications if there are multiple applications, is simulated and a sample trace of memory accesses is obtained. The

size of the sample should be chosen so that it is sufficiently representative of the typical workload. The spatial and

temporal correlations among the data from the sample traces are then extracted so that the H-matrix can be optimized for

the typical workload of the memory. The resulting design of the ECC circuitry will then minimize the average power

across the typical workload.

 The second step of the proposed method involves selecting the H-matrix once the correlation information has been

extracted. This problem is a non-linear optimization problem. In this paper, two optimization techniques are

investigated: simulated annealing (SA) and genetic algorithms (GA). Both techniques are described in detail in Sec. 4.

Experimental results showed that genetic algorithms outperformed simulated annealing for this problem on the

benchmark circuits that were studied, as explained in Sec. 6.

3. ECC Memory Checkers

 The goal of this work is to reduce the switching activity in the part of the ECC circuitry that is used most frequently,

namely the parity generator block which is used on every memory access (both read and write). Figure 1 illustrates the

block-level design of a generic SEC-DED encoder/decoder for ECC memory. The left side of the figure is the processor

interface where the relevant signals are u_data[63:0], representing the 64 bits of the processor data bus; rw_n,

representing the memory read/write control signal; and error-out[1:0], the 2-bit error flag signal that is required to signal

one of possible four error states: (1) no error, (2) correctable data error, (3) correctable parity error, and (4) detectable

double error. The right side of the figure is the memory interface consisting of the 72-bit memory data bus

mem_data[71:0]. The “Generate Parity Bits” block generates the parity bits to store with the processor data during a write

cycle. During a read cycle, this block also generates the parity bits for the 64 data bits stored in memory. These generated

parity bits are then compared with the stored parity bits to generate the syndrome. In this paper, the focus is on selecting

an SEC-DED code that minimizes power consumption in the parity generator block since that is the part of the circuit

most heavily used.

Hamming codes and Hsiao codes are commonly used in ECC circuitry. The proposed optimization method is

applicable to both of these kinds of SEC-DED codes. Note that the proposed method can be used for any memory word

size.

Figure 1. SEC-DEC Block Diagram (modified from [13])

4. Optimization Algorithms

In this paper, two optimization algorithms that are known to give good performance for highly non-linear optimization

problems such as the one here are investigated. One is genetic algorithm (GA) and the other is simulated annealing

(SA). In this section, we give a brief description of both these techniques and how they were adapted to this domain.

4.1 Cost function

Both the optimization techniques minimize a cost function modeled as a combination of the delay in the circuit, the

size of the circuit, and the power dissipation in the circuit. It is a weighted linear combination of the following 3

components, which represent the different design objectives mentioned in Section 2:

1. Power dissipation: The power dissipated during ECC checking, which is found by doing power simulation of the

permuted inputs through the parity checker circuit. The power goal is minimization of this dissipated power.

2. Size of circuit: The number of total gates in the circuit, obtained by performing multiple-output logic minimization of

the H-matrix equations, using 2-input XOR gates. The circuit-size goal is reduction of the number of XOR gates in the

total parity checker circuit.

3. Delay in circuit: The balance of delay in the circuit, measured by the variance between the depths of the XOR circuits

corresponding to different parity equations. The timing goal is to minimize the variance in delay between the XOR

networks corresponding to the different parity bits to minimize the worst-case delay.

The overall cost function is:

(weightpower * Power dissipation) + (weightcircuit * Circuit size) + (weightdelay * Circuit delay)

where: weightpower + weightcircuit + weightdelay = 1

4.2 Genetic Algorithm (GA)

Genetic algorithm (GA) is another popular non-linear optimization tool, useful for such large-scale non-linear

optimization problems [14]. In GA, each possible solution to the problem is encoded as a gene. An initial population of P

random genes is considered, from which a next generation of P genes is created by crossover and mutation operations. We

considered a variant of GA where the top E best genes (elites) at each generation are directly copied into the next

generation, thus preserving the best E solutions found so far: this GA principle is called elitism.

 For the purpose of illustration, we will consider n = 64 in this section. Note that all these methods can be generalized

to work for architectures of other sizes.

4.2.1 Overall GA algorithm

Figure 2 outlines the overall GA algorithm that we use.

Figure 2. Outline of Genetic Algorithm

4.2.2 Gene representation

For Hamming codes, each solution corresponded to a particular input permutation. The inputGene corresponding to

this is encoded as a string of the mapping for the input memory bits positions. For example, for n = 64, one possible

permutation could be represented in the inputGene by the string “2,3,1,4,5…63,64”, representing the permutation where

the 1st memory bit position is mapped to the 2nd input in the checker circuit, the 2nd bit is mapped to the 3rd input, the 3rd

bit is mapped to the 1st input, and the other memory bits are mapped to their corresponding circuit inputs.

 For Hsiao codes, each solution also contains an additional component that we call the matrixGene, representing the

design of the H-matrix. In our 64-bit architecture example, we first index the 56 possible weight-5 columns in increasing

order of their binary representation. The matrixGene is represented by the indices of the 8 weight-5 columns out of the 56

possible ones that are selected to fill up the last 8 positions of the H-matrix (after filling up the first 64 with all possible

weight-1 and weight-3 columns). So, a possible matrixGene would be “1,4,6,9,11,34,53,55”, representing the indices of

the particular weight-5 columns selected while creating the H-matrix. In the general case, for architectures of other sizes,

the matrixGene would have a representation of a similar design choice of selecting some columns from a total set of

possible odd weight columns.

In the case of Hsiao codes, the GA algorithm performed simultaneous crossovers and mutations of both the inputGene

and the matrixGene. The fitness of a composite gene, comprised of the inputGene and the matrixGene, was considered to

be the inverse of the total cost calculated as shown in Section 4.1.1, so that genes with less cost ended up being “more fit”.

4.2.3 Mutation operation

The mutation operation for the inputGene creates a child from a single parent, by choosing two input index mappings

at random in the parent gene and swapping them. For example, swapping the 1st and 4th positions in the example gene

considered above would generate the mutant inputGene “ 4,3,1,2,5…63,64” from the parent “ 2,3,1,4,5…63,64” .

 In the case of Hsiao codes, the mutation operation for the matrixGene creates a child from a single parent by selecting

a column index at random and removing it from the selected set, bringing in a column from the unselected set. For

example, swapping out the weight-5 column having index 3 and swapping in the column with index 4 in the example

gene considered above would generate the mutant child “ 1,3,6,9,11,34,53,55” from the parent matrixGene

“ 1,4,6,9,11,34,53,55” .

4.2.4 Crossover operation

The crossover operation for the inputGene creates a child from two parents, trying to incorporate good features of

both. We chose a crossover function where the mean of the positions in the two inputGenes was first computed, and the

child was created by considering the sorted indices of the computed mean. In our example, the crossover between

“ 3,1,2,4,5…63,64” and “ 1,2,3,4,5…63,64” would generate an intermediate mean [2.0,1.5,2.5,4.0,5.0…63.0, 64.0], for

which the corresponding sorted indices would be “ 2,1,3,4,5…63,64” (where the ties between same values are broken

arbitrarily).

Notice that in this crossover function, the child has the common feature of both the parents, i.e., matrix bit positions 4-

64 are mapped to circuit input 4-64. If both the parents had low cost and this was a feature responsible for it, then the

child would also inherit this feature.

In the case of the matrixGene, the crossover function appends the matrixGenes of both the parents (representing the

selected columns) with the indices of the unselected columns. Then, an average and index-sorting operation similar to the

inputGene is performed, after which the first 8 positions of the result are selected to get the matrixGene of the child. It can

be easily shown that this operation is a valid crossover function for the subset-selection problem that underlies the design

of the H-matrix for Hsiao codes.

 4.3 Simulated Annealing (SA)

For Hamming codes, we consider the H-matrix in the standard form and the only thing that can be varied to reduce

power is the input ordering. For 64 inputs, there are 64! possible input permutations, which makes an exhaustive search of

the input ordering with the lowest power dissipation intractable.

For Hsiao codes, along with input ordering, we have the additional flexibility of designing the H-matrix. As explained

in Sec. 2, selecting which 8 of the 56 possible weight-5 columns are used in the H-matrix for a (72,64) code is a degree of

freedom that can be used for minimizing the dissipated power. So, the search space is even larger in this case, having (64!

* 56
8C) possible solutions.

To solve this large non-linear optimization problem, we applied simulated annealing [15] to find a (local) optimum of the

cost function.

5. Experimental Methodology

We ran experiments on 5 sample programs from the Spec 1995 and 2000 architecture benchmark suites: compress,

perl, go, gcc and anagram, and 5 benchmarks from the MediaBench multimedia benchmark suite [16]: decode,

encode, epic, cjpeg and rawcaudio. We used the architecture tool SimpleScalar [17] to simulate a 64-bit architecture,

and for each program all the memory read and write accesses were recorded. These memory traces are the inputs to the

“ Generate Pariy Bits” block of the ECC checker circuit, which generates 8 parity-check bits corresponding to each 64 bit-

wide memory word.

 During estimation of the cost of each solution in the SA and the GA algorithms, the circuit corresponding to each H-

matrix was synthesized by multiple-output logic minimization with 2-input XOR gates as basic components using sis [18].

For each benchmark, the best input permutation and H-matrix was obtained for both the Hsiao code and the Hamming

code. The SA algorithm was initialized from a random solution, and the temperature was increased until the system

“ melted” [19]. Subsequently, the temperature was reduced in a Cauchy schedule and annealing was performed till

convergence or for 500 time-steps, whichever occured earlier. The GA algorithm was run with the following parameters:

size of population K = 250, number of elites E = 5, number of mutant children M = 50, number of filtered unfit parents =

bottom 100, number of generations G = 200. The GA parameters were chosen after performing pilot studies of the

sensitivity of the results to the algorithm parameters for a representative benchmark, details of which are analyzed in Sec.

8.

 For both SA and GA, the performance of the final best solution of minimum cost was compared to 100 random

solutions. For Hamming code, this corresponded to 100 random input orderings of the standard form Hamming code,

whereas for the Hsiao code this corresponded to 100 random minimum odd-weight-column H-matrices having a random

input ordering. These random solutions emulate the convention design procedure that arbitrarily selects a code with

minimum area and delay, but with no consideration of power.

The combined cost function was used in the experiments so that circuit size, delay and power were simultaneously

minimized. Power was estimated by the number of transitions in the outputs of the XOR gates of the checker circuit (this

corresponds to the dynamic power, leakage power was not considered), size of the circuit by the number of XOR gates in

it, and maximum circuit delay by the maximum level among the XOR networks implementing each parity equation. Note

that it was assumed that the inputs to the checker are synchronized coming from a register and glitch power was not

considered. Hsiao and Hamming codes were studied as the two underlying SEC-DED codes of the ECC checker.

6. Discussion of Results

In this section we discuss the different experiments that were performed and their results.

6.1 Benchmark Characteristics

 Figure 3 shows the characteristics of the 4 representative benchmarks from the set of 10 that we have considered, two

each from Spec and MediaBench. The plots on the left show the signal probabilities in the columns of the memory trace

matrix of the benchmark programs, sorted in increasing order. To generate each graph, the signal probability (i.e.,

probability of 1’ s) is computed for every column, and then the columns are sorted in increasing order of signal probability

from left to right in the plot. For perfectly random inputs, each column in the input trace matrix would have 0.5 fraction

of 1’ s, since 1’ s and 0’ s would be equally probable. The skewness of this distribution demonstrates that there is an uneven

distribution of the number of 1’ s in different columns of the input memory trace matrix. The power optimization

algorithms exploit this during re-ordering.

The plots on the right in Figure 3 are histograms that show the pairwise correlations between the columns. The

histograms were constructed as follows: for each pair of columns in the input memory trace, we counted how many

transitions between 1 and 0 (and vice versa) would occur if we placed an XOR gate between the two columns. The

histogram counts how many column pairs have their fraction of transitions in each bin range. If any two columns in the

input trace matrix were independent, then the proportion of transitions would be 0.5 x 0.5 = 0.25. The corresponding

histogram would have all the frequency concentrated at the 0.25 bin. In this case, the distribution of histogram frequencies

in multiple bins for different benchmarks, ranging from 0.04 to 0.34, demonstrates that there is significant useful

correlation between the input columns, which is useful for power optimization.

Figure 3. Bit-wise profiles and pair-wise histograms for representative benchmarks

6.2 Comparison of GA and SA

 For both GA and SA, the number of transitions in the ECC checker circuit corresponding to the best solutions was

compared with the average (of 100) random number of transitions and the worst (out of 100) random number of

transitions. As can be seen from the results in Table 1, GA gave 12% to 27% power reduction on the different benchmarks

with respect to the average random transitions, and 14% to 34% reduction with respect to the worst-case random

transitions. For this experiment, GA has much better performance than SA, which gave 1% to 14% power reduction with

respect to average random, and 2% to 22% improvement compared to worst-case random. One possible reason for the

better performance of GA over SA in this case could be that for Hsiao codes, the total power in the circuit is a highly non-

linear and discontinuous function of the input ordering and choice of H-matrix. Due to this, the gradient may not be well

defined at every point on the cost function. So SA, which essentially performs a non-greedy gradient descent, does not

perform very well. In comparison, GA’ s are known to perform well for cost functions with such characteristics. Moreover,

the best E solutions found at every step of GA (E =5 in our experiments) are deterministically remembered by using

elitism, which is an added advantage of GA over SA in this case.

In general, the results show that power savings in GA increase with increasing size of the benchmark traces. A

possible reason for this could be that the inputs get more correlated as the size of the benchmark traces increases, thereby

giving more scope to the GA algorithm to perform better optimization.

Table 1. Results of GA and SA on Hsiao code with overall cost function

6.3 Ablation Experiments

 To study the effectiveness of the combined cost function to reduce power, area and delay, we ran ablation experiments

on the (72,64) Hsiao code where we individually considered only the power, circuit size, and circuit delay components of

the GA cost function. The results of these experiments are shown in Table 2. Note that in each individual optimization,

we obtain values that are generally better than the corresponding values obtained using the overall cost. For example, for

the benchmark program encode, the overall cost minimization gave power savings of 14%, a circuit size of 172 gates and

the maximum number of levels to the output was 7. In comparison, individual minimizations of power, circuit size and

maximum number of levels gave 15% power savings, 171 gates and 6 maximum number of levels respectively, which are

individually better than their corresponding results for the combined cost function. However, when one component in the

cost function is individually minimized, the other two components can have highly non-optimal values since the cost

function does not consider them at all during the optimization process (as shown by the negative power savings, i.e.,

increase in power dissipated with respect to random, in many cases, if only delay is minimized). The overall cost function

gives a good tradeoff between minimization of power and satisfaction of the other design requirements. Note that the

weights of the 3 components of the cost function gives the designer the flexibility to incorporate specific design choices,

e.g., more importance to power minimization over circuit size or delay minimization.

An interesting observation in the ablation study is that for compress and go, the power reduction for the combined

cost function is better than the power reduction for individual power minimization. This apparently seems like an

anomaly, but it can be explained as follows. Since power is a highly non-linear function of the input permutation and the

choice of H-matrix, there are many local minima in this function. The reduction of only the power component limits the

search of the GA, and can cause the GA to sometimes get stuck in local minima. In these cases, using the combined cost

function can help the optimization algorithm to get out of such local minima and get to a better optimum, as we see in the

case of the compress and go benchmarks. So, apart from finding a good overall minimum of the various design

components (power, circuit size, maximum delay), using the combined objective function also facilitates the GA algorithm

to get do a better exploration of the search space, which enables it to avoid bad local minima more effectively in some

cases.

Table 2. Results of GA on Hsiao code with individual cost functions

6.4 Performance on Hamming Code

 In the next set of experiments, we ran the GA algorithm on the (72,64) standard Hamming code, for each of the

benchmark circuits. Table 3 shows the power savings on the Hamming code, which are between 5% and 41% for the

different benchmark circuits, are better than the corresponding power savings for the Hsiao code in most cases. One

possible explanation for that is that the Hsiao code is well optimized in terms of balance of gates between the different

parity circuits. In comparison, Hamming codes have a large skew in the number of XOR gates in different parity

equations, which can be exploited by the optimization algorithm more effectively. Moreover the standard Hamming code

typically produced larger circuits when synthesized, which also gave the GA algorithm a larger search space where it

could produce solutions significantly better than random.

Table 3. Results of GA on Hamming code with overall cost function

7. Sensitivity of Solution to Algorithm Parameters

In order to study the sensitivity of the GA solution to different values of the algorithm parameters, we varied each

parameter while keeping the other parameters fixed. Table 4 shows the results of these experiments on a sample Spec

benchmark circuit compress. We successively varied the number of generations, the size of the population, the number of

elites and the number of mutants, each time keeping the other parameters fixed. From this pilot study, we selected the

values of the parameters that were used in the other experiments. This study also shows the sensitivity of the GA solution

to the different parameters of the algorithm. For example, the GA solution converges to the best value after a particular

number of times steps, is not very sensitive to the number of elites, works best with an optimum size of the population and

number of mutants, etc.

For SA, varying the number of time steps gave increasing power savings with respect to the average random solution,

and the SA solution reached convergence near 500 time steps for the benchmark compress. So we used 500 as the

maximum number of time steps for the other benchmarks.

Table 4. Variance of GA power reduction with different parameter values, for representative Spec benchmark compress

Table 5. Variance of SA power reduction with different parameter values, for representative Spec benchmark compress

8. Conclusions

Overall, our experiments demonstrate that there is significant correlation among memory traces for the benchmark

applications we studied, and that optimizing the input permutation and the design of the H-matrix of the memory ECC

checker using GA with a combined cost function gives us significant power reduction, while simultaneously minimizing

the overall size of the circuit and the circuit delay. Note that both SA and GA are relatively slow optimization procedures,

but the optimization is performed offline and it is the optimized H-matrix that is deployed in the online error correction

phase. So, speed of the optimization algorithm is not a major issue for the problem we are studying, implying that more

sophisticated search or optimization techniques could be employed if necessary.

 An area for future work is to extend the technique described here to handle memory ECC for the ChipKill server

architecture [20] and for other error-correcting codes, e.g., Reed-Solomon codes, Fire codes, etc. For some of these codes,

the proposed scheme will have be modified to handle certain characteristics of the codes, e.g., for byte error-correcting

codes, b-byte column groups of the H-matrix would have to be permuted instead of the columns being permuted directly.

However, it would be relatively straightforward to frame the problem of finding the “ best” H-matrix in these cases as an

optimization problem, which can be solved by simulated annealing (SA) or genetic algorithms (GA).

 Another interesting area of future research is the study of how the presence of caches would affect the correlation in

the data input to the ECC memory, and whether there is any systematic pattern there that can be exploited by the

optimization algorithms.

Note that our method considers only dynamic power and does not factor in glitch and leakage power. Leakage power is

becoming an increasingly important factor as technology is scaling down and future work is needed to address it.

Acknowledgements

This research was supported in part by the Hewlett-Packard Corporation, and in part by the National Science

Foundation under Grant No. CCR-0306238.

References

[1] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi. Modeling the Effect of Technology Trends on the Soft Error

Rate of Combinational Logic. Proceedings of the International Conference on Dependable Systems and Networks, pp. 389 – 398,

(2002)

[2] C. L. Chen, and M.Y. Hsiao. Error-Correcting Codes for Semiconductor Memory Applications: A State-of-the-Art Review. IBM J.

of Res. and Develop., vol. 28, no. 2, pp. 124-134 (1984)

[3] K. Gray. Adding Error-Correcting Circuitry to ASIC Memory. IEEE Spectrum, pp. 55-60 (2000)

[4] K. Favalli, and C. Metra. Design of Low-Power CMOS Two-Rail Checkers. Journal of Microelectronics Systems Integration, vol. 5,

no. 2, pp. 101-110 (1997)

[5] K. Mohanram, and N.A. Touba. Input Ordering in Concurrent Checkers to Reduce Power Consumption. Proc. of IEEE Symposium

on Defect and Fault Tolerance, pp. 87-95 (2002)

[6] D. Rossi, V.E.S. van Dijk, R.P Kleihorst, A.K. Nieuwland, and C. Metra. Coding Scheme for Low Energy Consumption Fault-

Tolerant Bus. Proc. of International On-Line Testing Workshop, pp. 8-12 (2002)

[7] D. Rossi, V.E.S. van Dijk, R.P Kleihorst, A.K. Nieuwland, and C. Metra. Power Consumption of Fault Tolerant Codes: the Active

Elements. Proc. of International On-Line Testing Symposium, pp. 61-67 (2003)

[8] R. Kleihorst, and N. Benschop. Fault Tolerant ICs by Area-Optimized Error Correction Codes. Proc. of International On-Line

Testing Workshop, pp. 143 (2001)

[9] R.W. Hamming. Error Detecting and Error Correcting Codes. Bell System Tech. J., 29, 147 (1950)

[10] M.Y. Hsiao. A Class of Optimal Minimum Odd-weight-column SEC-DED Codes. IBM J. of Res. and Develop., vol. 14, no. 4, pp.

395-401 (1970)

[11] S. Ghosh, S. Basu and N.A. Touba. Reducing Power Consumption in Memory ECC Checkers. Proc. of the International Test

Conference, pp. 1322-1331 (2004)

[12] M. Stephenson, J. Babb, and S.P. Amarasinghe. Bidwidth analysis with application to silicon compilation. PLDI, pp. 108-120

(2000)

[13] Xilinx Applications Note: CoolRunner-II CPLD. Single Error Correction and Double Error Detection (SECDED) with

CoolRunner-II CPLDs. XAPP383 (v1.1) (August 1, 2003)

[14] J.H. Holland. Adaption in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, USA (1975)

[15] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi Jr. Optimization by Simulated Annealing. Science, pp. 671-680 (May 1983)

[16] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBench: A Tool for Evaluating Multimedia and Communications Systems.

Proc. Of Micro 30 (1997)

[17] D. Burger, T.M. Austin, and S. Bennett. Evaluating Future Microprocessors: the SimpleScalar Tool Set, TR-1308, Univ. of

Wisconsin-Madison, CS Dept. (1996)

[18] E. M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, P.R. Stephan, R.K. Brayton, and A.L.

Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis. Technical Report Memorandum No. UCB/ERL M92/41,

University of California, Berkeley (1992)

[19] H. Szu, and R. Hartley. Fast Simulated Annealing. Physics Letters A, vol. 122, no. 3,4, pp. 157 – 162 (1987)

[20] T.J. Dell. A White Paper on the Benefits of Chipkill-Correct ECC for PC Server Main Memory. IBM Microelectronics Division

(1997)

Generate Parity Bits

Generate Syndrome

Correct
Data

mem_data [71:0]
mem_data_int [63:0]

u_data [63:0] &
gen_parity [7:0]

rw_n

rw_n

rw_n

syndrome [7:0]

parity_mem_data [7:0]

u_data [63:0]

gen_parity [7:0]

Error
Detection

error_out [1:0]

mem_data_int [63:0] &
parity_mem_data [7:0]

Generate Parity Bits

Generate Syndrome

Correct
Data

mem_data [71:0]
mem_data_int [63:0]

u_data [63:0] &
gen_parity [7:0]

rw_n

rw_n

rw_n

syndrome [7:0]

parity_mem_data [7:0]

u_data [63:0]

gen_parity [7:0]

Error
Detection

error_out [1:0]

mem_data_int [63:0] &
parity_mem_data [7:0]

Figure 1. SEC-DEC Block Diagram (modified from [13])

Figure 2. Outline of Genetic Algorithm

Input: Initial population of K random genes, the number of elites E, the number mutant children M, the number of unfit
parents U, the number of generations G

Output: gene with maximum fitness (minimum cost)
Algorithm:
1. for i = 1 to G
2. Sort the K parent genes in decreasing order of fitness (increasing order of their cost)
3. Copy the top E elite parents into the next generation
4. Create M children by direct mutation of the E elites
5. Reject bottom U parent genes as unfit
6. Create remaining K-E-M children by crossover between any 2 parents that are not elites and not unfit
7. Return elite with maximum fitness (minimum cost)

encode - Bitwise Profile

0

0.1

0.2

0.3

0.4

1 7 13 19 25 31 37 43 49 55 61

Sorted Columns

S
ig

na
l p

ro
ba

bi
lit

y

encode - Pairwise Histogram

0

500

1000

1500

0.12 0.16 0.2 0.24 0.28 0.32

Probability of XOR transitions

C

ol
um

n
pa

ir
s

epic - Bitw ise profile

0
0.1
0.2
0.3
0.4
0.5

1 7 13 19 25 31 37 43 49 55 61

Sorted Columns

S
ig

na
l p

ro
ba

bi
lit

y
epic - Pairw ise Histogram

0
200
400
600
800

1000

0.04 0.08 0.12 0.16 0.2 0.24 0.28

Probability of XOR transitions

C

ol
um

n
pa

ir
s

gcc - Bitwise Proflie

0

0.05

0.1

0.15
0.2

0.25

1 7 13 19 25 31 37 43 49 55 61

Sorted Columns

S
ig

na
l p

ro
ba

bi
lit

y

gcc - Pairwise Histogram

0
100
200
300
400
500
600
700

0.06 0.1 0.14 0.18 0.22 0.26

Probability of XOR transitions

C

ol
um

n
pa

ir
s

go - Bitw ise Proflie

0

0.05

0.1

0.15
0.2

0.25

1 7 13 19 25 31 37 43 49 55 61

Sorted Columns

S
ig

na
l P

ro
ba

bi
lit

y

go - Pairwise Histogram

0

200

400

600

800

0.1 0.14 0.18 0.22 0.26 0.3 0.34

Probability of XOR transitions

C

ol
um

n
pa

ir
s

Figure 3. Bit-wise profiles and pair-wise histograms for representative benchmarks

Table 1. Results of GA and SA on Hsiao code with overall cost function

Benchmark Details
Number of transitions for

Random Solution

Number of transitions for

Optimized Solution
SA power reduction GA power reduction

Name
Memory

trace size

Average

Worst SA GA

w.r.t

Average

Random

w.r.t

Worst

Random

w.r.t

Average

Random

w.r.t

Worst

Random

gcc 187089 6760149 7353330 6414782 5042942 5.1% 12.8% 25.4% 31.4%

go 118897 5449560 5852080 5156709 4253540 5.4% 11.9% 22.0% 27.3%

anagram 94041 4953000 5097104 4589887 4358206 7.3% 10.0% 12.0% 14.5%

compress 72193 1518005 1622810 1383552 1222844 8.9% 14.7% 19.4% 24.7%

perl 27657 1186947 1228706 1159770 1014818 2.3% 5.6% 14.5% 17.4%

epic 470633 17111347 18898620 14700707 12445636 14.1% 22.2% 27.3% 34.2%

cjpeg 18273 935956 975516 920797 759018 1.6% 5.6% 18.9% 22.2%

encode 7569 399527 417434 394907 329548 1.2% 2.3% 17.5% 21.1%

decode 4745 237972 251488 234402 195610 1.5% 6.8% 17.8% 22.2%

rawc-audio 2233 141921 147616 121390 118396 14.5% 17.8% 15.6% 19.8%

Table 2. Results of GA on Hsiao code with individual cost functions

Minimize power only Minimize delay only Minimize circuit size only
Minimize combined cost

function Benchmark

Name Power

reduction

Ckt.

size

Max

levels

Power

reduction

Ckt.

size

Max

levels

Power

reduction

Ckt.

size

Max

levels

Power

reduction

Ckt.

size

Max

levels

gcc 27.5% 172 7 -4.0% 172 7 0.9% 171 8 25.4% 171 7

go 19.8% 172 8 -1.9% 173 7 4.6% 171 8 21.9% 172 7

anagram 14.1% 172 8 1.9% 172 7 1.7% 171 7 12.0% 174 7

compress 18.6% 174 7 3.3% 174 7 1.0% 171 7 19.4% 175 7

perl 14.6% 172 7 0.4% 173 7 2.7% 171 8 14.6% 172 7

epic 30.5% 172 8 -1.2% 172 7 3.3% 171 7 27.3% 173 7

cjpeg 18.1% 172 8 -1.4% 172 7 1.7% 171 8 18.1% 172 8

encode 15.2% 173 7 -2.7% 173 6 4.2% 171 7 14.2% 172 7

decode 18.1% 172 7 -1.4% 173 6 2.5% 171 8 17.8% 171 7

rawcaudio 17.7% 173 7 1.4% 173 7 3.7% 170 7 15.6% 172 7

Table 3. Results of GA on Hamming code with overall cost function

Benchmark

Name

Average random

solution

#transition

GA solution

#transition

Hamming code

power reduction

gcc 5793700 3408358 41.2%

go 4663511 2764384 40.7%

anagram 4120663 2810202 31.8%

compress 1161115 1097838 5.4%

perl 983159 710168 27.8%

epic 14792749 8628410 41.7%

cjpeg 783432 543062 30.7%

encode 336843 223354 33.7%

decode 201138 127272 36.7%

rawcaudio 120058 79654 33.6%

Table 4. Variance of GA power reduction with different parameter values, for representative Spec benchmark compress

Parameter Values of the parameter Circuit Size
Number

of levels

GA power reduction

with respect to

Average Random (%)

Number of Generations = 50 174 7 16.9

Number of Generations = 100 174 7 19.3

Number of Generations = 150 174 7 19.3

Number of

Generations

Number of Generations = 200 175 7 19.4

Number of Elites = 3 174 7 19.3

Number of Elites = 5 175 7 19.4

Number of Elites = 7 175 7 19.4
Number of Elites

Number of Elites = 9 175 7 19.5

Size of Population = 50 174 7 16.8

Size of Population = 150 174 7 17.4

Size of Population = 250 175 7 19.4

Size of

Population

Size of Population = 350 175 7 19.3

Number of Mutants = 10 174 7 16.4

Number of Mutants = 50 175 7 19.4

Number of Mutants = 75 175 7 18.6

Number of

Mutants

Number of Mutants = 100 174 7 18.6

Table 5. Variance of SA power reduction with different parameter values, for representative Spec benchmark compress

Parameter Values of the parameter Circuit Size
Number

of levels

SA power reduction

with respect to

Average Random (%)

Number of time steps = 100 174 8 7.7

Number of time steps = 200 173 8 8.1

Number of time steps = 300 172 8 8.7

Number of time steps = 400 173 8 8.8

Number of time steps = 500 173 7 8.9

Number of

time steps

Number of time steps = 600 174 7 8.9

