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Abstract 
A highly efficient test compression scheme for 3D-ICs is 

proposed, which uses sequential linear decompressors local 
to each core. The compressed test data is brought from the 
tester over the test access mechanism (TAM) to the cores 
where they are decompressed. The idea is to provide 
flexibility in the utilization of the free variables (i.e., bits 
stored on the tester that can be assigned 0 or 1), so that the 
free variables that are not used in one core can be used to 
encode test cubes in other cores. The decompressors are 
daisy-chained, such that some of the free variables brought 
in to one decompressor are passed on to the other 
decompressors. Consequently, the free variables are also 
shared with the decompressors in other layers. This enables 
better utilization of free variables, since free variables not 
used in one decompressor can be used by any of the other 
decompressors with which they are shared. The encoding 
efficiency improves considerably when the free variables 
are shared with other cores. This reduces test time and 
tester storage without any additional control. In addition, 
this architecture also minimizes the number of test elevators 
required to transfer the test data across layers. The scan 
chains driven by a decompressor are local to the layer in 
which the decompressor is present. Hence, only the input to 
the decompressor, i.e., the compressed test data, is 
transferred across layers, which reduces the number of test 
elevators. Furthermore, it is also shown how the number of 
through-silicon-vias (TSVs) can be reduced further by 
implementing a test data serializer in the sending layer 
driving the TSVs and a deserializer converting the serialized 
data from the TSVs back to the original form. 

1. Introduction 
Three-dimensional integrated circuits (3D-ICs) using 

through-silicon vias (TSVs) are an important new 
technology that provides a number of significant advantages 
including increased functional density, shorter interconnect, 
higher performance, and lower power.  Stacking in a 3D-IC 
can be done wafer-to-wafer (W2W), die-to-wafer (D2W), or 
die-to-die (D2D).  3D-IC designs are typically composed of 
reusable cores, each of which must be thoroughly tested.  
Cores can be synthesizable designs (i.e., soft cores) in which 
the design-for-test (DFT) architecture can be customized 
(e.g., number and length of scan chains, etc.), or they can be 
layouts (i.e., hard cores) in which the DFT architecture is 
fixed.  For intellectual property cores (IP cores), it may not 

be possible to perform ATPG, in which case a set of test 
cubes (i.e., test vectors in which the unassigned inputs are 
left as don't cares) is provided that must be applied during 
test. 

Testing a core-based design typically involves designing 
wrappers to go around the cores, providing test access 
mechanisms (TAMs) for transporting data from the tester 
pins to the cores, and developing a test schedule for 
determining which cores are being tested at different times.  
Many techniques for designing wrappers, TAMs, and test 
schedules have been developed, see [Xu 05] for a survey.   

3D-IC testing differs from conventional 2D testing in 
two important ways.  One is that transporting test data 
between layers requires the use of TSVs (i.e., test elevators) 
which are expensive in terms of both area overhead as well 
as impact on yield.  Consequently, it is important to 
consider the number of test elevators when optimizing a test 
architecture.  Optimization procedures for minimizing test 
time under a constraint on the number of test elevators has 
been proposed in [Wu 08] and [Noia 10].  A second 
difference for testing 3D-ICs is that pre-bond testing is 
performed on each die individually, to ensure defective dies 
are not used in stacking. Then post-bond testing is 
performed on the final stack to ensure the 3D-IC as a whole 
is not defective.  In some cases, testing might also be 
performed on partial stacks.  In order to do pre-bond testing 
on the non-bottom layers, it is necessary to add probe pads 
for test purposes.  This is because the TSV tips as well as 
the microbumps are too small to be probed and are sensitive 
to scrub marks [Marinissen 09].  These probe pads are a test 
overhead that take up a lot of space and limit the locations 
where TSVs can be placed which puts constraints on the 
design and floorplan of a die.  Consequently, the number of 
probe pads for non-bottom layers is typically very limited 
resulting in less bandwidth being available from the tester 
for pre-bond testing than available in post-bond testing.  
Techniques for handling this include either having separate 
TAMs for pre-bond and post-bond testing [Jiang 12], or 
having a single TAM with a bandwidth adapter [Lee 13]. 

One important way to reduce test time is by using test 
compression [Touba 06].  The conventional way of 
implementing test compression in core-based designs is for 
each core to have its own local decompressor.  This allows 
compressed data to be brought over the TAM lines to each 
core.  Note that if a decompressor was shared among 
multiple cores, then uncompressed data would need to be 
routed from the output of the decompressor to the cores 



 

 

which would require much larger TAMs thereby greatly 
increasing routing complexity. In addition, for 3D-ICs if the 
uncompressed test data is shared across layers, the number 
of test elevators required to transfer the uncompressed test 
data will be much higher.  The amount of compression 
achieved with sequential linear decompressors depends on 
the encoding efficiency, which is defined as the ratio of the 
number of free variables (bits stored on the tester) versus the 
number of care bits in the test data.  The encoding efficiency 
that can be achieved when using the conventional approach 
of having fixed size TAMs feeding multiple independent 
core decompressors is limited by the fact that the TAM 
bandwidth to each core decompressor needs to be large 
enough to bring enough free variables to encode the worst-
case test cube with the largest number of care bits.  To 
maximize encoding efficiency, a special ATPG procedure is 
used to generate test cubes in a way that limits the number 
of care bits in each test cube.  This typically comes at the 
cost of more test cubes being generated.  Moreover, there 
can still be a considerable amount of variance in the number 
of care bits per test cube (profiles for industrial circuits 
showing how the percentage of care bits varies can be found 
in [Janicki 12]).  The inherent drawback of the conventional 
approach is that the number of free variables brought in for 
decompressing each test cube is fixed by the worst-case test 
cube with the most care bits, and so many free variables are 
wasted for test cubes with fewer care bits. 

Some recent work has looked at ways to improve 
encoding efficiency by dynamically adjusting the number of 
free variables sent to the decompressor in each core on a per 
test cube basis to try to better match the number of free 
variables sent with the number of care bits.  This can be 
done by dynamically allocating the number of tester 
channels used to feed each decompressor [Janicki 12] or by 
selectively loading decompressors in each clock cycle 
[Kinsman 10], [Muthyala 13].  [Larsson 08] presents 
selective encoding of test data for testing SOCs using 
codewords to represent the care bit profile of the test cubes. 
The conventional approach is to have independent 
decompressors for each core such that each of them have 
their own set of free variables so that the linear equations for 
each decompressor can be solved independently. This helps 
to reduce computational complexity.  The drawback is that 
the unused free variables are wasted when the decompressor 
is reset between test cubes.  This happens in all of the 
existing methods except [Muthyala 13], which allows 
limited sharing of free variables between decompressors 
during a few cycles in such a way that the linear equations 
are mostly independent and can be solved with only a small 
increase in computational complexity. 

The existing methods for dynamically adjusting the 
number of free variables sent to each decompressor have the 
drawback that they increase the amount of routing (i.e. 
TAM width) required between the tester channels and the 
core decompressors.  This is less suited for 3D-ICs because 
routing between layers requires additional test elevators 

(i.e., extra TSVs) which are expensive.  This paper proposes 
a new architecture and methodology for test compression in 
core-based designs, which is better suited for 3D-ICs.  It can 
be used to either provide greater compression for the same 
number of test elevators or reduce the number of test 
elevators while maintaining the same compression 
compared to existing methods. 

Whereas conventional methods for test compression in 
core-based designs are based on an architecture where tester 
channels are routed directly to independent core 
decompressors, the proposed method uses a daisy chain 
architecture as described in Sec. 2.   

In conventional testing, the scan shift frequency is 
typically much slower than the functional clock frequency 
and the maximum ATE (automatic test equipment) clock 
frequency, due to power dissipation limitations as well as 
the fact that the test clock may not be buffered and 
optimized for high speed operation.  In [Khoche 02], the 
ATE shifts in test data n times faster than the scan shift.  An 
n-bit serial-to-parallel converter is used to take in serial data 
at the fast ATE shift rate and convert it to n-bits in parallel 
at the slower scan shift frequency.  This allows a single 
ATE channel to be used to fill n scan chains in parallel. This 
idea was combined with a test compression scheme in 
[Wang 05], where faster ATE channels are sent to a time 
division demultiplexing (TDDM) circuit which feeds the 
inputs of a VirtualScan decompressor [Wang 04], and the 
compacted output response is fed through a time division 
multiplexing (TDM) circuit to go to the ATE. 

This paper proposes using a similar concept for test 
elevators when transferring test data from one layer to 
another layer in a 3D stack.  The idea is to use a serializer in 
the layer sending the test data that accepts data in parallel at 
the scan shift frequency, and generates a serial output at the 
functional clock frequency which is sent over the test 
elevator to a deserializer on the receiving layer which 
converts the serial data coming in at the functional clock 
frequency into parallel outputs at the scan shift frequency. 
This approach is described in detail in Sec. 3. 

This paper is organized as follows:  The proposed 
architecture is explained in Sec. 2. Implementation of 
serializer driven TSVs to further reduce number of test 
elevators is detailed in Sec. 3. Sec. 4 tabulates the 
experimental results and Sec. 5. is a conclusion. 

2. Proposed Architecture 
The conventional approach for test compression in a 

core-based design is illustrated in Fig. 1.  Each core has its 
own decompressor operating independently of the other core 
decompressors. The input test data bandwidth from the 
Automatic Test Equipment (ATE) is distributed to core 
decompressors using TAMs. The tester channel allocation is 
done in such a way that the total test time for testing the 
entire 3D-IC is minimized.  

In the architecture shown in Fig. 1, the test channel 
allocation is static. In order to make it dynamic, it is 



 

 

necessary to route the entire ATE bandwidth to all the 
layers, and control the number of channels allocated by 
providing additional control signals, which need more test 
elevators compared to static channel allocation. 

 

  
Figure 1.  Test Architecture of 3D-ICs with Static 

Allocation of Tester Channels 

 
Figure 2. Proposed Architecture with Daisy-Chained 

Decompressors 

The proposed architecture is shown in Fig. 2; the 
decompressors of the cores are daisy-chained together. In 
the architecture shown in Fig. 2, the decompressors of the 
cores are daisy-chained together. The number of channels 
between layer 2 and layer 3 is less than the number of 
channels between layer 1 and layer 2, which in turn is less 
than the input bandwidth to the decompressor in layer 1, i.e. 
total bandwidth from the ATE. Using this architecture, some 
free variables from thedecompressor in layer 1 is sent to the 
decompressor in layer 2 and so on. This provides some 
flexibility in encoding the test cubes. Free variables unused 
while encoding a core in a layer are available to encode 
other cores in the layers above, hence improving encoding 
efficiency.  

The bandwidth feeding each layer should be sufficient to 
supply enough free variables to encode the test cubes for the 

core in that layer as well as the free variables to encode the 
test cubes for the layers above, as the decompressor in each 
layer is fed via taps from the decompressor of the layer 
below. Hence, the bandwidth supplied to layer 1 should be 
big enough to supply free variables to encode test cubes of 
the cores in layer 1 as well as cores in layer 2 and layer 3. 
Similarly, the bandwidth supplied to layer 2 should be big 
enough to supply free variables to encode test cubes of the 
cores in layer 2 and layer 3. In other words, the number of 
free variables supplied to decompressor in each layer 
decreases as we move from the bottom layer to the top 
layer. Hence, a tapering bandwidth is used, as shown in Fig. 
2, proportional to the number of free variables required to be 
supplied to the decompressor in each layer. Consider an 
example using the conventional architecture shown in Fig. 
1, where the optimal static allocation of the 32-bit channel 
from the ATE is as follows: a 16-bit TAM for layer 1, 10-bit 
TAM for layer 2 and a 6-bit TAM for layer 3. The 
bandwidth assignment for the proposed architecture using 
daisy-chained decompressors (Fig. 2) is as follows: the full 
test data bandwidth from the ATE is sent to the first 
decompressor using a 32-bit TAM. Output taps from the 
first decompressor are used to drive a 16-bit TAM to the 
decompressor in layer 2. Similarly, output taps from the 
second decompressor drive a 6-bit TAM in layer 3. 

The proposed architecture provides flexibility in 
utilization of free variables; any free variable coming from 
the tester can be used in any of the layers, provided it is 
distributed across all the layers. By daisy-chaining the 
decompressors as shown in Fig. 2, some free variables from 
the decompressor in layer 1 are fed to the decompressor in 
layer 2, similarly some free variables in layer 2 are fed to 
the decompressor in layer 3. Using this architecture, unused 
free-variables from one decompressor can be used by other 
decompressors.  

Consider the decompressor in layer 3 is encoding an 
easy-to-encode test cube with few specified bits, which 
needs less than average free variables, while the test cube 
being encoded in layer 2 is hard-to-encode with a larger 
number of specified bits, needing more free variables than 
average. In the proposed architecture, the free variables 
which are not required in layer 3 can be used in layer 2 in 
help encode the hard-to-encode test cube. This reduces the 
number of free variables required to encode the entire test 
set for the 3D-IC, without additional hardware and control, 
with the same number of TSVs as used in the conventional 
architecture shown in Fig. 1. 

To illustrate the encoding advantage of the proposed 
approach, consider a small example in which a 3D-IC has 
three layers with each layer having one core. Let the set of 
test cubes for the cores have care-bit profiles as shown in 
Table 1. To encode the entire 3D-IC using the conventional 
architecture shown in Fig. 1, core 1 would need a minimum 
of 13 free variables per test cube, core 2 would need 11 free 
variables and core 3 would need 12 free variables per test 
cube. Since there are 8 test cubes for each core, a total of 
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(13 + 11 + 12) x 8 = 288 free variables are required to 
encode the 3D-IC. 

Table 1. Example - Care Bit Profile of Test Cubes for the 
Three Cores of the Example 3D-IC 

Test Cube # Care bits in Test cube 
Core 1 Core 2 Core 3 

1 13 11 12 
2 12 11 10 
3 10 10 9 
4 9 7 8 
5 8 6 7 
6 7 5 5 
7 7 5 4 
8 6 4 3 

 

Consider the same 3D-IC, now using the proposed 
architecture. In this case, encoding is done in groups of 
three test cubes, with one test cube from each core. 
Optimizing the test cubes in the group for minimizing the 
total number of care bits in the group, the test cubes are 
grouped as shown in Table 2. 

Table 2. Care Bit Profile of Test Cube Groups for Encoding 
Using Proposed Architecture 

Test Cube 
Group 

# Care bits in Test cube Total Care Bits in 
Test Cube Group Core 1 Core 2 Core 3 

1 13 4 7 24 
2 12 5 8 25 
3 10 5 12 27 
4 9 6 10 25 
5 8 7 9 24 
6 7 10 5 22 
7 7 11 3 21 
8 6 11 4 21 

 

By encoding in groups according the above table, the 
maximum number of care bits in any group is 27, and hence, 
to encode the entire set of eight test cube groups, 27 x 8 = 
216 free variables are required using the proposed 
architecture, which is less than the number of free variables 
required to encode using the conventional architecture 
shown in Fig. 1. Hence, it is seen that the proposed 
architecture gives a better compression and hence reduces 
the tester storage requirements and test time. 

The drawback in the proposed architecture is that the 
linear equations for scan cells driven by daisy-chained 
decompressors cannot be solved independently. Consider 
one test cube from each layer being encoded. The total 
number of free variables brought in from the tester has to be 
sufficiently large enough to encode all three test cubes. 
Hence, creating pivots for care bits in all the three test cubes 
involves a lot of computation. The total number of XOR 
operations required to create pivots is 9n3 as compared to 
3n3 XOR operations required to encode using the 
conventional approach. Hence, this method is reasonable 
when the additional computation is a reasonable price to pay 
for the amount of test time reduction achieved. 

3. Optimizing Number of Test Elevators by 
Inter-layer Serialization of Test Data 

In this section, an implementation is proposed using a 
serializer-deserializer structure to further reduce the number 
of test elevators required to implement the proposed 
architecture. The scan shift frequency is usually lower than 
the functional frequency, since the scan clock tree is 
generally not buffered up for high speeds. Another reason is 
that during scan, a large percentage of flip-flops toggle, and 
hence a large amount of power is drawn from the power grid 
of the chip. This causes a voltage drop in the power lines. 
To avoid these problems, scan shifting is generally 
considerably slower than functional frequency. 

By using the proposed implementation, the difference 
between the slower scan shift frequency and the faster 
functional frequency can be exploited to further reduce the 
number of test elevators. The idea is to use a serializer at the 
layer sending test data to serialize the test data from the 
decompressor taps and drive the test elevators in the driving 
layer using this serialized data, and a deserializer at the 
receiving end, which restores the test slices in the receiving 
layer by converting the serial data back into parallel format 
(Fig. 3).  

 
Figure 3. Proposed Implementation of Inter-layer 

Serialization of Test Data 
If the test elevators can be operated at n times the scan 

shift frequency, then instead of having m test elevators to 
transfer data across layers, m/n  test elevators are required. 
On the other hand, it is also possible to have the same 
number of test elevators and increase the effective 
bandwidth by n times, i.e., m x n bits of data can be shifted 
in one shift cycle using m test elevators implementing inter-
layer serialization, as compared to m bits of data shifted in 
one shift cycle using m test elevators without serialization.  
Hence, depending on the constraints on the number of test 
elevators, this architecture can be used at an advantage to 
either increase the effective bandwidth or reduce the number 
of test elevators required in the design. 

Consider a serializer driven by m taps from the LFSR in 
the lower layer. Let the functional clock be n times faster 
than the scan clock. Hence, as explained previously, the 
number of test elevators required would be m/n. Let the 
number of test elevators required be represented as t, which, 
here, is equal to m/n. Inter-layer serialization would require 
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an m x t serializer in the sending layer driving the test 
elevators between the layers and a t x m deserializer driving 
the LFSR in the receiving layer. The simplest way of 
implementing an m x t serializer in the sending layer is by 
using a m:t multiplexer controlled by a modulo m counter 
driven by the faster functional clock (Fig. 4). 

 

Figure 4. Serializer Implementation for Functional Clock 
Operating n Times Faster than Scan Clock, Where Number 

of Test Elevators, t = m/n 

This ensures that the test data coming in at scan shift 
frequency from the LFSR iscoupled to the test elevators at 
the faster functional clock frequency. Similarly, the 
deserializer can be implemented as an n bit shift register (n 
is the ratio between functional clock frequency and scan 
clock frequency) driven by the faster functional clock, 
whereas the data in the shift register is sampled at the slower 
scan clock rate (Fig. 5).  

 
Figure 5. Deserializer Implementation for Functional Clock 
Operating n Times Faster Than Scan Clock, Where Number 

of Test Elevators, t = m/n 

As discussed above, inter-layer serialization has a small 
area overhead, hence it can be used in cases where the 
advantages of using it outweighs the additional cost of 
implementing the required architecture in the core. 

4. Experimental Results 
Experiments were conducted on six different 3D-IC 

designs and the results are presented in this section. Each of 
the 3D-ICs has three layers. Three different test 
compression architectures were experimented using these 
test chips. In the first test architecture (arch1), each core has 
a 64-bit LFSR, acting as a decompressor. The input tester 
channels from the ATE were allocated to the decompressors 
statically. In this architecture, the output cone of the each 
decompressor is confined to the layer in which the 
decompressor is present, i.e. test elevators are required to 

transfer the compressed test data to the decompressors in the 
non-bottom layers, however, the scan cells which are driven 
by a decompressor are localized to the layer in which the 
decompressor is present. Hence, it is enough to have 
sufficient test elevators to transfer the compressed test data, 
which is generally less in number. 

In the second architecture (arch2), the 64-bit LFSRs that 
were local to each layer in arch1, are interconnected and 
reconfigured to form a big primitive LFSR with number of 
flip-flops in this big LFSR being the sum of the number of 
flip-flops in the arch1 LFSRs in all the three layers. It 
should be noted that the LFSR in arch2 is distributed across 
the three layers, i.e. sections of LFSR are present in each of 
the three layers and these sections are interconnected using 
test elevators in such a way that a primitive LFSR is formed 
and drives scan chains in all three layers of 3D-IC. In this 
case, the scan chains are confined within the layer, i.e. test 
elevators are required to transfer compressed test data to the 
sections of LFSR in the non-bottom layers and to 
interconnect the sections of LFSR which are in different 
layers. Hence, more test elevators are required in arch2 than 
arch1. Using this architecture, the equations for the scan 
cells of the three layers are solved together and since the 
pivots for the test cubes are created in common, the free 
variables are used more efficiently and results in better 
compression and increased encoding efficiency. 
The third architecture (arch3) is the proposed architecture 
using daisy-chained decompressors shown in Fig. 2. In this 
case, the decompressors used are similar to the ones used in 
arch1, a local 64-bit LFSR in each core acting as a 
decompressor for the core, with all the decompressors daisy-
chained together. The tester channels are allocated to the 
decompressors as proposed in Sec. 3. This method combines 
the advantages of arch1 and arch2 at the cost of increased 
computational complexity of encoding the test cubes 
together. By using this architecture, some of the free 
variables are distributed to the decompressors in the other 
layers and the encoding of the test cubes of the three layers 
are done together, thereby the free variables are used more 
efficiently and results in better compression and increase in 
encoding efficiency similar to arch2. However, in this 
method, test elevators are required only to transfer the 
compressed test data to the non-bottom layers, similar to 
arch1, while providing an encoding advantage similar to 
arch2. In addition, reconfiguration of the local 64-bit LFSRs 
into a big LFSR for post bond testing of the 3D-IC is also 
not necessary when using arch3. 

Experiments were run on six different designs of 3D-ICs, 
each containing three layers. The test cubes used provided 
100% coverage of detectable faults. Static encoding was 
used to encode the test cubes. The compressed test data, i.e. 
tester storage required for the three architectures explained 
above is presented in Table 3. As shown in Table 3, there is 
reduction in the amount of tester data while using arch2 
when compared to arch1. 
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Table 3. Tester Data for the Three Architectures 

Design Test 
Vectors 

Scan 
Cells 

Local Independent 
Decompressors (arch1) 

Global Decompressor 
(arch2) 

Proposed 
Daisy-chained Decompressors 

(arch3) 
Percentage 

Reduction in 
Tester Data Tester Data 

(# of Bits) 
Number of  

Test Elevators 
Tester Data 
(# of Bits) 

Number of 
Test Elevators 

Tester Data 
 (# of Bits) 

Number of  
Test Elevators 

A 838 2578 8272 13 6016 21 6016 13 27.27% 
B 606 6747 18245 15 11070 21 11070 15 39.33% 
C 686 5662 9512 13 6560 21 6560 13 31.03% 
D 751 8724 13314 15 9193 21 9193 15 30.95% 
E 803 9432 13583 15 10144 21 10144 15 25.32% 
F 807 10538 17538 15 12046 21 12046 15 31.31% 

 As explained earlier, similar benefit is obtained by using 
arch3 as well. This is due to the fact that both arch2 and 
arch3 provide flexible use of free variables across layers 
and the free variables which are not used in encoding test 
cube of one layer can be used to encode test cubes of other 
layers. In addition, by using daisy-chained decompressors 
(arch3), the number of test elevators required is less 
compared to arch2, since the decompressors are local to 
each layer. 

5. Conclusion 
By using the daisy-chained decompressor architecture, 

an increase in compression can be achieved, with efficient 
usage of test elevators. Experimental results are presented in 
which the proposed architecture is compared with the 
conventional architecture. In addition, an implementation is 
proposed with a serializer-deserializer coupling the test 
elevators to the decompressors, which further reduces the 
number of test elevators required to implement the test 
architecture. 
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