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Abstract—The entropy of a set of data is a measure of the
amount of information contained in it. Entropy calculations for
fully specified data have been used to get a theoretical bound on
how much that data can be compressed. This paper extends the
concept of entropy for incompletely specified test data (i.e., that
has unspecified or don’t care bits) and explores the use of entropy
to show how bounds on the maximum amount of compression for
a particular symbol partitioning can be calculated. The impact of
different ways of partitioning the test data into symbols on entropy
is studied. For a class of partitions that use fixed-length symbols, a
greedy algorithm for specifying the don’t cares to reduce entropy
is described. It is shown to be equivalent to the minimum entropy
set cover problem and thus is within an additive constant error
with respect to the minimum entropy possible among all ways of
specifying the don’t cares. A polynomial time algorithm that can
be used to approximate the calculation of entropy is described. Dif-
ferent test data compression techniques proposed in the literature
are analyzed with respect to the entropy bounds. The limitations
and advantages of certain types of test data encoding strategies are
studied using entropy theory.

Index Terms—Entropy theory, linear feedback shift register
(LFSR) reseeding, test data compression.

I. INTRODUCTION

ONE of the main challenges in very large scale integration
testing has been the rapid increase in test data volume

especially in system-on-a-chip designs [2]. More test data vol-
ume leads to higher tester memory requirements and longer test
times when the testing is performed using conventional external
testers, i.e., automated test equipment. This directly affects the
test costs of a chip. Reducing the test data volume by compres-
sion techniques is an attractive approach for dealing with this
problem. The test data are stored in compressed form on the
tester and transferred to the chip where it is decompressed using
an on-chip decompressor.

Several test data compression schemes have been proposed in
the literature. Some of these schemes are applicable to both test
stimuli and test response, whereas others consider compression
of test stimuli only or test response only. For compressing
test response, lossy techniques can be used that achieve higher
compression while still preserving the fault coverage. However,
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lossless compression is needed for the test stimuli to preserve
the fault coverage. In this paper, we study the compression of
test stimuli only, and the terms test vector and test data are used
interchangeably with test stimuli.

In general, compression schemes can be regarded as an
encoding of data, usually into a smaller size than the original
data to achieve compression. In this paper, encoded data or
compressed data mean the same, i.e., the output of the com-
pression scheme. The sets of bits operated upon are called
blocks. Test vector compression schemes can be classified into
different categories depending on how test data are handled
by the scheme. If the scheme encodes a fixed number of
input bits into a fixed number of encoded bits, it belongs to
the “fixed-to-fixed” category. Similarly, schemes that encode
a fixed number of input bits to a variable number of encoded
bits are classified under the fixed-to-variable category. The two
other possible categories are “variable-to-fixed” schemes that
encode a variable number of input bits into a fixed number of
encoded bits and “variable-to-variable” schemes that encode a
variable number of input bits into a variable number of encoded
bits. These different categories and the compression schemes
that fall under each category are discussed further as follows.

A. Fixed-to-Fixed Schemes

An example of a fixed-to-fixed scheme is conventional linear
feedback shift register (LFSR) reseeding [3], where each fixed-
size test vector is encoded as a smaller fixed-size LFSR seed.
Techniques that use combinational expanders with more out-
puts than inputs to fill more scan chains with fewer tester chan-
nels each clock cycle fall into this category. These techniques
include using linear combinational expanders such as broadcast
networks [4] and XOR networks [5], as well as nonlinear
combinational expanders [6], [7]. If the size of the input blocks
is n bits and the size of the encoded blocks is b bits, then
there are 2n possible symbols (input block combinations) and
2b possible codewords (encoded block combinations). Since b is
less than n, obviously not all possible symbols can be encoded
using a fixed-to-fixed code. If Sdict is the set of symbols that can
be encoded (i.e., are in the “dictionary”) and Sdata is the set of
symbols that occur in the input data, then if Sdata ⊆ Sdict, it
is a complete encoding; otherwise, it is a partial encoding. For
LFSR reseeding, it has been shown in [3] that if b is chosen to
be 20 bits larger than the maximum number of specified bits
in any n-bit block of the input data, then the probability of not
having a complete encoding is less than 10−6. The technique
in [6] constructs the nonlinear combinational expander so that
it will implement a complete encoding. For techniques that
do not have a complete encoding, there are two alternatives.
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Either the automatic test pattern generation (ATPG) process
should be constrained, so that it only generates test data that
are contained in the dictionary as in [5], or the dictionary
for symbols that are not contained in it like in [7] should be
bypassed. Bypassing the dictionary requires adding an extra bit
to each codeword to indicate whether it is coded data or not.

B. Fixed-to-Variable Schemes

Huffman codes are the best example of fixed-to-variable
coding schemes. The idea with a Huffman code is to encode
symbols that occur more frequently with shorter codewords
and symbols that occur less frequently with longer codewords.
A method was shown in [8] to construct the code in a way that
minimizes the average length of a codeword. The problem with
a Huffman code is that the decoder grows exponentially as the
size of the input blocks is increased. In [9] and [10], the idea of
a selective Huffman code was introduced, where partial coding
is used and the dictionary is selectively bypassed. This allows
larger block sizes to be efficiently used.

C. Variable-to-Fixed Schemes

Test vector compression schemes based on conventional run-
length codes belong to the variable-to-fixed category. A method
for encoding variable-length runs of zeroes using fixed-size
blocks of encoded data was proposed in [11]. The Lempel–Ziv
(LZ)-based coding methods like LZ77 [12] and LZW [13]
also fall in this category. Both the LZ methods are dictionary-
based methods, although the difference is in how the dictionary
is formed. In LZ-based techniques, patterns within a sliding
window are replaced with pointers to matching previously seen
patterns.

D. Variable-to-Variable Schemes

Several techniques that use run-length codes with a variable
number of bits per codeword have been proposed including
using Golomb codes [14], frequency directed codes [15], and
variable-length input Huffman compression (VIHC) codes [16].
All these belong to the variable-to-variable category. One of
the difficulties with variable-to-variable codes is synchronizing
the transfer of data from the tester. All of the techniques
that have been proposed in this category require the use of a
synchronizing signal going from the on-chip decoder back to
the tester to tell the tester to stop sending data at certain times
while the decoder is busy. Fixed-to-fixed codes do not have this
issue because the data transfer rate from the tester to the decoder
is constant.

This paper investigates the fundamental limits of test data
compression, i.e., it looks to answer the question, “How
much can we compress test data?” This is done by looking
at the entropy of test data and its relation to the compression
limit. The idea of using entropy for calculating the test data
compression limits was first studied in [17]. However, in that
paper, the entropy calculations were limited to a special case
related to frequency-directed run-length codes where all the
don’t cares were specified as zeroes. Moreover, only one way
of partitioning the input data into symbols was considered.

Most of the compression schemes proposed in literature take
advantage of the presence of unspecified or don’t care bits
in test data. Different ways of specifying the don’t cares and
different symbol sets will lead to different entropies for the
same test set. In this paper, we investigate entropy including
the additional degrees of freedom that were not explored in
[17]. In this paper, a procedure for approximately calculating
the minimum entropy of a test set for fixed-symbol-length
schemes over all possible ways of specifying the don’t cares is
described. Also, the relationship between entropy and symbol
partitioning is studied. Preliminary results were published in
[18]; however, note that there was an incorrect claim in [18]
of calculating the exact entropy for fixed-length symbols. It is
shown here that the entropy is calculated to within an additive
constant bound from the exact entropy.

Using entropy theory, it is possible to derive theoretical
limits on the compression that can be achieved using various
types of coding techniques. This is useful in identifying how
much room for improvement there is for the various test data
compression techniques that have been proposed. It is also
useful to identify the compression techniques that have a lot
of room for improvement and offer scope for fruitful research.

The paper is organized as follows: In Section II, the rela-
tionship of symbol partitioning and don’t care filling to en-
tropy is described. For fixed-symbol-length schemes, a greedy
algorithm is described for specifying the don’t cares in a way
that tries to minimize the entropy. This algorithm is shown
to be within an additive constant error with respect to the
exact entropy. In Section III, the relationship between symbol
length and maximum compression is discussed. In Section IV,
different compression schemes that have been proposed in the
literature are compared with their entropy limits. In Section V,
the compression limits for LFSR reseeding are described. Con-
clusions are in Section VI.

II. ENTROPY ANALYSIS FOR TEST DATA

Entropy is a measure of the disorder in a system. The entropy
of a set of data is related to the amount of information that it
contains, which is directly related to the amount of compression
that can be achieved. Entropy is equal to the minimum average
number of bits needed to represent a codeword and hence
presents a fundamental limit on the amount of data compression
that can be achieved [19]. The entropy for a set of test data
depends on how the test data are partitioned into symbols and
how the don’t cares are specified. These two degrees of freedom
are investigated in this section.

A. Partitioning Test Data Into Symbols

For fixed-to-fixed and fixed-to-variable codes, the test data
are partitioned into fixed-length symbols (i.e., each symbol has
the same number of bits). The entropy for the test data will
depend on the symbol length. Different symbol lengths will
have different entropies. For a given symbol length, the entropy
for the test data can be calculated and will give a theoretical
limit on the amount of compression that can be achieved by any
fixed-to-fixed or fixed-to-variable code that uses that symbol
length. This is illustrated by the following example.
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TABLE I
TEST SET DIVIDED INTO 4-BIT BLOCKS

TABLE II
PROBABILITY TABLE FOR SYMBOL LENGTH OF 4

TABLE III
PROBABILITY TABLE FOR SYMBOL LENGTH OF 6

Consider the test set T in Table I, which consists of four test
vectors each partitioned into 4-bit blocks. The probability of oc-
currence of each unique 4-bit symbol is shown in Table II. Note
that the term “probability” here refers to the actual frequency
of the symbol with respect to the total number of symbols in
the data rather than the classical definition of probability as the
chance of occurrence. The column “frequency” shows the num-
ber of times each symbol appears in the test set, and the column
“probability” is calculated by dividing the frequency with the
total number of blocks in the test set. The entropy of this test
set is calculated from the probabilities of occurrence of unique
symbols using the formula H = −∑n

i=1 pi · log pi, where pi is
the probability of occurrence of symbol xi in the test set and n is
the total number of unique symbols. This entropy is calculated
and shown in the last row of Table II. The entropy gives the
minimum average number of bits required for each codeword.
Thus, the maximum compression that can be achieved is given
by (symbol_length − entropy)/(symbol_length), which in this
case is equal to (4 − 2.64)/4 = 34%. Now, if the test set is
partitioned into 6-bit blocks instead of 4-bit blocks, then the
corresponding probabilities of occurrence of unique symbols is
shown in Table III, and the entropy is shown in the last row. As
can be seen, the entropy is different for 6-bit blocks than it is for
4-bit blocks. The maximum compression in this case is equal to
(6 − 3.25)/6 = 46%.

TABLE IV
PROBABILITY TABLE FOR RUNS OF 0’S

For variable-to-fixed and variable-to-variable codes, the test
data are partitioned into variable-length symbols (i.e., the sym-
bols can have different numbers of bits). An example of this
is a run-length code where each symbol consists of a different
size run length. Given the set of variable-length symbols, the
entropy can be calculated the same way as for fixed-length
symbols. This is illustrated by partitioning the test set shown
in Table I into symbols corresponding to different runs of
zeroes. The probability of occurrence of each unique symbol
is shown in Table IV, and the entropy is shown in the last
row. Calculating the maximum compression for variable-length
symbols is different than that for fixed-length symbols. For
variable-length symbols, the maximum compression is equal to
(avg_symbol_length − entropy)/avg_symbol_length. The av-
erage symbol length is computed as

∑n
i=1 pi · |xi|, where pi

is the probability of occurrence of symbol xi, |xi| is the length
of symbol xi, and n is the total number of unique symbols.
For this example, the average symbol length is 2.49; thus, the
maximum compression is (2.53 − 2.07)/2.53 = 18%. This is
the maximum compression that any code that encodes runs of
zeroes can achieve for the test data in Table I.

B. Specifying the Don’t Cares

While computing entropy for fully specified data is well
understood, the fact that test data generally contains don’t cares
makes the problem of determining theoretical limits on test data
compression more complex. Obviously, the entropy will depend
on how the don’t cares are filled with ones and zeroes since
that affects the frequency distribution of the various symbols.
To determine the maximum amount of compression that can
be achieved, the don’t cares should be filled in a way that
minimizes the entropy.

While the number of different ways the don’t cares can be
filled is obviously exponential, for fixed-length symbols, two
algorithms are presented here for filling don’t cares that aim
to result in minimum entropy frequency distribution. The first
algorithm, which is called the greedy fill algorithm, is shown
to be within an additive constant error with respect to the
minimum entropy. The second algorithm is a polynomial time
approximate algorithm to reduce the runtime of calculating
entropy for longer symbol lengths. For variable-length symbols,
the problem is more difficult and remains an open problem. In
[20], this problem is discussed for run-length codes, and an
optimization method based on simulated annealing is used to
find an approximate solution.
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Fig. 1. Example of specifying don’t cares to minimize entropy. (a) Unspecified test set. (b) Frequency of minterms. (c) After Greedy fill.

1) Greedy Fill Algorithm: The greedy fill algorithm is based
on the idea that the don’t cares should be specified in a way
such that the frequency distribution of the patterns becomes as
skewed as possible. This algorithm was first described in [10],
where the goal was to maximize the compression for Huffman
coding. However, it also applies for specifying the don’t cares
for minimizing entropy. Algorithm 1 shows the pseudocode for
the greedy fill algorithm. If the fixed symbol length is n, then
the algorithm identifies the minterm, a fully specified symbol
of length n (there are 2n such minterms) that is contained in as
many of n-bit symbols of the unspecified test data as possible,
which has the highest frequency of occurrence. This minterm is
then selected, and all the unspecified n-bit symbols that contain
this minterm are specified to match the minterm. The algorithm
then proceeds in the same manner by finding the next most
frequently occurring minterm. This continues until all the don’t
cares have been specified.

Algorithm 1: Greedy Fill Algorithm
Input: Test Set T (with unspecified bits), Symbol Length n
Output: Test Set T#

GREEDY FILL(T, n)
M = {m : m is a minterm of size n};
T# = T ;
while (T# has unspecified bits)

foreach m ∈ M
frequency[m] = 0;

done
foreach (symbol s of T#)

foreach m ∈ M
if (s contains m)

frequency[m] ++;
endif

done
done
m∗ = MAX FREQUENCY(M);
foreach (symbol s of T#)

if (s contains m∗)
replace s with m∗ in T#;

endif
done
M = M − {m∗};

endwhile
END

To illustrate this algorithm, an example test set consisting
of four test vectors with 12 bits each is shown in Fig. 1(a).
The test vectors are partitioned into 4-bit symbols resulting
in a total of 12 4-bit symbols. The number of symbols that
contain each of the 16 (24 = 16) possible minterms is shown
in Fig. 1(b). The most frequently occurring minterm is 1111

TABLE V
ENTROPY COMPRESSION LIMITS USING GREEDY FILL ALGORITHM

as seven of the unspecified symbols [underlined in Fig. 1(a)]
contain 1111. Hence, these symbols are specified to 1111. After
the first iteration, only five symbols remain unspecified, and
the most frequently occurring minterm now is 1000. All the
remaining five symbols contain this minterm, and, hence, the
algorithm terminates. The resulting test set after filling up
the unspecified bits in the above manner is shown in Fig. 1(c).

The problem of finding the minimum entropy frequency dis-
tribution is related to a classical problem in algorithms—the set
covering problem [21]. Finding the minimum set of minterms
that cover all the symbols in the test set is an example of the set
covering problem. However, calculating the minimum entropy
frequency distribution is much more complex than finding the
minimum set cover. Finding the minimum entropy frequency
distribution is similar to the haplotype resolution problem in
computational biology that was described in [1]. Using the
results in [1], we can derive the following theorem that shows
that the entropy achieved with the greedy fill algorithm is within
an additive constant error of minimum possible entropy. The
reader is referred to [1, Th. 2] for the proof.

Theorem 1: Let fOPT be the frequency distribution with
minimum entropy. If fG is the frequency distribution ob-
tained using the greedy fill algorithm, then ENT(fG) ≤
ENT(fOPT) + 3.

Experiments were performed using the Greedy Fill Algo-
rithm to calculate the limit on test data compression for the
dynamically compacted test cubes generated by MINTEST [22]
for the largest ISCAS’89 [23] benchmark circuits. These are the
same test sets used for experiments in [14]–[16], [10], and [24].
Table V shows the maximum percentage compression values
for the particular test cubes for each benchmark circuit for four
different symbol lengths. The compression values in Table V
are calculated from the values of entropy that were generated
using the greedy fill algorithm. No fixed-to-fixed or fixed-to-
variable code using these particular symbol lengths can achieve
greater compression than the bounds shown in Table V (within
the approximate factor) for these particular test sets. Note,
however, that these entropy bounds would be different for a
different test set for these circuits, e.g., if the method in [25]
was used to change the location or number of don’t cares.
However, given any test set, the proposed method can be used
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TABLE VI
ENTROPY COMPRESSION LIMITS USING ALTERNATE FILL ALGORITHM

to determine the corresponding entropy for it. As can be seen
from the table, the percentage compression that can be achieved
increases with an increase in the symbol length.

The greedy fill algorithm is exponential in the symbol length
since the algorithm enumerates the frequencies of each pos-
sible minterm for the given symbol length and the number
of minterms grows exponentially with symbol length. Thus,
it is not practical to calculate the entropy for larger symbol
lengths using this algorithm. Hence, the next section presents a
polynomial time approximate algorithm that can scale to larger
symbol lengths.

2) Alternate Fill Algorithm: Algorithm 2 shows the pseudo-
code for the alternate fill algorithm. First, the three-valued
unspecified symbols are ordered from the highest frequency of
occurrence to the lowest. Then, each unspecified symbol is used
as the starting point, and an attempt is made to merge it (similar
to static compaction) with each of the other symbols going in
order from the highest frequency to the lowest. Two symbols
can be merged if they do not conflict in any bit position (i.e.,
have opposite specified values in a bit position). After merging
with as many symbols as possible, the resulting merged symbol
will have a frequency of occurrence equal to the sum of the
frequency of occurrence for each of the symbols it was merged
with. Each symbol is used in turn as a starting point for this
merging process, and the merged symbol that results in the
highest frequency of occurrence is selected (if it has any don’t
cares after merging, they can be arbitrarily filled with no impact
on entropy). The don’t cares in each unspecified symbol that
are compatible with the selected merged symbol are specified
to match it. This process is then repeated until all the symbols
in the test data are specified.

Algorithm 2: Alternate Fill Algorithm
Input: Test Set T (with unspecified bits), Symbol Length n
Output: Test Set T#

APPROX FILL(T, n)
T# = T ;
S = {s : s is a symbol of size n occurring in T};
frequency(S) = CALCULATE_SYMBOL_
FREQUENCY(S, T );
while (S not empty)

SORT(S, frequency(S));
foreach (symbol s of S)

curr_symbol c = s;
curr_freq = 0;
foreach (symbol s of S)

if (s merges with c)

curr_freq+ = frequency[s];
c = MERGE(s, c);

endif
done
if(curr_freq > max _freq)

max _freq = curr_freq;
max _freq_symbol s∗ = c;

endif
done
FULLY_SPECIFY(s∗);
foreach (symbol s of S)

if (s merges with s∗)
replace s with s∗ in T#;
S = S − {s};

endif
done
S = S − {s∗};

endwhile
END

The alternate algorithm is approximate because the sequence
in which the merging is done may not be optimal. Since the
number of sequences in which the merging can be done is expo-
nential, a greedy heuristic is used with some initial lookahead.
The alternate algorithm is polynomial time with respect to the
number of symbols and symbol length. Hence, it is scalable to
large test sets and large symbol lengths.

Experiments were performed using the alternate fill algo-
rithm to calculate the limit on test data compression for the
dynamically compacted test cubes generated by MINTEST [22]
for the largest ISCAS’89 [23] benchmark circuits. The results
are shown in Table VI. In comparing the results in Tables V and
VI, it can be seen that the results for the alternate fill algorithm
are very close to those of the greedy fill algorithm.

III. SYMBOL LENGTH VERSUS COMPRESSION LIMITS

In this section, the relationship between symbol length, com-
pression limits, and decoding complexity is investigated. Fig. 2
shows a graph of the compression limits calculated from mini-
mum entropy (using the alternate algorithm) for the benchmark
circuit s9234 as the symbol length is varied. The percentage
compression varies from 50% for a symbol length of 2 to 92%
for a symbol length of 32; this corresponds to a compression
ratio range of 2–12. The reason why greater compression can be
achieved for larger symbol lengths is that more information is
being stored in the decoder. This becomes very clear when the
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Fig. 2. Variation of compression for s9234 for different symbol lengths.

Fig. 3. Plot of compression for s9234 with all possible symbol lengths.

compression limit is graphed for all possible symbol lengths
as shown in Fig. 3. As can be seen, the compression ratio
goes toward infinity as the symbol length becomes equal to the
number of bits in the entire test set. When the symbol length is
equal to the number of bits in the entire test set, then the decoder
is encoding the entire test set. This is equivalent to built-in self-
test (BIST) where no data are stored on the tester other than the
start signal for BIST.

Consider the simple case where the information in the de-
coder is simply stored in a ROM without any encoding. The
decoder ROM translates the codewords into the original sym-
bols; thus, at a minimum, it needs to store the set of original
symbols. For a symbol length of 2, there are 22 possible
symbols; therefore, the decoder ROM would have to store
four symbols each requiring 2 bits, thus requiring 8 bits of
storage. For a symbol length of 4, there are 24 possible symbols;
therefore, the decoder ROM would have to store 16 symbols
each requiring 4 bits, thus requiring 64 bits of storage. Having a
larger decoder ROM allows greater compression. For a symbol
length of 32, there are 232 possible symbols, but it is not likely
that the test data would contain all of them. The decoder would
only need to store the symbols that actually occur in the test
data. In Fig. 4, the size of a simple decoder ROM that is
required for different symbol lengths is graphed for different
symbol lengths. As can be seen, the decoder information goes
up exponentially as the symbol length goes from 1 to 10 as, in
this range, all possible symbols are occurring in the test data
and the number of symbols is growing exponentially. After

Fig. 4. Encoded data size versus simple decoder ROM size for s9234.

this, the decoder information goes up less than exponentially
because not all possible symbols of that length occur in the test
data. After the symbol length exceeds about 20, the decoder
information is nearly equal to the entire test set as there is
very little repetition of the symbols in the test data (i.e., almost
all the symbols in the test data are unique at that point). One
way to view the graph in Fig. 4 is that as the symbol length
is increased, essentially more information is being stored in
the on-chip decoder, and less information is being stored off-
chip in the tester memory. A symbol length of 1 corresponds
to conventional external testing with no compression, and a
symbol length equal to the size of the test set corresponds to
conventional BIST where no data are stored on the tester.

The real challenge in test data compression is in the design of
the decoder. The entropy of the test data places a fundamental
limit on the amount of compression that can be achieved for
a particular symbol length, but the real key is to achieve some-
thing close to the maximum compression using a small decoder.
The next two sections evaluate existing test data compression
schemes with respect to their compression limits based on
entropy theory.

IV. ANALYSIS OF TEST DATA COMPRESSION SCHEMES

In this section, different test data compression schemes
proposed in the literature are compared with their entropy
bounds. Both schemes that operate on fixed-length symbols and
those that work on variable-length symbols are considered. One
major constraint is that we are only able to report results for
schemes for which we have access to the exact test set that
was encoded. For this reason, we have limited the results to
only those schemes that reported results for the MINTEST test
cubes [22]. Discussion of LFSR reseeding schemes is deferred
to Section V.

A. Fixed-Symbol-Length Schemes

Table VII compares results of four compression schemes
with the calculated entropy limits for compression. Two of
them, i.e., [10] and [24], are fixed-to-variable schemes; the
work in [10] is a selective Huffman coding scheme, whereas
the work in [24] uses only nine codewords to encode the
whole test set. The other two are dictionary-based fixed-to-
fixed schemes; the work in [7] uses a selective dictionary with
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TABLE VII
COMPARISON OF FIXED-SYMBOL-LENGTH SCHEMES WITH ENTROPY COMPRESSION LIMIT

fixed-length indexes, whereas the work in [26] uses a correction
circuit in addition to the dictionary. The first two columns in
Table VII show the circuit name and the size of the original
test set. The next two columns show the symbol length and
the corresponding entropy compression limit (i.e., maximum
possible compression). Several different symbol lengths are
considered (rows 8, 12, 16, 32, 64, and 128) and the maximum
possible compression that can be obtained from entropy limits
calculated for them. The last four columns show the published
results for the percentage compression obtained by each of the
aforementioned schemes.

It is clear from Table VII that different schemes work with
different symbol lengths. Selective Huffman [10] and nine-
coded [24] compressions are primarily applicable with smaller
symbol lengths. The reason for [10] is that the decompressor
size increases for bigger symbol lengths. Nine-coded com-
pression [24] performs well for small symbol lengths, but the
compression decreases significantly as the symbol length is
increased. Since it fits every n-bit block into one of the nine
categories, with larger n, most of the blocks do not have a match
with the standard categories (all zeroes, all ones) and fall into
the all mismatch category, thereby reducing the compression.

The two dictionary-based methods, i.e., [7] and [26], are ap-
plicable with larger symbol lengths. For larger symbol lengths,
the difference between the entropy compression limits and the
actual compression obtained by these schemes is much higher

TABLE VIII
COMPARISON OF VARIABLE-SYMBOL-LENGTH SCHEMES

WITH ENTROPY COMPRESSION LIMIT

than for smaller symbol lengths. This can be attributed to the
fact that these schemes use a simple approach (so that the
hardware overhead does not increase exponentially), while to
get compression similar to the entropy compression limit, the
hardware overhead may be prohibitively high.

B. Variable-Symbol-Length Schemes

Table VIII shows results for three compression schemes that
are based on variable-to-variable codes. Each of these schemes
is based on encoding runs of zeroes. As was discussed in
Section II, filling the don’t cares to minimize entropy for
variable size symbols is an open problem. These three
schemes all fill the don’t cares by simply replacing them with
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specified zeroes. For simplicity, the entropy compression limits
in Table VIII were calculated by also filling the don’t cares with
specified zeroes.

The results in Table VIII indicate that the VIHC method
in [16] gets very close to the entropy compression limit. This
is because this method is based on Huffman coding. One
conclusion that can be drawn from these results is that there
is not much room for improvement for research in variable-
to-variable codes that encode runs of zeroes. The only way to
get better compression than the entropy compression limit that
is shown here would be to use a different ATPG procedure or
fill the don’t cares in a different way that changes the entropy
compression limit.

V. ANALYSIS OF LFSR RESEEDING

Conventional LFSR reseeding [3] is a special type of fixed-
to-fixed code in which the set of symbols is the output space
of the LFSR and the set of codewords is the seed of the
LFSR. As was seen in the graphs in Section III, larger symbol
lengths are needed to achieve greater amounts of compression
due to the entropy limits on compression. The difficulty with
larger symbol lengths is that the decoder needs to be able to
produce more symbols of greater length. The power of LFSR
reseeding is that an LFSR is used for producing the symbols.
An r-stage LFSR (implementing a primitive polynomial) has a
maximal output space as it produces 2r − 1 different symbols
as well as have a very compact structure resulting in low area.
Thus, an LFSR is an excellent vehicle for facilitating larger
symbol lengths with a small area decoder. The only issue is
whether the set of symbols that occur in the test data, Sdata,
are a subset of the symbols produced by the LFSR, SLFSR

(i.e., Sdata ⊆ SLFSR). Fortunately, the symbols produced by
the LFSR have a pseudorandom property. If n is the symbol
length, then as was shown in [3], if the number of specified
bits in any n-bit block of test data is 20 less than the size
of the LFSR, then the probability of the n-bit block of test
data not matching one of the symbols in SLFSR is negligibly
small (less than 10−6). In [27], a multiple-polynomial technique
was presented that reduces the size of the seed information to
just 1 bit more than the maximum number of specified bits
(denoted by smax) in an n-bit block. Thus, the compression
that is achieved with this approach for a symbol length of n
is equal to the ratio of n to the maximum number of specified
bits in an n-bit block plus 1. Note that although the compressed
data size for LFSR reseeding depends on smax, the hardware
overhead in implementing the scheme need not be that high.
Several techniques have been proposed that reduce the size of
the LFSR by either using the existing scan chains in the circuit
like [28] or using a smaller LFSR but continuously feeding it
bits from the tester [29].

Fig. 5 shows a graph of the compression for LFSR reseeding
for circuit s13207 for all possible symbol lengths. As can be
seen, no compression is achieved for short symbol lengths
where the maximum number of specified bits is equal to
the symbol length. Compression does not start to occur until
the symbol length becomes larger than 20. The compression
steadily improves as the symbol length is increased, but in

Fig. 5. LFSR reseeding compression versus symbol length for s13207.

general, it cannot exceed the total percentage of don’t cares in
the test data. For the test set in Fig. 5, the percentage of don’t
cares is 94%.

In another experiment, we evaluated the performance of
LFSR reseeding vis-a-vis other test-encoding-based compres-
sion schemes. The idea was to compare the compression ob-
tained using LFSR reseeding with the entropy limits of the other
compression techniques. The experimental setup is shown in
Fig. 6. A scan architecture with n scan chains and a maximum
scan length of l was considered. The test-encoding-based com-
pression techniques generate bits corresponding to one scan
slice at a time. This is shown by the shaded rectangle on the
left side of Fig. 6. That is, the symbol length is n. On the
other hand, the LFSR reseeding scheme generates one full test
vector from a single seed. Note that the size of the LFSR will be
determined by the smax of the test set and may be different from
n. In this case, smax is the maximum number of specified bits
among all test vectors in the test set. Test sets were generated
randomly for different scan architectures by varying the number
of scan chains (n) and also with several different percentages
of specified bits for each scan architecture. For each of these
test sets, the entropy limits for the code-based decompression
technique were calculated. The compression obtained through
LFSR reseeding was evaluated for comparison. The size of the
LFSR was assumed to be smax + 1.

Fig. 7 shows the plot of percentage compression versus
percentage specified bits. The percentage specified bits in each
test set was varied from 0.1% to 5%. Note that this is the
overall average percentage specified bits for the whole test
set. The number of specified bits in each test pattern varied
since they were specified randomly. Since the LFSR reseeding
compression does not depend on n, the plot of LFSR reseeding
for the three different n in this experiment is identical. From
Fig. 7, it is clear that the entropy limits for the test-encoding-
based techniques do not vary much with the number of scan
chains n for the same percentage specified bits. However, the
entropy limits decrease with the increase in the percentage
of specified bits. Similarly, the compression obtained using
LFSR reseeding also decreases with the increase in percentage
of specified bits. However, it is interesting to note that the
compression obtained through LFSR reseeding can match that
of the entropy limit for lower percentage specified bits and is
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Fig. 6. Experimental setup.

Fig. 7. LFSR compression.

within 3% of the limit for higher percentage specified bits. This
means that LFSR reseeding can achieve compression very close
to the entropy limits of test-encoding-based techniques.

VI. CONCLUSION

This paper shows how entropy theory can be used to calcu-
late theoretical limits to the amount of test data compression
that can be achieved with various fixed-symbol-length coding
techniques. These limits are useful as a measure of how much
improvement is possible over existing test data compression
schemes. They can be used to identify coding techniques where
there is not much scope for improvement as well as identify
coding techniques that hold promise for fruitful research. This
paper studied the relationship of symbol partitioning and don’t
care filling to entropy. An area for future research is to look at
new coding techniques that can exploit this to achieve greater
compression.
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