
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014 1219

Utilizing ATE Vector Repeat with Linear
Decompressor for Test Vector Compression
Joon-Sung Yang, Member, IEEE, Jinkyu Lee, Member, IEEE, and Nur A. Touba, Fellow, IEEE

Abstract—Previous approaches for utilizing automatic test
equipment (ATE) vector repeat are based on identifying runs of
repeated scan data and directly generating that data using ATE
vector repeat. Each run requires a separate vector repeat instruc-
tion, so the amount of compression is limited by the amount of
ATE instruction memory available and the length of the runs
(which typically will be much shorter than the length of a scan
vector). In this paper, a new and more efficient approach is pro-
posed for utilizing ATE vector repeat. The scan vector sequence
is partitioned and decomposed into a common sequence which is
the same for an entire cluster of test cubes and a unique sequence
that is different for each test cube. The common sequence can be
generated very efficiently using ATE vector repeat. Experimental
results demonstrate that the proposed approach can achieve
much greater compression while using many fewer vector repeat
instructions compared with previous methods.

Index Terms—Linear decompres, test vector compression,
vector repeat.

I. INTRODUCTION

TEST cost in the integrated circuit (IC) industry has
increased dramatically to achieve high test quality as size

and complexity continue to grow [1]. Large and complex ICs
such as System-on-a-Chip (SoC) and three-dimensional ICs
(3-D-ICs) have caused a drastic increase in test cost. One
of the critical factors is large test data volume. To obtain
high test quality, test data volume may exceed the mem-
ory capacity of the available automatic test equipment (ATE).
Furthermore, the large amount of test data needs to be trans-
ferred from the ATE to a chip with limited tester bandwidth,
which results in long test time. To overcome increased test
memory requirements and tester data bandwidth requirements,
test vector compression has become very important. Test vec-
tor compression provides a way of reducing both the tester
memory requirement and the tester data bandwidth require-
ment. A number of test vector compression techniques have
been proposed in the literature [30].

A special class of test vector compression schemes involves
using a linear decompressor which uses only linear operations

Manuscript received April 17, 2013; revised September 4, 2013 and January
7, 2014; accepted February 19, 2014. Date of current version July 15 2014.
This paper was recommended by Associate Editor A. E. Gattiker.

J.-S. Yang is with Sungkyunkwan University, Suwon 440-746, Korea
(e-mail: js.yang@skku.edu).

J. Lee is with Samsung Austin Research Center, Austin, TX 78730 USA
(e-mail: jinkyu.l@samsung.com).

N. A. Touba is with the University of Texas at Austin, Austin, TX 78712
USA (e-mail: touba@ece.utexas.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2014.2314307

to decompress the test vectors. This includes techniques
based on linear feedback shift register (LFSR) reseeding
and combinational linear expansion circuits consisting of
XOR gates. Linear compression schemes are very efficient
in exploiting don’t care values in test cubes to achieve large
amounts of compression.

Linear decompressors expand seeds to deterministic test
cubes [2]–[6], [7], [8], [10], [11]–[17], [28]. A seed is an
initial state of a linear decompressor that is expanded by
running the linear decompressor. Given a deterministic test
cube, a corresponding seed can be computed by solving a set
of linear equations (one equation for each specified bit) based
on the feedback polynomial of linear decompressor. Since
typically only 1–5% of the bits in a test vector are specified,
most bits in a test cube do not need to be considered when a
seed is computed because they are don’t care bits. Therefore,
the size of a seed is much smaller than the size of a test
vector. Consequently, linear decompressors can significantly
reduce test data storage and bandwidth.

The amount of compression achieved with linear compres-
sion schemes depends directly on the number of specified bits
in test cubes. While linear decompressors are very efficient in
exploiting don’t cares in test set, they cannot exploit correla-
tions in the test cubes. Hence, they cannot compress test data
less than the total number of specified bits in the test data.
Nonlinear decompressors on the other hand can exploit corre-
lations in test cubes, but are not as efficient as linear decom-
pressors in exploiting don’t cares. Because test data is typically
only 1–5% specified with the rest as don’t cares, linear decom-
pressors are generally more effective overall. This fact coupled
with the simple and compact design of linear decompressors
is the main reason why they are used in commercial tools.

One instruction that is commonly found in ATEs is vector
repeat which allows the ATE to repeat a sequence n times.
ATE stores a single test vector and an instruction to repeat
this vector n times. A sequence of n identical test vectors
is applied by vector repeat [22]. The approach taken in this
paper is to utilize the vector repeat function on top of a linear
decompressor to get the advantages of both the ATE vector
repeat and the linear decompressor. The ATE vector repeat
is used to exploit correlations in the specified bits to reduce
the number of specified bits that the linear decompressor has
to produce. Since the amount of compression achieved with
a linear decompressor depends on the number of specified
bits it needs to produce, this approach results in much greater
compression than what the linear decompressor could achieve
by itself (preliminary results were presented in [18]).

0278-0070 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1220 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014

Section II provides a review of the related work. Section III
presents the proposed scan data decomposition method.
Section IV describes the hardware architectures of the pro-
posed scheme. Section V illustrates the clustering algorithm
for test cubes, and the ATE architectures are shown in
Section VI. Experimental results are shown in Section VII
and conclusion is given in Section VIII.

II. RELATED WORK

Previous research has proposed ways to use the ATE vector
repeat mechanism to reduce vector memory requirements for
scan testing. In this paper, a new and more efficient approach
is proposed for utilizing ATE vector repeat.

A test cube is a deterministic test vector in which the inputs
that are not assigned during automated test pattern generation
(ATPG) are left as don’t cares. Normally, random fill is per-
formed where the don’t cares are filled randomly with 1s and
0s to increase the chance of detecting additional faults. In [19],
a methodology for utilizing ATE vector repeat was described.
The idea is that instead of doing random fill of the test cubes,
repeat fill is done where don’t cares are filled by repeating the
last specified bit within the same scan chain. This creates runs
of repeated values in the scan chains. A scan slice is defined as
the n-bits loaded in parallel from the tester into n scan chains
each clock cycle. If multiple consecutive scan slices are iden-
tical, then ATE vector repeat can be used to generate them.
Only one copy of the scan slice data needs to be stored in the
ATE vector memory, and then a vector repeat instruction is
stored in the ATE instruction memory. There is a limit to how
much ATE vector repeat can be used based on the amount of
instruction memory that is available. Consequently, ATE vec-
tor repeat is only used for the longest runs of repeated scan
slices and not all runs.

In [20], ATE vector repeat is used for repeating full scan
vectors during a transition test. For transition tests and other
two-patterns tests, the same full scan vector may be repeated in
the scan chain if it is used as the launch (V2) vector for 1 two-
pattern test and then as the initialization (V1) vector for the
next two-pattern test. In [21], transition test chains where only
the very first and last vectors in a sequence are not repeated
are formed to maximally utilize ATE vector repeat to reduce
ATE storage.

In [22], ATE vector repeat per pin-group is investigated.
In [19], a single ATE vector repeat instruction applies to all
pins. However, some testers provide the ability to specify pin-
groups for which to apply the ATE vector repeat instruction.
It was shown in [22] that by using ATE vector repeat on
smaller pin-groups, the length of the runs increases which
allows greater compression.

In [23], ATE vector repeat is used in conjunction with a
scan slice encoding scheme. Each scan slice is encoded into
a sequence of smaller codewords, and an on-chip decoder is
used to expand the codewords into the original scan slices. In
this scheme, some codewords may be repeated, so ATE vector
repeat is used for runs of repeated codewords.

In [28] and [29], compression of incompatible test pattern
is proposed. It allows conflicts on certain positions among test

cubes and generates one parent pattern. Control patterns and
incremental patterns are also considered to recover content of
the original test cube. Because the parent pattern includes con-
flicts in test cubes, control pattern, and incremental patterns
help to recuperate the patterns like the original ones. Hence,
the compression ratio varies with the number of allowed con-
flicts in test cubes and decompressor logic is fairly complicated
to handle the parent pattern, incremental pattern, and control
pattern.

III. DECOMPOSING SCAN DATA

Previously proposed approaches for utilizing ATE vector
repeat are all based on identifying runs of repeated scan data
and directly generating that data using ATE vector repeat.
The amount of compression is limited by the amount of ATE
instruction memory available and the length of the runs. This
paper proposes a new and more efficient way of utilizing ATE
vector repeat. The idea is to exploit the fact that many test
cubes have similar input assignments due to the fact that they
are structurally related in the circuit. In the proposed scheme,
the set of test cubes in a test set are partitioned into clusters
that share many input assignments. The scan sequence is then
decomposed into two components: the sequence of specified
bits that is common across all the test cubes in a cluster, and
the sequence of specified bits that is unique to each test cube.

An example is shown in Fig. 1 to illustrate how the scan
data is decomposed. Assume that the eight test cubes shown
in Fig. 1 are included in one cluster. Each bit position in a test
cube cluster can be classified as either being a don’t care if
no test cube has a specified value in that bit position, having
“common data” if all test cubes have compatible values in that
bit position, or having “unique data” if two or more test cubes
have conflicting specified values. In the example, the last bit
position is a don’t care. The 1st and 3rd bit positions have
compatible value across all of the eight test cubes and thus
are common data. The common data can be generated by the
common sequence decompressor that operates based on ATE
vector repeat since it is the same for each test cube. The 2nd,
4th, 5th, 6th, and 7th bit positions have conflicting values and
thus are unique data. They must be generated by the unique
sequence generator (USG). The common data for the test cube
cluster is shown in Fig. 1 along with the unique data for each
test cube.

Because the scan data is decomposed into common data
and unique data, a control signal is required to indicate if a
bit position should be filled from the common data or the
unique data. This is illustrated in Fig. 2. The control signal
is a don’t care for any don’t care bit position in a cluster (in
the example in Fig. 1, only the last bit position is a don’t
care), and it has a specified value for all other bit positions.
A key property is that the same control sequence can be used
when decompressing all test cubes in a cluster and thus it
is a “common control.” This means that the control signal
can be generated by the common sequence generator (CSG)
using ATE vector repeat and thus the storage required for the
common control is amortized across all the test cubes in the
cluster. The common control sequence for the example test
cube cluster is shown in Fig. 1.

YANG et al.: UTILIZING ATE VECTOR REPEAT WITH LINEAR DECOMPRESSOR FOR TEST VECTOR COMPRESSION 1221

Fig. 1. Example of proposed encoding scheme.

Fig. 2. Multiplexer implementation.

Typically a large number of specified bits can be included in
the common data because many test cubes have similar input
assignments due to the fact that they are structurally related in
the circuit. The clustering procedure described in Section V
selects the clusters to maximize the amount of compression for
the cluster. During decompression, the CSG produces both the
common data and common control. Only one copy of an input
stream for the CSG needs to be stored in ATE vector memory
since it can be applied using an ATE vector repeat instruction
for all test cubes in the cluster. Therefore, a large reduction in
storage requirements can be achieved.

In the example in Fig. 1, the number of specified bits in the
original test cubes is 53, and the number of specified bits in
the encoded test cubes is 49 (2 specified bits in the common
data, 40 specified bits in the unique data, and 7 specified bits
in the common control). The reduction in the example shown
in Fig. 4 is small, but in real cases, the number of test cubes in
a cluster is much greater than the number of test cubes in this
example, so the number of specified bits generated from the
common data is much higher, thereby making the reduction
in the total number of specified bits larger.

IV. DECOMPRESSION HARDWARE

Section III describes how the scan sequence is decomposed
into common data and unique data. Two separate on-chip
decompressors are then used to generate these two sequences

Fig. 3. Diagram of proposed decompression hardware.

as illustrated in Fig. 3. Since the common sequence is the
same for all test cubes in a cluster, the input stream to its
decompressor can be generated using ATE vector repeat. Only
one copy of this input stream needs to be stored in the ATE
vector memory, and only one ATE vector repeat instruction
needs to be stored in the ATE instruction memory for decom-
pressing the entire test cube cluster. For the unique sequence
corresponding to each test cube, it is generated with its own
decompressor. The unique sequence will only contain very
few specified bits because most of the specified bits will be
generated by the common sequence decompressor. If a lin-
ear decompressor based on dynamic LFSR reseeding such as
those described in [6]–[9] is used, the amount of compression
depends only on the number of specified bits in the sequence.
Note that the design of these decompressors is independent of
the test set, so they can be reused when testing multiple cores
in a SoC design. The diagram of the decompression hardware
is shown in Fig. 3.

In comparing the proposed approach for using ATE vector
repeat with the previous approaches, it has several advan-
tages. Previous approaches can only generate runs of repeated
values which typically will be much shorter than the length
of a scan vector, and each run requires a separate vector
repeat instruction. The proposed approach generates the com-
mon data component for a cluster of test cubes, and only
one vector repeat instruction is needed for each test cube
cluster. Consequently, the proposed approach is much more
efficient in utilizing the ATE vector repeat instructions. For
the limited ATE instruction memory available, the proposed
approach will be able to achieve greater compression. The
cost of the proposed approach is the need for on-chip decom-
pressors. However, the on-chip decompressors can efficiently
exploit the large percentage of don’t care bits in test cubes to
achieve very high compression. Compared with a conventional
linear decompression alone, the proposed use of ATE vector
repeat provides a significant improvement in the amount of
compression.

This paper proposes two decompression architectures to
implement the proposed scheme depending on the ATE vector
repeat functionality. Fig. 4 illustrates vector transfer through
vector repeat from an ATE that supports repeat-per-pin-group
to CUT. In this type of ATE, during execution of the vec-
tor repeat instruction, a group of tester pins can be loaded by
the ATE vector repeat while the other pins are loaded in a
conventional way. In some cases, a given ATE may support

1222 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014

Fig. 4. ATE supporting repeat-per-pin-group.

Fig. 5. ATE supporting only repeat-per-all-pins.

only repeat-per-all-pins, and does not support repeat-per-pin-
group. In this case, all pins are always loaded through vector
repeat during execution of the vector repeat instruction as
illustrated in Fig. 5.

The proposed scheme requires relatively simple decompres-
sion hardware (two sequential linear decompressors, one-bit
flip-flop, one NOR gate, and one MUX per scan chain).

A. Decompression Logic for ATE with Repeat-Per-Pin-Group

The decompression hardware is shown in Fig. 6. There
are two types of memory in the ATE, instruction memory
and vector memory. The instruction memory stores the ATE
instructions including the vector repeat instructions, and the
vector memory stores the data. The data is transferred to
the decompressors based on ATE instructions. There are two
sequential linear decompressors, CSG and USG in Fig. 6.
CSG operates with ATE vector repeat and gets repeated vec-
tors (RV) and the other decompressor operates without the
ATE vector repeat and gets non-repeated vectors (N-RV). The
decompressor that operates with vector repeat generates the
common data and common control signals for each scan chain.
Only one copy of the input stream for generating the common
data and common control for all the test cubes in a cluster is
stored in the ATE and applied repeatedly for each test cube in
the cluster using an ATE vector repeat instruction. The other
decompressor, USG generates the unique data and operates
without vector repeat. This decompressor operates in the same
way as the decompressor in conventional linear compression
schemes. A 2-to-1 multiplexer is placed between the decom-
pressors and each scan chain. Note that the size of the USG
is much smaller than the size of CSG because the number of
specified bits in the unique data of each test cube is much

smaller than the number of specified bits in the common data
and the common control.

There is a flip-flop that contains repeat disable bit. The
repeat disable bit is used to load test cubes that have low
correlation in the same way as the decompressor in conven-
tional linear compression scheme. For the lowly-correlated test
cubes, there is no benefit to use the proposed scheme. One
specified bit per test cube is added to indicate if a test cube
being loaded currently is a highly-correlated one or not. If it
is a highly-correlated test cube, then the repeat disable bit is
loaded with zero at the beginning of when the test cube is
loaded and each MUX select bit is decided by the common
control bit from CSG. If it is a lowly-correlated test cube, then
the repeat disable is loaded with 1 and all the MUX select
bits are set to 0, which makes the scan chains only loaded
by CSG in a same way as a conventional linear decompressor
regardless of the common control bit values.

One very nice property of sequential linear decompressors
is that regardless of how many output signals they generate or
how long of a sequence they generate, the number of input bits
required for the decompressor depends only on the total num-
ber of specified bits that it needs to generate (the rest of the
bits are essentially filled with random data). Thus, the architec-
ture can be easily scaled to any number of scan chains limited
only by the rate at which data from the ATE can be trans-
ferred to the sequential linear decompressors relative to the
number of specified bits that the decompressor needs to gen-
erate. Note that the decompression hardware does not depend
on the circuit or test set, which makes it possible to reuse
it when testing multiple cores in a SoC design. The sequen-
tial linear decompressors that are used for this scheme could
be any of the ones described in [6]–[9]. An example of the
sequential linear decompressor is shown in Fig. 7.

B. Decompression Logic for ATE with Repeat-Per-All-Pins

The decompression logic for ATE with repeat-per-all-pins
is almost the same as the decompression logic for ATE with
repeat-per-pin-group and is shown in Fig. 8. In the ATE envi-
ronment that supports repeat-per-pin-group, the tester pins that
are transferred by vector repeat load the sequential linear
decompressor (CSG) that generates common data and common
control and the other test pins that are transferred conven-
tionally load USG that generate unique data. However, in the
ATE environment that does not support repeat-per-pin-group
(support only repeat-per-all-pins), a sub-group of tester pins
cannot be transferred via vector repeat. The vector repeat func-
tion in this type of ATE covers either all the tester pins or none
of the pins.

In this ATE environment, the seed for USG for generating
unique data is transferred in a conventional way first. The seed
is to create the unique data not for one test cube, but for as
many test cubes as the USG can. The number of test cubes
whose unique data can be generated from a single USG seed
depends on the size of the USG and the number of specified
unique data bits in the test cubes. In Section V, it is described
how to maximize the number of test cubes whose unique data
bits are generated from a single USG seed.

YANG et al.: UTILIZING ATE VECTOR REPEAT WITH LINEAR DECOMPRESSOR FOR TEST VECTOR COMPRESSION 1223

Fig. 6. Block diagram for decompression logic for ATE with repeat-per-pin-group.

Fig. 7. Example of sequential linear decompressor.

Assume that the unique data bits for m test cubes can be
generated from a given USG seed and n test cubes among m
test cubes are in one cluster and (m-n) test cubes are in the
other cluster. Then, after loading USG with a seed, CSG is
loaded with one seed n times repeatedly and then with the
other seed (m-n) times repeatedly via the vector repeat.

An example is shown in Fig. 9. There are seven test cubes
(t1 ∼ t7) in the test set and the test cubes are grouped into
three clusters. t1 and t2 are in the first cluster, t3, t4, and
t5 are in the second cluster, and t6 and t7 are in the third
cluster. Assume that a given USG is able to generate at most
six specified bits with single seed. With the USG, the unique
data for the first cluster (t1, t2) and for the third cluster (t6, t7)
can be created with one USG seed and the other seed creates
the unique data for the second cluster (t3, t4, t5). The ATE
instruction and data flow for this example is shown in Fig. 10.
At first, the tester vector (v1, shaded in Fig. 10) to create
the unique data for t1, t2, t6, and t7 is transferred to USG.
When v1 is sent, the repeat disable signal is also being sent for
CSG clock gating in order to prevent v1 being shifted to CSG.
The next tester vector (v2) transferred to CSG is to generate
common control and common data. Because t1 and t2 share
the common control and common data, v2 is transferred to
CSG one more time as shown in Fig. 10. When sending seeds
to CSG, a repeat disable signal is transferred from ATE and
this gates USG and holds USG data. The corresponding test
cubes loaded into scan chains at a certain time are also shown
in Fig. 10. Because USG loaded with v1 is able to generate

unique data for t6, and t7, v3 generating common control and
common data for t6 and t7 is followed by v2. Then the USG
should be refreshed with new data (v4, shaded in Fig. 10) for
creating unique data for t3, t4, and t5. After USG finishes
getting v4, v5 that creates common control and common data
for t3, t4, and t5 through CSG is transferred. Details about
how to cluster test cubes and how to order the clusters are
explained in Section V.

Compared to the decompression logic for ATE with repeat-
per-pin-group, the decompression logic for ATE with repeat-
per-all-pins is larger due to larger size of USG. The size of
CSG is identical or slightly smaller. To reduce the hardware
overhead of USG, the number of specified unique data bits
needs to be reduced. A way to reduce the number of specified
unique data bits with cost of increased number of clusters is
introduced in Section V.

V. FORMING TEST CUBE CLUSTER

The concept of clustering test cubes to exploit similar input
assignments has been previously investigated in the context of
built-in self-test (BIST). STAR-BIST [24] generates a parent
pattern and then children patterns are generated by randomly
flipping bits in the parent pattern. In [25], a folding counter
is used to generate the children patterns. In [20], frequently
occurring sequences shorter than a full pattern are stored
on-chip and used to embed deterministic patterns in a semi-
random sequence. The underlying concept of these approaches
is similar to what is proposed here, but there are a number
of significant differences. The proposed approach generates
a specific precise deterministic test set whereas the previous
methods embed a deterministic test set into a much larger set
of test vectors. The proposed approach decomposes the vectors
into a common sequence and unique sequence, and these two
sequences are combined in a fundamentally different manner
than what is done in [20], [24], and [25].

In the proposed scheme, test cubes are grouped into clusters.
Each cluster requires the use of an ATE vector repeat instruc-
tion for generating the common sequence for the cluster. The
clustering algorithm needs to be performed focusing two-fold.

1224 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014

Fig. 8. Block diagram for decompression logic for ATE with repeat-per-all-pins.

Fig. 9. Block example of original/encoded test cubes.

Fig. 10. Tester instruction & data flow.

1) Maximize the correlation in each cluster (to reduce the
number of specified bits, thereby minimizing the tester
storage).

2) Generate a small number of clusters (to minimize the
number of ATE repeat instructions required).

Because the ATE instruction memory is limited, the num-
ber of clusters cannot exceed or equal to the amount of ATE
instruction memory available.

Test cube clustering has been previously studied and some
nice algorithms can be found in [26]. For the proposed scheme,
a special benefit function is needed to account for both the
control and data bits required to encode each cluster.

In order to maximize the compression achieved for each
cluster, it is important that the test cubes in each cluster have
many bit positions with compatible values. As more test cubes
are added to a cluster, the number of clusters is reduced. This
has the benefit of minimizing the number of the ATE instruc-
tions required for the vector repeat, but there is a tradeoff as
more bit positions are likely to have conflicts thus reducing the
effectiveness of each repeat instruction. A greedy clustering
procedure taking this tradeoff into consideration is described
here.

The flow diagram of the proposed clustering algorithm is
shown in Fig. 11 and the benefit function that is used to assign

YANG et al.: UTILIZING ATE VECTOR REPEAT WITH LINEAR DECOMPRESSOR FOR TEST VECTOR COMPRESSION 1225

Fig. 11. Flow diagram of proposed clustering algorithm.

a value to a cluster is shown below

Benefit= total_spec

compatible_pos + spec_pos + total_unique_spec

where total_spec is the total number of specified bits in the
cluster, compatible_pos is the number of bit positions that are
compatible in the cluster, spec_pos is the number of bit posi-
tions that have specified bits, and total_unique_spec is the
total number of specified bits not in compatible bit positions.
Essentially the numerator corresponds to the uncompressed
storage requirements, and the denominator corresponds to the
compressed storage requirements (the common data has a
specified bit for each compatible bit position in the cluster,
the common control has a specified bit for each bit position
that has one or more specified bits in the cluster, and the
unique data has one specified bit for each specified bit not in
a compatible bit position in the cluster). The larger the benefit
value is, the larger the amount of compression that is achieved
when encoding the cluster. Note that while a greedy clustering
procedure is described here, any clustering procedure in the
literature can be used to maximize the benefit function defined
here. The time complexity is O(n2) assuming n is the number
of test cubes. The CPU time with 1.3 GHz machine for the
overall encoding algorithm is about 20 minutes to 3 h for the
four largest ISCAS-89 circuits.

One issue with the benefit function is that it may generate
too many clusters in some cases. Note that one ATE repeat
instruction is required in the proposed scheme for each cluster.
Thus, there is a limit on how many clusters can be used based
on the amount of ATE instruction memory that is available.
To provide a mechanism for reducing the number of clusters

Fig. 12. Number of specified bits and clusters versus tuning variable.

generated by the clustering procedure, a tuning variable, k,
is added to the algorithm as shown in Fig. 11. To increase
the number of test cubes in each cluster, the condition for
adding a test cube into a cluster can be loosened by making
the value of k lower than 1. By lowering the value of k, the
number of clusters reduces with a reasonable sacrifice in the
number of specified bits. Note that if the value of k is reduced
too much, at some point the number of specified bits in the
encoded test cubes approaches the number of specified bits
in original test cubes and hence no compression is achieved.
The number of specified bits and the number of clusters gen-
erated versus value of k is shown in Fig. 12. Typically, as
k approaches to 1.0, the number of specified bits decreases
while the number of clusters increases. Based on the amount
of the ATE instruction memory, a user can select the best value
for k.

The tuning variable, k is also used to reduce the number of
specified bits in the unique data. As explained in Section IV,
the number of specified bits in unique data must be reduced
so that a given USG in Fig. 8 (in an ATE environment sup-
porting only repeat-per-all-pins, not repeat-per-pin-group) can
generate unique data for as many test cubes as possible with
a single seed. The smaller k value is, the smaller number of
clusters and the larger number of test cubes are in each cluster.
As the number of test cubes in a cluster goes up, more con-
flicts in bit positions happen. Hence, the number of specified
bits in common control and common data decreases and the

1226 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014

Fig. 13. Recompaction flow diagram.

number of specified bits in unique data increases. For an ATE
supporting only repeat-per-all-pins, the tuning variable that is
slightly higher than 1 is applied to the clustering algorithm,
which results in a larger number of clusters and a smaller
number of specified unique data bits.

Another potential issue is that the number of lowly-
correlated test cubes (test cubes in the noncorrelated cluster in
Fig. 11) may be large depending on a test compaction algo-
rithm. An ATPG tool creates original test cubes and the test
cubes are compacted if there is no conflict in any bit position,
which makes the total number of test cubes smaller. Typically,
a test compaction is performed in a way to minimize the
total number of test cubes and that may cause test cubes con-
flicting in many bit positions with the other test cubes. This
degrades efficiency of the proposed compression scheme. A
recompaction scheme is proposed here to resolve the issue
and shown in Fig. 13. A simple example is shown below to
explain the recompaction scheme.

1) There are three clusters, two correlated clusters, and a
noncorrelated cluster.

2) The noncorrelated cluster has two test cubes, t1 and t2.
3) The original test cubes before compaction for t1 and t2

(compacted test cubes: t1, t2) are p1, p2, p3, and p4
(de-compacted test cubes: p1, p2, p3, p4).

If a dynamic compaction algorithm is used, then it is harder
to find de-compacted cubes for original test cubes. In order
to get de-compacted cubes for the uncorrelated test cubes
in the case where the dynamic compaction has been used, a
fault grading is performed with correlated test cubes. For the
faults not detected by the correlated test cubes, ATPG without
dynamic compaction is performed. The newly generated test

cubes are used as de-compacted test cubes in the recompaction
scheme.

The de-compacted test cubes, p1, p2, p3, and p4 are checked
if any of the test cubes can be included in any of two exist-
ing correlated clusters without modifying common control
and common data. Assume that the maximum number of the
de-compacted test cubes that can be included in one of the
correlated clusters is 2 (p1, p2). p1 and p2 are compacted and
the compacted test cube is added into the correlated cluster.
The same process is performed on the remaining de-compacted
test cubes (p3, p4). This process is repeatedly run until no cor-
related cluster is chosen to include any of the de-compacted
test cubes. Assume that p3 is included in the other correlated
cluster and p4 cannot be included in any of the two corre-
lated clusters. Finally, there is just one test cube (p4) in the
noncorrelated cluster instead of 2 (t1, t2) in the original non-
correlated cluster. Furthermore, p4 is the de-compacted test
cube that typically has fewer specified bits than t1 and t2.
The recompaction scheme reduces the number of specified
bits in the noncorrelated cluster as well as the number of test
cubes in the noncorrelated cluster. A drawback of the recom-
paction scheme is that it may increase the number of test
cubes and test time. In this example, the two test cubes, t1
and t2 are converted to three test cubes: 1) one compacted
test cube for p1; 2) p2, p3; and 3) p4. Therefore, the recom-
paction scheme is employed only when the number of test
cubes in the noncorrelated cluster is relatively large.

Our experimental results on ISCAS-89 circuits show that
the number of uncorrelated test cubes is less than 20% of
total number of test cubes in s13207, s15850, and s38417.
The importance of the recompaction scheme is maximized in
case of test set that has a large number of uncorrelated cubes.
Depending on the test set and compaction scheme used, the
number of uncorrelated cubes might be relatively large. In our
test set for s38584, the number of uncorrelated test cubes is
more than 50% of total number of test cubes depending on
value on a tuning variable. However, even for the test cubes
for s38584, the recompaction is not applied when the tuning
variable, k is less than or equal to 1 because the number of
uncorrelated test cubes is small enough to provide high com-
pression ratio. Because the compaction algorithm is based on
the pattern-wise correlation as well, the recompaction scheme
is typically not needed. The time complexity is O(n2) assuming
n is the number of decompacted test cubes in the noncorrelated
cluster.

VI. ATE ARCHITECTURES

This paper proposes vector repeat-based compression tech-
niques for repeat per-pin-group and repeat per-all-pins, which
is used depends on a particular ATE architecture’s capa-
bility. For SoC testing, per-pin-group structure in ATEs is
typically used to support multisite testing, AC delay testing,
and so on [22], [31]. Modern ATEs generally support both
per-pin-group and per-all-pin structures.

ATE memory can have two types of memory structures.
ONE IS TO HAVE a shared pool of memory. For low cost ATEs,
a pooled memory is used to store patterns and they are dis-
tributed to each pin. The proposed Decompression Logic for

YANG et al.: UTILIZING ATE VECTOR REPEAT WITH LINEAR DECOMPRESSOR FOR TEST VECTOR COMPRESSION 1227

ATE with Repeat-Per-All-Pins method can be applied to ATEs
with a pooled memory such as Advantest T6673 and T3347A.
The other is to a have per-pin memory. This structure has
the same amount of memory behind each channel. For high
speed ATEs, a per-pin memory architecture is used to drive
each channel. Decompression Logic for ATE with Repeat-Per-
Pin-Group approach can be employed to ATEs with per-pin
memory such as Teradyne UltraFlex and Advantest T2000. In
this scenario, reducing the amount of memory on a subset of
channels does not help to reduce test cost. The repeated data
requires less storage since we only store one copy, whereas
the unique data requires full storage. For example, in Fig. 4,
there are six tester channels. First three channels are used for
repeated data and the next three channels are assigned for
unique data. If all channels have the same memory, then the
channels storing unique data (bottom three channel memories
in Fig. 4) are the limiting factor for fitting the test program in
the memory. This might create uneven compression ratios on
tester channels.

To balance the compression ratio across the pins, test vec-
tors can be partitioned. For example, if we have two partitions,
the first half of vectors getting the common data can be applied
from one set of pins while the unique data are sent the other
set of pins, then the other half of vectors getting the com-
mon data from a different subset of pins can be applied. This
would spread the savings across the pins which would better
balance the compression across all pins and thereby helping
for a per-pin memory structure. The reconfiguration logic is
implemented on the chip and this requires a MUX for each
scan chain. The MUX allows an ATE channel get connected
to one chain or to another chain through either CSG for com-
mon data or USG for unique data. If more balancing is desired,
more than two partitions can be used at the cost of additional
MUXes to implement the on-chip reconfiguration.

As an example of the capabilities of a few modern
ATE architectures and the ATE development trends con-
sider the following. Teradyne UltraFlex digital module has
1K word instruction memory and 512M word pattern mem-
ory. Advantest T2000 250M digital module provides 32 I/O
channels and each channel supports fully featured per-pin
measurement. There are 128M word (3 bits per word) main
memory, 256M ∼ 2G pattern memory (shared with a main
memory), 4K subroutine memory, and 1K word instruction
memory. Advantest T2000 500/800 Mb/s digital module pro-
vides 1K word instruction memory [31], [32], 4K × 3-bits
subroutine memory per channel, 4K × 512 central capture
memory, 8K fail capture memory per pin, 4K × 3 bits/pin
pattern capture memory and, etc.

The number of ATE instructions required to implement the
proposed method can be adjusted to fit into whatever instruc-
tion memory is available in the ATE being used. The number
of clusters found by the clustering algorithm gives the num-
ber of repeat instructions. It can be adjusted by controlling the
tuning variable (k).

VII. EXPERIMENTAL RESULTS

Experiments were performed on the four largest ISCAS-89
benchmark circuits. The test cubes used in the experiments

were generated in the following way. Atalanta (ATPG and
fault simulator for stuck-at faults in combinational circuits)
generated uncompacted test cubes and then bit-stripping was
performed to maximize the number of don’t cares. Finally, the
test cubes were merged to minimize the number of specified
bits. In Table I, the circuit name and the original number of
specified bits in the deterministic test sets are shown in the
first and second columns. The third column shows available
ATE repeat vector function. r.p.g. means repeat-per-pin-group
and r.p.a. means repeat-per-all-pins. The fourth column shows
the number of test cubes. The number of test cubes in r.p.g.
case in each circuit is always the same as the original number
of test cubes. Except for s38584, the number of test cubes
in r.p.a. case in each circuit is also the same as the original
number of test cubes, which means that the test cube recom-
paction described in Section V has been performed only for
s38584 r.p.a. case. As explained in Section V, the recompaction
scheme is employed only in the case where the number of test
cubes in a noncorrelated cluster is relatively large. In r.p.a.
case (where the tuning variable is larger than 1) for s38584,
the number of uncorrelated cubes is relatively large, which
requires a recompaction scheme to enhance the performance
of the proposed scheme. The number of test cubes has been
increased from 296 to 315 when k = 1.10 and from 296 to
328 when k = 1.15. The value of the tuning variable is shown
in the fifth column and the corresponding number of clusters
generated by the clustering algorithm described in Section V
is shown in the sixth column. The best results are typically
shown when k is close 1. If an ATE instruction memory is very
limited, such that the number of repeat instruction (which is
the same as the number of clusters shown in the sixth column)
is not allowable, the value of k can be adjusted to have less
repeat instructions with a reasonable sacrifice of the number
of specified bits. For each circuit, results are shown for two
different numbers of clusters. The seventh and eighth columns
show the number of specified bits in the unique sequence and
the number of specified bits in common sequence. The ninth
column shows the total number of specified bits in the encoded
test cubes. The last column tells the reduction in the number
of specified bits. The result is shown in the pooled memory
ATE architecture. Note that the maximum number of clusters
shown in Table I is 173, which means that the maximum num-
ber of ATE vector repeat instructions that have to be stored
in the ATE instruction memory is only 173 or less for these
circuits. In most circuits, the number of clusters is below 100.
Of course, the number of clusters can also be reduced if nec-
essary by lowering k. Since the number of specified bits with
the proposed scheme is reduced, the number of free-variables
that are needed to encode the data using linear decompressors
will also reduce correspondingly.

As discussed in Section VI, in a per-pin memory archi-
tecture, the compression ratio is determined by the highest
memory used on any channel. To balance the compression
ratio across the channels, experiments were performed where
the test vectors are partitioned two-ways and four-ways where
the repeated data for each partition is generated from a differ-
ent set of pins. The more we partition the test vectors, the more
balanced compression ratio can be achieved by rotating the

1228 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014

TABLE I
RESULTS FOR COMPRESSION USING VECTOR REPEAT-PER-PIN-GROUP

TABLE II
REDUCTION COMPARISON BETWEEN POOLED MEMORY AND PER-PIN

MEMORY

channels used for repeated data. Table II shows a compression
ratio in per-pin memory-based ATE architecture. First column
shows benchmark circuits and the second column shows a
compression ratio in the r.p.g ATE type with a pooled mem-
ory with different tuning variables. Last two columns give
the reduction in the number of specified bits among channels,
respectively, since it is a limiting factor in the compression.

The area overhead for decompression logic is shown in
Table III. For overhead calculation, the standard library for
TSMC 0.18 µm process [27] is used. The second column
shows the size of original linear decompressor for each cir-
cuit. The size of the original linear decompressor has been
calculated with the test set used in the experiment for [9]. The
third column shows the number of scan chains. The fourth
column actually shows the sum of widths of all standard cells
in each ISCAS-89 benchmark circuits with a original linear
decompressor. The height for all cells is 5 µm. The number
of 2-to-1 multiplexers and OR gates added that is the same as
the number of scan chains is shown in the sixth column. The
sizes of the CSG and the USG are shown in the seventh and
eighth columns, respectively, which are the dominant factor in
a decompression area overhead. Note that there is a big differ-
ence between sizes of the USG in r.p.g. and the USG in r.p.a.
As explained in Section IV, the USG for r.p.a. case is created
so that it can generate unique sequences for as many clusters
as possible with one seed while the USG for r.p.g. case is

created in a typical way (based on the maximum number of
specified bits in a single unique sequence). The overall area
for decompression logic in the proposed approach is shown in
the ninth column and the overhead ratio is shown in the last
column. For r.p.g. cases, the area overhead is less than 5% in
all the circuits. For r.p.a. cases, the area overhead is bigger
due to the large size of the USG than the area overhead in
r.p.g. cases and is 6.1 ∼ 9.4%.

To get results for the actual tester storage requirements
using the proposed approach, we did experiments using the lin-
ear decompressor described in [9] (other linear decompressors
could also be used). The results are shown in Table IV. The
same test sets are compressed using the linear decompressor
in [9] by itself, and using it in conjunction with the proposed
scheme to utilize ATE vector repeat. The results show that
the amount of data that needs to be stored in the ATE vec-
tor memory is significantly reduced with the proposed scheme.
The second to last column shows the vector memory reduction
compared with [9].

In Table V, the proposed scheme is compared with the
scheme described in [22] for utilizing ATE vector repeat. [22]
is based on repeat-per-pin-group function, so in this compari-
son, we compare only results on r.p.g. cases. In [22], the best
results were obtained when a sequencer controls two pins, so
we also assumed that a sequencer controls two pins. And as
suggested in [22], only the vectors that can be repeated at
least 16 times are encoded by the ATE vector repeat to reduce
the number of the repeat instructions. Using this criteria, we
generated experimental results on our test sets in the man-
ner described in [22] (note that results published in [22] were
for test sets that are not publicly available). The number of
ATE repeat instructions is shown in the second and the fourth
columns, and the amount of data stored in the vector memory
is shown in the third and fifth columns. As can be seen, much
larger reductions in the vector memory can be obtained with
the proposed approach using an order of magnitude fewer ATE
repeat instructions compared with [22]. Of course, it should

YANG et al.: UTILIZING ATE VECTOR REPEAT WITH LINEAR DECOMPRESSOR FOR TEST VECTOR COMPRESSION 1229

TABLE III
AREA OVERHEAD FOR DECOMPRESSION LOGIC

TABLE IV
RESULTS FOR USING LINEAR DECOMPRESSOR IN [9] ALONE VERSUS

USING IT WITH PROPOSED SCHEME

TABLE V
RESULTS COMPARISON WITH [22]

be pointed out that the method in [22] does not require any
on-chip hardware, whereas the proposed method requires two
on-chip linear decompressors. However, note that the linear
decompressors used in the proposed scheme will require a
very small amount of area with current chip densities, and
they can be reused when testing multiple cores.

In Table VI, a comparison is made with the scheme
described in [23] that also utilizes ATE vector repeat. Here,
results are shown for the exact same test cube files for two of
the industrial circuits that were used in [23] (the others were
not publicly available). Circuit information is shown in the
first, second, and third columns. The fourth column shows the
best results in terms of vector memory requirements reported
in [23]. For the proposed method, results are shown for two
different numbers of ATE vector repeat instructions for r.p.g.
and one number of ATE vector repeat instructions for r.p.a.
Note that the number of repeat instructions used in [23] is not
reported in the paper and thus is not shown in Table VI. Vector

TABLE VI
RESULTS COMPARISON WITH [23]

memory required is shown in the seventh column. Last column
shows the reduction in the vector memory required. There is a
substantial reduction. A significant reduction comes from the
fact that the proposed scheme is based on linear decompres-
sion. A major advantage of the proposed scheme is that it is
compatible with linear decompression which is known to be
highly efficient.

VIII. CONCLUSION

The proposed scheme harnesses the power of linear and
nonlinear decompression together using a simple and compact
decoder whose design is independent of the test set. Note that
the compression could be significantly improved if scan chain
reordering was employed along with the proposed scheme to
increase bit-wise correlation. The design of the decompressor
for the proposed scheme is independent of the test set or CUT
and thus can be reused when testing multiple cores.

REFERENCES

[1] A. Khoche and J. Rivoir, “I/O bandwidth bottleneck for test: Is it real?”
in Proc. Int. Workshop Test Resource Partitioning, 2000, pp. 2.3-1–2.3-6.

[2] B. Könemann, “LFSR-coded test patterns for scan designs,” in Proc.
Eur. Test Conf., 1991, pp. 237–242.

[3] S. Hellebrand, S. Tarnuck, J. Rajski, and B. Courtois, “Generation of
vector patterns through reseeding of multiple-polynomial liear feedback
shift registers,” in Proc. Int. Test Conf., 1992, pp. 120–129.

[4] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois,
“Built-in test for circuits with scan based on reseeding of multiple-
polynomial linear feedback shift registers,” IEEE Trans. Comput.,
vol. 44, no. 2, pp. 223–233, Feb. 1995.

[5] N. Zacharia, J. Rajski, and J. Tyszer, “Deompression of test data using
variable-length seed LFSRs,” in Proc. VLSI Test Symp., Princeton, NJ,
USA, 1995, pp. 426–433.

[6] J. Rajski et al., “Embedded deterministic test for low cost manufacturing
test,” in Proc. Int. Test Conf., 2002, pp. 301–310.

1230 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 33, NO. 8, AUGUST 2014

[7] B. Könemann, “A SmartBIST variant with guaranteed encoding,” in
Proc. Asian Test Symp., Kyoto, Japan, 2001, pp. 325–330.

[8] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded deter-
ministic test,” IEEE Trans. Computer Aided Des. Integr. Circuit Syst.,
vol. 23, no. 5, pp. 776–792, May 2004.

[9] C. V. Krishna, A. Jas, and N. A. Touba, “Test vector encoding using
partial LFSR reseeding,” in Proc. IEEE Int. Test Conf., Baltimore, MD,
USA, 2001, pp. 885–893.

[10] C. V. Krishna and N. A. Touba, “3-stage variable length continuous-flow
scan vector decompression scheme,” in Proc. IEEE VLSI Test Symp.,
2004, pp. 79–86.

[11] I. Hamzaoglu and J. H. Patel, “Reducing test application time for full
scan embedded cores,” in Proc. Int. Symp. Fault Tolerant Comput.,
Madison, WI, USA, 1999, pp. 260–267.

[12] I. Bayraktaroglu and A. Orailoglu, “Test volume and application time
reduction through scan chain concealment,” in Proc. Des. Autom. Conf.,
2001, pp. 151–155.

[13] S. Mitra and K. Kim, “XMAX: X-tolerant architectures for maximal test
compression,” in Proc. Int. Conf. Comput. Des., 2003, pp. 326–330.

[14] C. Krishna and N. Touba, “Adjustable width linear combinational scan
vector decompression,” in Proc. ICCAD, 2003, pp. 863–866.

[15] A. Jas, B. Pouya, and N. Touba, “Virtual scan chains: A means for
reducing scan length in cores,” in Proc. VLSI Test Symp., Montreal, QC,
Canada, 2000, pp. 73–78.

[16] E. Volkerink and S. Mitra, “Efficient seed utilization for reseeding based
compression,” in Proc. VLSI Test Symp., 2003, pp. 232–237.

[17] W. Rao, I. Bayraktaroglu, and A. Orailoglu, “Test application time and
volume compression through seed overlapping,” in Proc. Des. Autom.
Conf., 2003, pp. 732–737.

[18] J. Lee and N. A. Touba, “Efficiently utilizing ATE vector repeat for
compression by scan vector decomposition,” in Proc. Asian Test Symp.,
Fukuoka, Japan, 2006, pp. 237–244.

[19] C. Barnhart et al., “OPMISR: The foundation for compressed ATPG vec-
tors,” in Proc. Int. Test Conf., Baltimore, MD, USA, 2001, pp. 748–757.

[20] L. Li and K. Chakrabarty, “Hybrid BIST based on repeating sequences
and cluster analysis,” in Proc. DATE, 2005, pp. 1142–1147.

[21] X. Liu, M. Hsiao, S. Chakravarti, and P. J. Thadikaran, “Techniques to
reduce data volume and application time for transition test,” in Proc.
Int. Test Conf., 2002, pp. 983–992.

[22] H. Vranken, F. Hapke, S. Rogge, D. Chindamo, and E. Volkerink, “ATPG
padding and ATE vector repeat per port for reducing test data volume,”
in Proc. Int. Test Conf., 2003, pp. 1069–1078.

[23] Z. Wang, and K. Chakrabarty, “Test data compression for IP embedded
cores using selective encoding of scan slices,” in Proc. Int. Test Conf.,
2005, pp. 581–590.

[24] K.-H. Tsai, J. Rajski, and M. Marek-Sadowska, “Star test: The the-
ory and its applications,” IEEE Trans. Computer-Aided Design, vol. 19,
no. 9, pp. 1052–1064, Sep. 2000.

[25] H.-G. Liang, S. Hellebrand, and H.-J. Wunderlich, “Two-dimensional
test data compression for scan-based deterministic BIST,” in Proc. Int.
Test Conf., Baltimore, MD, USA, 2001, pp. 894–902.

[26] R. Alleyne, “Clustering of test cubes: A procedure for the efficient
encoding of complete test sets based on the intelligent reseeding of
LFSRs,” Master thesis, McGill University, Montreal, QC, Canada,
1994.

[27] Artisan Components, “TSMC 0.18µm Process 1.8-volt SAGE-X stan-
dard cell library databook," 2001, DB-SX-TSM003-3.1/18.

[28] G. Mrugalski, N. Mukherjee, J. Rajski, D. Czysz, and J. Tyszer,
“Compression based on deterministic vector clustering of incompatible
test cubes,” in Proc. Int. Test Conf., 2009, pp. 1–10.

[29] D. Czysz et al., “Deterministic clustering of incompatible test cubes
for higher power-aware EDT compression,” IEEE Trans. Computer-
Aided Design Integr. Circuits Syst., vol. 30, no. 8, pp. 1225–1238,
Aug. 2011.

[30] N. A. Touba, “Survey of test vector compression techniques,” IEEE
Design Test Mag., vol. 23, no. 4, pp. 294–303, Jul. 2006.

[31] Advantest TT92 Memory Test System, Manual Number 8350379-04
[Online]. Available: http://www.advantest.com/US/Products

[32] Advantest T2000 500/800 Mbps Digital Module Data Sheet [Online].
Available: http://www.advantest.com/US/Products

Joon-Sung Yang (S’05–M’09) received the B.S.
degree from Yonsei University, Seoul, Korea, in
2003, and the M.S. and Ph.D. degrees from the
University of Texas at Austin, Austin, TX, USA,
in 2007 and 2009, respectively, all in electrical and
computer engineering.

After graduation, he was with Intel Corporation,
Santa Clara, CA, USA, for four years. He is cur-
rently an Assistant Professor with SungKyunKwan
University, Suwon, Korea. His current research
interests include VLSI testing, silicon debug and

nanometer scale test, and design methodologies.
Dr. Yang was a recipient of the Korea Science and Engineering Foundation

Scholarship in 2005. He received the Best Paper Award at the 2008 IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems and
was nominated for the Best Paper Award at 2013 IEEE VLSI Test Symposium.

Jinkyu Lee (S’03–M’06) received the B.S. degree
from Yonsei University, Seoul, Korea, in 2001 and
the M.S. and Ph.D. degrees from the University of
Texas at Austin, Austin, TX, USA, in 2004 and
2006, respectively, all in electrical and computer
engineering.

Currently, he is a Staff CPU Design Engineer at
Samsung, Austin, TX, USA.

Nur A. Touba (SM’05–F’09) received the
B.S. degree from the University of Minnesota,
Minneapolis, MN, USA, in 1990, and the M.S. and
Ph.D. degrees from Stanford University, Stanford,
CA, USA, in 1991 and 1996, respectively, all in
electrical engineering.

He is currently a Professor with the Department
of Electrical and Computer Engineering, University
of Texas at Austin, Austin, TX, USA.

Dr. Touba was a recipient of the National Science
Foundation Early Faulty CAREER Award in 1997,

the Best Paper Award at the 2001 VLSI Test Symposium, and the 2008
Defect and Fault Tolerance Symposium. He served as a Program Chair for
the 2008 International Test Conference and as a General Chair for the 2007
Defect and Fault Tolerance Symposium. Currently, he serves on the Program
Committee for the Design Automation and Test in Europe Conference,
International On-Line Test Symposium, European Test Symposium, Asian
Test Symposium, and Defect and Fault Tolerance Symposium.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

