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Abstract—This paper presents a compression/decompression scheme
based on selective Huffman coding for reducing the amount of test
data that must be stored on a tester and transferred to each core in
a system-on-a-chip (SOC) during manufacturing test. The test data
bandwidth between the tester and the SOC is a bottleneck that can
result in long test times when testing complex SOCs that contain many
cores. In the proposed scheme, the test vectors for the SOC are stored in
compressed form in the tester memory and transferred to the chip where
they are decompressed and applied to the cores. A small amount of on-chip
circuitry is used to decompress the test vectors. Given the set of test vectors
for a core, a modified Huffman code is carefully selected so that it satisfies
certain properties. These properties guarantee that the codewords can be
decoded by a simple pipelined decoder (placed at the serial input of the
core’s scan chain) that requires very small area. Results indicate that the
proposed scheme can provide test data compression nearly equal to that of
an optimum Huffman code with much less area overhead for the decoder.

Index Terms—Automatic test equipment, compression, decompression
architecture, embedded core testing, testing time, test set encoding.

I. INTRODUCTION

One of the key concerns in any design project is to meet
time-to-market constraints. In order to accomplish this goal, chip
designers often use predesigned and preverified cores to develop
systems-on-a-chip (SOC) devices. With time, these devices have
become extremely complex. This high level of integration has allowed
vendors to drive down the effective manufacturing costs. However, it
has also rapidly increased the complexity of testing these chips. One
of the increasingly difficult challenges in testing SOCs is dealing with
the large amount of test data that must be transferred between the
tester and the chip [9], [34]. Each core in an SOC has a given set of test
vectors that must be applied to it (usually through a test wrapper that is
provided around a core). The test vectors must be stored on the tester
and then transferred to the inputs of the core during modular testing.
As more and more cores (each with its own test set) are placed on a
single chip, the amount of total test data for the chip increases rapidly.
This poses a serious problem because of the cost and limitations of
automated test equipment (ATE). Testers have limited speed, channel
capacity, and memory. In general, the amount of time required to test a
chip depends on how much test data needs to be transferred to the chip
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and how fast the data can be transferred (i.e., the test data bandwidth
to the chip). This depends on the speed and channel capacity of the
tester and the organization and characteristics of the scan chains on
the chip. Both test time and test storage are major concerns for SOCs
from a test economics point of view.

This paper presents a statistical compression/decompression scheme
to reduce the amount of test data that needs to be stored on the tester
and transferred to the chip (preliminary results were published in [24]).
The idea is to store the test vectors for a core in the tester memory in
compressed form, and then transfer the compressed vectors to the chip,
where a small amount of on-chip circuitry is used to decompress the test
vectors. Instead of having to transfer each entire test vector from the
tester to the core, a smaller amount of compressed data is transferred
instead. The approach presented here significantly reduces both test
storage requirements and the overall test time.

Transferring compressed test vectors takes less time than transferring
the full vectors at a given bandwidth. However, in order to guarantee
a reduction in the overall test time, the decompression process should
not add delay (which would subtract from the time saved in transferring
the test data). Moreover, the on-chip decompression circuitry must be
small so that it does not add significant area overhead. Given a set of
test vectors, a method is presented here for choosing a statistical code
(a modified form of Huffman coding) that can be decoded with a simple
pipelined decoder. The properties of the code are chosen such that the
pipelined decoder has a very small area and is guaranteed to be able to
decode the test data as fast as the tester can transfer it.

The compression/decompression scheme presented in this paper can
be used for generating any set of deterministic scan vectors. It preserves
the sequence of the vectors and requires no modifications to the circuit-
under-test (CUT). It does not require any knowledge of the internal
design of the CUT, and, thus, is suitable for testing intellectual property
cores where the core supplier does not provide any information about
the internal structure of the core.

II. RELATED WORK

The problem of reducing test time and test data for core-based
SOCs has been attacked from several different angles in recent
literature. Novel approaches for compressing test data using the
Burrows–Wheeler transform and run-length coding were presented
in [21], [33]. These schemes were developed for reducing the time
to transfer test data from a workstation across a network to a tester
(not for use on chips). Scan chain architectures for core-based
designs that maximize bandwidth utilization are presented in [1].
A technique for compression/decompression of scan vectors using
cyclical decompressors and run-length coding is described in [23].
A modular built-in self-test (BIST approach that allows sharing of
BIST control logic among multiple cores is presented in [30]. A novel
technique for combining BIST and external testing across multiple
cores is described in [32]. The idea of statistically encoding test data
was presented in [22]. They described a BIST scheme for nonscan
circuits based on statistical coding using comma codes (very similar to
Huffman codes) and run-length coding. An approach called “parallel
serial full scan (PSFS) for reducing test time in cores is presented in
[16]. A technique to reduce test data and test time by using specially
designed cores (cores with virtual scan chains) is presented in [26]. An
approach that uses a linear combinational expander circuit is described
in [2]. The use of Golomb codes and frequency-directed run-length
(FDR) codes for compressing test data have been demonstrated
in [5]–[7], respectively. The use of variable length input Huffman
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codes for SOC test data compression has been proposed in [14]. A
fixed-to-fixed block encoding scheme is described in [28]. Techniques
for reusing scan chains from other cores in an SOC to increase the
test data bandwidth has been described in [11], and automatic test
pattern generation (ATPG) techniques for producing test cubes that are
suitable for encoding, using the above technique, have been described
in [12]. A fault simulation-based technique to reduce the entropy
of the test vector set by pattern transformation is described in [19].
Such transformations increase the amount of compression that can be
achieved on the transformed test set using statistical coding. ATPG
algorithms for producing test vectors that can more effectively be com-
pressed using statistical codes have been described in [20]. Test vector
compression based on hybrid BIST techniques have been described
in [10], [29], and [27]. A novel scheme of test vector compression
using an embedded processor is described in [25]. In [13], a test vector
compression technique based on geometric primitives is proposed.
Very recently, a new line of research has focused on compressing test
data volume while optimizing other factors like test power [8], [31].

Although all the techniques mentioned above have the same high-
level objective (that of reducing test data and/or test application time),
the different approaches present different design alternatives and their
applicability to a particular design situation varies from case to case.
This paper presents a selective Huffman coding scheme for testing
cores with internal scan. One of the features of this approach is that
the code that is used for a particular core is carefully chosen such that
only a small decoder circuit is required. There are no restrictions on
the order of the test set, and no modifications need to be made to the
core-under-test. The small decoder circuit is simply placed at the serial
input of the core’s scan chain. As will be shown, the decoder provides a
significant reduction in the amount of test data that must be transported
from the tester to the core.

III. STATISTICAL CODING

The compression/decompression scheme described in this paper is
based on statistical coding. In statistical coding, variable length code-
words are used to represent fixed-length blocks of bits in a data set. For
example, if a data set is divided into four-bit blocks, then there are2

4

or 16 unique four-bit blocks. Each of the 16 possible four-bit blocks
can be represented by a binary codeword. The size of each codeword
is variable (it need not be four bits). The idea is to make the codewords
that occur most frequently have a smaller number of bits, and those that
occur least frequently to have a larger number of bits. This minimizes
the average length of a codeword. The goal is to obtain a coded repre-
sentation of the original data set that has the smallest number of bits.

A Huffman code [18] is an optimal statistical code that is proven
to provide the shortest average codeword length among all uniquely
decodable variable length codes. A Huffman code is obtained by con-
structing a Huffman tree. The path from the root to each leaf gives the
codeword for the binary string corresponding to the leaf. An example
of constructing a Huffman code can be seen in Table I and Figs. 1 and
2. An example of a test set divided into four-bit blocks is shown in
Fig. 1. Table I shows the frequency of occurrence of each of the pos-
sible blocks (referred to as symbols). There are a total of 60 four-bit
blocks in the example in Fig. 1. Fig. 2 shows the Huffman tree for this
frequency distribution and the corresponding codewords are shown in
Table I.

An important property of Huffman codes is that they are prefix-free.
No codeword is a prefix of another codeword. This greatly simplifies
the decoding process. The decoder can instantaneously recognize the
end of a codeword uniquely without any look ahead.

TABLE I
STATISTICAL CODING BASED ON SYMBOL FREQUENCIES FOR

TEST SET IN FIG. 1

Fig. 1. Example of test set divided into four-bit blocks.

Fig. 2. Huffman tree for the code shown in Table I.

The amount of compression that can be achieved with statistical
coding depends on how skewed the frequency of occurrence is for the
different codewords. If all of the codewords occur with equal frequency,
then no compression can be achieved. It is well known, however, that
the test vectors in a test set tend to have a lot of correlations. This arises
from the fact that faults in the CUT that are structurally related require
similar input value assignments in order to be provoked and sensitized
to an output. This often results in skewed frequency of occurrence for
different codewords. Moreover, for test cubes, the compression can be
very large. The don’t care bits (X ’s) provide flexibility to allow a block
to be encoded with more than one possible codeword. The shortest pos-
sible codeword can be chosen for each block to maximize the compres-
sion. Algorithms for filling test cubes for maximizing compression are
described in Section VI.
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Fig. 3. Block diagram illustrating compression/decompression scheme for a slower tester clock.

Fig. 4. Block diagram illustrating compression/decompression scheme using single tester channel to feed multiple scan chains.

To fully exploit the correlations in a test set, the number of bits in
each scan vector should be a multiple of the fixed-length block size
used for the statistical code. When dividing the test set intob-bit blocks
for coding, if the size of the scan vectors is not a multiple ofb, thenX ’s
can be added to pad the start of the vectors (first bits shifted into the scan
chain) to make the length a multiple ofb. Shifting some extra bits (at the
start of the vector) into the scan chain does not matter provided the final
contents of the scan chain form the correct test vector when it is applied
to the core-under-test. Having each scan vector be a multiple of the
block size aligns the blocks within the vectors so that the correlations
between the bits will skew the frequencies.

IV. OVERVIEW OF THE PROPOSEDSCHEME

The hardware architecture for the proposed scheme is explained in
this section for a single scan chain. The compression/decompression
scheme proposed here involves statistically coding the scan vectors and
then placing an on-chip decoder at the serial input of the scan chain
to decompress the vectors. A block diagram illustrating the scheme is
shown in Fig. 3. The tester channel shifts a constant stream of variable
length codewords (corresponding to compressed scan data) to the de-
coder. The decoder generates the corresponding fixed-length blocks. At
every tester clock cycle the decoder receives one bit from the tester. It
takes the decoderL clock cycles to decode a codeword, whereL is the
length of the codeword. Once the decoder has decoded the codeword, it
has to shift the decoded source data into the scan chain. It is not desir-
able for the tester to wait for the decoder to finish shifting the decoded
output into the scan chain. This is because any such wait time induced
by the decoder will reduce the test time reduction that can otherwise be
obtained by compressing the test data. For this reason, in this scheme, a

serializer is used to provide some degree of parallelism between the two
operations, one being the receiving of the input bits from the tester and
decoding them, and the other being the shifting of the decoded output
into the scan chain. Note that the serializer can provide the necessary
parallelism in the shift operation because the decoder produces all the
bits of the decoded output in parallel (at the same time). If the serializer
can shift the decoded output into the scan chain within the time it takes
the decoder to decode the next codeword, then the decoder can imme-
diately load the next decoded output into the serializer and continue
with the decoding process without having to stop the tester. Since, in
many cases, the number of bitsb in the fixed-length decoded block is
greater than the number of bits in the codeword, the rate at which data
needs to be shifted out of the decoder is higher than the rate at which
the data is coming into the decoder. There are two ways to achieve this.

1) Use scan chain with faster clock than tester clock. This is illus-
trated in Fig. 3. If the system clock rate is faster than the tester
clock rate, then it may be possible to clock the scan chain at a
faster clock rate than the tester’s clock rate (as described in [17]).
The serializer placed between the decoder and the scan chain
is then also clocked at the faster system clock rate. The serial-
izer is loaded in parallel by the decoder (allowing the decoder
to generate multiple bits of data in a slower tester clock cycle)
and serially shifted out into the scan chain at a faster clock rate.
One advantage of this approach is that it can be used to provide
at-speed scan with a slow tester [17].

2) Use single tester channel to feed multiple scan chains. This is il-
lustrated in Fig. 4. If it is not possible to clock the scan chain with
a faster clock than the tester clock, then another approach is to
have the tester channel rotate betweenn scan chains (each scan
chain has its own decoder). At each clock cycle, the tester shifts
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in a bit for a different decoder for each of then scan chains.
Each of then decoders simply samples its input once everyn

clock cycles in a different phase from the other decoders. For
example, if there are two scan chains(n = 2), then the decoder
for scan chain 1 would sample its input on even tester clock cy-
cles, and the decoder for scan chain 2 would sample its input on
odd tester clock cycles. With this approach, the “effective clock
rate” for each of the decoders is divided byn. However, the scan
chain corresponding to each decoder is still clocked at the normal
tester clock rate and, thus, its clock rate isn times faster than the
decoder. Each time the decoder is clocked once, the scan chain
is clockedn times.

In the remainder of this paper, without loss of generality, it will be
assumed that the scan clock is faster than the tester clock (i.e., cor-
responding to scenario 1 above). However, all of the concepts apply
equally as well for scenario 2 where the tester channel feeds multiple
scan chains such that the “effective clock rate” seen by each decoder is
slower than the clock rate of the scan chain.

To illustrate how the decoder and serializer work, consider the fol-
lowing example. Suppose the scan vectors are divided into four-bit
blocks, and each four-bit block is replaced by a variable length code-
word. The compressed test data stored on the tester consists of the vari-
able length codewords. These codewords are shifted into the decoder
as a continuous stream of bits. If the codewords are prefix-free, than
the decoder can easily recognize when it has received a complete code-
word. When the decoder has received a complete codeword, it loads the
corresponding four-bit block in parallel into the serializer. The contents
of the serializer are then shifted into the scan chain. If the scan chain is
clocked at twice the clock rate that the tester operates at, then after two
tester clock periods the entire contents of the serializer will be shifted
into the scan chain. During the two tester clock periods that the serial-
izer is in operation, the decoder can be receiving the next codeword.

The key to making the scheme work is careful selection of the sta-
tistical code that is used for compressing the test set. There are two
important issues that must be considered in selecting the code: one is
that the decoder must be small in order to keep the area overhead down,
and the other is that the decoder must not output the decompressed bits
into the serializer faster than they can be shifted out into the scan chain.
While a Huffman code gives the optimum compression for a test set di-
vided into a particular fixed-length block size, it generally requires a
very large decoder. A Huffman code for a fixed-length block size ofb

bits requires a finite state machine (FSM) decoder with2b � 1 states.
Thus, the size of the decoder for a Huffman code grows exponentially
as the block size is increased. A method for selecting an efficient statis-
tical code for the proposed scheme is described in the following section.

In this scheme, the output response is assumed to be fully com-
pacted on-chip using standard response compaction hardware struc-
tures such as a multiple-input signature register (MISR). Test response
compaction is an extensively researched topic and several well-defined
techniques exist for doing so [4].

V. STATISTICAL CODE SELECTION FORPROPOSEDSCHEME

Given the test set for a core, a statistical code for compressing the test
set must be selected. There is a tradeoff in selecting the code between
the amount of compression that is achieved and the complexity of the
decoder. Moreover, if the clock frequency of the tester isfT and the
clock frequency of the scan chain isfsys (system clock frequency) then
the ratio of the system clock frequency and the tester clock frequency
fsys=fT limits the minimum size of a codeword. If the test set is divided
into fixed-length blocks ofb bits, then the serializer will holdb bits, and,
thus, it takesb scan-clock cycles to shift the buffer’s contents into the

Fig. 5. Huffman tree for the three highest frequency symbols in Table I.

scan chain. During the time that the contents of the serializer are being
shifted into the scan chain, the tester is shifting bits into the decoder.
When the decoder receives a complete codeword, it needs to output the
corresponding block ofb bits into the serializer. If the codeword is too
short, then the serializer may not have been emptied yet which would
cause a problem for the decoder. So, in order to ensure that the serializer
is always empty when the decoder finishes decoding a codeword, the
minimum size of a codewordLmin must be no smaller than the ratio of
the tester and scan-clock rates times the size of each block

Lmin � b
fT
fsys

: (i)

For example, if the block size is 8 and the scan-clock rate is twice the
tester clock rate, then the minimum size of a codeword is 4. Note that
if it is not possible to have the scan clock rate be faster then the tester
clock rate, then an alternative solution (as previously described) is to
make the scan clock rate be twice as fast as the “effective clock rate” as
seen by the decoder by simply having the tester channel feed two scan
chains so that the rate that the decoder receives data from the tester is
half as fast as the rate at which data can be shifted into the scan chain.

Using a Huffman code would provide the maximum compression,
however, it would require a complex decoder and may not satisfy the
constraint on the minimum size of a codeword. Therefore, some al-
ternative statistical code must be selected. The approach taken here
involves using a selective coding approach for which a very simple
decoder can be constructed. Consider the case where the test set is di-
vided into fixed-length blocks ofb bits. There will be2b codewords.
The first bit of each codeword will be used to indicate whether the fol-
lowing bits are coded or not. If the first bit of the codeword is a 0,
then the nextb bits are not coded and can simply be passed through
the decoder as is (hence, the complete codeword hasb + 1 bits). If
the first bit of the codeword is a 1, then the next variable number of
bits form a prefix-free code that will be translated by the decoder into a
b-bit block. The idea is to only code the most frequently occurringb-bit
blocks using codewords with small numbers of bits (less thanb, but
greater than or equal toLmin). Compression is achieved by having the
most commonb-bit blocks be represented by codewords with less than
b bits. The decoder is simple because only a small number of blocks
are coded. The vast majority of the blocks are not coded and can be
simply passed through the decoder. Ifn blocks are coded, then the de-
coder can be implemented with an FSM having no more thann + b
states (compared with a Huffman code which requires2b � 1 states).

An example to illustrate the proposed approach for selecting a sta-
tistical code is shown in Fig. 5. Consider the test set in Fig. 1. If the
entire test set is divided into four-bit blocks then the frequency distri-
bution obtained is shown in the second column of Table I. As can be
seen from Table I, the symbols having the highest frequencies are0010,
0100, and0110. So, these are the symbols that are coded while the rest
of them will be left unchanged. A Huffman tree for the three patterns is
constructed to get their codewords (as shown in Fig. 5). The codewords
for the remaining 13 symbols are simply a 0 followed by the symbol
itself (as shown in the last column of Table I).

The two important parameters in selecting the code are the block size
b and the number of coded blocksn. Once those have been chosen, then
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Fig. 6. Example Test Set to Illustrate Alg1 for Filling Test Cubes.

the procedure for constructing the code is mechanical. A Huffman tree
is formed for then most frequently occurringb-bit blocks. The code-
words for the most frequently occurring blocks are simply a 1, followed
by the Huffman code obtained from the Huffman tree. The codewords
for the remaining blocks are simply a 0, followed by theb-bit block
itself. The amount of area overhead for the decoder can be controlled
by placing an upper bound on the values ofn andb. An increase inn
implies an increase in the number of states of the decoder where in the
limiting case when all patterns are encoded the decoder becomes a full
Huffman decoder. An increase in the block sizeb, on the other hand,
implies an increase in the serializer area that is required for this scheme.
In this case, the limit is to make each test vector a pattern which results
in a large hardware overhead to regenerate the test vectors from the
codewords. The effect ofn andb on the amount of compression will
be discussed in greater detail in the experimental results section. For a
particular value ofb, the amount of compression that will be achieved
can be computed in linear time with respect to the number of bits in the
test set. Thus, the best value ofb can be efficiently determined through
experimentation. Several values ofb can be tried for a particular test
set to determine which gives the best compression. Similarly, the best
value forn can also be efficiently determined through experimentation.

VI. A LGORITHMS FORFILLING TEST CUBES

One of the advantages of implementing this selective Huffman en-
coding scheme on test cubes is that the unspecified bits can be filled
with 1’s and 0’s in a way that the frequency distribution of the patterns
becomes skewed. This helps in maximizing the compression. There are
several algorithms that can be used to fill theX ’s. In this section, two
will be discussed.

When the block size is sufficiently small, an exact analysis can be
done by considering all binary combinations (minterms) contained in
the unspecified blocks. This algorithm (henceforth, referred to as Alg1)
is illustrated with an example in the following paragraphs.

Fig. 6 shows an example test set consisting of three test cubes,
each of length 12. Let the block size beb = 4. Hence, the
three test cubes shown above are partitioned into a set of 9
four-bit blocks,B = f10X1; XX10; 1XXX; X011; 10X1;

10X1; 0X10; 101X; 1XXXg. Each unspecified block can contain
from 1 (if fully specified) to24 = 16 (if completely unspecified)
possible binary combinations (minterms). For each of the 16 possible
minterms for a block, the frequency of occurrence is determined
by seeing how many of the unspecified blocks (in setB) contain
that minterm. For example, the minterm 1111 is contained in two of
the unspecified blocks in the setB, while the minterm 0000 is not
contained in any of the unspecified blocks. The minterm that occurs
most frequently (i.e., is contained in the largest number of unspecified
blocks in setB) is selected first. TheX ’s in each unspecified block
that contains the most frequent minterm are specified so that it matches
that minterm, and the unspecified block is then removed from the set
B. The frequency of occurrence for each of the remaining minterms is
then recomputed since the setB has been changed, and the procedure
repeats until the setB is empty. This procedure maximizes the
frequency of occurrence of the codewords thereby increasing the
encoding efficiency of the statistical encoding.

In the example in Fig. 6, the most frequently occurring minterm
is 1011. Seven of the unspecified blocks inB contain 1011, so after

Fig. 7. Example test set from Fig. 6 afterX ’s are filled using Alg1.

the first iteration, the setB will contain only {XX10 and0X10}.
The most frequently occurring minterm in the second iteration is 0010,
which is contained in both remaining unspecified blocks. The test cubes
after specifying all theX ’s is shown in Fig. 7.

Alg1 provides an exact analysis of the frequency distribution of the
minterms by considering all possibilities. However, this comes at a cost
in terms of the runtime of the algorithm. It is easy to see that the algo-
rithm is exponential in block sizeb and, hence, the use of this algorithm
should be limited to small block sizes only. However, there are alter-
nate ways to specify the don’t care bits to maximize the compression
which trade off accuracy for faster runtime. The next algorithm (hence-
forth, referred to as Alg2) is extremely fast and in most cases produces
results comparable to the first algorithm. Alg2 is illustrated next with
the same example used in the previous case.

In Alg2, the most frequently occurring unspecified block is identi-
fied. It is then compared with the next most frequently occurring un-
specified block to see if there is a conflict in any bit position (i.e., one
has a 1 and the other has a 0, or vise versa). If there is no conflict, then
they are merged by specifying all bit positions in which either block has
a specified value. For example, if blockX0X1 is merged with block
X01X, then the resulting block isX011. Note that merging blocks
can only increase the number of specified bits. The most frequently
occurring unspecified block is compared with all the other unspecified
blocks in decreasing order of frequency and whenever merging is pos-
sible, it is done. This is done until no more merging can be done with
the most frequently occurring unspecified block. This process is then
repeated for the second most frequently occurring unspecified block.
This continues until there are no more blocks that can be merged. At
this point, all the remaining blocks are unique and cannot share any
minterms. Any remainingX ’s can now be randomly filled with 0’s and
1’s as they will have no impact on the amount of compression. Alg2
fills the X ’s by greedily merging unspecified blocks based on their
frequency of occurrence. This is a heuristic that skews the frequency
of occurrence, however, unlike Alg1, it is not guaranteed to maximize
the encoding efficiency since the greedy procedure may miss a better
merging order. However, it is a much faster procedure than Alg1 as the
number of operations is much less because merging is done right away
to reduce the set of blocks.

Consider applying Alg2 to the example test data shown in Fig. 6.
The setB as described earlier has 6 unique unspecified blocks10X1,
XX10, 1XXX, X011, 0X10 and 101X. Let the set of these 6
unique blocks be denoted byBuniq. Of these six unique blocks, the
frequency of occurrence of block10X1 is 3, that of block1XXX is
2, and, for the rest, the frequency is 1. In the first step of the algorithm,
since the block10X1 is the most frequently occurring, it is compared
with the next most frequently occurring block which is1XXX. Since
there are no conflicts, they are merged thereby reducing the setBuniq.
The merged block10X1 is then compared with the other blocks
that have frequency 1, and is merged withX011 and101X. At this
point, the setBuniq = f1011; XX10; 0X10g. The procedure is
then repeated again, starting with the next most frequently occurring
unspecified block. In the end,Buniq = f1011; 0X10g and no more
merging can be done. The final test vector set is shown in Fig. 8.

Note that unlike the previous algorithm, in this case it is possible to
have some don’t care bits left over in the transformed test set which
can now be randomly filled with 1’s or 0’s without having any impact
on the amount of compression. The amount of compression obtained
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Fig. 8. Example test set from Fig. 6 afterX ’s are filled using Alg2.

Fig. 9. State transition diagram of the FSM decoder for selected code.

for both full Huffman and selective Huffman encoding using the two
algorithms are shown in Section VIII. Also, runtimes are provided to
compare the speed of execution of the two algorithms.

VII. I MPLEMENTATION

Once the statistical code has been selected, a decoder for the code
is synthesized. One way to implement the decoder is to use a simple
FSM. The decoder is driven by the tester clock and one bit of data is re-
ceived during each tester clock cycle from a tester channel. For a block
of sizeb, the decoder hasb data outputs and two main control outputs:
parallel load (Par) andserial load (Ser). These two signals control
the loading of data into the serializer when the data has been decoded.
The state transition diagram for the decoder FSM can be easily formed
from the tree representation of the code. An example is shown in Fig. 9.
Note that each codeword has a bit indicating whether the pattern that
follows is encoded or not. In this scheme, a 0 is used to indicate “no
coding” and a 1 is used to indicate coding. If the first bit of the code-
word is a 0, indicating that the nextb bits are not coded, then the decoder
simply passes the bits through by serially loading them into the serial-
izer. If the first bit of the codeword is a 1, indicating that the subsequent
bits form a prefix-free variable length code, then the decoder branches
on each bit, one at a time, until it reaches the end of the codeword. At
that point it does a parallel load of the appropriateb-bit block into the
serializer.

Note that for the sake of clarity, all the control signals between the
decoder and the serializer have not been shown in Figs. 3 and 4. Also,
the serializer has been shown to be driven by the faster system clock di-
rectly, in order to convey the high level idea of the scheme. In practice,
the faster system clock driving the serializer is actually controlled by
the decoder to synchronize the operations of the decoder and the seri-
alizer. Every time the decoder loads data in parallel into the serializer,
it enables the system clock for the nextb clock cycles to allow theb-bit
output to be shifted into the scan chain. Once theb-bits are shifted into
the scan chain, the serializer clock is frozen until the decoder is ready
to either load in parallel the next decoded output, or ready to shift into
the serializer the next bit of an unencoded source symbol. Thus, the
serializer is driven in two modes by the decoder. In the faster mode, it
is driven by the system clock (controlled by the decoder) to shiftb bits

into the scan chain. In the slower mode, it is driven by the serializer at
the tester clock frequency to shift in one bit of unencoded test data into
it.

Another way to implement the decoder is to use a ROM or RAM by
placing a further restriction on the selection of the statistical code. The
additional restriction is that all codewords must be one of two fixed
sizes. If the first bit of the codeword is a 0, then the nextb-bits are
the block itself. If the first bit of the codeword is a 1, then the next
a-bits form an address into a ROM/RAM whose contents contain the
correspondingb-bit block. For example, if the block size is 8 (b = 8),
and the address size is 4 (a = 4), then there are28 = 64 different 8-bit
blocks and24 = 16 of them can be encoded with(a + 1 = 5) bit
codewords while the remaining 48 of them would have(b + 1 = 9)

bit codewords. The decoding would be done using a 16� 8-bit ROM
or RAM. If a RAM is used, it could be reused for different cores by
simply changing its contents to correspond to the appropriate code for
each core. Note also that a RAM that is already present in the functional
design could be adapted for this purpose during testing. If the RAM
is bigger than what is needed, it can be used by simply padding the
high-order address bits with 0’s and looking only at the low-order data
bits when decoding the statistical codes.

VIII. E XPERIMENTAL RESULTS

The proposed compression/decompression scheme was used to com-
press test sets for the largest ISCAS’89 [3] circuits assuming full scan.
The test sets used for all the experiments in this section are the dynami-
cally compacted test cubes generated by MINTEST [15]. These are the
exact same test sets used for the experiments in [6], [7], [14].

The first set of experimental results presented in Table II compares
the effectiveness of the various X-filling algorithms discussed in Sec-
tion VI. Alg1 refers to the exact algorithm, and Alg2 refers to the fast
heuristic algorithm. Additionally, results for a third algorithm (referred
to as the zero-fill) are also shown. The zero-fill algorithm simply fills
theX ’s with 0’s. Note that the zero-fill approach is used by the tech-
niques in [6], [7], [14] as all those techniques eventually compress runs
of 0’s. Column 1 shows the name of the circuit, column 2 shows the
total number of test data bits (not considering the output responses)
originally present in the uncompressed test set, and column 3 shows
the different block sizes that were used for the compression. Results
are shown for two block sizes, 8 and 12. The table entries under the
headings “full Huffman coding” show the percentage compression ob-
tained when all the blocks are encoded and those under the heading
“selective Huffman coding” show the same when the topn most fre-
quently occurring blocks are encoded. The percentage compression is
computed as

(Original Bits-Compressed Bits)� 100

(Original Bits)
:

The value ofn for the different cases is shown in the first column under
“selective Huffman coding”. It is explained later on in this section how
to choose the right value ofn for such cases. It is clearly seen that
for most of the cases Alg2 produces results that are almost as good as
those produced by Alg1. Note that zero-fill, on the other hand, produces
substantially suboptimal results for all the cases and clearly is not the
best choice for this scheme.

The experimental results in Table III compare the run times of Alg1
and Alg2 for different block sizes. The zero-fill algorithm is trivial (it
simply replaces theX ’s withO’s) and, hence, has not been included in
the comparison. The runtimes shown (in CPU seconds) are for a 1-Ghz
Pentium III workstation with 1-GB main memory. It is easily seen from
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TABLE II
COMPARISON OFDIFFERENTX-FILLING ALGORITHMS FORCOMPRESSIONEFFECTIVENESS

TABLE III
COMPARISON OFRUN-TIMES (CPU SECONDS) OF ALG1 AND ALG2

the results that the runtimes for Alg1 increases rapidly as the block size
is increased. However, the increase in runtime for Alg2 is much more
controlled. The last row of the table shows the average speed-up that is
achieved by Alg2 over Alg1 and is computed as

Speed-Up
avg

=
Average Run-Time of Alg 1
Average Run-Time of Alg 2

:

For a block size of 12, the average speed-up obtained is as much as 72.
The next set of experimental results shows the hardware overhead

for the decoders and the serializer for different block sizes. For the de-
coders, the hardware overhead is shown for both full Huffman encoding
and selective Huffman encoding. In Table IV below, under the column
“full Huffman decoder” the number of states of the decoder and the
area overhead is shown, and the same for selective Huffman encoding is
shown under the column “selective Huffman decoder.” The benchmark
circuits were synthesized with a single scan chain. The last column in
the table shows the area overhead of the serializers. The area overhead
for the decoders and the serializers have been shown separately, as the
serializer area overhead is the same for both the full Huffman and se-
lective Huffman decoders. Moreover, separating the two area overheads
gives a more accurate picture if existing functional hardware on the chip
is used to implement the serializer functionality. The area overhead of
the decoder (serializer) is computed as

area of decoder (serializer)� 100

area of benchmark circuit
:

TABLE IV
AREA OVERHEAD OF THEDECODER ANDSERIALIZER

As can be seen from Tables II and IV, the code selected for the proposed
scheme provides slightly less compression than a Huffman code (the
difference becomes less for larger block sizes), but it allows the use of
a much simpler decoder. While the number of states for the Huffman
decoder grows exponentially, the number of states for the proposed
scheme grows linearly. The block size provides an easy way to tradeoff
between area overhead and compression with the proposed scheme.
Larger block sizes generally give greater compression, but require a
more complex decoder and larger serializer.

Next, a procedure for selecting an appropriate value ofn (the number
of the most frequently occurring blocks that are encoded) is described.
Figs. 10 and 11 show the variation of percentage compression with the
number of patterns encoded(n) for the selective Huffman code.

An interesting observation that can be made is that initially with an
increase inn, the amount of compression increases. The graph reaches
a peak at some value forn, and then steadily starts decreasing until all
the patterns are encoded. At this point, there is a steep rise in the graph.
This can be explained as follows. The patterns are coded in a decreasing
order of their frequency of occurrence. After a certain point (the peak),
the gains obtained by compressing more patterns are lost due to the in-
crease in the codeword size because of the extra bit added at the begin-
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Fig. 10. Variation of compression withn for b = 4.

Fig. 11. Variation of compression withn for b = 6.

TABLE V
VARIATION OF COMPRESSIONPERCENTAGE WITH

BLOCK SIZE FOR FULL HUFFMAN ENCODING

ning of the codeword to distinguish coded patterns from those that are
not coded. When all the patterns are coded (full Huffman encoding),
there is no need for the extra bit at the beginning of each codeword
and this greatly increases the amount of compression resulting in the
steep slope toward the end of the graph. This trend is observed for all
the three different circuitss13 207,s15 850, ands38 417 for the two
different block sizes of 4 (in Fig. 10) and 6 (in Fig. 11). Choosing the
right value forn is simply a matter of determining the peak from the
graphs shown in Figs. 10 and 11. The values ofn for the different cir-
cuits shown in Table II were all determined based on such graphs for
the corresponding circuits.

Table V shows how the percentage compression achieved for full
Huffman encoding varies with different block sizes. As mentioned ear-
lier, the amount of compression increases with an increase in the block
size and choosing the right value forb is simply a matter of tradeoff
between the hardware overhead and the compression desired. The per-
centage compression shown below for the different block sizes were
obtained by using Alg2 for filling theX ’s. The increase in the amount

TABLE VI
COMPARING TEST DATA COMPRESSIONWITH

PREVIOUSLY PUBLISHED RESULTS

of compression is bigger when moving upwards from small block sizes
and gradually flattens out at large block sizes. Thus, an optimum value
of b would be the point just before the percentage compression curve
flattens out.

Three other techniques directly relate to the scheme proposed here.
They are compression based on Golomb [6], FDR [7], and variable-
input Huffman (VIHC) codes [14]. In the remainder of this section,
comparisons between these different techniques in terms of compres-
sion efficiency, hardware overhead of the decompressors, and test ap-
plication time reduction will be discussed.

Table VI shows the amount of compression obtained using the four
different techniques. The exact same test set (MINTEST dynamically
compacted test cubes) was used for all the methods. Columns 1 and 2
in Table VI report the circuit name and the number of bits in the orig-
inal test data set. The numbers for selective Huffman coding in Column
3 are taken from Table II for Alg1 and block sizeb = 12 as a sample
representative. Although more compression can be obtained with larger
block sizes, the area overhead increases. The block size of 12 will be
used as a representative for selective Huffman for all the comparisons
in this section. The number of blocks actually encoded for this scheme
can be obtained from Table II. The best compression obtained using
Golomb coding [6] is shown in the next two columns. The value of
the parameterm (group size) for which this compression is obtained
is also shown in the table next to the percentage compression. Similar
results are also shown in the table for the FDR [7] and the VIHC codes
[14]. For the FDR codes, the value of the parameterk, is determined
by the longest run of 0’s and is shown in the table next to the percent
compression. For the VIHC codes, the results shown are the best com-
pression percentage obtained using different values for the parameter
mh (the maximum run of 0’s allowed in any block). The values of the
parametermh tried were 4, 6, 8, 10, 12, 14, and 16. For all the other
techniques (Golomb, FDR, and VIHC), the zero-fill algorithm was used
for filling theX ’s as that maximizes the amount of compression using
those methods. This ensures that the comparison is fair. For each of the
circuits, the method that produces the best compression is highlighted
in bold font. It can be seen that the selective Huffman code produces
the best compression for all the circuits except s13207 and s15850, for
which the best compression is produced by the FDR code. However,
for s15850 the improvement of the FDR code over selective Huffman
is only 0.2%.

The area overhead of the decoders for the different compression
methods are compared next in Table VII. The area overhead is com-
puted as explained earlier for the results shown in Table IV. The partic-
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TABLE VII
COMPARING DECODERAREA OVERHEAD

ular decoder configuration for each of the individual different methods
is determined by the results of Table VI above. For example, since in
Table VI, a block size of 12 has been chosen as a representative for
selective Huffman coding, all decoder area overheads for selective en-
coding includes area overhead for a 12-bit serializer. Similarly for the
other codes, the decoder configuration is determined by the respective
parameters shown in Table VI for each of the circuits (parameterm for
Golomb codes,k for FDR codes, andmh for VIHC codes). The area
overhead computed for each of the following methods includes all the
hardware structures involved in the decoding process (the core FSM
decoders along with all the counters, serializers etc.). Note that the ac-
tual area overhead for each of the techniques could actually be less in
certain cases if existing functional circuitry on-chip is reused to im-
plement some of the decoder structures like counters, serializers, etc.
Also, note that the area overhead could be reduced by using different
parameters for each code, but that would come at the cost of less com-
pression. The technique that produces the least decoder area overhead
is highlighted in bold font for each of the test cases.

Finally, the total test application time (TAT) reduction that can be
achieved using the different compression techniques will be discussed.
The frequencies of the system clock and the tester clock greatly af-
fect the TAT. The question addressed here is “what is the maximum
reduction in TAT possible for each of these methods, and what are the
necessary conditions for achieving the maximum reduction?” For the
discussion that follows, it will be assumed that the tester is testing a
single core at any given time and, without loss of generality, it will be
assumed that the core has a single scan chain which is driven by the
decoder, which, in turn, is driven by a single channel from the tester.

In a scheme where compression/decompression is used to reduce the
test data volume stored on the tester, the total time required to transfer
the reduced test data from the tester to the chip decreases. If the tester
never stops shifting in data during the entire duration of the test data
transfer, then the maximum possible TAT reduction that can be ob-
tained by any of these techniques is the same percentage as the amount
of test data reduction achieved by the given technique, however, there
are conditions under which this can be achieved. There are three key
parameters. The size of the smallest codewordLmin, the size of the
largest decoded outputLmax, and the ratio of the system clock fre-
quency(fsys) to the tester clock frequency(fT ). fsys=fT defines how
fast the system clock is relative to the tester clock. Generally, the greater
the value offsys=fT , the faster the data can be decoded and applied to
the scan chain. In the next few paragraphs, the hardware decompression
mechanism for each of the four techniques will be discussed in greater
detail, and factors that affect how fast the data can be decoded in each
case will be examined. A lower bound onfsys=fT will be derived for
each of the 4 techniques that will allow maximum reduction in TAT.

The analysis for selective Huffman coding has already been dis-
cussed earlier in Section V. From (i) in Section V, a lower bound on

TABLE VIII
COMPARING LOWER BOUNDS ON f =f TO OBTAIN

MAXIMUM TAT REDUCTION

fsys=fT can be obtained that will allow the maximum reduction in
TAT (by ensuring that the tester never has to wait for the decoder to
finish decoding the previous codeword). This lower bound is given by
fsys=fT � (b=Lmin) whereb is the block size.

For Golomb coding, the parameterm (the group size) determines
the lower bound onfsys=fT . When decoding the prefix, every time
the decoder sees a 1, it has to shift into the scan chain of the core a
sequence ofm 0’s. The Golomb method uses adlog2me-bit counter
for this purpose, which can be operated by the faster system clock.
Thus,fsys=fT � m ensures that the tester never has to wait for the
decoder to finish decoding the previous codeword.

For FDR codes with a parameterk (which is determined by the
longest run of 0’s in the original test set), the worst case is when the de-
coder has to shift into the scan chain2k decoded output bits after it has
just finished shifting the last bit of the tail into thek-bit counter. Thus,
the counter has to finish counting down2k times before the decoder re-
ceives the first prefix bit of the next codeword. Hence, the lower bound
is given byfsys=fT � 2k.

For VIHC codes with parametermh, the analysis is very similar to
the selective Huffman codes. In this case, after the decoder has decoded
the codeword, it loads the binary code corresponding to the Huffman
code into adlog2mhe-bit counter. The counter starts counting down at
this point and, in the worst case, has to finish countingmh times before
the decoder is ready with the next decoded output. Again, in the worst
case, the decoder will be ready with the next codeword afterLmin tester
cycles. Hence, the lower bound is given by(fsys=fT � mh=Lmin).

The value of the lower bound onfsys=fT is shown in Table VIII.
The value of the parameters for each method is the same as shown in
Table VI earlier. Iffsys=fT is greater than or equal to the lower bound
shown in Table VIII for each method, then the reduction in TAT will be
equal to the test data compression for that method given in Table VI.

Note that iffsys=fT is greater than the lower bound, it does not im-
prove the reduction in TAT. In such cases, the decoder has to occasion-
ally wait for the tester to supply it with encoded data. The higher the
lower bound onfsys=fT , the more difficult it is to achieve the max-
imum reduction in TAT (i.e., where the TAT reduction is equal to the
test data compression).

IX. CONCLUSION

Statistical coding provides a powerful way to compress test data.
It provides a twofold advantage in both reducing the amount of test
data that needs to be stored on the tester and reducing the time for
transferring test data from the tester to the CUT. The scheme described
in this paper addresses this problem by selecting a “simple-to-decode”
statistical code for a particular test set. Results indicate that a small
decoder (compared to a full Huffman decoder) can be used to provide
compression near that of an optimal Huffman code.
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