
Shirvani 1 P23

Fault-Tolerance Projects at Stanford CRC

Philip P. Shirvani, Nirmal Saxena, Nahmsuk Oh, Subhasish Mitra, Shu-Yi Yu, Wei-Je Huang,
Santiago Fernandez-Gomez, Nur A. Touba* and Edward J. McCluskey

Center for Reliable Computing, Stanford University, Stanford, CA 94305
*Computer Engineering Research Center, University of Texas, Austin, TX 78712

Abstract
This paper describes the fault-tolerant computing research

currently active at Stanford University’s Center for Reliable
Computing. One focus is on tolerating hardware faults by
means of software (software-implemented hardware fault
tolerance). This work mainly targets faults caused by
radiation induced upsets. An experiment evaluating the
techniques that we have developed, is currently running on the
ARGOS satellite. Another focus is on fault-tolerance
techniques for adaptive computing systems implemented with
field-programmable gate arrays (FPGAs).

I. INTRODUCTION

Electronic systems used in military, avionics and aerospace
require high reliability and availability. Fault-tolerance has
always been an essential attribute of these systems to keep
them operational in harsh environments. For example,
radiation —such as alpha particles and cosmic rays— can
cause transient faults in electronic systems [1]. Such faults
cause errors that are called single-event upsets (SEUs). SEUs
are a major concern in a space environment, and have also
been observed on ground levels [2]. Other sources of transient
faults are electromagnetic interference and power supply
glitches. An example effect is a bit-flip — an undesired
change of state in the content of a storage element. The effects
in combinational circuits, e.g., an arithmetic logic unit (ALU),
can lead to incorrect computation results.

Fault avoidance techniques try to improve reliability by
reducing the occurrence of faults. Two such techniques are
shielding and radiation hardening. Shielding increases the
weight and size of the system. Radiation hardening is an
expensive process and, when used for a low-volume
production, will lead to very costly parts. Therefore,
alternative methods that do not have these drawbacks need to
be explored.

Military and aerospace systems are designed for high
reliability using certified components. Many of these certified
components lag behind today’s commercial components in
terms of performance. The need for low-cost, state-of-the-art
high performance computing systems in these areas has been
pushing researchers to investigate new fault-tolerance
techniques. Using commercial off-the-shelf (COTS)
components, as opposed to military-standard or radiation-
hardened components, has been suggested as one way to lower
the cost and enhance the performance. The use of
programmable logic devices (PLDs) instead of application
specific integrated circuits (ASICs) also provides big

advantages for low-volume production in terms of cost and at
the same time, creates new opportunities for reconfigurable as
well as fault-tolerant computing.

In the Center for Reliable Computing (CRC) at Stanford
University, we are investigating both of these areas. In
Section II, we discuss software-implemented hardware fault
tolerance (SIHFT) techniques and the space experiment that
we are involved in. Section III presents our research on field-
programmable logic devices (FPLDs) and their use in
adaptive computing systems (ACS).

II. SIHFT AND COTS
Commercial components are designed to function in an

environment different from that of military and aerospace
systems. They usually have limited fault avoidance and error
detection capabilities. If commercial components are to be
used for critical applications with no change in hardware, fault
tolerance should be provided through software techniques.
Notice that, if permanent faults have to be tolerated, typically
spare components and a reconfiguration mechanism have to be
available in the system. Our research in this area has led to
new techniques for tolerating permanent faults in cache
memories ([3]) and in FPLDs (discussed in Section III). In
this section, the target faults are transients. We assume the
system resources can be recovered to their correct state.

We consider two main locations in a computer system
where errors can occur: the memory and the processor. Bit-
flips in memory can corrupt the contents of code or data
segments. A bit-flip in a location of memory that contains the
instructions of a program, or in one of the registers of the
processor, may cause the program to produce incorrect results.
For example, a bit-flip may change an ‘and’ instruction to an
‘or’ instruction or change the register address that indicates an
operand. Another example is a bit-flip in the location counter
inside the processor, leading to an illegal jump to an undesired
location in the memory. The latter is a control-flow error — a
deviation from the correct sequence of instructions in a
program. To build a fault-tolerant system, we need to detect
these errors and recover from them. In sections II.A and II.B,
we discuss some of the error detection and correction
techniques that we are using in our project. Section II.C
presents our experiment setup and its status.

A. Software-Implemented Error Detection
Transient errors that occur in a processor can be detected

by executing a program multiple times, and comparing the
outputs produced by each execution. This time redundancy

Shirvani 2 P23

technique is analogous to hardware redundancy techniques
such as duplication and TMR (triple modular redundancy).
Duplication can be done at task-level by the programmer or by
the operating system (OS) (an example of the latter is
presented in [4]). It can also be done at instruction level
during program compilation. We have developed a technique
called error detection by duplicated instructions (EDDI) that
uses the latter approach. Figure 1 shows a sequence of
instructions and how it is transformed for EDDI. Computation
results from master and shadow instructions are compared
before writing to memory. Upon miscomparison, the program
jumps to an error handler that will cause the program to
restart. Details of this technique can be found in [5].

(a)

(b)

ADD R3, R1, R2 ; R3 <- R1 + R2
MUL R4, R3, R5 ; R4 <- R3 * R5
ST 0(SP), R4 ; store R4

ADD R3, R1, R2 ;master instruction
ADD R23, R21, R22 ;shadow instruction
MUL R4, R3, R5 ;master instruction
MUL R24, R23, R25 ;shadow instruction
BNE R4, R24, Err ;compare results
ST 0(SP), R4 ;master result
ST offset(SP), R24 ;shadow result

Figure 1: An example of the EDDI technique: (a) original instruction;
(b) instructions and data structures are duplicated (master and
shadow copies).

(a)

(b)

ADD R3, R1, R2 ;A branchless block
MUL R4, R3, R5 ; of instructions
ST 0(SP), R4 ;

XOR R30, R30, 0x3c ;Gen. run-time signature
LDI R10, 0xb7 ;Load assigned signature
BNE R30, R10, Err ;Compare the two
ADD R3, R1, R2 ;Continue normal
MUL R4, R3, R5 ; sequence if
ST 0(SP), R4 ; correct signature

Figure 2: An example of the CFCSS technique: (a) a branchless
block of instructions; (b) the same block with the additional control-
flow checking instructions.

EDDI can detect some of the control-flow errors. To
further enhance the detection coverage for this type of error,
we have developed a technique called control-flow checking
by software signatures (CFCSS) [6]. Signature monitoring is
a well-known method for control-flow checking. In this
method, a signature is associated with each program block.
This signature is stored in memory and checked during the
execution of the program. CFCSS is an assigned signature
method where unique signatures are associated with each
block during compilation time. These signatures are
embedded into the program using the immediate field of
instructions that use constant operands. A run-time signature
is generated and compared with the embedded signatures when
instructions are executed. Figure 2 shows an example of
instructions with CFCSS. In this example, R30 (any of the
general-purpose registers of the processor can be used for this

purpose) holds the run-time signature and is updated as
execution moves from block to block. Upon entering a block,
R30 is XORed with a constant to generate the signature of the
current block. This value will be correct only if the correct
sequence of blocks has been followed. The assigned signature
of the current block is compared with the run-time value.
Upon miscomparison, the program jumps to an error handler
that will cause the program to restart. Details of this technique
can be found in [6].

We have implemented a software tool to automatically
generate programs with error detection capability using these
techniques. Figure 3 shows the flow of this tool. First the C
source code is compiled by the cc or gcc compiler and the
assembly code is produced. Our post processor adds the extra
instructions for EDDI and/or CFCSS (each can be enabled
independently). The resultant assembly code is processed by
an assembler and the executable object code with error
detection capability is produced.

C
source

Object
code

Assembly code
with EDDI

and/or CFCSS

Assembly
code

Assembler

CC
(gcc)

Post
Processor

Figure 3: Flow of our software tool for adding EDDI and CFCSS.

EDDI and CFCSS are pure software techniques for
detecting hardware errors. These techniques do not require
any changes in hardware or any support from the OS.
Therefore, they can be used in computer systems where
modification to the hardware or the OS is either very
expensive or impossible.

Some errors may cause infinite loops or deadlock in
program execution. A well-known solution is using watchdog
timers to limit the execution time of each program. If the
program does not respond within its time limit, an error is
indicated and the program is restarted.

To facilitate error recovery, we break a program into
modules and run each module as a separate task — assuming
that the system has a multitasking OS. A main module
controls the execution of all the other modules. When one of
the error detection mechanisms detects an error, the erroneous
module is aborted and restarted, without corrupting the context
of the other modules. If the error source was some transient
error in the processor, the module will resume its normal
execution. However, if the error source was a bit-flip in the
code segment of the module, the restart will fail. At this time,
we need to repair the bit-flip in memory before attempting
another restart. We discuss the repair mechanism in the next
section.

Shirvani 3 P23

B. Software-Implemented EDAC
In many computer systems, memories are protected against

SEUs by an error detection and correction (EDAC) code.
This code is usually implemented in hardware using extra
memory bits and encoding/decoding circuitry. EDAC
protection can also be implemented in software. For example,
a software implementation of a (255, 252) Reed-Solomon code
that can do single-byte error correction is proposed in [7] for
protecting RAM discs of satellite memories. This section
briefly discusses our approach in this area.

B.1) Systematic Codes

A coding scheme provides a mapping of input data words
to what are called codewords. Codewords contain extra check
bits that are used for error detection and correction. In some
codes, the check bits are appended to the data bits to form the
codewords. Therefore, the data bits are not changed. These
codes are called systematic (or separable) codes. In non-
systematic codes, the data bits are not preserved and are mixed
with check bits.

Our objective is to devise a scheme to protect the data
residing in main memory. For this application, the data that is
protected by software EDAC, is fetched and used by the
processor in the same way as unprotected data is fetched and
used. We want the EDAC software to run as a background
task and be transparent to other programs running on the
processor. The protected data bits have to remain in their
original form if we want to make the scheme transparent to the
rest of the system. This requires the use of a systematic code.

B.2) Vertical vs. Horizontal Codes

In memory systems with hardware EDAC, the memory
width is extended to accommodate the check bits. Figure 4(a)
shows a diagram for a 32-bit memory word that is augmented
with seven check bits. Each set of check bits is calculated
based on the bits of one word corresponding to one address.
We refer to this type of coding as a horizontal code. When a
horizontal code is implemented in software, each word is
encoded separately and the check bits are concatenated to form
a word. This check word is saved in a separate address (Fig.
4(b)).

32-bit words 7 check bits

(a)

32-bit words

(b)

Figure 4: A horizontal code over bits of a word: (a) hardware
implementation; (b) organization of bits when the code is
implemented in software.

Another type of coding is shown in Fig. 5. Each set of
check bits is calculated over the bits corresponding to one bit-
slice of a block of words in consecutive addresses. This type
of coding is used in some tape back-up systems ([8]) and we
refer to it as a vertical code. This type of code matches well

with the bitwise logical operations that are present in all
common instruction set architectures (ISAs). The logical
‘xor’ operation is used in the implementation of most of the
error detecting codes. Many shifts and logical operations are
required for encoding each word in a horizontal code. In
contrast, vertical codes lend themselves into very efficient
algorithms that can encode all the bit-slices in parallel —
similar to the parallelism in a single-instruction multiple-data
(SIMD) machine. Therefore, a vertical code is preferred for a
software-implemented EDAC scheme.

32-bit words

.

.

.

8 check bits

64 data bits
(one bit-slice of

64 words)

.

..

Figure 5: A vertical code over bit-slices of words.

Another aspect of these two types of codes is their handling
of multiple errors. Let us assume that a single-error
correcting, double-error detecting (SEC-DED) code is used
for both types of codes. If two bit-flips occur in one word, the
horizontal code cannot correct it but since each bit-flip
belongs to a different bit-slice, the vertical code will be able to
correct both errors. On the other hand, if two bit-flips occur in
one bit-slice of a block, a horizontal code will correct both,
while a vertical code will fail. In our implementation, we use a
SEC-DED Hamming code in a vertical fashion. To handle
multiple errors in a bit-slice, we use interleaving as shown in
Fig. 6. Further details of our technique can be found in [9].

(a) (b)

32-bit words

.

.

.

4*8 check bits

32-bit words

.

.

.

.

.

.

4*64 data

8 check bits

64 data

8 check bits

64 data

..

.
..
.

.

..

Figure 6: Logical mapping of words in a 4-way interleaving
technique: (a) blocks of EDAC protected data and the corresponding
check-bit words; (b) the location of these words in memory address
space.

Shirvani 4 P23

B.3) Checkpoints and Scrubbing

With hardware EDAC, the encoding is checked on each
read operation and new codewords are generated on each write
operation. In addition, the contents of memory are read
periodically and all the correctable errors are corrected. This
operation is called scrubbing and avoids accumulation of
errors, thereby reducing the probability of multiple errors that
may not be correctable.

If the same protection that is provided by hardware, is to be
provided in software, each read and write operation done by
the processor has to be intercepted. However, this interception
is infeasible because it imposes a large overhead in program
execution time. We chose to do only periodic scrubbing for
software-implemented EDAC. We rely on other software-
implemented error detection techniques (e.g., EDDI or
CFCSS) to detect the memory bit-flip errors in code segments,
if the errors are not corrected by the periodic scrubbing before
the code is executed. As mentioned in Section II.A, when an
error is detected after a restart, a scrub operation is enforced
before a second restart is attempted.

The EDAC software is given the address and size of the
memory block that needs to be protected. It requests another
block from the OS to be used for the check bits. Then, it
calculates the check bits (encoding) and stores them in the
allocated block. Upon request, it checks for errors (decoding)
and corrects them if possible. The content of the memory
block may be fixed or variable. If it is fixed, the encoding is
done once and the check bits remain constant. However, if the
memory block is written to by the processor, the check bits
have to be recalculated. There are two main types of
information stored in a memory: code and data. Code
segments contain instructions, and data segments contain the
data that is used or produced in computations. After a
program has been loaded and linked by the operating system,
the contents of the code segment remain constant (with the
exception of self-modifying codes that are not considered
here). Therefore, a fixed set of check bits can be calculated
for code segments.

Generally, the processor reads and writes to data segments,
and as said earlier, it is not feasible to intercept all the write
operations to update the check bits because the interceptions
will incur significant performance overhead. However, for
data that does not change, e.g., read-only data segments, or
some calculation results that are stored for later use, the EDAC
protection can be provided in software. Application program
interfaces (APIs) can be defined so that the programmer can
make function calls to the EDAC software and request
protection for a specific data block. In this case, the data can
also be modified through the APIs and does not have to be
fixed. However, this method is not transparent to the program
and the programmer needs to take control of the reads and
writes to the protected data and minimize the overhead by
proper design.

C. The ARGOS Project

C.1) Experiment Setup

The Stanford ARGOS project [10] is an experiment that is
carried out on the computing test-bed of the NRL-801:
Unconventional Stellar Aspect (USA) experiment on the
Advanced Research and Global Observations Satellite
(ARGOS) that was launched in February 1999. The objective
of the computing test-bed in the USA Experiment on ARGOS
is the comparative evaluation of approaches to reliable
computing in space, including radiation hardening of
processors. This goal is met by flying processors and
comparing performance in orbit during the ARGOS mission.
The experiment utilizes two 32-bit processors. The Hard
board, built around the Harris RH3000 radiation-hardened
chip set, features a self-checking processor pair configuration
and has hardware EDAC for its 2MB SOI (silicon on
insulator) SRAM memory. The COTS board, built around the
3081 microprocessor from IDT, uses only COTS components
and has no hardware error detection mechanism. Data upload
and download is possible for both boards during the mission.
Therefore, it is possible to update the software in either of the
processors according to the results received during the
mission, and test different SIHFT techniques. The ARGOS
satellite [11] has a Sun-synchronous, 800-kilometer altitude
orbit with a mission life of three years. A variety of radiation
environments are encountered during this mission, providing a
rigorous test. SEUs are the main type of errors that we are
expecting to see in ARGOS.

C.2) Status

We are currently carrying out the first example of a so-
called "McCluskey test", i.e., the simultaneous operation of
commercial and radiation-hardened processors of the same
class in the same orbital environment. The debugging phase of
our software on the satellite has finished and the boards are
currently running long term tests and collecting data on the
errors that occur during the mission. The programs implement
many of the mentioned SIHFT techniques as well as
algorithm-based fault tolerance (ABFT) [12], software
duplication/TMR, and assertions (checking the validity of data
at different points), to name a few. In this research, we are
gathering data in an actual space environment thereby
avoiding the necessity of relying on questionable fault
injection.

Reconfigurable computing using FPGAs is another part of
the Stanford ARGOS project. The COTS board has a Xilinx
4003 FPGA that can be reprogrammed during the mission.
We will use this feature for testing the FPGA, testing other
parts of the system if possible, and tolerating the faults
occurring in the FPGA. FPGAs add flexibility to the system,
and also, it is a good opportunity to test these devices in a
space environment. The results from our research project on
FPGAs and reconfigurable computing, described in the next
section, can be leveraged for the Stanford ARGOS project.

Shirvani 5 P23

III. FPLDS

The growth in computing and communication
infrastructure has been in part due to the evolution of
integrated circuits such as microprocessors, memory, ASICs
and PLDs. Microprocessor and memory chips have been the
foundation for a variety of systems ranging from embedded
processors to general-purpose computers. Custom-made
ASICs have catered to the needs of special-purpose
applications such as graphics, signal processing, encryption
and compression. PLDs are reconfigurable logic chips that
allow the customer rather than the chip manufacturer to
program specific functions. The key benefits of PLDs are:
design flexibility and faster introduction of the product to the
market. The PLDs initially started in design prototype efforts
but now are increasingly used in mainstream applications like
communications, data processing, industrial, networking and
high reliability. Amid this spectrum of integrated circuit chips,
a new concept called adaptive computing is emerging.
Adaptive computing systems (ACS) represent a new
technology that is derived by combining microprocessor,
memory, and reconfigurable logic. ACS systems do not
preclude the possibility of implementing all of the processor
and memory functions in reconfigurable chips.

A. The ROAR Project
This work is part of the DARPA funded ROAR project at

Stanford CRC. ROAR is an acronym for Reliability Obtained
by Adaptive Reconfiguration. The objectives of the ROAR
project are:

1. to develop design techniques that allow for the generation
of highly dependable, adaptive computing systems with
minimal loss in performance,

2. to guarantee high data integrity with no undetected errors,
3. to guarantee continuous operation by masking errors for

mission critical applications,
4. to increase the availability of unattended systems by an

order of magnitude through self-repair methods based on
the configurability of the designs,

5. to eliminate the need for standby spares since adaptive
configuration allows the use of all of the resources for
performance, and

6. to develop redundancy techniques, such as diversified
designs, that will protect systems against common-mode
failures.

The ROAR project is addressing these objectives at
various levels — ranging from the system software,
architecture, and microarchitecture issues to the design,
synthesis, test and diagnosis issues. The technical approach is
as follows:

1. We are developing a variety of concurrent error detection
(CED) methods for applications implemented in
reconfigurable logic.
• There is a necessity for different CED methods to meet

the reliability, cost and performance goals of various
target applications.

2. Techniques using design diversity are being developed to
protect systems against common-mode failures.
• Common-mode failures (CMFs) are a major reliability

concern in redundant systems. CMFs have a common
cause and if they affect multiple copies in an identical
way then the failure is not detected and the data integrity
may be compromised.

3. Instead of using stand-by spares (as is the case in
traditional fault-tolerant systems), we are developing
techniques that use multiple pre-compiled configurations.
These configurations are loaded so as to avoid failed units
in the reconfigurable hardware. Fault location algorithms
help identify failed units.

B. Application Implementations
Multi-threading, parity-prediction, duplication, and inverse

comparison are some of the CED techniques that have been
developed in the ROAR project. We have successfully ported
robotics control, DES encryption, and LZ-77 compress with
CED capability in one of our reconfigurable test-beds [13]
(Fig. 7).

is very expensive is very expensive

Xilinx 4036 XLA XBar

PCI Interface

Figure 7: Annapolis Microsystem’s Wildforce board.

Using this test-bed, we have also been able to demonstrate
error masking and recovery for robotics control and DES
algorithms by injecting faults into the look-up tables (LUTs) of
the FPGAs. Both robotics control and DES implementations
used multi-threading for CED. Utilization of resources by
multiple threads is the idea behind multi-threading. While
multi-threading is not a new idea, the idea of using multi-
threading for fault-tolerance in processors and configurable
logic is new and was first proposed in [14]. In contrast, for
LZ-77 compression implementation, we showed that both
duplication and multi-threading were not suitable CED
techniques from an area efficiency point-of-view. A CED
technique that uses inverse comparison was developed for LZ-
77 implementation. The LZ-77 implementation (Fig. 8)
comprises a sliding dictionary and processing elements (PEs).
An extra PE is used to compare decompressed data with the
delayed source. Details of our test-bed implementation
experiments for robotics, DES, and LZ-77 compress can be
found in [15].

A new synthesis technique for designing finite state
machines (FSMs) with on-line parity checking has also been
developed as part of the ROAR project (Fig. 9). The details of
this new synthesis technique have been reported in [16]. In

Shirvani 6 P23

terms of area overhead, this synthesis technique produces
better designs than duplication for a majority of benchmarks.

Sliding Dictionary
(Shift Register)

..…

Source
Input

... ...

Matching
Length

Done
(Enable) Position Pointer

D

Error

D0 D1 D2 … D511

PE PE PE … PE PE

CounterNOR Position
Encoder

D
ecom

press
Indexing

D
elayed

S
ource

D
ecom

press D
ata

Figure 8: LZ-77 compress implementation with CED.

Input

FFs

FF

Present State
Next State Parity

Single/Multiple
Parity Group(s)

Output

Parity

Single
Parity
Group

Checker

Checker

Figure 9: A finite state machine with on-line parity checking.

C. Design Diversity
For some applications, duplication is a more efficient

concurrent error detection mechanism than customized CED
mechanisms like parity-prediction. However, one concern
about duplication is its susceptibility to CMFs. Design
diversity has long been used to protect redundant systems
against CMFs. Configurable logic provides an excellent
opportunity to synthesize diverse designs— this was
recognized in the very early stages of the ROAR project. The
conventional notion of diversity relies on “independent”
generation of “different” implementations. This notion is
qualitative and does not provide a basis to compare the
reliability of two diverse systems. We have developed a new
quantitative method [17] to characterize diverse systems, and
design techniques that enhance their reliability. Using
analytical (derived from quantifying diversity), simulation
(software modeling), and experimental (fault-injection in test-
beds using diverse and non-diverse designs) methods, we have
shown that for common-mode failures diverse systems
improve reliability by an order of magnitude over redundant
systems with identical implementations.

D. Fault Location
We have developed a pseudo-exhaustive test method to

detect and locate FPGA failures [18] [19]. The FPGA
hardware itself is programmed to perform the test. This
method can be used to test the FPGA each time it is
reconfigured. We have also developed a technique to
diagnose bridging faults in the interconnect of an FPGA
configuration [20]. It uses a "walking-1" approach in which
only the LUTs are reprogrammed. The interconnect is tested
in the way it is configured for system operation. These
techniques can be used each time an ACS is reconfigured to
make sure that it correctly implements the desired function.

E. Putting It All Together- An ACS Setup
We present an ACS setup that integrates some of the key

contributions of the ROAR project. This setup comprises a
multi-threaded processor, a configurable coprocessor,
memory, and the I/O system (Fig. 10).

Configurable
Coprocessor

Memory

I/O

STMR

Diversity

CED

EDAC

CED

TMR

Multithreading

Diversity

Synthesis

EDAC

EDAC

Multi-threaded
Processor

Figure 10: An ACS Setup for the ROAR Project.

The setup in Fig. 10 is different from other traditional ACS
architectures in that it uses a multi-threaded processor instead
of a traditional single-threaded processor. In order to support
multiple contexts, processors need multiple register files and
additional fetch control to manage thread switching.
Processors that can support multiple contexts are called multi-
threaded or multi-context [21] processors.

Fault-tolerance is accomplished by using redundant threads
of computations. For example, three copies of the same thread
can be run in a multi-threaded processor and the results voted
upon by a voter thread. Operating system support is required
to manage redundant threads and to effect recovery. A key
benefit of implementing fault-tolerance with multi-threading is
the accomplishment of a level of reliability and performance
similar to that of TMR at almost the cost of simplex hardware.
Another key benefit is that the implementation of fault-
tolerance does not require any new design features and uses all
of the architectural features that are already present in multi-
threaded processors. If individual threads fully utilize the
resources then multi-threading could degrade performance due
to resource contention. By implementing fault-tolerant
applications using multiple threads, it is possible to recover
from temporary faults and some permanent faults.

Shirvani 7 P23

A coprocessor is a special execution unit that extends the
processing capability of processors. Coprocessors have been
used in commercial processors like SGI MIPS, Hewlett-
Packard Precision RISC, Sun’s SPARC, and IBM PowerPC to
provide special functions like floating-point and graphics
operations. A reconfigurable coprocessor provides special
logic configuration functionality. The instruction set of
processors in ACS architectures may allow flexible extensions
by means of reconfigurable coprocessor instructions.
Coprocessor instructions are instructions in which the data
movement functions are defined between the processor or the
memory and the reconfigurable coprocessor, but the data
transformations are left unspecified. Instructions that specify
data movement functions are essentially coprocessor load/store
instructions. These instructions must provide a generic
interface for moving data to and from the coprocessor. Data
transformation coprocessor instructions provide the flexibility
of defining data manipulation operations for each instance of
reconfigurable coprocessor logic depending upon the
application. For example, the data transformation function
could be a dictionary-based compression for a compress
application, or a block cipher function for an encryption
application.

Potential implementations of ACS are multi-board systems,
multi-chip systems, or a single system-on-a-chip. Rather than
building a specific implementation, we are using simulation
programs and emulation test-beds [13][22] to model instances
of the ROAR ACS setup. This gives us the flexibility to study
the reliability and performance benefits for a variety of
implementations. Figure 11 shows how an application in a
traditional general-purpose processor can be accelerated using
an ACS platform. The acceleration in performance comes
from identifying application segments that can be implemented
with fine-grain parallelism in the reconfigurable logic.
Successful porting of various applications in reconfigurable
logic has been demonstrated both in academia and in industry.
A large body of work appears in the proceedings of IEEE
FCCM and ACM FPGA conferences. The main emphasis in
the reported work has been on improving the performance of
the ported application. In addition to performance
improvement, the emphasis in the ROAR project is to improve
the reliability of reconfigurable logic designs.

Process on Main Processor

Process on Configurable
Coprocessor

Traditional:

ACS:

Figure 11: Accelerating a segment of an application on a
configurable coprocessor.

For dependable computing, the integrity of computation in
all stages should be immune to both temporary and permanent
faults. While permanent faults can be detected by off-line
diagnostic testing, on-line testing and concurrent error
detection (CED) may be required to protect against temporary
faults. The level of protection and recovery mechanism is, of

course, determined by the dependability requirements of a
particular application. The configurability of the
reconfigurable coprocessors presents several opportunities to
design and synthesize data transformation functions with error
detection and correction capability. Figure 12 shows
implementations of software TMR (STMR) with three identical
threads (labeled A, B and C) running on a single-threaded
processor, on traditional ACS, and on the ROAR ACS setup.
The illustration in Fig. 12 assumes that the multi-threaded
processor and the reconfigurable coprocessor can support up
to two simultaneous threads.

Thread A
Thread B

Thread C

Voter

Traditional STMR

Thread A

Thread B

ACS STMR

Thread A & B

ROAR STMR

Thread C & Voter

Process on Main Processor

Process on Configurable
Coprocessor

Voter Process on Main Processor

Thread C

Voter

Voter

Voter

Figure 12: Three different implementations of STMR.

The concurrent error detection capability coupled with
multi-threading provides protection against faults in the
reconfigurable logic and the processor. We have models that
demonstrate that the ROAR ACS setup improves application
reliability by two orders of magnitude over simplex STMR and
an order of magnitude over traditional ACS STMR.

An important aspect of the ROAR ACS setup (Fig. 10) is
that it has no functional feature that has been specifically
designed for fault-tolerance. The customer gets the flexibility
to program fault-tolerance. This flexibility is due to the
architectural features of multi-threaded processors and the
programmability of reconfigurable logic. We believe that
ACS architectures such as ROAR will not only enhance the
effectiveness of traditional ACS architectures but will also, for
the first time, make fault-tolerance viable in the COTS market.

ACKNOWLEDGMENTS

The Stanford ARGOS project is supported in part by the
Ballistic Missile Defense Organization, Innovative Science
and Technology (BMDO/IST) Directorate and administered
through the Department of the Navy, Office of Naval Research
under Grant Nos. N00014-92-J-1782 and N00014-95-1-1047.
ARGOS is a collaborative project with the Naval Research
Laboratory (NRL) USA experiment group lead by Dr. Kent
Wood as the principal investigator.

The ROAR project is supported by Defense Advanced
Research Project Agency (DARPA) under Contract No.
DABT63-97-C-0024. The authors would like to acknowledge
contributions of Chaohuang Zeng and the emulation support
provided by Quickturn Design Systems. University of Texas
at Austin is a subcontractor in the ROAR project.

Shirvani 8 P23

REFERENCES

[1] Koga, R., and W.A. Kolasinski, “Heavy Ion-Induced
Single Event Upsets of Microcircuits; A Summary of the
Aerospace Corporation Test Data,” IEEE Trans. on
Nuclear Science, Vol. 31, No. 6, pp. 1190-1195, Dec.
1984.

[2] Ziegler, J.F., et al., IBM J. Res. Develop., Vol. 40, No. 1,
(all articles), Jan. 1996.

[3] Shirvani, P.P., and E.J. McCluskey, “PADded Cache: A
New Fault-Tolerance Technique for Cache Memories,"
17th IEEE VLSI Test Symposium, pp. 440-445, Dana
Point, CA, Apr. 24-29, 1999. *A

[4] Bartlett, J., et al., “Fault Tolerance in Tandem Computer
Systems,” Tandem Technical Report 90.5, Tandem
Computers Inc., Cupertino, CA, May 1990.

[5] Oh, N., P.P. Shirvani and E.J. McCluskey, "Error
Detection by Duplicated Instruction in Superscalar
Microprocessors," CRC-TR, in preparation. *

[6] Oh, N., P.P. Shirvani and E.J. McCluskey, "Control-
Flow Checking by Software Signatures,” CRC-TR, in
preparation. *

[7] Hodgart, M.S., “Efficient Coding and Error Monitoring
for Spacecraft Digital Memory,” Int’l J. Electronics,
Vol. 73, No. 1, pp. 1-36, 1992.

[8] Patel, A.M. and S.J. Hong, “Optimal Rectangular Code
for High Density Magnetic Tapes,” IBM J. Res.
Develop., Vol. 18, pp. 579-88, November 1974.

[9] Shirvani, P.P., N. Saxena and E.J. McCluskey,
"Software-Implemented EDAC Protection Against
SEUs," CRC-TR, in preparation. *

[10] Shirvani, P.P. and E.J. McCluskey, “Fault-Tolerant
Systems in a Space Environment: The CRC ARGOS
Project,” CRC-TR 98-2, Dec. 1998. *A

[11] Wood, K.S., et al., “The USA Experiment on the
ARGOS Satellite: A Low Cost Instrument for Timing X-
Ray Binaries,” Published in EUV, X-Ray, and Gamma-
Ray Instrumentation for Astronomy V, ed. O.H.
Siegmund & J.V. Vellerga, SPIE Proc., Vol. 2280, pp.
19-30, 1994.

[12] Huang, K.-H., et al., “Algorithm-Based Fault Tolerance
for Matrix Operations,” IEEE Trans. on Comp., Vol. C-
33, No. 6, pp. 518-28, June 1984.

[13] Annapolis Micro Systems Inc., Wildforce FPGA Board
http://www.annapmicro.com/, 1999.

[14] Saxena, N. and E.J. McCluskey, “Dependable Adaptive
Computing Systems,” IEEE Systems, Man, and
Cybernetics Conf., San Diego, CA, pp. 2172-2177, Oct.
11-14, 1998. *R

[15] Saxena, N., S. Fernandez-Gomez, W. Huang, S. Mitra,
S. Yu, and E.J. McCluskey, “Dependable Computing and
On-Line Testing in Adaptive and Reconfigurable
Systems,” to appear IEEE Design and Test Magazine,
Jan-Mar 2000. *R

[16] Zeng, C., N. Saxena, and E.J. McCluskey, “Finite State
Machine Synthesis with Concurrent Error Detection,”
Proc. IEEE Int’l Test Conf., pp. 672-679, Sep. 1999. *R

[17] Mitra, S., N. Saxena and E. J. McCluskey, "A Design
Diversity Metric and Reliability Analysis for Redundant
Systems," Proc. IEEE Int’l Test Conference, pp. 662-
671, Sep. 1999. *R

[18] Mitra, S., P.P. Shirvani, and E.J. McCluskey, "Fault
Location in FPGA-Based Reconfigurable Systems,"
IEEE Int’l High Level Design Validation and Test
Workshop, La Jolla, CA, Nov. 12-14, pp. 143-150,
1998.*A

[19] Quddus, W., A. Jas, and N.A. Touba, "Configuration
Self-Test in FPGA-Based Reconfigurable Systems",
Proc. of IEEE Int’l Symp. on Circuits and Systems, pp.
97-100, 1999.

[20] Das, D., and N.A. Touba, "A Low Cost Approach for
Detecting, Locating, and Avoiding Interconnect Faults in
FPGA-Based Reconfigurable Systems," Proc. of IEEE
Int’l Conf. on VLSI Design, pp. 266-269, Goa, India,
Jan. 7-10, 1999.

[21] Laudon, J.P., Architectural and Implementation
Tradeoffs for Multi-Context Processors, Ph.D.
Dissertation, Electrical Engineering Dept., Stanford
University, May 1994.

[22] Quickturn Design Systems (now part of Cadence
Design), http://www.quickturn.com/ or
http://www.cadence.com/, 1999.

* Draft version available at:
http://crc.stanford.edu/projects/argosPapers.html

*A Available at:
http://crc.stanford.edu/projects/argosPapers.html

*R Available at:
http://crc.stanford.edu/projects/roar/roarPapers.html

