

978-1-4799-6016-3/14/$31.00 ©2014 IEEE

Reducing Test Time for 3D-ICs by Improved Utilization of Test Elevators

Sreenivaas S. Muthyala and Nur A. Touba

Computer Engineering Research Center
University of Texas, Austin, TX 78712

sreenivaas@utexas.edu, touba@utexas.edu

Abstract
A highly efficient test compression scheme for 3D-ICs is

proposed, which uses sequential linear decompressors local
to each core. The compressed test data is brought from the
tester over the test access mechanism (TAM) to the cores
where they are decompressed. The idea is to provide
flexibility in the utilization of the free variables (i.e., bits
stored on the tester that can be assigned 0 or 1), so that the
free variables that are not used in one core can be used to
encode test cubes in other cores. The decompressors are
daisy-chained, such that some of the free variables brought
in to one decompressor are passed on to the other
decompressors. Consequently, the free variables are also
shared with the decompressors in other layers. This enables
better utilization of free variables, since free variables not
used in one decompressor can be used by any of the other
decompressors with which they are shared. The encoding
efficiency improves considerably when the free variables
are shared with other cores. This reduces test time and
tester storage without any additional control. In addition,
this architecture also minimizes the number of test elevators
required to transfer the test data across layers. The scan
chains driven by a decompressor are local to the layer in
which the decompressor is present. Hence, only the input to
the decompressor, i.e., the compressed test data, is
transferred across layers, which reduces the number of test
elevators. Furthermore, it is also shown how the number of
through-silicon-vias (TSVs) can be reduced further by
implementing a test data serializer in the sending layer
driving the TSVs and a deserializer converting the serialized
data from the TSVs back to the original form.

1. Introduction
Three-dimensional integrated circuits (3D-ICs) using

through-silicon vias (TSVs) are an important new
technology that provides a number of significant advantages
including increased functional density, shorter interconnect,
higher performance, and lower power. Stacking in a 3D-IC
can be done wafer-to-wafer (W2W), die-to-wafer (D2W), or
die-to-die (D2D). 3D-IC designs are typically composed of
reusable cores, each of which must be thoroughly tested.
Cores can be synthesizable designs (i.e., soft cores) in which
the design-for-test (DFT) architecture can be customized
(e.g., number and length of scan chains, etc.), or they can be
layouts (i.e., hard cores) in which the DFT architecture is
fixed. For intellectual property cores (IP cores), it may not

be possible to perform ATPG, in which case a set of test
cubes (i.e., test vectors in which the unassigned inputs are
left as don't cares) is provided that must be applied during
test.

Testing a core-based design typically involves designing
wrappers to go around the cores, providing test access
mechanisms (TAMs) for transporting data from the tester
pins to the cores, and developing a test schedule for
determining which cores are being tested at different times.
Many techniques for designing wrappers, TAMs, and test
schedules have been developed, see [Xu 05] for a survey.

3D-IC testing differs from conventional 2D testing in
two important ways. One is that transporting test data
between layers requires the use of TSVs (i.e., test elevators)
which are expensive in terms of both area overhead as well
as impact on yield. Consequently, it is important to
consider the number of test elevators when optimizing a test
architecture. Optimization procedures for minimizing test
time under a constraint on the number of test elevators has
been proposed in [Wu 08] and [Noia 10]. A second
difference for testing 3D-ICs is that pre-bond testing is
performed on each die individually, to ensure defective dies
are not used in stacking. Then post-bond testing is
performed on the final stack to ensure the 3D-IC as a whole
is not defective. In some cases, testing might also be
performed on partial stacks. In order to do pre-bond testing
on the non-bottom layers, it is necessary to add probe pads
for test purposes. This is because the TSV tips as well as
the microbumps are too small to be probed and are sensitive
to scrub marks [Marinissen 09]. These probe pads are a test
overhead that take up a lot of space and limit the locations
where TSVs can be placed which puts constraints on the
design and floorplan of a die. Consequently, the number of
probe pads for non-bottom layers is typically very limited
resulting in less bandwidth being available from the tester
for pre-bond testing than available in post-bond testing.
Techniques for handling this include either having separate
TAMs for pre-bond and post-bond testing [Jiang 12], or
having a single TAM with a bandwidth adapter [Lee 13].

One important way to reduce test time is by using test
compression [Touba 06]. The conventional way of
implementing test compression in core-based designs is for
each core to have its own local decompressor. This allows
compressed data to be brought over the TAM lines to each
core. Note that if a decompressor was shared among
multiple cores, then uncompressed data would need to be
routed from the output of the decompressor to the cores

which would require much larger TAMs thereby greatly
increasing routing complexity. In addition, for 3D-ICs if the
uncompressed test data is shared across layers, the number
of test elevators required to transfer the uncompressed test
data will be much higher. The amount of compression
achieved with sequential linear decompressors depends on
the encoding efficiency, which is defined as the ratio of the
number of free variables (bits stored on the tester) versus the
number of care bits in the test data. The encoding efficiency
that can be achieved when using the conventional approach
of having fixed size TAMs feeding multiple independent
core decompressors is limited by the fact that the TAM
bandwidth to each core decompressor needs to be large
enough to bring enough free variables to encode the worst-
case test cube with the largest number of care bits. To
maximize encoding efficiency, a special ATPG procedure is
used to generate test cubes in a way that limits the number
of care bits in each test cube. This typically comes at the
cost of more test cubes being generated. Moreover, there
can still be a considerable amount of variance in the number
of care bits per test cube (profiles for industrial circuits
showing how the percentage of care bits varies can be found
in [Janicki 12]). The inherent drawback of the conventional
approach is that the number of free variables brought in for
decompressing each test cube is fixed by the worst-case test
cube with the most care bits, and so many free variables are
wasted for test cubes with fewer care bits.

Some recent work has looked at ways to improve
encoding efficiency by dynamically adjusting the number of
free variables sent to the decompressor in each core on a per
test cube basis to try to better match the number of free
variables sent with the number of care bits. This can be
done by dynamically allocating the number of tester
channels used to feed each decompressor [Janicki 12] or by
selectively loading decompressors in each clock cycle
[Kinsman 10], [Muthyala 13]. [Larsson 08] presents
selective encoding of test data for testing SOCs using
codewords to represent the care bit profile of the test cubes.
The conventional approach is to have independent
decompressors for each core such that each of them have
their own set of free variables so that the linear equations for
each decompressor can be solved independently. This helps
to reduce computational complexity. The drawback is that
the unused free variables are wasted when the decompressor
is reset between test cubes. This happens in all of the
existing methods except [Muthyala 13], which allows
limited sharing of free variables between decompressors
during a few cycles in such a way that the linear equations
are mostly independent and can be solved with only a small
increase in computational complexity.

The existing methods for dynamically adjusting the
number of free variables sent to each decompressor have the
drawback that they increase the amount of routing (i.e.
TAM width) required between the tester channels and the
core decompressors. This is less suited for 3D-ICs because
routing between layers requires additional test elevators

(i.e., extra TSVs) which are expensive. This paper proposes
a new architecture and methodology for test compression in
core-based designs, which is better suited for 3D-ICs. It can
be used to either provide greater compression for the same
number of test elevators or reduce the number of test
elevators while maintaining the same compression
compared to existing methods.

Whereas conventional methods for test compression in
core-based designs are based on an architecture where tester
channels are routed directly to independent core
decompressors, the proposed method uses a daisy chain
architecture as described in Sec. 2.

In conventional testing, the scan shift frequency is
typically much slower than the functional clock frequency
and the maximum ATE (automatic test equipment) clock
frequency, due to power dissipation limitations as well as
the fact that the test clock may not be buffered and
optimized for high speed operation. In [Khoche 02], the
ATE shifts in test data n times faster than the scan shift. An
n-bit serial-to-parallel converter is used to take in serial data
at the fast ATE shift rate and convert it to n-bits in parallel
at the slower scan shift frequency. This allows a single
ATE channel to be used to fill n scan chains in parallel. This
idea was combined with a test compression scheme in
[Wang 05], where faster ATE channels are sent to a time
division demultiplexing (TDDM) circuit which feeds the
inputs of a VirtualScan decompressor [Wang 04], and the
compacted output response is fed through a time division
multiplexing (TDM) circuit to go to the ATE.

This paper proposes using a similar concept for test
elevators when transferring test data from one layer to
another layer in a 3D stack. The idea is to use a serializer in
the layer sending the test data that accepts data in parallel at
the scan shift frequency, and generates a serial output at the
functional clock frequency which is sent over the test
elevator to a deserializer on the receiving layer which
converts the serial data coming in at the functional clock
frequency into parallel outputs at the scan shift frequency.
This approach is described in detail in Sec. 3.

This paper is organized as follows: The proposed
architecture is explained in Sec. 2. Implementation of
serializer driven TSVs to further reduce number of test
elevators is detailed in Sec. 3. Sec. 4 tabulates the
experimental results and Sec. 5. is a conclusion.

2. Proposed Architecture
The conventional approach for test compression in a

core-based design is illustrated in Fig. 1. Each core has its
own decompressor operating independently of the other core
decompressors. The input test data bandwidth from the
Automatic Test Equipment (ATE) is distributed to core
decompressors using TAMs. The tester channel allocation is
done in such a way that the total test time for testing the
entire 3D-IC is minimized.

In the architecture shown in Fig. 1, the test channel
allocation is static. In order to make it dynamic, it is

necessary to route the entire ATE bandwidth to all the
layers, and control the number of channels allocated by
providing additional control signals, which need more test
elevators compared to static channel allocation.

Figure 1. Test Architecture of 3D-ICs with Static

Allocation of Tester Channels

Figure 2. Proposed Architecture with Daisy-Chained

Decompressors

The proposed architecture is shown in Fig. 2; the
decompressors of the cores are daisy-chained together. In
the architecture shown in Fig. 2, the decompressors of the
cores are daisy-chained together. The number of channels
between layer 2 and layer 3 is less than the number of
channels between layer 1 and layer 2, which in turn is less
than the input bandwidth to the decompressor in layer 1, i.e.
total bandwidth from the ATE. Using this architecture, some
free variables from thedecompressor in layer 1 is sent to the
decompressor in layer 2 and so on. This provides some
flexibility in encoding the test cubes. Free variables unused
while encoding a core in a layer are available to encode
other cores in the layers above, hence improving encoding
efficiency.

The bandwidth feeding each layer should be sufficient to
supply enough free variables to encode the test cubes for the

core in that layer as well as the free variables to encode the
test cubes for the layers above, as the decompressor in each
layer is fed via taps from the decompressor of the layer
below. Hence, the bandwidth supplied to layer 1 should be
big enough to supply free variables to encode test cubes of
the cores in layer 1 as well as cores in layer 2 and layer 3.
Similarly, the bandwidth supplied to layer 2 should be big
enough to supply free variables to encode test cubes of the
cores in layer 2 and layer 3. In other words, the number of
free variables supplied to decompressor in each layer
decreases as we move from the bottom layer to the top
layer. Hence, a tapering bandwidth is used, as shown in Fig.
2, proportional to the number of free variables required to be
supplied to the decompressor in each layer. Consider an
example using the conventional architecture shown in Fig.
1, where the optimal static allocation of the 32-bit channel
from the ATE is as follows: a 16-bit TAM for layer 1, 10-bit
TAM for layer 2 and a 6-bit TAM for layer 3. The
bandwidth assignment for the proposed architecture using
daisy-chained decompressors (Fig. 2) is as follows: the full
test data bandwidth from the ATE is sent to the first
decompressor using a 32-bit TAM. Output taps from the
first decompressor are used to drive a 16-bit TAM to the
decompressor in layer 2. Similarly, output taps from the
second decompressor drive a 6-bit TAM in layer 3.

The proposed architecture provides flexibility in
utilization of free variables; any free variable coming from
the tester can be used in any of the layers, provided it is
distributed across all the layers. By daisy-chaining the
decompressors as shown in Fig. 2, some free variables from
the decompressor in layer 1 are fed to the decompressor in
layer 2, similarly some free variables in layer 2 are fed to
the decompressor in layer 3. Using this architecture, unused
free-variables from one decompressor can be used by other
decompressors.

Consider the decompressor in layer 3 is encoding an
easy-to-encode test cube with few specified bits, which
needs less than average free variables, while the test cube
being encoded in layer 2 is hard-to-encode with a larger
number of specified bits, needing more free variables than
average. In the proposed architecture, the free variables
which are not required in layer 3 can be used in layer 2 in
help encode the hard-to-encode test cube. This reduces the
number of free variables required to encode the entire test
set for the 3D-IC, without additional hardware and control,
with the same number of TSVs as used in the conventional
architecture shown in Fig. 1.

To illustrate the encoding advantage of the proposed
approach, consider a small example in which a 3D-IC has
three layers with each layer having one core. Let the set of
test cubes for the cores have care-bit profiles as shown in
Table 1. To encode the entire 3D-IC using the conventional
architecture shown in Fig. 1, core 1 would need a minimum
of 13 free variables per test cube, core 2 would need 11 free
variables and core 3 would need 12 free variables per test
cube. Since there are 8 test cubes for each core, a total of

LF
SR

Scan
Chains Layer 3

LF
SR

Scan
Chains Layer 2

LF
SR

Scan
Chains Layer 1

From ATE

From ATE

LF
SR

Scan
Chains

Layer 2

LF
SR

Scan
Chains

Layer 1

LF
SR

Scan
Chains

Layer 3

(13 + 11 + 12) x 8 = 288 free variables are required to
encode the 3D-IC.

Table 1. Example - Care Bit Profile of Test Cubes for the
Three Cores of the Example 3D-IC

Test Cube # Care bits in Test cube
Core 1 Core 2 Core 3

1 13 11 12
2 12 11 10
3 10 10 9
4 9 7 8
5 8 6 7
6 7 5 5
7 7 5 4
8 6 4 3

Consider the same 3D-IC, now using the proposed
architecture. In this case, encoding is done in groups of
three test cubes, with one test cube from each core.
Optimizing the test cubes in the group for minimizing the
total number of care bits in the group, the test cubes are
grouped as shown in Table 2.

Table 2. Care Bit Profile of Test Cube Groups for Encoding
Using Proposed Architecture

Test Cube
Group

Care bits in Test cube Total Care Bits in
Test Cube Group Core 1 Core 2 Core 3

1 13 4 7 24
2 12 5 8 25
3 10 5 12 27
4 9 6 10 25
5 8 7 9 24
6 7 10 5 22
7 7 11 3 21
8 6 11 4 21

By encoding in groups according the above table, the
maximum number of care bits in any group is 27, and hence,
to encode the entire set of eight test cube groups, 27 x 8 =
216 free variables are required using the proposed
architecture, which is less than the number of free variables
required to encode using the conventional architecture
shown in Fig. 1. Hence, it is seen that the proposed
architecture gives a better compression and hence reduces
the tester storage requirements and test time.

The drawback in the proposed architecture is that the
linear equations for scan cells driven by daisy-chained
decompressors cannot be solved independently. Consider
one test cube from each layer being encoded. The total
number of free variables brought in from the tester has to be
sufficiently large enough to encode all three test cubes.
Hence, creating pivots for care bits in all the three test cubes
involves a lot of computation. The total number of XOR
operations required to create pivots is 9n3 as compared to
3n3 XOR operations required to encode using the
conventional approach. Hence, this method is reasonable
when the additional computation is a reasonable price to pay
for the amount of test time reduction achieved.

3. Optimizing Number of Test Elevators by
Inter-layer Serialization of Test Data

In this section, an implementation is proposed using a
serializer-deserializer structure to further reduce the number
of test elevators required to implement the proposed
architecture. The scan shift frequency is usually lower than
the functional frequency, since the scan clock tree is
generally not buffered up for high speeds. Another reason is
that during scan, a large percentage of flip-flops toggle, and
hence a large amount of power is drawn from the power grid
of the chip. This causes a voltage drop in the power lines.
To avoid these problems, scan shifting is generally
considerably slower than functional frequency.

By using the proposed implementation, the difference
between the slower scan shift frequency and the faster
functional frequency can be exploited to further reduce the
number of test elevators. The idea is to use a serializer at the
layer sending test data to serialize the test data from the
decompressor taps and drive the test elevators in the driving
layer using this serialized data, and a deserializer at the
receiving end, which restores the test slices in the receiving
layer by converting the serial data back into parallel format
(Fig. 3).

Figure 3. Proposed Implementation of Inter-layer

Serialization of Test Data
If the test elevators can be operated at n times the scan

shift frequency, then instead of having m test elevators to
transfer data across layers, m/n test elevators are required.
On the other hand, it is also possible to have the same
number of test elevators and increase the effective
bandwidth by n times, i.e., m x n bits of data can be shifted
in one shift cycle using m test elevators implementing inter-
layer serialization, as compared to m bits of data shifted in
one shift cycle using m test elevators without serialization.
Hence, depending on the constraints on the number of test
elevators, this architecture can be used at an advantage to
either increase the effective bandwidth or reduce the number
of test elevators required in the design.

Consider a serializer driven by m taps from the LFSR in
the lower layer. Let the functional clock be n times faster
than the scan clock. Hence, as explained previously, the
number of test elevators required would be m/n. Let the
number of test elevators required be represented as t, which,
here, is equal to m/n. Inter-layer serialization would require

LF
SR

Deserializer

Serializer

LF
SR

Scan
Chains

Scan
Chains

Receiving
Layer

Sending
Layer

an m x t serializer in the sending layer driving the test
elevators between the layers and a t x m deserializer driving
the LFSR in the receiving layer. The simplest way of
implementing an m x t serializer in the sending layer is by
using a m:t multiplexer controlled by a modulo m counter
driven by the faster functional clock (Fig. 4).

Figure 4. Serializer Implementation for Functional Clock
Operating n Times Faster than Scan Clock, Where Number

of Test Elevators, t = m/n

This ensures that the test data coming in at scan shift
frequency from the LFSR iscoupled to the test elevators at
the faster functional clock frequency. Similarly, the
deserializer can be implemented as an n bit shift register (n
is the ratio between functional clock frequency and scan
clock frequency) driven by the faster functional clock,
whereas the data in the shift register is sampled at the slower
scan clock rate (Fig. 5).

Figure 5. Deserializer Implementation for Functional Clock
Operating n Times Faster Than Scan Clock, Where Number

of Test Elevators, t = m/n

As discussed above, inter-layer serialization has a small
area overhead, hence it can be used in cases where the
advantages of using it outweighs the additional cost of
implementing the required architecture in the core.

4. Experimental Results
Experiments were conducted on six different 3D-IC

designs and the results are presented in this section. Each of
the 3D-ICs has three layers. Three different test
compression architectures were experimented using these
test chips. In the first test architecture (arch1), each core has
a 64-bit LFSR, acting as a decompressor. The input tester
channels from the ATE were allocated to the decompressors
statically. In this architecture, the output cone of the each
decompressor is confined to the layer in which the
decompressor is present, i.e. test elevators are required to

transfer the compressed test data to the decompressors in the
non-bottom layers, however, the scan cells which are driven
by a decompressor are localized to the layer in which the
decompressor is present. Hence, it is enough to have
sufficient test elevators to transfer the compressed test data,
which is generally less in number.

In the second architecture (arch2), the 64-bit LFSRs that
were local to each layer in arch1, are interconnected and
reconfigured to form a big primitive LFSR with number of
flip-flops in this big LFSR being the sum of the number of
flip-flops in the arch1 LFSRs in all the three layers. It
should be noted that the LFSR in arch2 is distributed across
the three layers, i.e. sections of LFSR are present in each of
the three layers and these sections are interconnected using
test elevators in such a way that a primitive LFSR is formed
and drives scan chains in all three layers of 3D-IC. In this
case, the scan chains are confined within the layer, i.e. test
elevators are required to transfer compressed test data to the
sections of LFSR in the non-bottom layers and to
interconnect the sections of LFSR which are in different
layers. Hence, more test elevators are required in arch2 than
arch1. Using this architecture, the equations for the scan
cells of the three layers are solved together and since the
pivots for the test cubes are created in common, the free
variables are used more efficiently and results in better
compression and increased encoding efficiency.
The third architecture (arch3) is the proposed architecture
using daisy-chained decompressors shown in Fig. 2. In this
case, the decompressors used are similar to the ones used in
arch1, a local 64-bit LFSR in each core acting as a
decompressor for the core, with all the decompressors daisy-
chained together. The tester channels are allocated to the
decompressors as proposed in Sec. 3. This method combines
the advantages of arch1 and arch2 at the cost of increased
computational complexity of encoding the test cubes
together. By using this architecture, some of the free
variables are distributed to the decompressors in the other
layers and the encoding of the test cubes of the three layers
are done together, thereby the free variables are used more
efficiently and results in better compression and increase in
encoding efficiency similar to arch2. However, in this
method, test elevators are required only to transfer the
compressed test data to the non-bottom layers, similar to
arch1, while providing an encoding advantage similar to
arch2. In addition, reconfiguration of the local 64-bit LFSRs
into a big LFSR for post bond testing of the 3D-IC is also
not necessary when using arch3.

Experiments were run on six different designs of 3D-ICs,
each containing three layers. The test cubes used provided
100% coverage of detectable faults. Static encoding was
used to encode the test cubes. The compressed test data, i.e.
tester storage required for the three architectures explained
above is presented in Table 3. As shown in Table 3, there is
reduction in the amount of tester data while using arch2
when compared to arch1.

t test elevators

m channels to the LFSR in receiving
layer at scan frequency

tap shift register
(scan clk)

n bit, t word Shift Register

shift signal
(functional clk)

Free variables from LFSR
coming at scan frequency

m taps from LFSR
in sending layer

Test elevators driven at
functional clock frequency

Functional clk
(n times faster than scan clk)

modulo m
counter m : t multiplexer

t test elevators

Table 3. Tester Data for the Three Architectures

Design Test
Vectors

Scan
Cells

Local Independent
Decompressors (arch1)

Global Decompressor
(arch2)

Proposed
Daisy-chained Decompressors

(arch3)
Percentage

Reduction in
Tester Data Tester Data

(# of Bits)
Number of

Test Elevators
Tester Data
(# of Bits)

Number of
Test Elevators

Tester Data
 (# of Bits)

Number of
Test Elevators

A 838 2578 8272 13 6016 21 6016 13 27.27%
B 606 6747 18245 15 11070 21 11070 15 39.33%
C 686 5662 9512 13 6560 21 6560 13 31.03%
D 751 8724 13314 15 9193 21 9193 15 30.95%
E 803 9432 13583 15 10144 21 10144 15 25.32%
F 807 10538 17538 15 12046 21 12046 15 31.31%

 As explained earlier, similar benefit is obtained by using
arch3 as well. This is due to the fact that both arch2 and
arch3 provide flexible use of free variables across layers
and the free variables which are not used in encoding test
cube of one layer can be used to encode test cubes of other
layers. In addition, by using daisy-chained decompressors
(arch3), the number of test elevators required is less
compared to arch2, since the decompressors are local to
each layer.

5. Conclusion
By using the daisy-chained decompressor architecture,

an increase in compression can be achieved, with efficient
usage of test elevators. Experimental results are presented in
which the proposed architecture is compared with the
conventional architecture. In addition, an implementation is
proposed with a serializer-deserializer coupling the test
elevators to the decompressors, which further reduces the
number of test elevators required to implement the test
architecture.

Acknowledgement
This research was supported in part by the National

Science Foundation under Grant No. CCF-1217750.

References

[Janicki 12] Janicki, J.; Kassab, M.; Mrugalski, G.; Mukherjee, N.;
Rajski, J.; Tyszer, J., "EDT Bandwidth Management in SoC
Designs," IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 31, No. 12, pp. 1894-
1907, Dec. 2012.

[Khoche 02] Khoche, A.; Volkerink, E.; Rivoir, J.; Mitra, S, "Test
vector compression using EDA-ATE synergies," Proc. of
VLSI Test Symposium, pp. 97-102, 2002.

[Kinsman 10] Kinsman, A.B.; Nicolici, N., "Time-Multiplexed
Compressed Test of SOC Designs," IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, Vol. 18, No. 8, pp.
1159-1172, Aug. 2010.

[Konemann 01] Konemann, B.; Barnhart, C.; Keller, B.; Snethen,
T.; Farnsworth, O.; Wheater, D., “A SmartBIST Variant with
Guaranteed Encoding,” Proc. of Asian Test Symposium, pp.
325-330, 2001.

[Jiang 12] Jiang. L.; Xu. Q.; Chakrabarty, K.; Mak, T.M.,
"Integrated Test-Architecture Optimization and Thermal-

Aware Test Scheduling for 3-D SoCs Under Pre-Bond Test-
Pin-Count Constraint", IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, Vol. 20, No. 9, pp. 1621-1633,
Sep. 2012.

[Larsson 08] Larsson, A.; Larsson, E.; Chakrabarty, K; Eles, P.;
Zebo Peng, "Test Architecture Optimization and Test
Scheduling for SOCs with Core-Level Expansion of
Compressed Test Patterns", Proc. of Design, Automation and
Test in Europe, pp. 188-193, 2008.

[Lee 13] Lee, Y.-W.; Touba, N.A., "Unified 3D test architecture
for variable test data bandwidth across pre-bond, partial stack,
and post-bond test," Proc. of Defect and Fault Tolerance
Symposium, pp. 184-189, 2013.

[Marinissen 09] Marinissen, E.J.; Zorian, Y., "Testing 3D chips
containing through-silicon vias," Proc. of International Test
Conference, pp. 1-6, 2009.

[Muthyala 13] Muthyala, S.S.; Touba, N.A.; "SOC test
compression scheme using sequential linear decompressors
with retained free variables," Proc. of VLSI Test Symposium,
pp. 1-6, 2013.

[Noia 10] Noia, B.; Goel, S.K.; Chakrabarty, K.; Marinissen, E.J.;
Verbree, J., "Test-architecture optimization for TSV-based 3D
stacked ICs," IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 30, No. 11, pp. 1705-
1718, Nov. 2011.

[Touba 06] Touba, N.A., “Survey of Test Vector Compression
Techniques”, IEEE Design & Test Magazine, Vol. 23, Issue 4,
pp. 294-303, Jul. 2006.

[Wang 04] Wang, L.-T.; Wen, X.; Furukawa, H.; Hsu, Fei-Sheng;
Lin, Shyh-Horng; Tsai, Sen-Wei; Abdel-Hafez, K.S.; Wu, S.,
"VirtualScan: a new compressed scan technology for test cost
reduction," Proc. of International Test Conference, pp. 916-
925, 2004.

[Wang 05] Wang, L.-T.; Abdel-Hafez, K.S.; Wen, X.; Sheu, B.;
Wu, Shianling; Lin, Shyh-Horng; Chang, Ming-Tung,
"UltraScan: using time-division demultiplexing/multiplexing
(TDDM/TDM) with VirtualScan for test cost reduction,"
Proc. of International Test Conference, pp. 946-953, 2005.

[Wu 08] Wu, X.; Chen, Y.; Chakrabarty, K.; Xie, Y., "Test-access
mechanism optimization for core-based three-dimensional
SOCs," Proc. of International Conference on Computer
Design, pp. 212-218, 2008.

[Xu 05] Xu, Q.; Nicolici, N., "Resource-Constrained System-on-a-
Chip Test: A Survey", IEE Proc. Computers & Digital
Techniques, Vol. 152, Issue 1, pp. 67-81, Jan. 2005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

