IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003 797

An Efficient Test Vector Compression Scheme and how fast the data can be transferred (i.e., the test data bandwidth
Using Selective Huffman Coding to the chip). This depends on the speed and channel capacity of the
_ tester and the organization and characteristics of the scan chains on
Abhijit Jas, Jayabrata Ghosh-Dastidar, Mom-Eng Ng, and the chip. Both test time and test storage are major concerns for SOCs
Nur A. Touba from a test economics point of view.
This paper presents a statistical compression/decompression scheme
. . . to reduce the amount of test data that needs to be stored on the tester
Abstract—This paper presents a compression/decompression scheme . L . .
based on selective Huffman coding for reducing the amount of test and transferred to the chip (preliminary results were published in [24]).
data that must be stored on a tester and transferred to each core in The idea is to store the test vectors for a core in the tester memory in
a system-on-a-chip (SOC) during manufacturing test. The test data compressed form, and then transfer the compressed vectors to the chip,
bandwidth between the tester and the SOC is a bottleneck that can \ypere 3 smallamount of on-chip circuitry is used to decompress the test
result in long test times when testing complex SOCs that contain many . .
cores. In the proposed scheme, the test vectors for the SOC are stored invectors. Instead of having to transfer each entire test vec_tor from the
compressed form in the tester memory and transferred to the chip where tester to the core, a smaller amount of compressed data is transferred

they are decompressed and applied to the cores. A small amount of on-chip instead. The approach presented here significantly reduces both test
circuitry is used to decompress the test vectors. Given the set of test vectors storage requirements and the overall test time.

for a core, a madified Huffman code is carefully selected so that it satisfies . . .
certain properties. These properties guarantee that the codewords can be Transferring compressed test vectors takes less time than transferring

decoded by a simple pipelined decoder (placed at the serial input of the the full vectors at a given bandwidth. However, in order to guarantee
core’s scan chain) that requires very small area. Results indicate that the a reduction in the overall test time, the decompression process should
proposed scheme can provide test data compression nearly equal to that of 1, oy 5 4 delay (which would subtract from the time saved in transferring
an optimum Huffman code with much less area overhead for the decoder. . . L
the test data). Moreover, the on-chip decompression circuitry must be
Index Terms—Automatic test equipment, compression, decompression small so that it does not add significant area overhead. Given a set of
architecture, embedded core testing, testing time, test set encoding. test vectors, a method is presented here for choosing a statistical code
(a modified form of Huffman coding) that can be decoded with a simple
I. INTRODUCTION pipelined decoder. The properties of the code are chosen such that the
) .)) pipelined decoder has a very small area and is guaranteed to be able to
. One of the key cqncerns in any design perJect. Is to meagcode the test data as fast as the tester can transfer it.
tlmg-to-market constraints. I_n order to accom_p_)llsh this goal, chip The compression/decompression scheme presented in this paper can
designers often _use predeS|gr_1ed and_ prgvenfled cores t_o deveé%sed for generating any set of deterministic scan vectors. It preserves
systems-on-a-chip (SOC) dev!ces_. With tlmg, thesg devices hqxg sequence of the vectors and requires no modifications to the circuit-
become extrgmely complex. Thl§ high level of |qtegrat|0n has auow%der-test (CUT). It does not require any knowledge of the internal
vendors to drive down the effective manufacturing costs. However,fLgiq of the CUT, and, thus, is suitable for testing intellectual property
has also rapidly increased the complexity of testing these chips. Qg \here the core supplier does not provide any information about
of the increasingly difficult challenges in testing SOCs is dealing witﬁ..e internal structure of the core.
the large amount of test data that must be transferred between the
tester and the chip [9], [34]. Each core in an SOC has a given set of test
vectors that must be applied to it (usually through a test wrapper that is Il. RELATED WORK

provided around a core). The test vectors must be stored on the testelrhe problem of reducing test time and test data for core-based

and then transferred to the inputs of the core during modular testirggb . .

- Cs has been attacked from several different angles in recent
As more and more cores (each with its own test set) are placed o 'téirature Novel approaches for compressing test data using the
single chip, the amount of total test data for the chip increases rapizﬁy ' PP P 9 9

) . S urrows—Wheeler transform and run-length coding were presented
This poses a serious problem because of the cost and limitations 0 . :
in [21], [33]. These schemes were developed for reducing the time

automated test equipment (ATE). Testers have limited speed, chann .
transfer test data from a workstation across a network to a tester

. . . {
capacity, and memory. In general, the amount of time required to testa . . .
P v fy-ng ' q not for use on chips). Scan chain architectures for core-based
chip depends on how much test data needs to be transferred to the hlg - . o .
esigns that maximize bandwidth utilization are presented in [1].

A technigue for compression/decompression of scan vectors using

Manuscript received July 6, 2002; revised September 30, 2002. This wé:r)édlcal decompressors and run-length coding is described in [23].

was supported in part by the National Science Foundation under Grant no. Mfieimodular built-in self-test (BIST approach that allows sharing of
9702236 and in part by the Texas Advanced Research Program under GBIST control logic among multiple cores is presented in [30]. A novel
no. 1997-003658-369. This paper was recommended by Associate Editoriéchnique for combining BIST and external testing across multiple

Chakrabarty.
A. Jas was with the Department of Electrical and Computer Engineering, uferes s described in [32]. The idea of statistically encoding test data

versity of Texas, Austin, TX 78712-1084. He is now with the Intel CorporatioVas presented in [22]. They described a BIST scheme for nonscan
Austin, TX 78746 USA. circuits based on statistical coding using comma codes (very similar to
J. Ghosh-Dastidar was with the Department of Electrical and Computer E-quﬂman Codes) and run_length Coding. An approach called “para”e|

gineering, University of Texas, Austin, TX 78712-1084 USA. He is now wit . -
the Altera Corporation, San Jose, CA 95134 USA. %Serial full scan (PSFS) for reducing test time in cores is presented in

M.-E. Ng was with the Department of Electrical and Computer EngineerinfL6]- A technique to reduce test data and test time by using specially
University of Texas, Austin, TX 78712-1084. She is now with Advanced Micrdesigned cores (cores with virtual scan chains) is presented in [26]. An
De&/'CES:TAUE“”z TX't7I'18t7f:u (L:JSA- or Enaineering R H Conter D approach that uses a linear combinational expander circuit is described

. A. Touba Is wi e Computer Engineering Researc enter, bepart- _di _
ment of Electrical and Computer Engineering, University of Texas, Austin, %% [2]. The use of Golomb C_Odes and frequency-directed run-length
78712-1084 USA (e-mail: touba@ece.utexas.edu). (FDR) codes for compressing test data have been demonstrated

Digital Object Identifier 10.1109/TCAD.2003.811452 in [5]-[7], respectively. The use of variable length input Huffman

0278-0070/03$17.00 © 2003 IEEE

798 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003

codes for SOC test data compression has been proposed in [14]. A TABLE |
fixed-to-fixed block encoding scheme is described in [28]. Techniques =~ STATISTICAL COD'NGTBEAS?I'ESDE'(I?’I\‘NSF(I'\(A;BEL FREQUENCIES FOR
for reusing scan chains from other cores in an SOC to increase the '

test data bandwidth has been described in [11], and automatic test Symbol| Freq.| Pattern | Huffman Code | Selected Code
pattern generation (ATPG) techniques for producing test cubes that are S 2 | 0010 10 10
suitable for encoding, using the above technique, have been described S, 3 1 o100 00 110
in [12]. A fault simulation-based technique to reduce the entropy S, 7 0110 110 111
of the test vector set by pattern transformation is described in [19]. S, 5 1 o111 010 00111
Such transformations increase the amount of compression that can be S, 3 0000 0110 00000
achieved on the transformed test set using statistical coding. ATPG Ss 2 1000 o111 01000
algorithms for producing test vectors that can more effectively be com- Se 2 0101 11100 00101
pressed using statistical codes have been described in [20]. Test vector S, 1 1011 111010 01011
compression based on hybrid BIST techniques have been described Sg 1 1100 111011 01100
in [10], [29], and [27]. A novel scheme of test vector compression So 1 0001 111100 00001
using an embedded processor is described in [25]. In [13], a test vector Sio 1 1101 111101 01101
compression technique based on geometric primitives is proposed. Su 1y 11 111110 01111
Very recently, a new line of research has focused on compressing test S 1 | ooll 11111 00011
data volume while optimizing other factors like test power [8], [31]. Siy 0 | 1110 - -
Although all the techniques mentioned above have the same high- Sis 0 | 1010 - -
level objective (that of reducing test data and/or test application time), Sis | 0 | 1001 - -

the different approaches present different design alternatives and their
applicability to a particular design situation varies from case to case.

i ; ; . 0010 0100 0010 0110 0000 0010 1011 0100 0010 0100 0110 0010
This paper presents a selective Huffman coding scheme for testmgomo 0100 0010 0110 0000 0110 0010 0100 0110 0010 0010 0000

cores with |ntfernal scan. One pf the featgres of this approach is tha100100“0 0010 0010 0010 0100 0100 0110 0010 0010 1000 0101
the code that is used for a particular core is carefully chosen such thaOOOl 0100 0010 0111 0010 0010 0111 0111 0100 0100 1000 0101

only a small decoder circuit is required. There are no restrictions on ;00100 0100 0111 0010 0010 0111 1101 0010 0100 1111 0011
the order of the test set, and no modifications need to be made to the

core-under-test. The small decoder circuitis simply placed at the sefi#). 1. Example of test set divided into four-bit blocks.

input of the core’s scan chain. As will be shown, the decoder provides a
significant reduction in the amount of test data that must be transported
from the tester to the core.

Il. STATISTICAL CODING 0‘

The compression/decompression scheme described in this paper is 1
based on statistical coding. In statistical coding, variable length code-
words are used to represent fixed-length blocks of bits in a data set. For
example, if a data set is divided into four-bit blocks, then there24re
or 16 unique four-bit blocks. Each of the 16 possible four-bit blocks
can be represented by a binary codeword. The size of each codeword
is variable (it need not be four bits). The idea is to make the codewords
that occur most frequently have a smaller number of bits, and those that
occur least frequently to have a larger number of bits. This minimizes
the average length of a codeword. The goal is to obtain a coded repre-
sentation of the original glata set that has t.he.smallest numt_)er of bitéig. 2 Huffman tree for the code shown in Table I.

A Huffman code [18] is an optimal statistical code that is proven

to provide the shortest average codeword length among all uniquely

decodable variable length codes. A Huffman code is obtained by conThe amount of compression that can be achieved with statistical
structing a Huffman tree. The path from the root to each leaf gives tbeding depends on how skewed the frequency of occurrence is for the
codeword for the binary string corresponding to the leaf. An exampfferent codewords. If all of the codewords occur with equal frequency,
of constructing a Huffman code can be seen in Table | and Figs. 1 ahdn no compression can be achieved. It is well known, however, that
2. An example of a test set divided into four-bit blocks is shown ithe test vectors in a test set tend to have a lot of correlations. This arises
Fig. 1. Table | shows the frequency of occurrence of each of the pdsm the fact that faults in the CUT that are structurally related require
sible blocks (referred to as symbols). There are a total of 60 four-Biimilar input value assignments in order to be provoked and sensitized
blocks in the example in Fig. 1. Fig. 2 shows the Huffman tree for this an output. This often results in skewed frequency of occurrence for
frequency distribution and the corresponding codewords are showrtifferent codewords. Moreover, for test cubes, the compression can be
Table I. very large. The don’t care bitX(’s) provide flexibility to allow a block

An important property of Huffman codes is that they are prefix-fre¢o be encoded with more than one possible codeword. The shortest pos-
No codeword is a prefix of another codeword. This greatly simplifiesible codeword can be chosen for each block to maximize the compres-
the decoding process. The decoder can instantaneously recognizesibie. Algorithms for filling test cubes for maximizing compression are
end of a codeword uniquely without any look ahead. described in Section VI.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003 799

Tester -
Chip
Compressed Test > Decoder |, _Slow Clock
Data
Serializer
Slow Clock

O | Fast Clock

Core Under Test
(CUT)

Fig. 3. Block diagram illustrating compression/decompression scheme for a slower tester clock.

Tester Chip
Compressed
Clock
Scan Chain Clock Scan Chain Clock
Core Under Test 1 . Core Under Test N
(CUT) o 0 o0 (CUT)

Fig. 4. Block diagram illustrating compression/decompression scheme using single tester channel to feed multiple scan chains.

To fully exploit the correlations in a test set, the number of bits igerializer is used to provide some degree of parallelism between the two
each scan vector should be a multiple of the fixed-length block sipperations, one being the receiving of the input bits from the tester and
used for the statistical code. When dividing the test setifiit blocks decoding them, and the other being the shifting of the decoded output
for coding, if the size of the scan vectors is not a multiplg,dfienX’s into the scan chain. Note that the serializer can provide the necessary
can be added to pad the start of the vectors (first bits shifted into the sgamallelism in the shift operation because the decoder produces all the
chain) to make the length a multipleffShifting some extra bits (at the bits of the decoded output in parallel (at the same time). If the serializer
start of the vector) into the scan chain does not matter provided the fisah shift the decoded output into the scan chain within the time it takes
contents of the scan chain form the correct test vector when it is applibe decoder to decode the next codeword, then the decoder can imme-
to the core-under-test. Having each scan vector be a multiple of tiately load the next decoded output into the serializer and continue
block size aligns the blocks within the vectors so that the correlationdth the decoding process without having to stop the tester. Since, in
between the bits will skew the frequencies. many cases, the number of bitsn the fixed-length decoded block is
greater than the number of bits in the codeword, the rate at which data
needs to be shifted out of the decoder is higher than the rate at which
the data is coming into the decoder. There are two ways to achieve this.

The hardware architecture for the proposed scheme is explained irl) Use scan chain with faster clock than tester clotkis is illus-
this section for a single scan chain. The compression/decompression trated in Fig. 3. If the system clock rate is faster than the tester
scheme proposed here involves statistically coding the scan vectors and clock rate, then it may be possible to clock the scan chain at a
then placing an on-chip decoder at the serial input of the scan chain faster clock rate than the tester’s clock rate (as described in [17]).
to decompress the vectors. A block diagram illustrating the scheme is The serializer placed between the decoder and the scan chain
shown in Fig. 3. The tester channel shifts a constant stream of variable is then also clocked at the faster system clock rate. The serial-
length codewords (corresponding to compressed scan data) to the de- izer is loaded in parallel by the decoder (allowing the decoder
coder. The decoder generates the corresponding fixed-length blocks. At to generate multiple bits of data in a slower tester clock cycle)
every tester clock cycle the decoder receives one bit from the tester. It and serially shifted out into the scan chain at a faster clock rate.
takes the decoddr clock cycles to decode a codeword, whéris the One advantage of this approach is that it can be used to provide
length of the codeword. Once the decoder has decoded the codeword, it at-speed scan with a slow tester [17].
has to shift the decoded source data into the scan chain. It is not desir2) Use single tester channel to feed multiple scan chdihg is il-
able for the tester to wait for the decoder to finish shifting the decoded lustrated in Fig. 4. If it is not possible to clock the scan chain with
output into the scan chain. This is because any such wait time induced a faster clock than the tester clock, then another approach is to
by the decoder will reduce the test time reduction that can otherwise be have the tester channel rotate betweestan chains (each scan
obtained by compressing the test data. For this reason, in this scheme, a chain has its own decoder). At each clock cycle, the tester shifts

IV. OVERVIEW OF THE PROPOSEDSCHEME

800 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003

in a bit for a different decoder for each of thescan chains.
Each of then decoders simply samples its input once every
clock cycles in a different phase from the other decoders. For
example, if there are two scan chaims= 2), then the decoder

for scan chain 1 would sample its input on even tester clock cy-
cles, and the decoder for scan chain 2 would sample its input on
odd tester clock cycles. With this approach, the “effective clock
rate” for each of the decoders is divided#byHowever, the scan Fig. 5. Huffman tree for the three highest frequency symbols in Table I.
chain corresponding to each decoder is still clocked at the normal

tester clock rate and, thus, its clock rate ismes faster than the gcan chain. During the time that the contents of the serializer are being
decoder. Each time the decoder is clocked once, the scan chgifted into the scan chain, the tester is shifting bits into the decoder.
is clockedn times. When the decoder receives a complete codeword, it needs to output the
In the remainder of this paper, without loss of generality, it will b@orresponding block df bits into the serializer. If the codeword is too
assumed that the scan clock is faster than the tester clock (i.e., &ort, then the serializer may not have been emptied yet which would
responding to scenario 1 above). However, all of the concepts appiise a problem for the decoder. So, in order to ensure that the serializer
equally as well for scenario 2 where the tester channel feeds mu'ti[g%|ways empty when the decoder finishes decoding a codeword, the
scan chains such that the “effective clock rate” seen by each decodehifimum size of a codeword,,;, must be no smaller than the ratio of

slower than the clock rate of the scan chain. the tester and scan-clock rates times the size of each block
To illustrate how the decoder and serializer work, consider the fol- fr
lowing example. Suppose the scan vectors are divided into four-bit Liin > b=—. ()

Jsys

blocks, and each four-bit block is replaced by a variable length code-
word. The compressed test data stored on the tester consists of the ¥ami-example, if the block size is 8 and the scan-clock rate is twice the
able length codewords. These codewords are shifted into the decdéster clock rate, then the minimum size of a codeword is 4. Note that
as a continuous stream of bits. If the codewords are prefix-free, thifit is not possible to have the scan clock rate be faster then the tester
the decoder can easily recognize when it has received a complete cédieck rate, then an alternative solution (as previously described) is to
word. When the decoder has received a complete codeword, it loadsftke the scan clock rate be twice as fast as the “effective clock rate” as
corresponding four-bit block in parallel into the serializer. The contenggen by the decoder by simply having the tester channel feed two scan
of the serializer are then shifted into the scan chain. If the scan chaiins so that the rate that the decoder receives data from the tester is
clocked at twice the clock rate that the tester operates at, then after i@ as fast as the rate at which data can be shifted into the scan chain.
tester clock periods the entire contents of the serializer will be shiftedUsing a Huffman code would provide the maximum compression,
into the scan chain. During the two tester clock periods that the serigfwever, it would require a complex decoder and may not satisfy the
izer is in operation, the decoder can be receiving the next codewordonstraint on the minimum size of a codeword. Therefore, some al-
The key to making the scheme work is careful selection of the S{g_rnative stf'itistical codg must.be selected. The approach takgn here
tistical code that is used for compressing the test set. There are #i{PIVes using a selective coding approach for which a very simple
important issues that must be considered in selecting the code: on@§§0der can be constructed. Consider the case Whebre the test set is di-
that the decoder must be small in order to keep the area overhead difd into fixed-length blocks of bits. There will be2” codewords.
and the other is that the decoder must not output the decompressed Big first bit of each codeword will be used to indicate whether the fol-
into the serializer faster than they can be shifted out into the scan cha@Vind bits are coded or not. If the first bit of the codeword is a 0,
While a Huffman code gives the optimum compression for a test set i€" the next bits are not coded and can simply be passed through
vided into a particular fixed-length block size, it generally requirest e decoder as is (hence, the complete codeword has bits). If

vy e decocer. A ufiman code o a edHengh o iz of 1 D0 1 codevord . &, hen e et vt e of
i i fini hine (FSM k1 . ! AN L
bits requires a finite state machine (FSM) decoder it states li-blt block. The idea is to only code the most frequently occurbtoit

Thus, the slze of.th_e decoder for a Huffman code_grows egp_onentl%l%cks using codewords with small numbers of bits (less thabbut
as the block size is increased. A method for selecting an efficient statis-

tical code for the proposed scheme is described in the following sectigrrl.eater than or equal Onmin). Compression is achieved by _havmg the
) ; most commorb-bit blocks be represented by codewords with less than
In this scheme, the output response is assumed to be fully co

. . . hits. The decoder is simple because only a small number of blocks
pacted on-chip using standard response compaction hardware struc-

N . : aré coded. The vast majority of the blocks are not coded and can be
tures such as a multiple-input signature register (MISR). Test respo

o . . . ply passed through the decoden Iblocks are coded, then the de-
compaction is an extensively researched topic and several weII-deflr&% er can be implemented with an FSM having no more than b
techniques exist for doing so [4].

states (compared with a Huffman code which requifes 1 states).

An example to illustrate the proposed approach for selecting a sta-
tistical code is shown in Fig. 5. Consider the test set in Fig. 1. If the
entire test set is divided into four-bit blocks then the frequency distri-

Given the test set for a core, a statistical code for compressing the tagion obtained is shown in the second column of Table I. As can be
set must be selected. There is a tradeoff in selecting the code betwsesn from Table |, the symbols having the highest frequencié®afe
the amount of compression that is achieved and the complexity of #h&)0, and0110. So, these are the symbols that are coded while the rest
decoder. Moreover, if the clock frequency of the testefsisand the of them will be left unchanged. A Huffman tree for the three patterns is
clock frequency of the scan chainfigs (system clock frequency) then constructed to get their codewords (as shown in Fig. 5). The codewords
the ratio of the system clock frequency and the tester clock frequerfoy the remaining 13 symbols are simply a 0 followed by the symbol
Jsys/ fr limits the minimum size of a codeword. If the test set is dividedself (as shown in the last column of Table 1).
into fixed-length blocks of bits, then the serializer will holilbits, and, The two important parameters in selecting the code are the block size
thus, it take$ scan-clock cycles to shift the buffer’'s contents into thé and the number of coded blocksOnce those have been chosen, then

V. STATISTICAL CODE SELECTION FORPROPOSEDSCHEME

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003 801

10X1XX101XZXX 101100101011
X01110x110Xx1 101110111011
0X10101X1XZXX 001010111011

Fig. 6. Example Test Set to lllustrate Alg1l for Filling Test Cubes. Fig. 7. Example test set from Fig. 6 aft&"'s are filled using Alg1.

the procedure for constructing the code is mechanical. A Huffman tréee first iteration, the seB will contain only {X X10 and0X10}.
is formed for then most frequently occurring-bit blocks. The code- The most frequently occurring minterm in the second iteration is 0010,
words for the most frequently occurring blocks are simply a 1, followegthich is contained in both remaining unspecified blocks. The test cubes
by the Huffman code obtained from the Huffman tree. The codeworder specifying all theX’s is shown in Fig. 7.
for the remaining blocks are simply a 0, followed by #héit block Alg1 provides an exact analysis of the frequency distribution of the
itself. The amount of area overhead for the decoder can be controliathterms by considering all possibilities. However, this comes at a cost
by placing an upper bound on the values:adindb. An increase im in terms of the runtime of the algorithm. It is easy to see that the algo-
implies an increase in the number of states of the decoder where in titiem is exponential in block siZeand, hence, the use of this algorithm
limiting case when all patterns are encoded the decoder becomes aghtiuld be limited to small block sizes only. However, there are alter-
Huffman decoder. An increase in the block stzeon the other hand, nate ways to specify the don’t care bits to maximize the compression
implies anincrease in the serializer area that is required for this schemwhich trade off accuracy for faster runtime. The next algorithm (hence-
In this case, the limit is to make each test vector a pattern which resigth, referred to as Alg2) is extremely fast and in most cases produces
in a large hardware overhead to regenerate the test vectors from rdwults comparable to the first algorithm. Alg2 is illustrated next with
codewords. The effect of andb on the amount of compression will the same example used in the previous case.
be discussed in greater detail in the experimental results section. For i Alg2, the most frequently occurring unspecified block is identi-
particular value ob, the amount of compression that will be achievedied. It is then compared with the next most frequently occurring un-
can be computed in linear time with respect to the number of bits in tBgecified block to see if there is a conflict in any bit position (i.e., one
test set. Thus, the best valuebagan be efficiently determined throughhas a 1 and the other has a 0, or vise versa). If there is no conflict, then
experimentation. Several valuesliotan be tried for a particular test they are merged by specifying all bit positions in which either block has
set to determine which gives the best compression. Similarly, the bgstpecified value. For example, if blodk0X 1 is merged with block
value forn can also be efficiently determined through experimentatiory 01 X, then the resulting block i&011. Note that merging blocks
can only increase the number of specified bits. The most frequently
occurring unspecified block is compared with all the other unspecified
blocks in decreasing order of frequency and whenever merging is pos-
One of the advantages of implementing this selective Huffman esible, it is done. This is done until no more merging can be done with
coding scheme on test cubes is that the unspecified bits can be filted most frequently occurring unspecified block. This process is then
with 1's and O’s in a way that the frequency distribution of the patternepeated for the second most frequently occurring unspecified block.
becomes skewed. This helps in maximizing the compression. There @hés continues until there are no more blocks that can be merged. At
several algorithms that can be used to fill tkiés. In this section, two this point, all the remaining blocks are unique and cannot share any
will be discussed. minterms. Any remaining(’s can now be randomly filled with 0’s and
When the block size is sufficiently small, an exact analysis can lés as they will have no impact on the amount of compression. Alg2
done by considering all binary combinations (minterms) contained fitis the X's by greedily merging unspecified blocks based on their
the unspecified blocks. This algorithm (henceforth, referred to as Algftquency of occurrence. This is a heuristic that skews the frequency
is illustrated with an example in the following paragraphs. of occurrence, however, unlike Algl, it is not guaranteed to maximize
Fig. 6 shows an example test set consisting of three test cubids encoding efficiency since the greedy procedure may miss a better
each of length 12. Let the block size le = 4. Hence, the merging order. However, itis a much faster procedure than Algl as the
three test cubes shown above are partitioned into a set ofn@mber of operations is much less because merging is done right away
four-bit blocks,B = {10X1, XX10, 1XXX, X011, 10X1, to reduce the set of blocks.
10X1, 0X10, 101X, 1X X X}. Each unspecified block can contain Consider applying Alg2 to the example test data shown in Fig. 6.
from 1 (if fully specified) to2* = 16 (if completely unspecified) The setB as described earlier has 6 unique unspecified bla6Rs1,
possible binary combinations (minterms). For each of the 16 possibieX10, 1IX XX, X011, 0X10 and 101X. Let the set of these 6
minterms for a block, the frequency of occurrence is determineshique blocks be denoted by..iq. Of these six unique blocks, the
by seeing how many of the unspecified blocks (in 8t contain frequency of occurrence of blodkX1 is 3, that of blockl.X X X is
that minterm. For example, the minterm 1111 is contained in two &f and, for the rest, the frequency is 1. In the first step of the algorithm,
the unspecified blocks in the sét, while the minterm 0000 is not since the block0X 1 is the most frequently occurring, it is compared
contained in any of the unspecified blocks. The minterm that occuséth the next most frequently occurring block whichli& X X . Since
most frequently (i.e., is contained in the largest number of unspecifigtkere are no conflicts, they are merged thereby reducing thB.set.
blocks in setB) is selected first. TheéX’s in each unspecified block The merged blockl0X1 is then compared with the other blocks
that contains the most frequent minterm are specified so that it matchiest have frequency 1, and is merged wki911 and101.X. At this
that minterm, and the unspecified block is then removed from the gefint, the setBuniq = {1011, XX10, 0X10}. The procedure is
B. The frequency of occurrence for each of the remaining mintermstieen repeated again, starting with the next most frequently occurring
then recomputed since the dethas been changed, and the procedunenspecified block. In the end..;q = {1011, 0X 10} and no more
repeats until the seB is empty. This procedure maximizes themerging can be done. The final test vector set is shown in Fig. 8.
frequency of occurrence of the codewords thereby increasing theNote that unlike the previous algorithm, in this case it is possible to
encoding efficiency of the statistical encoding. have some don't care bits left over in the transformed test set which
In the example in Fig. 6, the most frequently occurring minterraan now be randomly filled with 1's or 0’s without having any impact
is 1011. Seven of the unspecified blocksBncontain 1011, so after on the amount of compression. The amount of compression obtained

VI. ALGORITHMS FORFILLING TEST CUBES

802 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003

10110x101011 into the scan chain. In the slower mode, it is driven by the serializer at
101110111011 the tester clock frequency to shift in one bit of unencoded test data into
0X1010111011 .

It

Another way to implement the decoder is to use a ROM or RAM by
placing a further restriction on the selection of the statistical code. The
additional restriction is that all codewords must be one of two fixed
sizes. If the first bit of the codeword is a 0, then the niextits are
the block itself. If the first bit of the codeword is a 1, then the next
a-bits form an address into a ROM/RAM whose contents contain the
corresponding-bit block. For example, if the block size is B £ 8),
and the address size isd £ 4), then there ar@® = 64 different 8-bit
blocks and2* = 16 of them can be encoded witlx + 1 = 5) bit
0/0(Ser) codewords while the remaining 48 of them would h@ve- 1 = 9)
\ g bit codewords. The decoding would be done using & 1%-bit ROM
or RAM. If a RAM is used, it could be reused for different cores by
simply changing its contents to correspond to the appropriate code for
each core. Note also thata RAM that is already present in the functional
0/0(Ser) TN\ 0/0(Ser) design could be adapted for this purpose during testing. If the RAM

Loe | A f is bigger than what is needed, it can be used by simply padding the

1/1(Ser) ~— 1/1(Ser) high-order address bits with 0’s and looking only at the low-order data
bits when decoding the statistical codes.

Fig. 8. Example test set from Fig. 6 aft&r's are filled using Alg2.

0/sy(Par)

Initial
State

1/1(Ser)

0/0(Ser) 1/1(Ser)

Fig. 9. State transition diagram of the FSM decoder for selected code.

VIII. EXPERIMENTAL RESULTS

for both full Huffman and selective Huffman encoding using the two T d ion/d . h dt
algorithms are shown in Section VIII. Also, runtimes are provided to € proposed compression/decompression scheme was usedto com-

compare the speed of execution of the two algorithms. press test sets for the largest ISCAS’89 [3] cirpuits gssuming full scan.
The test sets used for all the experiments in this section are the dynami-
cally compacted test cubes generated by MINTEST [15]. These are the
VI | MPLEMENTATION exact same test sets used for the experiments in [6], [7], [14].

Once the statistical code has been selected, a decoder for the codg€ first set of experimental results presented in Table Il compares
is synthesized. One way to implement the decoder is to use a simﬁﬂ% effectiveness of the various X-filling algorithms discussed in Sec-
FSM. The decoder is driven by the tester clock and one bit of data is H&n V1. Algl refers to the exact algorithm, and Alg2 refers to the fast
ceived during each tester clock cycle from a tester channel. For a bidturistic algorithm. Additionally, results for a third algorithm (referred
of sizeb, the decoder hasdata outputs and two main control outputsto as the zero-fill) are also shown. The zero-fill algorithm simply fills
parallel load (Par) andserial load (Ser). These two signals control the X's with 0's. Note that the zero-fill approach is used by the tech-
the loading of data into the serializer when the data has been decodégues in [6], [7], [14] as all those techniques eventually compress runs
The state transition diagram for the decoder FSM can be easily formféf’s. Column 1 shows the name of the circuit, column 2 shows the
from the tree representation of the code. An example is shown in Figotal number of test data bits (not considering the output responses)
Note that each codeword has a bit indicating whether the pattern tR&ginally present in the uncompressed test set, and column 3 shows
follows is encoded or not. In this scheme, a 0 is used to indicate “Hee different block sizes that were used for the compression. Results
coding” and a 1 is used to indicate coding. If the first bit of the codére shown for two block sizes, 8 and 12. The table entries under the
word is a 0, indicating that the nelxbits are not coded, then the decodeheadings “full Huffman coding” show the percentage compression ob-
simply passes the bits through by serially loading them into the seritdined when all the blocks are encoded and those under the heading
izer. If the first bit of the codeword is a 1, indicating that the subsequeigelective Huffman coding” show the same when the tomost fre-
bits form a prefix-free variable length code, then the decoder branciggently occurring blocks are encoded. The percentage compression is
on each bit, one at a time, until it reaches the end of the codeword.g&mputed as
that point it does a parallel load of the appropri&eit block into the
serializer. (Original Bits-Compressed Bits) 100

Note that for the sake of clarity, all the control signals between the (Original Bits))
decoder and the serializer have not been shown in Figs. 3 and 4. Also,
the serializer has been shown to be driven by the faster system clockldie value of: for the different cases is shown in the first column under
rectly, in order to convey the high level idea of the scheme. In practi¢églective Huffman coding”. Itis explained later on in this section how
the faster system clock driving the serializer is actually controlled 9 choose the right value of for such cases. It is clearly seen that
the decoder to synchronize the operations of the decoder and the derimost of the cases Alg2 produces results that are almost as good as
alizer. Every time the decoder loads data in parallel into the serializ#rpse produced by Alg1. Note that zero-fill, on the other hand, produces
it enables the system clock for the néxlock cycles to allow thé-bit substantially suboptimal results for all the cases and clearly is not the
output to be shifted into the scan chain. Oncetitiits are shifted into best choice for this scheme.
the scan chain, the serializer clock is frozen until the decoder is readylhe experimental results in Table Ill compare the run times of Algl
to either load in parallel the next decoded output, or ready to shift inamd Alg2 for different block sizes. The zero-fill algorithm is trivial (it
the serializer the next bit of an unencoded source symbol. Thus, gimply replaces th&’s with O’s) and, hence, has not beenincluded in
serializer is driven in two modes by the decoder. In the faster modettie comparison. The runtimes shown (in CPU seconds) are for a 1-Ghz
is driven by the system clock (controlled by the decoder) to ghifts Pentium Il workstation with 1-GB main memory. Itis easily seen from

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003 803

TABLE 1
COMPARISON OFDIFFERENT X-FILLING ALGORITHMS FORCOMPRESSIONEFFECTIVENESS
Original || Block | Full Huffman Coding Selective Huffman Coding
Circuit || TestData || Size || Algl | Alg2 | Zero |[#Encoded| Algl | Alg2 | Zero
Name (bits) (b) Fill (n) Fill
8 589 | 57.7 | 507 8 50.1 | 49.0 | 433
s5378 23754 12 660 | 654 | 56.5 16 55.1 54.1 | 44.7
8 59.7 | 58.0 | 47.6 7 503 | 485 | 385
$9234 39273 12 64.5 632 | 513 16 542 | 52.8 | 382
8 81.0 | 80.8 | 77.7 5 69.0 | 69.0 | 653
s13207 || 165200 12 85.5 85.3 81.0 14 77.0 | 769 | 72.6
8 70.6 | 69.1 65.7 8 60.0 | 58.6 | 55.7
s15850 | 76986 12 748 | 73.6 | 68.7 21 66.0 | 647 | 59.7
8 64.7 | 643 | 527 7 55.1 54.8 | 43.7
s38417 | 164736 12 68.5 | 68.0 | 572 17 59.0 | 58.7 | 459
8 68.0 | 67.6 | 61.2 7 583 | 58.1 | 517
s38584 | 199104 12 72.1 71.3 63.7 18 64.1 634 | 558
TABLE I TABLE IV
COMPARISON OFRUN-TIMES (CPU SECONDS OF ALG1 AND ALG2 AREA OVERHEAD OF THEDECODER AND SERIALIZER
Circuit | Algorithm Block Size Circuit | Block Full Huffman Selective Huffman || Serializer
Name 6 8 10 12 Name | Size [Num. States| Area |[Num. States| Area Area
55378 Algl 1.1 82 201 | 186.0 (b) (2°-~1) |Overhead| (n+b) |Overhead| Overhead
Alg2 03 1.1 1.9 2.6 8 255 479 16 4.0 37
$9234 Algl 15 144 | 786 | 382.7 s5378 10 1023 61.0 26 10.8 4.7
Alg2 0.3 1.0 1.9 2.6 12 4095 79.2 28 104 5.6
s13207 | Algl 15 | 125 | 677 | 3463 8 255 300 15 4.6 3.0
Alg2 03 1.0 1.7 29 $9234 10 1023 4516.5 gg gé i;
s15850 Algl 1.7 16.2 91.3 | 450.2 182 4205955 I;é 13 1:6 1:3
Algg | 03 | 12 | 23 | 35 s13207| 10 | 1023 189 19 2.8 16
_ Algz | 04 | 29 | 39 | 158 EE 255 13.0 16 13 13
s38584 Algl 2.0 33.7 | 214.8 |1122.4 s15850| 10 1023 19.0 20 3.0 17
Alg2 0.5 44 | 111 | 178 12 4095 26.1 33 45 2.0
Average Speed-Up 4.5 9.1 25.1 72.0 8 255 6.9 15 0.7 0.4
s38417| 10 1023 104 27 1.3 0.6
12 4095 21.3 29 1.3 0.7
the results that the runtimes for Algl increases rapidly as the block si 8 255 75 15 0.6 0.4
is increased. However, the increase in runtime for Alg2 is much mo s38584 | 10 1023 14.4 21 1.0 0.5
controlled. The last row of the table shows the average speed-up tha 12 4095 19.7 30 L3 0.7

achieved by Alg2 over Algl and is computed as

Average Run-Time of Alg 1 As can be seen from Tables Il and 1V, the code selected for the proposed
Average Run-Time of Alg 2 scheme provides slightly less compression than a Huffman code (the

) o difference becomes less for larger block sizes), but it allows the use of
For a block size of 12, the average speed-up obtained is as much asggych simpler decoder. While the number of states for the Huffman

The next set of experimental results shows the hardware overhggfloder grows exponentially, the number of states for the proposed
for the decoders and the serializer for different block sizes. For the dgneme grows linearly. The block size provides an easy way to tradeoff
coders, the hardware overhead is shown for both full Huffman encodifgiyeen area overhead and compression with the proposed scheme.

and selective Huffman encoding. In Table IV below, under the colurr]_rhrger block sizes generally give greater compression, but require a
“full Huffman decoder” the number of states of the decoder and thgore complex decoder and larger serializer.

area overhead is shown, and the same for selective Huffman encoding i§ext a procedure for selecting an appropriate value(tie number
shown under the column “selective Huffman decoder.” The benchmagkhe most frequently occurring blocks that are encoded) is described.
circuits were synthesized with a single scan chain. The last columnp[bs. 10 and 11 show the variation of percentage compression with the
the table shows the area overhead of the serializers. The area overhgagher of patterns encodéd) for the selective Huffman code.
for the decoders and the serializers have been shown separately, as thg interesting observation that can be made is that initially with an
serializer area overhead is the same for both the full Huffman and §srease in:, the amount of compression increases. The graph reaches
lective Huffman decoders. Moreover, separating the two area overhegdiai at some value for, and then steadily starts decreasing until all
gives amore accurate picture if existing functional hardware onthe chis patterns are encoded. At this point, there is a steep rise in the graph.
is used to implement the serializer functionality. The area overheadsis can be explained as follows. The patterns are coded in a decreasing
the decoder (serializer) is computed as order of their frequency of occurrence. After a certain point (the peak),
area of decoder (serializex) 100 the gains obtained by compressing more patterns are lost due to the in-
crease in the codeword size because of the extra bit added at the begin-

Speed-Up,, =

area of benchmark circuit

804

80

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003

TABLE VI
§ 70 ' COMPARING TEST DATA COMPRESSIONWITH
2 60 '/ PREVIOUSLY PUBLISHED RESULTS
B 50 4 e e e e e e am oe Y
5 0 oI o '_‘,’ Circuit|| Original Golomb FDR VIHC Selective
z 304 £ - Name | Test Data [7] [8] [14] Huffman
g 20 (bits) || % Comp | M |% Comp| k |% Comp| m;, | % Comp
£ 10 -
° ' ' ‘ s5378 | 25466 37.1 4 | 480 | 7| 469 [16| 551
0 5 10 15 20
Number of Encoded Patterns (Block Size = 4) $9234 || 36309 45.3 4 43.6 6 46.1 16 54.2
- - - -s513207 $15850 — — 538417 s13207] 167300 | 79.7 |16 813 | 9 | 804 [16] 770
515850 73320 62.8 8 662 | 9| 644 |12] 66.0
Fig. 10. Variation of compression witt for b = 4.
s38417] 158080 | 284 | 4 | 433 | 10) 478 [16] 59.0
100 38584 191784 | 572 8] 609 | 9| 59.6 | 16| 64.1
§
'E 80 "
¥
‘E‘. 60 ooz ,j; of compression is bigger when moving upwards from small block sizes
S sl —J and gradually flattens out at large block sizes. Thus, an optimum value
g of b would be the point just before the percentage compression curve
E 20 | flattens out.
0 , ‘ , , Three other techniques directly relate to the scheme proposed here.

70 They are compression based on Golomb [6], FDR [7], and variable-
input Huffman (VIHC) codes [14]. In the remainder of this section,
comparisons between these different techniques in terms of compres-
sion efficiency, hardware overhead of the decompressors, and test ap-
plication time reduction will be discussed.

Table VI shows the amount of compression obtained using the four
different techniques. The exact same test set (MINTEST dynamically
compacted test cubes) was used for all the methods. Columns 1 and 2
in Table VI report the circuit name and the number of bits in the orig-
inal test data set. The numbers for selective Huffman coding in Column
3 are taken from Table Il for Alg1l and block size= 12 as a sample

20 30 40 50 60

Number of Encoded Patterns (Block Size = 6)

- = = =513207 515850 == = 538417

Fig. 11. Variation of compression witta for b = 6.

TABLE V
VARIATION OF COMPRESSION PERCENTAGE WITH
BLoCK SizE FOR FULL HUFFMAN ENCODING

Circuit Block Size representative. Although more compression can be obtained with larger
Name | 4 8 | 12 | 16 | 20 | 24 block sizes, the area overhead increases. The block size of 12 will be
$5378 | 48.2 | 57.7 | 65.4 | 70.7 | 74.6 | 78.0 used as a representative for selective Huffman for all the comparisons
$9234 1 52.0 | 58.0 | 632 | 67.8 | 71.6 | 74.6 in this section. The number of blocks actually encoded for this scheme
s13207 } 69.5 | 80.8 | 85.3 | 87.3 | 89.1 | 902 can be obtained from Table 1l. The best compression obtained using
zégiig g’z'g 22; gg'g ;T'? 7]3'3 273;'(3) Golomb coding [6] is shown in the next two columns. The value of

38584 1592 1676 1 713 1 7.6 | 768 | 7838 the parametem (group size) for which this compression is obtained

is also shown in the table next to the percentage compression. Similar
results are also shown in the table for the FDR [7] and the VIHC codes
ning of the codeword to distinguish coded patterns from those that §td]. For the FDR codes, the value of the paraméteis determined
not coded. When all the patterns are coded (full Huffman encodindpy the longest run of 0's and is shown in the table next to the percent
there is no need for the extra bit at the beginning of each codewardmpression. For the VIHC codes, the results shown are the best com-
and this greatly increases the amount of compression resulting in gression percentage obtained using different values for the parameter
steep slope toward the end of the graph. This trend is observed forral| (the maximum run of 0’s allowed in any block). The values of the
the three different circuits13 207,515 850, ands38 417 for the two parametern,, tried were 4, 6, 8, 10, 12, 14, and 16. For all the other
different block sizes of 4 (in Fig. 10) and 6 (in Fig. 11). Choosing theechniques (Golomb, FDR, and VIHC), the zero-fill algorithm was used
right value forn is simply a matter of determining the peak from thdor filling the X’s as that maximizes the amount of compression using
graphs shown in Figs. 10 and 11. The values &r the different cir- those methods. This ensures that the comparison is fair. For each of the
cuits shown in Table Il were all determined based on such graphs @ircuits, the method that produces the best compression is highlighted
the corresponding circuits. in bold font. It can be seen that the selective Huffman code produces
Table V shows how the percentage compression achieved for fille best compression for all the circuits except s13207 and s15850, for
Huffman encoding varies with different block sizes. As mentioned eamhich the best compression is produced by the FDR code. However,
lier, the amount of compression increases with an increase in the bldoks15850 the improvement of the FDR code over selective Huffman
size and choosing the right value fiois simply a matter of tradeoff is only 0.2%.
between the hardware overhead and the compression desired. The pérhe area overhead of the decoders for the different compression
centage compression shown below for the different block sizes wenethods are compared next in Table VII. The area overhead is com-
obtained by using Alg2 for filling thé('s. The increase in the amountputed as explained earlier for the results shown in Table IV. The partic-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003 805

TABLE VII TABLE VI
COMPARING DECODERAREA OVERHEAD COMPARING LOWER BOUNDS ON fys/fi TO OBTAIN
MAXiMUM TAT REDUCTION
Circuit Decoder Area Overhead (%)
Name [5oiombl FDR | VIHC | Selective Circuit || f, /fr to Obtain Max. TAT Reduction
7 (8] [14] | Huffman Name ['Golomb| FDR | VIHC |Selective
5378 | 4.0 7.5 5.8 16.0 7] (8] [14] | Huffman
59234 3.2 55 4.6 13.0 s5378 4 128 8 6
s13207 | 4.1 3.1 2.2 5.7 59234 4 64 53 6
s15850) 2.0 3.2 2.3 6.5 513207 16 512 16 6
s38417 0.5 1.1 0.7 2.0 s15850 8 512 12 6
s38584 | 0.7 1.1 0.7 2.0 538417 4 1024 16 6
538584 8 512 8 6

ular decoder configuration for each of the individual different methods

is determined by the results of Table VI above. For example, since/fns/fr can be obtained that will allow the maximum reduction in
Table VI, a block size of 12 has been chosen as a representative #f (by ensuring that the tester never has to wait for the decoder to
selective Huffman coding, all decoder area overheads for selective BRish decoding the previous codeword). This lower bound is given by
coding includes area overhead for a 12-bit serializer. Similarly for thfey=/fr > (b/Lmin) whereb is the block size.

other codes, the decoder configuration is determined by the respectivEor Golomb coding, the parameter (the group size) determines
parameters shown in Table VI for each of the circuits (parametlar ~ the lower bound orY.y./ fr. When decoding the prefix, every time
Golomb codesk for FDR codes, angh;, for VIHC codes). The area the decoder sees a 1, it has to shift into the scan chain of the core a
overhead computed for each of the following methods includes all tigduence ofz 0's. The Golomb method uses{kg, m |-bit counter
hardware structures involved in the decoding process (the core F&Ni this purpose, which can be operated by the faster system clock.
decoders along with all the counters, serializers etc.). Note that the 2BUS. fsys/fr > m ensures that the tester never has to wait for the
tual area overhead for each of the techniques could actually be les§@§oder to finish decoding the previous codeword.

certain cases if existing functional circuitry on-chip is reused to im- For FDR codes with a parametér (which is determined by the
plement some of the decoder structures like counters, serializers, &ggestrun of 0's in the original test set), the worst case is when the de-
Also, note that the area overhead could be reduced by using differéfgler has to shiftinto the scan chaindecoded output bits after it has
parameters for each code, but that would come at the cost of less Cd#ﬁt finished shifting the last bit of the tail into tfebit counter. Thus,

pression. The technique that produces the least decoder area overHggounter has to finish counting dowh times before the decoder re-
is highlighted in bold font for each of the test cases. ceives the first prefix bit of the next codeword. Hence, the lower bound

Finally, the total test application time (TAT) reduction that can b 9Ven by s/ fr > 2". . .
achieved using the different compression techniques will be discussed © VIH_C codes with parameteﬁh, the analysis is very similar 1o
The frequencies of the system clock and the tester clock greatly the selective Hgffman codes.. Inthis case, after the d.ecoder has decoded
fect the TAT. The question addressed here is “what is the maximJff codeword, it loads the binary code corresponding to the Huffman
reduction in TAT possible for each of these methods, and what are §ifgl€ into dlog,] -bit counter. The counter starts counting down at
necessary conditions for achieving the maximum reduction?” For tHdS Pointand, in the worst case, has to finish countingtimes before
discussion that follows, it will be assumed that the tester is testing/¥ decoder is ready with the next decoded output. Again, in the worst
single core at any given time and, without loss of generality, it will bEaS€: the decoder will be ready with the next codeword aftex tester
assumed that the core has a single scan chain which is driven by GHg/es- Hence, the lower bound is given @y / fr > mh/Luin).
decoder, which, in turn, is driven by a single channel from the tester, '€ value of the lower bound ofy,./ fr is shown in Table VIIl.

. L The value of the parameters for each method is the same as shown in
In a scheme where compression/decompression is used to reducq_ ?

test data volume stored on the tester, the total time required to transfar V.I earlier. Iff.y./fr is greater than or equal to .the_lower bqund
. shown in Table VIII for each method, then the reduction in TAT will be
the reduced test data from the tester to the chip decreases. If the tester . . .
P) - . ual to the test data compression for that method given in Table VI.
never stops shifting in data during the entire duration of the test dal . . . ;
. . . ote that iff.,+/ fr is greater than the lower bound, it does not im-
transfer, then the maximum possible TAT reduction that can be ob- Y :
. . . rove the reduction in TAT. In such cases, the decoder has to occasion-
tained by any of these techniques is the same percentage as the a nt S .
- . . . ally wait for the tester to supply it with encoded data. The higher the
of test data reduction achieved by the given technique, however, ther . . o o ;
- . . . ower bound onf.ys/ fr, the more difficult it is to achieve the max-
are conditions under which this can be achieved. There are three ke o . S
. . Imum reduction in TAT (i.e., where the TAT reduction is equal to the
parameters. The size of the smallest codewbig,, the size of the test data compression)
largest decoded output..x, and the ratio of the system clock fre- P '
quency(fsys) to the tester clock frequen€yr). fsys/ fr defines how

fast the system clock is relative to the tester clock. Generally, the greater IX. CONCLUSION
the value off.y+/ fr, the faster the data can be decoded and applied tostatistical coding provides a powerful way to compress test data.
the scan chain. In the next few paragraphs, the hardware decompresgi@fovides a twofold advantage in both reducing the amount of test
mechanism for each of the four techniques will be discussed in greajgka that needs to be stored on the tester and reducing the time for
detail, and factors that affect how fast the data can be decoded in eggRsferring test data from the tester to the CUT. The scheme described
case will be examined. A lower bound g/ f+ will be derived for in this paper addresses this problem by selecting a “simple-to-decode”
each of the 4 techniques that will allow maximum reduction in TAT. statistical code for a particular test set. Results indicate that a small
The analysis for selective Huffman coding has already been diecoder (compared to a full Huffman decoder) can be used to provide
cussed earlier in Section V. From (i) in Section V, a lower bound atcompression near that of an optimal Huffman code.

806

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003

ACKNOWLEDGMENT [25]

The authors would like to thank Prof. K. Chakrabarty and his stu-
dents for providing the MINTEST test cubes that were used for thg26]
experimental results in this paper.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

Bl
(10]

(11]
(12]

(23]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(27]
REFERENCES

J. Aerts and E. J. Marinissen, “Scan chain design for test time reductiorﬁZS]
in core-based ICs,” ifProc. Int. Test Conf.1998, pp. 448-457.

|. Bayraktaroglu and A. Orailoglu, “Test volume and application time
reduction through scan chain concealmentPrac. Design Automation [29]
Conf, 2001, pp. 151-155.

F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of se- [30]
quential benchmark circuits,” iRroc. Int. Symp. Circuits Syst1989,

M. L. Bushnell and V. D. AgrawalEssentials of Electronic Testing For
Digital, Memory, And Mixed-Signal VLSI Circuits Norwell, MA:

Kluwer, 2000.

A. Chandra and K. Chakrabarty, “Test data compression for[32]
system-on-a-chip using Golomb codes,” Broc. VLSI Test Symp.

2000, pp. 113-120.

——, “Efficient test data compression and decompression for 33]
system-on-a-chip using internal scan chains and Golomb coding,” in
Proc. Design, Automation, Test EL2001. [34]
, “Frequency-directed run-length codes with application to
system-on-a-chip test data compression,”Piroc. VLSI Test Symp.

2001, pp. 42—-47.

——, “Reduction of SOC test data volume, scan power and testing time
using alternating run-length codes,”Rtoc. Design Automation Conf.

2002, pp. 673-678.

R. Chandramouli and S. Pateras, “Testing systems on a cltgE
Spectrumpp. 42—-47, Nov. 1996.

D. Das and N. A. Touba, “Reducing test data volume using ex-
ternal/LBIST hybrid test patterns,” iRroc. Int. Test Conf.2000, pp.
115-122.

R. Dorsch and H.-J. Wunderlich, “Reusing scan chains for test pattern
decompression,” iffroc. European Test Worksha001, pp. 124-132.

——, “Tailoring ATPG for embedded testing,” iAroc. Int. Test Conf.

2001, pp. 530-537.

A. El-Maleh, S. Al-Zahir, and E. Khan, “A geometric-primitives-based
compression scheme for testing systems-on-a-chifPtae. VLS| Test

Symp, 2001, pp. 54-59.

P. Gonciari, B. M. Al-Hashimi, and N. Nicolici, “Improving compres-
sionratio, area overhead, and test application time for systems-on-a-chip
test data compression/decompressionPiioc. Design Automation Test

Eur, 2002, pp. 604-611.

I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for com-
binational circuits,” inProc. Int. Conf. Computer-Aided Desigh998,

pp. 283-289.

——, “Reducing test application time for full scan embedded cores,” in
Proc. Int. Symp. Fault-Tolerant Comput999, pp. 260-267.

D. Heidel, S. Dhong, P. Hofstee, M. Immediato, K. Nowka, J. Silberman,
and K. Stawiasz, “High speed serializing/de-serializing design-for-test
method for evaluating a 1 GHz microprocessor,”"Rroc. VLSI Test

Symp, 1998, pp. 234-238.

D. A. Huffman, “A Method for the construction of minimum redundancy
codes,” inProc. IRE vol. 40, 1952, pp. 1098-1101.

H. Ichihara, K. Kinoshita, I. Pomeranz, and S. M. Reddy, “Test trans-
formation to improve compaction by statistical encoding,Pioc. Int.

Conf. VLSI Design2000, pp. 294—-299.

H. Ichihara, A. Ogawa, T. Inoue, and A. Tamura, “Dynamic test com-
pression using statistical encoding,'Rnoc. Asian Test Sym2001, pp.
143-148.

M. Ishida, D. S. Ha, and T. Yamaguchi, “COMPACT: a hybrid method

for compressing test data,” Proc. VLSI Test Sympl998, pp. 62-69.

V. lyengar, K. Chakrabarty, and B. T. Murray, “Built-in self testing of se-
quential circuits using precomputed test setsPioc. VLSI Test Symp.

1998, pp. 418-423.

A. Jas and N. A. Touba, “Test vector decompression via cyclical scan
chains and its application to testing core-based designstan. Int.

Test Conf.1998, pp. 458-464.

A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “ScanVector compres-
sion/decompression using statistical coding,Pioc. VLSI Test Symp.

1999, pp. 114-120.

A.Jas and N. A. Touba, “Using an embedded processor for efficient de-
terministic testing of systems-on-a-chip,”froc. Int. Conf. Computer
Design 1999, pp. 418-423.

A. Jas, B. Pouya, and N. A. Touba, “Virtual scan chains: a means
for reducing scan length in cores,” ifroc. VLSI Test Symp2000,

pp. 73-78.

A.Jas, C. V. Krishna, and N. A. Touba, “Hybrid BIST based on weighted
pseudo-random testing: a new test resource partitioning scheme,” in
Proc. VLSI Test Symp2001, pp. 114-120.

A. Khoche, E. Volkerink, J. Rivoir, and S. Mitra, “Test vector compres-
sion using EDA-ATE synergies,” iRroc. VLSI Test Symp2002, pp.
97-102.

C. V. Krishna, A. Jas, and N. A. Touba, “Test vector encoding using
partial LFSR reseeding,” iRroc. Int. Test Conf.2001, pp. 885-893.

J. Rajski and J. Tyszer, “Modular logic built-in self-test for IP cores,” in
Proc. Int. Test Conf.1998, pp. 313-321.

P. Rosinger, P. T. Gonciari, B. M. Al-Hashimi, and N. Nicolici,
“Simultaneous reduction in volume of test data and power dissipation
for systems-on-a-chip,Electron. Lett. vol. 37, pp. 1434-1436, Nov.
22, 2001.

M. Sugihara, H. Date, and H. Yassura, “A novel test methodology for
core-based system LSI's and a testing time minimization problem,” in
Proc. Int. Test Conf.1998, pp. 465-472.

T. Yamaguchi, M. Tilgner, M. Ishida, and D. S. Ha, “An efficient method
for compressing test data,” Proc. Int. Test Conf.1997, pp. 191-199.

Y. Zorian, “Test requirements for embedded core-based systems and
IEEE P1500,” inProc. Int. Test Conf.1997, pp. 191-199.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

