
Journal of Systems Architecture 50 (2004) 247–256

www.elsevier.com/locate/sysarc
Matrix-based software test data decompression
for systems-on-a-chip

Kedarnath Balakrishnan, Nur A. Touba *

Computer Engineering Research Center, Department of Electrical and Computer Engineering, Engineering Science Building,

University of Texas at Austin, Austin, TX 78712-1084, USA
Abstract

This paper describes a new compression/decompression methodology for using an embedded processor to test the

other components of a system-on-a-chip (SoC). The deterministic test vectors for each core are compressed using

matrix-based operations that significantly reduce the amount of test data that needs to be stored on the tester. The

compressed data is transferred from the tester to the processor�s on-chip memory. The processor executes a program

which decompresses the data and applies it to the scan chains of each core-under-test. The matrix-based operations that

are used to decompress the test vectors can be performed very efficiently by the embedded processor thereby allowing

the decompression program to be very fast and provide high throughput of the test data to minimize test time.

Experimental results demonstrate that the proposed approach provides greater compression than previous methods.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Systems-on-a-chip (SoCs) have become ubiqui-

tous nowadays because of the advances in design

technology that make it possible to build complete

systems containing different types of components

(called cores) on the same chip. Typically, these
cores are pre-designed and pre-verified by their

vendors and the SoC designer has to just integrate

them in the system. Each core typically comes with

its own set of test patterns and hence the SoC on

the whole ends up with a large set of test vectors.

This translates into two major issues that affect the
* Corresponding author. Tel.: +1-512-232-1456; fax: +1-512-

471-5532.

E-mail addresses: kjbala@ece.utexas.edu (K. Balakrishnan),

touba@ece.utexas.edu (N.A. Touba).

1383-7621/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/j.sysarc.2003.08.007
testing of such SoCs. First, there is an increase in

tester memory requirements since the entire set of

test patterns for all the cores need to be stored on

the tester and transferred to the chip during test-

ing. Next, it results in longer test application times

since the time required to test a chip depends on

the amount of test data that needs to be trans-
ferred and the bandwidth of the channel connect-

ing the tester to the chip.

These problems result in higher test costs since

the cost of automated test equipment (ATE) scale

rapidly with memory requirements. Built-in-self-

test (BIST) has been employed elsewhere to reduce

dependency on expensive ATEs. But it may not

be applicable in such scenarios since it requires
the core-under-test to be BIST-able. This would

also require a lot more information about the

cores, which may not be possible if the cores are
ed.

mail to: kjbala@ece.utexas.edu

248 K. Balakrishnan, N.A. Touba / Journal of Systems Architecture 50 (2004) 247–256
intellectual property (IP) cores. For cores that do

not come with their own BIST structure, it will be

difficult to generate patterns on-chip in a cost-

effective manner. The test patterns of such cores

that come with functional tests or automatic test

pattern generator (ATPG) generated tests are of-
ten irregular in structure and cannot be generated

on-chip at acceptable area costs.

Test data reduction by compressing the test

vectors is another possible solution to this prob-

lem. The compressed data is stored on the tester

and transferred to the SoC where an on-chip de-

compressor decompresses the test data and applies

it to the appropriate core. The decompression can
be done in hardware using a dedicated decom-

pressing circuit or in software by an embedded

processor. In software decompression, a decom-

pression program is transferred to an on-chip

memory along with the compressed test data. The

embedded processor then executes this program,

which decompresses the test vectors and applies it

to the core-under-test.
A number of test data reduction techniques

have been proposed in the literature. Most use

special decompression hardware on the chip

[2,3,9,10,12,16]. In this paper, we focus on soft-

ware-based test data compression techniques that

are applicable to deterministic test vectors since

the test vectors for a core in a SoC are usually pre-

computed by the vendor.
Techniques for using embedded processors to

perform memory tests have been proposed in

[14,17], while using the processor for generating

patterns and compacting test responses in pseudo-

random built-in-self-test (BIST) have been pro-

posed in [4,5,8,15,18–20]. Software techniques

based on a combination of the Burrows–Wheeler

transformation and modified run length encoding
have been proposed in [7] and [21] to reduce the

time needed to download the test patterns across a

network to the tester. However, these techniques

are not suited for on-chip decompression since the

decompression process is complex and time con-

suming. Decompression schemes that can be

implemented using an embedded processor have

been proposed in [11,13]. In [13], encoding is done
on optimally reordered test vectors based on geo-

metric shapes. The software decompression algo-
rithm required to get back the original test vectors

by this method is very complex and is a limitation

of the approach. In [11], each test vector is divided

into blocks and only those blocks that are different

from the preceding vector are stored. Test vectors

are then constructed on the fly by a program
running on the embedded processor and sent to

the appropriate core.

In this paper, we present an efficient compres-

sion/decompression scheme for deterministic test

vectors with unspecified bits based on matrix

operations. The decompression algorithm is much

simpler than earlier methods and an embedded

processor present in the SoC can efficiently im-
plement it with relatively fewer processor instruc-

tions. Note that we assume that the processor itself

has been tested prior to its use by self-test or other

means and the proposed technique is applicable to

test all the other cores in the SoC.

The organization of this paper is as follows. The

proposed compression scheme is described in

Section 2. The decompression architecture and
algorithm is discussed in Section 3. An analysis of

the decompression time and buffer size is given in

Section 4. Experimental results on benchmark

circuits are presented in Section 5. Conclusions are

given in Section 6.
2. Proposed scheme

The proposed scheme is based on the decom-

position of a matrix into two vectors based on a

relation that we define below. The operation A e�B
between two boolean vectors A ¼½a1; a2; a3; . . . ; an�
and B ¼ ½b1; b2; b3; . . . ; bn� where ai; bi 2 f0; 1g is

defined as shown in Fig. 1. Note that this is very

similar to matrix multiplication except that the
elements in the product matrix are defined differ-

ently (ai � bi instead of ai � bi). This helps increase
the chances of decomposition since the XOR

operation puts less constraints on the inputs than

AND by making the equations linear.

In this way, an n� n matrix can be represented

with the two vectors A and B and the operation

A e�B. This decomposition can be realized by
solving a simultaneous set of equations in the

variables ai, bi. The set of equations is represented

Fig. 2. Set of linear equations for the decomposition.

Fig. 3. Formation of matrix M with n ¼ 4.

Fig. 1. Matrix operation A e�B.

K. Balakrishnan, N.A. Touba / Journal of Systems Architecture 50 (2004) 247–256 249
in the matrix format (Ax ¼ b) as shown in Fig. 2.
If and only if a solution of this set of equation

exists, the given matrix can be decomposed.

We propose a compression scheme for test

vectors based on the above decomposition. This

involves writing n2 bits of the test vector as an

n� n matrix M . The matrix M is then decom-

posed by solving the set of linear equations. Al-

though the decomposition in not always possible,
the unspecified bits in the test vectors increase the

chances of decomposition. This is because only

equations for the specified bits of the test vector

need to be satisfied. The more unspecified bits

there are, the fewer the number of equations and

hence less constraints on the variables. If the ma-

trix is not decomposable, then the next few bits of

the test vector are stored as is (uncompressed) and
the algorithm proceeds with the next set of bits.

Hence at least one bit is required at the beginning

of each set of compressed bits to indicate whether

the bits are compressed or not compressed. Several

different heuristics can be applied to form the

matrix M that needs to be decomposed from the

given set of test vectors. They vary according to

the complexity of the decompressing process.
Three are discussed below.

2.1. Single size decomposition

This is the simplest method to form the matrix

M and also the easiest to decode. The first n2 bits
of the test vector are written as an n� n matrix

with the first n bits being the first row of the matrix

and the next n bits the next row and so on and so

forth as illustrated in Fig. 3.

The choice of the size of the matrix (i.e., n)
would depend on the word size of the processor. If
the matrix M thus formed cannot be decomposed

for the next n2 bits of the test vector, we store the

first n bits as they are (i.e. uncompressed) and then

proceed with the algorithm for the next n2 bits

after that. Hence we need one bit at the start of

every set of bits to indicate whether the bits are

compressed or not. In this method each test vector

is compressed separately and hence the ordering of
the test vectors will not make a difference in the

compression obtained.

2.2. Multiple size decomposition

A simple optimization of the method in Section

2.1 would be to try to form the matrix M with

multiple sizes. The largest size is tried first since
that gives the maximum compression. If the matrix

for the largest size is not decomposable, then the

next size is tried and so on. If none of the different

sizes of the matrix are decomposable, then the next

set of m bits are left uncompressed and the algo-

rithm is tried on the successive bits of the test

vector. If the number of different sizes is k, then
dlog2 ðk þ 1Þe additional bits are needed to encode
the k þ 1 cases that can occur indicating whether

the succeeding bits have been compressed by any

of the different sizes or they are left uncompressed.

2.3. Multiple vector decomposition

The matrix M can also be formed from multiple

test vectors as illustrated in Fig. 4. In this case,
each row of the matrix would correspond to a

Fig. 4. Formation of matrix M using MVD.

250 K. Balakrishnan, N.A. Touba / Journal of Systems Architecture 50 (2004) 247–256
different test vector. This is a better alternative

than the earlier ones since the test vectors can be
ordered in an optimal way such that the chances of

decomposition of the matrix are increased. A

limiting factor of this method is that the decoding

is more complex and the partial test vectors con-

structed after decoding each matrix cannot be

directly applied to the core-under-test until a suf-

ficient number of matrices have been decoded to

get the complete test vector.
The amount of compression obtained in this

scheme depends on the ordering of the test vectors.

Since it is impractical to examine all possible

orderings (a set of n test vectors has n! different
ways of ordering), we have used a greedy reor-

dering heuristic referred to as the hill climbing

approach in our experiments. In the hill climbing

approach, initially the given order of test vectors is
used to calculate the compression. The positions of

two vectors are then randomly exchanged and the
Fig. 5. Example of te
new compression calculated. If the compression is

better, the new order is saved; else, the old order

is maintained. This process is continued until no

better compression is obtained for a specific

number of exchanges. Since this procedure is done

during the compression process, it does not affect
the decompression procedure in any way.
3. Decompression using an embedded processor

An embedded processor present in the SoC can

be used to efficiently decompress the compressed
data and send it to the core-under-test (CUT).

This is illustrated in Fig. 5. An external tester

supplies the compressed data while a simple soft-

ware program running on the embedded processor

decodes the test data. The tester loads the test data

into a specific set of addresses of the system

memory through the memory I/O controller. The

tester also writes to a given location to indicate the
end of the current test vector. The processor reads

the data from the corresponding locations in

memory and decompresses it accordingly.

Depending on the number of scan chains in the

core, the processor either sends the data directly to

the core or stores it back to memory so that it can

apply the data to the core when it has a sufficient

amount of decompressed test data. If the end of
st architecture.

K. Balakrishnan, N.A. Touba / Journal of Systems Architecture 50 (2004) 247–256 251
the test vector is reached, it sends an instruction to

apply a capture cycle to capture the response into

the scan chain. The response is shifted out into a

multi-input shift register (MISR) for compaction

as the next test vector is shifted into the core.

Fig. 6 shows the pseudo-code of the test proce-
dure for the multiple size decomposition (MSD)

heuristic when three different sizes (n1; n2; n3) are

used. In this case, the first two bits denote which of

the four cases apply to the next set of bits. Hence,

we first check them and proceed accordingly. The

macro Apply writes the test vector to the appro-

priate core. It will depend on the number of scan

chains in the core and the width of the bus con-
necting the processor to the core. The macro will

exit after receiving a signal that the decompressed

vectors have been scanned into the core and the

program proceeds to decompress the next set of
Fig. 6. Pseudo-code of decompression algorithm for MSD

scheme.
bits. After each test vector is decompressed and

sent to the scan chains, a capture signal is given to

the core-under-test by the macro Capture.

The implementation of decompression algo-

rithm can be made more efficient by appropriately

choosing the matrix sizes according to the word
size of the embedded processor. For single size

decomposition (SSD), the matrix size, s, should be

such that sþ 1 is equal to the word size of the

processor. This is because we store either 2sþ 1

bits (if matrix can be decomposed) or sþ 1 bits (if

matrix cannot be decomposed). In the case of

MSD, the three different sizes, s1, s2, s3 and the

number of bits left uncompressed, m, should be
such that 2s1 þ 2, 2s2 þ 2, 2s3 þ 2, and mþ 2 are

multiples of the word size of the processor. This

would minimize the number of reads from the

system memory (since each set of bits will be at

word boundaries) and hence reduce the decom-

pression time.
4. Analysis

The number of cycles that the decompression

program runs, n, can be determined by studying

the time complexity of the different schemes. For

example, in the SSD heuristic, this time will de-

pend on the number of solvable and unsolvable

matrix decompositions during compression. If the

number of solvable and unsolvable decomposi-
tions are ns and nu respectively, then the number of

cycles will be

n ¼ nsc1 þ nssc2 þ nuc3 þ c4

where s is the size of the matrix and c1, c2, c3, and
c4 are constants depending on the instruction set.

These constants are essentially the number of cy-
cles it takes for the processor to read from the

memory, perform XOR operations and to write to

the core-under-test. We performed simulations

on the ISCAS 89 [1] benchmark circuits to mea-

sure the number of cycles required for decom-

pression. The decompression program for the SSD

with size s ¼ 7 was written in �C� language and

implemented on the ARM7 architecture. The
SimpleScalar toolset was then used to run the

252 K. Balakrishnan, N.A. Touba / Journal of Systems Architecture 50 (2004) 247–256
program and estimate the number of processor

clock cycles. Table 1 shows the number of solvable

and unsolvable decompositions and the number of

clock cycles obtained by simulation for the ISCAS

89 benchmark circuits. The values for the con-
stants c1, c2, c3, and c4 can be calculated for the

ARM7 from the simulated results. A similar

analysis can be done for the other two heuristics to

get the time complexity of the proposed schemes.

In general, the rate at which the tester transfers

test data to the SoC will be different from the rate

at which the embedded processor processes the

compressed test data. The former depends on the
tester clock cycle and the number of channels from

the tester to SoC, while the latter depends on the

operating frequency of the processor and its

instruction set architecture. Two potential prob-

lems could arise because of this discrepancy. If the

processor is able to process the written data before

the tester loads new data into the memory loca-

tion, it has to wait until the tester writes new data
into the location. The second problem arises if the

tester overwrites new data to a memory location

before the processor is able to process the old data

in it. These problems can be taken care of by

inserting NOPs at appropriate places into the

decompression program or the tester program to

slow it, but this solution will result in an increase

in the test time. Alternatively, by choosing the size
of the buffer (set of memory locations where the

tester writes the data in a cyclic fashion) and the

start time for the processor appropriately, it may

be possible to circumvent this problem. In this

case, there is no need for synchronization between

the tester and the processor––the tester keeps on

writing to the buffer at its own speed while the

processor keeps on decompressing data at its own
Table 1

Simulated values for the number of cycles

Circuit No. of

solvable

No. of

unsolvable

Number of

cycles

s5378 437 769 24013

s9234 583 1204 29373

s13207 3232 1580 99430

s15850 1264 1475 47870

s38417 2350 4523 84569

s38584 3140 4185 104433
rate. The analysis for calculating the buffer size for

the SSD is given below.

The number of cycles the processor takes to

process each compressed and each uncompressed

word can be determined through simulation. For

the ARM7 processor, the number of cycles were 4
for each uncompressed word and 26 for each

compressed set (two words) when the matrix size

was equal to 7. This means if the current word is

an uncompressed word, the processor will access

the next word after 4 cycles or if the current word

is a compressed word, the processor will access the

word subsequent to the next word after 26 cycles

(since it uses two words together if they are com-
pressed). Using this and the trace of compressed/

uncompressed words, the cycles in which the pro-

cessor will access the buffer can be determined. If

each word in buffer is guaranteed to be valid when

the processor accesses it, then there is no need for

explicit synchronization. Each word will be valid

during the time interval between end of the pre-

vious loading of the tester and start of the next
loading of the tester. This time interval will depend

on the buffer size and the data transfer rate of

tester. The minimum buffer size for which each

accessed word is valid (with an appropriate start

time for the processor) can be calculated for dif-

ferent tester data transfer rates.

Table 2 shows the buffer sizes required for each

of the ISCAS 89 benchmark circuits for different
tester speeds with 7 as the size of the matrix for

decomposition. The column labeled ‘‘total data’’ is

the total number of bytes in the compressed set.

This is shown to compare the required buffer sizes

with the total amount of memory required to store

the entire compressed test set. The other columns

show the size of the buffer (in bytes) required so

that no synchronization is needed between tester
and processor. The tester data transfer rate of 0.5

means the tester transfers 0.5 bits per processor

clock cycle (i.e., 1 bit every 2 processor clock cy-

cles). The tester transfer rate depends on the tester

clock speed and the number of channels. Note

from the results in Table 2 that the buffer size first

decreases with an increase in tester rate and then

increases again. If the tester is too slow, a larger
buffer is required and the tester needs to start

writing much earlier than the processor can start

Table 2

Buffer sizes for different data transfer rates of the tester

Circuit Total data Tester data transfer rate (bits per processor clock cycle)

0.5 0.75 0.875 1.0 1.25

s5378 1643 743 298 237 340 834

s9234 2370 1124 485 367 390 1019

s13207 8044 2399 1440 2347 3505 7122

s15850 4033 1583 579 724 1112 2503

s38417 9223 4276 1718 1266 1489 4164

s38584 10465 4319 1766 1969 3069 6546

K. Balakrishnan, N.A. Touba / Journal of Systems Architecture 50 (2004) 247–256 253
processing. If the tester is too fast, again a larger

buffer is required since the tester must not over-

write memory before it is processed.
5. Experimental results

The proposed compression schemes were

implemented and experiments were performed on

the larger ISCAS 89 [1] and ITC99 [6] benchmark

circuits. The following sections discuss the results

in detail.

5.1. Program size

In software based testing, the decompression

program also needs to be transferred to the chip.

Hence, the program size is required to calculate the

total amount of data that needs to be transferred.

In these experiments, the decompression program

was implemented in �C� language and cross-com-
piled for the ARM7 architecture. Table 3 shows

the program size for the three heuristics. As ex-

pected, the SSD requires the least number of

instructions to decode. The multiple vector

decomposition (MVD) heuristic requires the

maximum number of instructions among the three

heuristics.
Table 3

Program size for different schemes

Program size SSD MSD MVD

instr. 100 294 475

bytes 400 1176 1900
5.2. Data compression

Test cubes that provide 100% coverage of

detectable faults were generated using the Syn-
Teste commercial ATPG tool for each circuit.

The unspecified input assignments were left as X s
for better compression. The three heuristics de-

scribed in Section 2 were used to compress the test

set. The percentage compression is computed as

Percentage Data Compression

¼ Original Bits� Compressed Bits

Original Bits
� 100

Table 4 shows the compression obtained using the

SSD for three different matrix sizes. The first four

columns have the details of the benchmark circuit

including circuit name, number of scan elements,

number of test vectors in the test set, and total

number of bits in the test set. The remaining col-

umns show the compressed test set size and the

corresponding percentage compression for the
three different sizes of the matrix. The matrix size

under which maximum compression is obtained

depends on the size of the circuit. As can be seen

from the table, for the smaller circuits, a matrix

size of n ¼ 7 gives maximum compression, while

for some of the larger circuits, n ¼ 10 gives better

compression. But as n increases further, the com-

pression decreases since very few of the matrices
are decomposable.

Table 5 compares the compression obtained

using the MSD heuristic with three sizes for three

different configurations. The first configuration

has the three matrix sizes n1 ¼ 15, n2 ¼ 7, n3 ¼ 3

and the number of bits left uncompressed, m ¼ 14.

The next configuration has sizes n1 ¼ 31, n2 ¼ 15,

Table 4

Compression obtained using SSD

Circuit Scan size Test

vectors

Original

bits

n ¼ 7 n ¼ 10 n ¼ 13

Comp.

bits

Percent

comp.

Comp.

bits

Percent

comp.

Comp.

bits

Percent

comp.

s5378 214 119 25466 12707 50.1 16026 37.1 22869 10.2

s9234 247 147 36309 18377 49.4 24386 32.8 31925 12.1

s13207 700 239 167300 61120 63.5 48766 70.9 52596 68.6

s15850 611 120 73320 30760 58.1 35842 51.1 45997 37.3

s38417 1664 95 158080 71434 54.8 98904 37.4 141437 10.5

s38584 1464 131 191784 80580 58.0 94300 50.9 127191 33.7

b14s 281 110 30910 14000 54.7 17865 42.2 20977 32.1

b15s 489 240 117360 41041 65.0 36606 68.8 41986 64.2

b17s 1456 233 339248 120124 64.6 112454 66.9 135822 60.0

b20s 526 325 170950 70980 58.5 86720 49.3 108800 36.4

b21s 526 325 170950 80170 53.1 109764 35.8 153395 10.3

b22s 771 324 249804 99774 60.1 111829 55.2 138174 44.7

Table 5

Compression obtained using MSD

Circuit Original bits n1 ¼ 15, n2 ¼ 7, n3 ¼ 3 and

m ¼ 14

n1 ¼ 31, n2 ¼ 15, n3 ¼ 7 and

m ¼ 14

n1 ¼ 23, n2 ¼ 15, n3 ¼ 7 and

m ¼ 14

Comp. bits Percent comp. Comp. bits Percent comp. Comp. bits Percent comp.

s5378 25466 12504 50.9 13216 48.1 13264 47.9

s9234 36309 19480 46.3 20880 42.5 20976 42.2

s13207 167300 40512 75.8 29088 82.6 35504 78.8

s15850 73320 26680 63.6 27584 62.4 29200 60.2

s38417 158080 72864 53.9 82240 48.0 82640 47.7

s38584 191784 72048 62.4 74800 61.0 75360 60.7

b14s 30910 13560 56.1 13856 55.2 14352 53.6

b15s 117360 31592 73.1 24432 79.2 24976 78.7

b17s 339248 84880 75.0 75360 77.8 75152 77.9

b20s 170950 65744 61.5 63040 63.1 65488 61.7

b21s 170950 86440 49.4 90928 46.8 92016 46.2

b22s 249804 84312 66.2 82992 66.8 82576 67.0

254 K. Balakrishnan, N.A. Touba / Journal of Systems Architecture 50 (2004) 247–256
n3 ¼ 7 and m ¼ 14, while the last configuration has
sizes n1 ¼ 23, n2 ¼ 15, n3 ¼ 7 and m ¼ 14. These

sizes have been chosen such that the decompres-

sion program can fetch either one byte (8 bits) or

multiples of bytes from system memory and

operate on it.

In Table 6, the compression obtained using

MVD heuristic is presented. Three different values

for the number of vectors compressed together, N ,
were tried. The hill climbing approach discussed in

Section 2.3 was implemented. In general, the

compression obtained increases with the number
of vectors compressed together. Compressing eight
vectors at a time (N ¼ 8) gives better compression

for most of the circuits. However, the complexity

of the decompression program will increase with

N . The amount of on-chip memory required for

decompression will also increase since N test vec-

tors need to be stored at a time.

A comparison of the best compression obtained

using the three different heuristics is given in Table
7. From the results, it can be seen that the MVD

scheme has the best compression ratio for most of

the circuits but it is also the most complex to de-

Table 6

Compression obtained using MVD

Circuit Original bits N ¼ 4 N ¼ 6 N ¼ 8

Comp. bits Percent comp. Comp. bits Percent comp. Comp. bits Percent comp.

s5378 25466 11628 54.3 10374 59.3 9630 62.2

s9234 36309 17206 52.6 16858 53.6 15986 56.0

s13207 167300 59970 64.2 44790 73.2 37256 77.7

s15850 73320 30018 59.1 26292 64.1 24408 66.7

s38417 158080 73006 53.8 68496 56.7 68576 56.6

s38584 191784 76100 60.3 66092 65.5 66534 65.3

b14s 30910 13982 54.8 12680 59.0 12096 60.9

b15s 117360 44052 62.5 34673 70.5 29796 74.6

b17s 339248 132820 60.8 106988 68.5 97502 71.3

b20s 170950 72100 57.8 66274 61.2 64284 62.4

b21s 170950 83198 51.3 80722 52.8 81980 52.0

b22s 249804 100508 59.8 88818 64.4 88690 64.5

Table 8

Comparison with other techniques

Circuit [13] [11] Prop. scheme

s5378 51.6 49.1 62.2

s9234 43.5 49.3 56.0

s13207 85.0 85.5 82.6

s15850 60.9 66.8 66.7

s38417 46.6 38.6 56.7

s38584 – 53.9 65.5

Table 7

Comparison of the three methods

Circuit Original

bits

Percent. comp.

SSD MSD MVD

s5378 25466 50.1 50.9 62.2

s9234 36309 49.4 46.3 56.0

s13207 167300 70.9 82.6 77.7

s15850 73320 58.1 63.6 66.7

s38417 158080 54.8 53.9 56.7

s38584 191784 58.0 62.4 65.5

b14s 30910 54.7 56.1 60.9

b15s 117360 68.8 79.2 74.6

b17s 339248 66.9 77.9 71.3

b20s 170950 58.5 63.1 62.4

b21s 170950 53.1 49.4 52.8

b22s 249804 60.1 67.0 64.5

K. Balakrishnan, N.A. Touba / Journal of Systems Architecture 50 (2004) 247–256 255
code among the three methods discussed. The test
application time will be the longest in this case

since the test vectors need to be constructed com-

pletely and stored in the system memory before

they can be applied to the core. The MSD heuristic

obtains a good amount of compression and is

relatively simpler to decode. The choice of which

method to apply will depend on the operating

conditions of the test architecture. If test applica-
tion time is critical, MSD is a better alternative.

In Table 8, the compression results for the

proposed scheme are compared with the geometric

primitives based compression technique described

in [13] and the difference vectors based compres-
sion described in [11]. As seen from the table, the
compression obtained by the proposed scheme is

higher than both of the earlier methods for almost

all of the circuits.
6. Conclusions

In this paper, an efficient test vector compres-
sion method was proposed that utilizes the power

of an embedded processor present on the chip to

help in testing the cores in the SoC. The decom-

pression is performed in software by a program

running on the embedded processor. Hence both

test storage and test time is reduced. The com-

pression scheme described in this paper is very

simple compared with methods proposed earlier,
and hence requires less software code and allows

faster decompression.

256 K. Balakrishnan, N.A. Touba / Journal of Systems Architecture 50 (2004) 247–256
References

[1] F. Brglez, D. Bryan, K. Kozminski, Combinational profiles

of sequential benchmark circuits, in: Proc. International

Symposium on Circuits and Systems, 1989, pp. 1929–1934.

[2] A. Chandra, K. Chakrabarty, Test data compression for

system-on-a-chip using Golomb codes, in: Proc. of VLSI

Test Symposium, 2000, pp. 113–120.

[3] A. Chandra, K. Chakrabarty, Frequency-directed run

length (FDR) codes with application to system-on-a-chip

test data compression, in: Proc. of VLSI Test Symposium,

2001, pp. 42–47.

[4] R. Dorsch, H.-J. Wunderlich, Accumulator based deter-

ministic BIST, in: Proc. of International Test Conference,

1998, pp. 412–421.

[5] S. Gupta, J. Rajski, J. Tyszer, Test pattern generation

based on arithmetic operations, in: Proc. of International

Conference on Computer-Aided Design (ICCAD), 1994,

pp. 117–124.

[6] ITC 99 Benchmarks, http://www.cerc.utexas.edu/itc99-

benchmarks/bench.html.

[7] M. Ishida, D.S. Ha, T. Yamaguchi, COMPACT: a hybrid

method for compressing test data, in: Proc. VLSI Test

Symposium, 1998, pp. 418–423.

[8] M.K. Iyer, K.-T. Cheng, Software-based weighted random

testing for IP cores in bus-based programmable SoCs, in:

Proc. IEEE VLSI Test Symposium, 2002, pp. 139–144.

[9] A. Jas, N.A. Touba, Test vector decompression via cyclical

scan chains and its application to testing core-based

designs, in: Proc. of IEEE International Test Conference,

1998, pp. 458–464.

[10] A. Jas, J. Ghosh-Dastidar, N.A. Touba, Scan vector

compression/decompression using statistical coding, in:

Proc. of IEEE VLSI Test Symposium, 1999, pp. 114–120.

[11] A. Jas, N.A. Touba, Deterministic test vector compression/

decompression for systems-on-a-chip using an embedded

processor, Journal of Electronic Testing: Theory and

Applications (JETTA) 18 (4/5) (2002) 503–514.

[12] B. K€onemann, A SmartBIST variant with guaranteed

encoding, in: Proc. of Asian Test Symposium, 2001, pp.

325–330.

[13] A. El-Maleh, S. Al-Zahir, E. Khan, A geometric primitives

based compression scheme for testing systems-on-a-chip,

in: Proc. IEEE VLSI Test Symposium, 2001, pp. 540–559.

[14] R. Rajsuman, Testing a system on a chip with embedded

microprocessor, in: Proc. Int. Test Conference, 1999, pp.

499–508.

[15] J. Rajski, J. Tyszer, Accumulator-based compaction of test

responses, IEEE Transactions on Computers 42 (6) (1993)

643–650.
[16] J. Rajski et al., Embedded deterministic test for low cost

manufacturing test, in: Proc. of International Test Con-

ference, 2002, pp. 301–310.

[17] J. Saxena, P. Ploicke, K. Cyr, A. Benavides, M. Malpass,

Test strategy for TI�s TMS320AV7100 Device, in: IEEE

Int. Workshop on Testing Embedded Core Based Systems,

1998.

[18] A.P. Stroele, A self-test approach using accumulators as

test pattern generators, in: Proc. of International Sympo-

sium on Circuits and Systems, 1995, pp. 2010–2013.

[19] A.P. Stroele, Test response compaction using arithmetic

functions, in: Proc. of VLSI Test Symposium, 1996, pp.

380–386.

[20] A.P. Stroele, Bit serial pattern generation and response

compaction using arithmetic functions, in: Proc. of VLSI

Test Symposium, 1998, pp. 78–84.

[21] T. Yamaguchi, M. Tilgner, M. Ishida, D.S. Ha, An efficient

method for compressing test data, in: Proc. International

Test Conference, 1997, pp. 191–197.

Kedarnath Balakrishnan received the
B.Tech. degree in electrical engineering
from the Indian Institute of Technol-
ogy, Bombay, India in 2000, the M.S.
degree in electrical and computer
engineering from the University of
Texas at Austin in 2002, and is work-
ing towards the Ph.D. degree at the
same university. His research interests
are in the fields of VLSI design and
testing and computer architecture. He
is currently working in the areas of test
data reduction and embedded proces-
sor based system-on-a-chip testing.
Nur A. Touba is an Associate Professor
in the Department of Electrical and
Computer Engineering at the Univer-
sity of Texas at Austin. He received his
B.S. degree from the University of
Minnesota, and his M.S. and Ph.D.
degrees from Stanford University all in
electrical engineering. He received a
National Science Foundation (NSF)
Early Faculty CAREER Award in
1997, and the Best Paper Award at the
2001 VLSI Test Symposium. He is on
the program committee for the Inter-
national Test Conference, Interna-
tional Conference on Computer Design, Design Automation
and Test in Europe Conference, International On-Line Test
Symposium, International Test Synthesis Workshop, and
European Test Workshop.

http://www.cerc.utexas.edu/itc99-benchmarks/bench.html
http://www.cerc.utexas.edu/itc99-benchmarks/bench.html

	Matrix-based software test data decompression for systems-on-a-chip
	Introduction
	Proposed scheme
	Single size decomposition
	Multiple size decomposition
	Multiple vector decomposition

	Decompression using an embedded processor
	Analysis
	Experimental results
	Program size
	Data compression

	Conclusions
	References

