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Abstract—In this paper, a technique is presented for selecting signals
to observe during silicon debug. Internal signals are used to analyze,
understand, and debug circuit misbehavior. An automated procedure to
select which signals to observe is proposed to facilitate early detection of
circuit malfunction and to enhance the utilization of hardware resources
for storage. Signals that are most often sensitized to possible errors are
observed in sequential circuits. Given a functional input vector set, an
error transmission matrix is generated by analyzing which flip-flops
are sensitized to other flip-flops. Relatively independent flip-flops are
identified and a set of signals that maximally cover the possible error sites
with given constraints are identified through integer linear programming.
Experimental results show that the proposed approach can rapidly and
precisely identify the nonconforming chip behavior and thereby can speed
up the post-silicon debug process.

Index Terms—Error propagation matrix, integer linear
programming, signal observability, silicon debug.

I. Introduction and Related Work

THE ADVANCE of technology allows sophisticated de-
signs with millions of transistors. Due to the complex

designs and the inaccuracies in modeling integrated circuits
(ICs) along with process variations during the manufacturing
process, post-silicon validation (silicon debug) takes more than
half of the chip development cycle [2], [17], [21]. Unlike
during pre-silicon verification, the accessibility and visibility
of internal signals are very limited in post-silicon debug and
hence this is the major challenge in the validation and debug
of first silicon. Hence, identifying and resolving problems in
ICs after first silicon is a very time consuming and extremely
complex task [6], [8], [9], [12]–[14], [17], [20], [22], [23].

The narrow observability of internal signals makes silicon
debug costly and time consuming. For this reason, design-for-
debug (DFD) techniques are introduced to enhance the silicon
validation process. Two main hardware DFD solutions, scan
chains and trace buffers, are proposed to add debug support
for the more speedy and accurate process. These hardware
features are used to enhance the data acquisition of internal
signals. The captured data is used to investigate the temporal
and spatial failure information by software-based debug tools
[2], [10], [14], [24]. Scan chains are widely utilized to support
manufacturing test as a design-for-testability feature. Scan-
based debug techniques [9], [18], [19] significantly enhance
the internal signal observability, however, the system needs to
be halted to read out responses from the circuit-under-debug. A
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trace buffer is an on-chip memory that can store the continuous
internal signal information for a limited time period.

Increased internal signal observability helps to discover
erroneous behavior closer to the source of the problem, both
in space and time. Previous research has been done to enhance
internal observability in two ways.

1) Efficient use of limited hardware resources: data com-
pression techniques have been applied to increase the
volume of debug data [3], [4], [22].

2) Extra data extraction from captured trace data: some
studies [1], [10], [24] use inductive reasoning to deter-
mine additional signal values from the captured debug
data.

Reference [4] proposed a multiple input signature regis-
ter based technique which implements an accelerated binary
search. And [22] introduced a 2-D compaction that captures
debug data in a trace buffer only during clock cycles in which
errors are present. In [3], lossless compression methods based
on dictionary coding were investigated for compressing the
data stored in a trace buffer.

To extract more debug data than captured, [1] and [10]
proposed data construction techniques via Boolean equations.
And [13] introduced signal restorability for data reconstruction
in sequential circuits and signals with high restorability are
chosen. References [15] and [25] used scan dump values and
find the failing registers by back-tracing and forward-tracing
methods. Reference [16] showed an architectural level ap-
proach for post-silicon bug localization. It records the history
of the program executed and identifies the bug location-time
information at the system level.

In this paper, a systematic method for selecting the appro-
priate signals to observe is proposed to maximize the effec-
tiveness of limited internal signal observability. The proposed
method exploits the nature of error propagation in sequential
circuits by observing signals which are most often sensitized
to possible error sites. Integer linear programming (ILP) is
used to determine the set of signals to observe which are
easily sensitized by the possible errors with a given condition.
Preliminary results were presented in [23].

II. Details of Signals to Observe Selection

Process

The following subsections describe each of the steps in the
proposed procedure for selecting the signals to observe.

A. Fault Simulation and Error Transmission Matrix
Generation

A simple circuit example is shown in Fig. 1. There are
six flip-flops represented by rectangles named A to F and
combinational logic illustrated as a cloud. To show an example
of a fault simulation, we assume that three functional vectors
(v1, v2, and v3) are applied to this logic. When the vectors
are applied, if there is a bug, the erroneous response could be
captured in some flip-flops at some time. That faulty response
would likely keep propagating in a sequential circuit over
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Fig. 1. Simple logic example.

multiple cycles. In this paper, however, we set the propagation
depth as 1 and investigate the error propagation. Hence, a
fault simulation is performed for one cycle to see where the
error propagates and this can identify which flip-flops are
corrupted by an error. As highlighted in gray in Fig. 1, the fault
simulation shows the error propagation from A to flip-flops C,
D and E for input vector v1. In the same manner, the fault
simulation can be performed for each test vector and errors.

Fault simulation identifies the error transmission and the
results can be represented as a matrix. As shown in Fig. 2(a),
each column represents a flip-flop (A ∼F) in a circuit, and each
row shows the error information pair with an input vector and
a flip-flop. The input vector and the erroneous flip-flop pair
is represented as (A, v1) in the first row of the matrix. For
example, (A, v1) tells an error in a flip-flop A with a vector
v1. The fault simulation shows that an error located in A with
a vector v1 propagates to C, D and E. Because C, D and E
are influenced by (A, v1), each have a “1” in the first row.

Once the error transmission matrix is generated, the flip-
flops that are most often sensitized to possible errors can be
identified assuming bugs in silicon are modeled as occurring
evenly distributed in time and space because random errors
can happen and cause issues in silicon anytime and anywhere.
Note that an error will likely propagate for multiple clock
cycles and need not necessarily be detected in the first cycle
in which it occurs. Since the value “1” is assigned when the
flip-flop value is corrupted by corresponding error pairs, the
columns in the error transmission matrix with the most “1”s
are probabilistically more likely to capture errors over time.
This shows that errors are most frequently transmitted to them.
Hence, we can find the columns with the most “1”s and they
are candidates for signals to observe for better observability.
Moreover, if a limited set of signals to observe is to be
selected, then columns that are most nonoverlapping and cover
as many rows as possible are also more likely to cover more
errors. This will be discussed in more detail later.

B. Enhancement of Internal Signal Observability by Relatively
Independent Flip-Flop Analysis

Here, we analyze the error transmission matrix to find
independent flip-flops. Flip-flops are relatively independent if a
single error in a circuit will not influence them simultaneously.
If two flip-flops are relatively independent, the erroneous
response for one error will not be simultaneously transmitted
to both flip-flops. For the example in Fig. 2(a), since an error
in A is transmitted to C, D, and E for vector v1 and the values
in flip-flops A, B and F are not influenced by an error. Hence,

Fig. 2. (a) Error transmission matrix. (b) Updated error transmission matrix
by relatively independent flip-flop analysis.

A, B, and F are relatively independent of the possible error
because they are influenced by an error in A with v1.

Because the relatively independent flip-flops are not affected
by the same error, they can be XORed together to increase
the overall observability of the internal signals. The error
transmission matrix can be updated by forming signal groups
by combining (XORing) the relatively independent flip-flops
in the matrix. For example, because the error (A, v1) never
propagates to A, B and F, XORing A, B, and F does not affect
the error detection of (A, v1). Relatively independent flip-
flops in a circuit are identified and XORed to achieve better
observation capability. The overall goal is to find misbehavior
as early as possible, so observing more signals helps silicon
debug by providing more internal signal information.

As explained, the relatively independent flip-flops can be
XORed together without losing error observation for single
flip-flop errors. Note, however, that flip-flops are relatively
independent only with respect to single errors, so it is still
possible for multiple errors to cancel. However, this serves as
a good heuristic for increasing overall signal observability.

In Fig. 2(a), relative independence is analyzed among flip-
flops (A∼F) and three relatively independent signal groups
can be found. Therefore, the first signal group (S0), the
second group (S1), and the last group (S2) can be expressed
respectively as follows.

Three Signal Groups Identified by Relatively Independent
Flip-Flop Analysis:

S0 = A ⊕ C ⊕ F, S1 = B ⊕ D, S2 = E.

Once signal groups are identified by the relatively indepen-
dent flip-flop analysis, the error transmission matrix can be
updated. Fig. 2(b) shows the matrix update in Fig. 2(a). (A,
v1) to (F, v3) error information pairs are indexed by R0 to
R17. Instead of individual signal selection, signal groups are
selected and this provides better signal observability.
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Fig. 3. ILP formulation for updated error transmission matrix.

Since the relatively independent flip-flops are XORed, there
may be concern about hardware implementation issues. Be-
cause a number of signals are XORed together, the signal
groups need to be identified taking the number of signals in
one signal group into consideration. If there are too many
signals in one signal group, an XOR tree is needed and
congested routing/wiring could be an issue. Hence, a limit can
be placed on the number of signals which are XORed together
when the error transmission matrix is updated to minimize
delay and/or routing.

C. Integer Linear Programming to Determine the Set of
Signals to Observe

As stated in Section I, since there are limitations on storage,
bandwidth and overhead for observing signals, it is very
important to choose the best set of signals to observe for the
most efficient debugging. Linear programming is a well-known
technique used for a wide range of optimization problems
in many fields. Linear programming with integer unknown
variables is called an ILP. Here ILP is employed to select an
optimal set of signals based on the updated error transmission
matrix. The matrix in Fig. 2(b) is formulated as a set of ILP
equations in Fig. 3.

In Fig. 3, R0 denotes the 0th row in the updated error
transmission matrix and S0 represents the 0th column. Since
we want to enhance the debugging capability, the objective
function of this ILP problem is to maximize the number of
errors covered by a set of signal groups. Hence, the objective
equation (“maximize the covered errors”) is expressed as the
summation of the entire error sets (1). In the ILP solution, if
an error is covered by any signal group, then the value “1” is
assigned to a corresponding error variable (Rk). And if an error
is not covered, “0” will be assigned. Therefore, the solution
space for Rk is “0” or “1” (4). Depending on the bandwidth
and storage requirements of hardware resources, the number
of signal groups can be decided. The solution space for signal
groups is also “0” or “1” (5). When a signal group is selected
for observation, Si has “1”, otherwise, “0” is assigned.
Because the number of signal groups to observe is determined
by the amount of hardware available, the summation of Sk

equals to the number of signal groups to observe (2) and they
are always larger than 1 (i.e. S0 + S1 + S2 ≥ 1). More ILP
constraints are derived from each row of Fig. 2(b) and they
are represented as equations (3). Sk−i is defined as a signal

TABLE I

Number of Signals Observed by Proposed

Method for NoC Design

Pattern Threshold Number of Signal Groups
Set Values 8 12 16 32

Using 8 64 93 126 256
Selective 12 92 134 184 379
Patterns ∞ 367 921 1169 1543
Using 8 64 96 121 256
Entire 12 96 144 189 380

Patterns ∞ 507 829 1296 1637

group in kth row and ith column to differentiate the variables
between rows. For example, three signal groups in the first
row are expressed as S0−0, S0−1 and S0−2 and the second row
signal groups are denoted as S1−0, S1−1 and S1−2. In the first
row, R0 is always detected by S0−0, S0−1 or S0−2, hence, the
ILP formulation from the first row can be expressed as S0−0

+ S0−1 + S0−2 ≥ R0. In the same manner, from the second
row, the constraint can be driven as S1−0 + S1−1 + S1−2 ≥ R1.
Because the signals S1 cannot detect R1 in the second row, the
equation can be written as S1−0 + S1−2 ≥ R1. In this same
manner, 18 ILP formulations are generated in (3).

III. Techniques to Generate Error

Transmission Matrix

The performance of the ILP solver depends on the number
of variables in the constraints. To avoid excessive run time
overhead by an ILP solver, we show two ways to deal with an
error transmission matrix and these are used for experimental
setups in Section IV.

One way to reduce the number of variables or equations
is to use less number of functional vectors. As shown in
Fig. 4(a), some important vectors or representing vectors can
be used for fault simulation and error transmission matrix
generation. Commonly, since random instructions are run to
exercise various part of a chip [6], [18], [19], some random
instructions could be a good choice for sample vector based
approach.

The other method uses the entire functional vectors, how-
ever, the error transmission matrix is partitioned and set
smaller matrices are used for debug signal selection. As
illustrated in Fig. 4(b), fault simulation is performed with a
full suite of test vectors and the error transmission matrix is
generated. Since the matrix size is big, it is split into multiple
pieces of smaller matrices to reduce the overhead of solving a
big matrix by ILP. A set of signal groups are determined for
each matrix. The results from each matrix are analyzed and
the signal groups which are mostly found are determined as
final signal groups. Experimental results for both techniques
are shown in Section IV.

IV. Experimental Results

In this section, experimental results are presented for
ISCAS-89 benchmark circuits [5] and an network-on-chip
(NoC) design [11]. Stuck-at faults were randomly injected in
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TABLE II

Average Erroneous Response Detection Latency Results

(a) Random/Structural

Circuit Random/Structural
Average Detection Latency with Different Number of Signal Groups

8 12 16 20 24 28 32

s9234
Random 320.81 212.18 186.82 180.13 175.10 174.9 173.73

Structural 244.28 197.71 176.82 175.91 173.01 173.01 173.01

s38584
Random 197.56 184.46 131.85 124.68 118.80 115.31 109.87

Structural 178.08 146.73 127.32 121.77 119.31 118.29 115.86

NoC Design
Random 594.42 571.87 574.82 562.69 581.36 532.13 504.65

Structural 643.26 551.66 541.23 532.78 519.95 506.11 492.24

(b) Using Selective Vector Patterns

Circuit Threshold Value
Average Detection Latency with Different Number of Signal Groups

8 12 16 20 24 28 32

s9234
8 49.36 41.84 41.06 33.84 20.52 20.52 20.52
12 49.36 41.84 41.06 33.84 20.52 20.52 20.52
∞ 49.36 41.84 41.06 33.84 20.52 20.52 20.52

s38584
8 67.35 61.44 51.87 46.97 41.78 35.25 31.41
12 59.42 54.13 49.04 31.59 28.98 25.91 19.67
∞ 10.24 6.62 4.58 2.46 1.39 0.35 0.34

NoC Design
8 201.56 153.68 124.08 117.42 110.28 97.36 68.37
12 148.97 117.79 109.80 94.36 62.71 51.96 45.21
∞ 47.63 21.79 16.37 14.08 12.83 10.52 9.12

(c) Using Entire Vector Patterns

Circuit Threshold Value Average Detection Latency with Different Number of Signal Groups
8 12 16 20 24 28 32

8 45.47 41.26 41.06 33.84 20.52 20.52 20.52
s9234 12 45.47 41.26 41.06 33.84 20.52 20.52 20.52

∞ 45.47 41.26 41.06 33.84 20.52 20.52 20.52
8 63.68 55.17 50.20 42.43 39.19 32.25 27.86

s38584 12 50.75 42.26 39.44 29.80 23.13 20.66 16.62
∞ 8.39 5.67 2.83 1.98 0.84 0.31 0.26
8 187.32 141.69 114.20 103.36 98.42 76.34 61.44

NoC Design 12 139.36 105.97 87.26 67.24. 48.90 39.76 33.96
∞ 42.55 19.36 13.25 11.93 9.98 8.54 7.34

circuits to produce misbehavior of the systems and to generate
erroneous data. Fault simulation for one depth is performed to
investigate the error transmission using random vectors for
ISCAS-89 benchmarks and deterministic verification vectors
for NoC design.

As discussed in Section II-B, while the error matrix is
updated by finding the independent flip-flops, the number of
signals which can be merged for one signal groups can be
limited to void issues related to the physical design such as
timing and wiring by signal groups. Three threshold values
(8, 12, and ∞) are set to see how fast the circuit misbehavior
is detected with different signal numbers. To find the final set
of signals to observe, GNU Linear Programming Kit (GLPK)
4.32 [7] was used as the ILP solver.

Table I shows how many signals are observed with each of
three threshold values for a single signal group in updating the
error transmission matrix by the relatively independent flip-
flop analysis. For the NoC design, there are 1991 flip-flops in
the design. Table I shows the debug signal selection results
with the partial functional vector set and the signal selection
results with the entire vectors set. The first column shows the
pattern set. The second column shows the maximum number
of signals that can be merged into one signal group when
updating the error transmission matrix which is referred to as
threshold values. In the third column, the number of flip-flops

observed is shown when 8, 12, 16, and 32 signal groups are
chosen by ILP in the updated error transmission matrix. As
can be seen from the results, more flip-flops can be observed
as the maximum value in the second column is increased.

As can be seen from Table I, the number of signals to
observe is not determined by the number of functional vectors
used to generate the error transmission matrix. Hence, it is
more important to observe right signals for the efficient silicon
debug than to have larger number of signals. This is clearer in
Table II. Since the ILP size is determined by the total number
of signals groups [e.g., 3 in Fig 2(b)] and the total number of
error and vector pairs, it may vary.

Table II shows simulation results for the average latency
to detect the circuit misbehavior. The detection latency is
measured by the number of clock cycles after the error is
injected until it is observed. The measured latency is averaged
over 300 different random error injections. To compare the
effectiveness of the proposed method, in addition to the
proposed method, two other methods are used (random and
structural selection method). The size of each logic cone is
sorted using the structural information. Since the largest logic
cones have higher probability of detects, the flip-flops that
are fed by the largest logic cones are selected to monitor
the nonconforming circuit behavior. Since the random and
structural based signal selection does not require threshold
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Fig. 4. Techniques to generate error transmission matrix. (a) Generating
error transmission matrix with sample vectors. (b) Generating error trans-
mission matrix with entire vectors.

values, they are not applied. The third column shows the
circuit misbehavior detection latency with different number
of signals. The results by the proposed methods are shown
in Table II(b) and (c). Table II(b) shows the results with
partial vectors to perform the debugging and results with
the entire vector sets are illustrated in Table II(c). Because
the proposed method selects a list of signals that are most
often sensitized to possible errors, it detects the erroneous
data more rapidly in all cases than other methods shown
in Table II(a). Table II(c) generally shows shorter detection
latency with more functional vectors used. For s9234 and
s38584, because random functional vectors are used, we can
say that selective random vector selection may be one of good
ways of choosing representing entire vectors. Experimental
results show moderately close detection latency from s9234
and s38584.

These results show that careful signal selection can be used
to increase the efficiency and speed of silicon debug.

V. Conclusion

An automated procedure for selecting which signals to
observe was proposed for more efficient silicon debug. The set
of signals selected by the proposed method are most often sen-
sitized to possible errors and maximally cover the errors within
given constraints. The result shows that the proposed method
can detect the faulty response rapidly. Multicycle fault simula-
tion can find different set of signals, however, it exponentially
increases the problem space in ILP. Fault simulation with a
depth of one helps to avoid the scalability issue and serves as a
good heuristic. It should also be noted that the proposed tech-
nique could be universally applied to any designs including

those which do not have scan chains with nondestructive scan
out capability. And the proposed method also can be applied
to a selected part of a design such as newly implemented and
unverified modules that require more debugging effort.
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