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Abstract—Due to the emergence of extremely high density
memory along with the growing number of embedded memories,
memory yield is an important issue. Memory self-repair using
redundancies to increase the yield of memories is widely used.
Because high density memories are vulnerable to soft errors,
memory error correction code (ECC) plays an important role in
memory design. In this paper, methods to exploit spare columns
including replaced defective columns are proposed to improve
memory ECC. To utilize replaced defective columns, the defect
information needs to be stored. Two approaches to store defect
information are proposed—one is to use a spare column and
the other is to use a content-addressable-memory. Experimental
results show that the proposed method can significantly enhance
the ECC performance.

Index Terms—Content-addressable-memory (CAM), defect
information, memory error correction code (ECC), soft error,
spare column, yield.

I. INTRODUCTION

AS MEMORY density has grown, memories have become
very susceptible to transient errors caused by electromag-

netic interference, static electricity, cosmic ray, alpha particles,
and so on. To overcome the occurrence of transient memory
errors, an error correction process is needed. Memory error
correction code (ECC) such as single-error-correcting, double-
error-detecting (SEC-DED) codes and single-error-correcting,
double-adjacent-error-correcting (SEC-DAEC) codes [3], are
an essential part of a memory design.

Due to their dense structure, memories are also inherently
susceptible to defects. To prevent yield loss, spare rows and
columns are included in memories to facilitate memory repair.
After the memory is tested, an attempt is made to repair any
defective cells by reconfiguring to replace them with spare
rows and columns instead. In many cases, not all of the spares
are used in the repair process. This paper proposes a method-
ology for exploiting unused memory spare columns to improve
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a memory ECC thereby increasing reliability (preliminary
results were reported in [1]). Unused spare columns are used
to store additional check bit information and this increases
the number of memory check bits per memory location. By
storing additional check bits in the unused spare columns, the
miscorrection probability of memory ECC can be reduced.
This concept is extended further in this paper by also propos-
ing a scheme for using the columns that have been replaced by
spare columns. These columns may have one or more defects,
but they still contain many good memory cells. A scheme is
presented for utilizing these good memory cells to store check
bits to further enhance the memory ECC and increase overall
system reliability. The proposed scheme does not require any
additional columns to be added to the memory, but rather it
simply exploits unused spare columns left over after memory
repair and unused memory cells in replaced columns.

SEC-DED codes are always able to correct single errors and
detect double errors. However, if there are more than two-bit
errors, the error detection is not guaranteed and error miscor-
rection can happen. For SEC-DAEC codes [3], nonadjacent
double errors can also cause miscorrection. Additional check
bits can be used to reduce the miscorrection probability at the
cost of longer codewords. With the proposed scheme, addi-
tional check bits can be stored in unused spare columns or in
replaced columns, so reliability is improved without the need
for adding more columns to the memory. It simply makes
use of existing unused memory cells. One drawback is that
it provides nonuniform ECC capability. Memories in which
there are many unused spare columns will get a larger boost
in ECC capability in comparison to memories where there are
no unused spare columns. Moreover, rows in which there are
no defects will get a larger boost in ECC than rows where there
are defects such that even the replaced columns do not have
any working memory cells. However, the proposed scheme
requires very little overhead and hence boosts reliability where
it can with very low cost.

This paper is organized as follows. Section II intro-
duces previous related works. Proposed schemes will be
introduced in Sections III–V. Experimental results will be
shown in Section VI, and this paper will be concluded
in Section VII.

II. LINEAR BLOCK CODES AND PREVIOUS WORKS

The conventional SEC-DED codes [4], [5] are systematic
linear block codes [9], [14]. In a (n, k) linear block code, k
data bits are encoded by n-bit codewords. The number of check
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bits is r = (n − k). The (rxn) parity-check matrix (H-matrix)
completely defines the code. C is a codeword of the code if
and only if

H · CT = 0 (1)

where CT is the transpose of the codeword C. Let each element
in the error vector E be a 1 if the corresponding bit is in error
and a 0 if the bit is error-free, then an erroneous message
can be represented as Verror = V ⊕ E. The syndrome, S, is
defined as

S = H · Verror = H · (V ⊕ E) = H · V ⊕ H · E = H · E. (2)

If there is no error (i.e., E = 0), then the syndrome is all
zero (i.e., S = 0). If the syndrome is nonzero, then an error
is detected. Let hi represent the ith bit being a one. The syn-
drome, which is equal to the product of H and E, will be
equal to hi. For an SEC Hamming code, each column vector
in the H-matrix is nonzero and distinct [4]. This ensures that
the syndrome for any single-bit error will result in a unique
syndrome. By decoding the syndrome, it is possible to deter-
mine which bit the error is in and flip the value of that bit to
correct the error.

For a double-bit error, the syndrome is equal to the XOR of
two columns of the H-matrix. If the XOR of any two columns
is equal to the syndrome for any single-bit error (i.e., equal to
any column in the H-matrix), then the double-bit error syn-
drome would alias with the single-bit error syndrome. The
correction logic would miscorrect the double-bit error thereby
missing the error. To avoid this, it was shown in [5], that if
every column of the H-matrix has an odd number of 1s and
is distinct, the code will be SEC-DED. The reason is that the
XOR of any two columns with an odd number of 1s will
produce a syndrome with an even number of 1s and hence
is guaranteed to be different from any single column. This
means that the syndromes for double-bit errors will always be
different from the syndromes for single-bit errors, so the code
will always detect double-bit errors and not miscorrect them.
Hsiao codes are also called odd-weight column codes. Note
that many double-bit errors have the same syndrome, so it is
generally not possible to correct double-bit errors since their
syndromes cannot be distinguished.

For triple-bit errors, the syndrome is formed from three
columns being XORed together. If the syndrome matches one
of columns of the H-matrix, then it will be miscorrected as
a single-bit error. The number of possible triple-bit errors
is Cn

3, and the fraction of those that match columns of the
H-matrix is the miscorrection probability for triple-errors. For
most conventional SEC-DED codes, it is in excess of 50%.

In [3], the H-matrix is constructed using odd-weight
columns where the columns are carefully ordered so that adja-
cent columns when XORed together give a syndrome that is
not equal to the other n − 1 syndromes and the number of
single-bit errors is n, so the combined set of 2n − 1 syn-
dromes must all be distinct from each other. This permits
correction of both single-bit errors and adjacent double-bit
errors (i.e., SEC-DAEC). However, nonadjacent double-bit
errors may match one of the (n−1) syndromes of the adjacent
double-bit errors and hence may result in miscorrection.

Fig. 1. Example of (7, 3) SEC-DED Hsiao code.

New linear SEC-DED codes which have ECC improve-
ment by reducing triple error miscorrection probability were
proposed in [10]. Ishaq et al. [12] and Gherman et al. [13]
introduced ways to select the H-matrix for additional check
bits. Dutta [2] proposed an SEC-DED, and double-adjacent-
error-correcting code with complete elimination of miscorrec-
tion of nonadjacent double errors separated by up to d−1 bits
(SEC-DED-DAEC-CEM-d).

III. IMPROVING ECC BY STORING CHECK BITS

IN UNUSED MEMORY CELLS

The proposed scheme involves exploiting unused spare
columns and replaced columns in the memory to store addi-
tional check bits. These additional check bits add extra rows
to the H-matrix and increases the dimension of the syndrome.
This makes it easier to distinguish syndromes thereby reducing
the chance of miscorrection as well as reducing the chance of
a multibit error’s syndrome aliasing with the error-free all-zero
syndrome and not being detected at all.

Note that in some cases, it may not be possible to store
any additional check bits. Thus, the H-matrix that is selected
should be such that if no additional check bits are available, it
still retains the SEC-DED property. The easiest way to ensure
this is to start with an SEC-DED code, and then incrementally
add the extra rows to it.

The rows are added one at a time in a greedy fashion so that
if only one spare is available after repair, then the maximum
benefit for that one row is achieved. Consider the example in
Fig. 1 which is a (7, 3) SEC-DED Hsiao code. It has C7

3 = 35
possible 3-bit errors, and 28 of those will result in miscorrec-
tion. In Fig. 2, an extra check bit is added to the H-matrix from
Fig. 1. This results in an additional row (the bottom-most one)
and an additional column (the right-most one). The last five
columns in Fig. 2 correspond to check bits and hence form an
identity matrix. The left three columns correspond to message
bits. The bottom-most bit in the first three columns may be set
to any value so as to minimize the miscorrection probability.
In Fig. 2, the bottom-most bit in the second column is set to 1
and the others to 0. Now only 12 of the 56 possible triple-bit
errors will result in miscorrection.

Starting from an SEC-DED code, the proposed scheme adds
rows one at a time. The columns corresponding to check bits
form an identity matrix, so the degree of freedom is in select-
ing the 1s and 0s in the row for the columns corresponding
to message bits. There are few different strategies that can be
used. If the number of message bits is less than say 30, it is
possible to do an exhaustive search. Each possible combina-
tion of 1s and 0s for the row can be tried and the miscorrection
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Fig. 2. Adding one row to example in Fig. 1.

probability computed. The one that minimizes the miscorrec-
tion probability is then selected. As the number of message
bits gets larger, however, then an exhaustive search is no longer
possible.

For larger codes, an alternative to an exhaustive search
would be to do a random search and simply keep the best
code found. The number of triple-errors is equal to Cn

3 which
is manageable for n up to hundreds. It is feasible to enumer-
ate all the triple-errors and compute the exact miscorrection
probability for each candidate row.

The procedure is the same for SEC-DAEC codes. In this
case, the goal is to minimize the number of nonadjacent
double-bit errors that miscorrect. This is even faster to evaluate
since there are fewer possibilities.

When searching the codes, other criteria can be optimized
as well such as total number of XOR gates or logic depth of
the syndrome generator.

Each row is added one at a time up to the maximum number
of spare columns available in the memory. In the best-case, if
no spare columns are used for repair, then all the extra rows
will be active for error detection and correction. In the worst-
case, when all spare columns are used for repair, then none
of the extra rows will be active, and hence only the original
SEC-DED code that was used as the starting point will remain.

IV. SCHEME FOR STORING CHECK BITS IN

UNUSED SPARE COLUMNS

The proposed scheme can be implemented with very little
modification to a normal memory that uses spare columns and
is protected with an SEC-DED code. Fig. 3 shows an example
of the scheme assuming a single spare column. The additional
logic that is added to support the scheme is the following.

1) An extra XOR tree in the check bit generator and
syndrome generator to support one additional check bit.

2) An extra 2-input AND gate to disable the extra syndrome
bit when determining error detection if the spare is used
for repair.

3) An extra 2-input OR gate in the correction logic for each
data bit to disregard the extra syndrome bit if the spare
is used for repair.

Other than what is listed above, the rest of the circuitry is
already present in a conventional memory with a spare column
and SEC-DED ECC.

If the spare is used for repair, then the MUXes at the input
and output of the memory will shift the bits so that the defec-
tive column is bypassed. The control signal for the MUX on
the far right will be a “1” if the spare is used for repair or if

(a)

(b)

Fig. 3. Storing check bits in unused spare column method. (a) Block diagram
for one spare column utilization. (b) Example of bit-slice of correction logic.

the spare column itself has a defect. If this control signal is
a “0,” then the spare is available for storing the extra check bit.

So if the spare is not used for repair, then the extra check
bit generated by the check bit generator is stored in the spare
column, otherwise, it is simply ignored. At the output of the
memory, the extra syndrome bit that is generated is ignored if
the spare is used for repair in which case error detection and
correction are performed just as if that extra syndrome bit did
not exist. However, if the spare is not used for repair, then
the extra syndrome bit is used to help increase the chance of
detecting a multibit error as well as reduce the probability of
miscorrection.

V. SCHEME FOR STORING CHECK BITS

IN REPLACED COLUMNS

Manufacturing based memory defect rates has been shown
to vary [6], hence, the number of spare columns used to
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Fig. 4. Memory array with column repairs.

replace the defective columns changes. If there are remain-
ing unused spare columns, the proposed method tries to use
them to store additional check bits. In this section, a method
to try to further enhance the memory ECC by exploiting
replaced columns is described. After repair, the replaced col-
umn(s) has a number of nondefective and working memory
cells left unused. Memory ECC performance can be further
enhanced by utilizing them.

A. Exploiting Unused Spare Columns and Replaced
Columns for ECC Enhancement

The number of available (i.e., unused) spare columns varies
and this determines the number of additional check bits. If all
spare columns are used to replace defective memory columns,
no additional check bits can be used. Note that the repair
process needs to be conducted even when there is only one
defective cell in a memory column. In this case, a spare col-
umn is used to replace the defective column with one memory
defect. If each memory column is composed of 100 memory
cells, there are still 99 nondefective cells in the defective col-
umn. Memory ECC performance can be further enhanced if
the remaining good cells in the replaced columns can be uti-
lized. The proposed method utilizes them to increase the check
bit length of memory ECC. Fig. 4 illustrates an example of
a memory array with a defect and spare columns.

Fig. 5(a) shows two memory rows with two defective cells
and repair columns highlighted in black and gray, respectively.
If two column repairs are used to replace defective cells, the
memory array can be logically drawn as in Fig. 5(b) after
repair. The repair process generates two working cell but
unused after repair (WEARs) in the example (they are high-
lighted in a dashed rectangle). If they are not utilized, the
18-bit codeword is stored in memory rows excluding last
two memory cells in Fig. 5(b). The last two bits need to
be discarded in an error correction process. The 18-bit code-
word vectors, v1 and v2, are represented in Fig. 5(c) and the
syndrome generator generates a syndrome by multiplying an
H-matrix with the transposed codeword vector. H-matrix is
constructed as [Pkx(n−k) : Ikxk] where P is a transpose of the

Fig. 5. Memory repair and syndrome generation examples with WEARs.
(a) Before repair process. (b) After repair process (logically illustrated memory
array). (c) Codewords from (b). (d) Syndrome generation with v1 and v2 and
syndrome s1 and s2 with last two bits (X) not used for error correction.
(e) Utilizing WEAR in v1 enhancing ECC capability. (f) Utilizing WEAR in
v1 and v2 enhancing ECC capability.

generator matrix (G) and I is an identity matrix. The syn-
dromes generated by the codewords in Fig. 5(b) are given in
Fig. 5(d). Because of the identity element in H-matrix, the
position of not-used bits for error correction in syndrome can
be predicted with the defective cell location in the codeword.
In this example, since the last two bits of v1 and v2 cannot
hold valid check-bits, the last two bits (X) in the syndromes,
s1 and s2, are discarded from error correction. If the WEARs
are used to store check bits to further enhance memory ECC,
the additional check bits can be stored in WEAR. As shown
in Fig. 5(e) and (f), depending on how WEARs are uti-
lized, the additional check bits can be increased. The proposed
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(a)

(b)

Fig. 6. Example of repair process by spare columns. (a) Memory with two
defective cells and four spare columns (SP1–SP4). (b) Logically described
memory array after repair process with defect information stored in SP4.

scheme can be applied to existing repair methods using fuses
or multiplexers. Fig. 3 shows an example of multiplexer based
repair.

Two methods to utilize WEARs are proposed and the
following sections describe them in detail.

B. Method to Store Repair Information in Memory

Defective memory cells are replaced either by spare rows or
spare columns. For the proposed method, because using spare
rows first helps to leave more spare columns unused, it is
preferred to perform row repair first. The proposed method to
store repair information in memory requires one unused spare
column. One unused spare column is used to store the repair
information indicating rows with or without a defective cell.

Fig. 6(a) shows an example with four repair columns (SP1−
SP4) and two defective cells located on (i + 1)th and (i + 5)th
rows. SP2 and SP3 are selected to replace the defective columns.
After repair, the memory can be logically redrawn as shown
in Fig. 6(b). There is one unused spare column, SP1, which
is used for one additional check bit. The repair information
is stored in SP4 where 0 denotes the row with no defective
cells and 1 indicates the row with defective cells. Because
the defective cells are found in (i + 1)th and (i + 5)th rows,
the corresponding locations in SP4 have 1 while the rest has
0s. The defect information can be written during a booting or
reset sequence by a firmware. Based on the defect information,
more memory cells can be used to enhance an ECC capability
with the proposed method. The ith row does not include any

defective cells and it can utilize two WEARs in the example.
Hence, if the 16-bit codeword is used, the proposed method can
add three more check bits, two WEARs and one unused spare
column (i.e., 16-bit codeword + 3 more check bits) for rows
with no defective cells and they are highlighted with solid line
rectangles in Fig. 6(b). For rows with SP4 containing 1, because
two spare columns are used, one additional bit can be used for
ECC enhancement (i.e., 16-bit codeword + 1 check bit) and the
dashed rectangles indicate them. In this manner, the proposed
method enhances the ECC capabilities by utilizing WEARs
and unused spare columns. If a memory row is composed of n
regular columns and m used spare columns out of total r spare
columns, the n-bit codeword can be increased as follows.

1) Increased codeword size for row without defective
cells—n-bit codeword + (r−1)-bit additional check bit.

2) Increased codeword size for row with defective
cells—n-bit codeword + (r − m − 1)-bit additional
check bit.

In Fig. 6, n, r, and m are 16, 4, and 2, respectively. Hence, ith,
(i + 2)th, (i + 3)th, (i + 4)th, and (i + 6)th which are the rows
without defective cells have 16-bit codeword + 3 additional
check bits and (i + 1)th and (i + 5)th, the rows with defective
cells, have 16-bit codeword + 1 additional check bit. The
proposed method provides nonuniform ECC capabilities for
the rows depending on the location of defective cells and this
falls within a class of unequal error protection codes.

The hardware block diagram for the proposed method is
given in Fig. 7. The ECC enhanced codeword from recon-
figuration logic is written to the memory with spare columns.
Note that the last spare column dedicated to repair information
bit is fed into the Masking Info block that generates mask-
ing bits for syndrome generator. Masking Info block generates
(r − 1) bits which corresponds to the size of additional check
bits. Depending on the location of defective cells, they are
masked before entering the syndrome generator. For example,
“100” masking pattern is generated for the case in Fig. 6(b) to
mask last two bits when the row with defective cells is read
and “111” masking pattern is generated when the row without
defective cell is read. Since the masking pattern is determined
by fault location, Masking Info block needs to be programmed
during repair phase.

The proposed method requires one spare column to store
repair information. This reduces the number of available spare
columns for additional check-bit.

C. Method to Use Content-Addressable Memory for
Storing Repair Information

The second method to utilize WEARs for enhancing ECC
capabilities is to use a content-addressable memory (CAM). In
this method, instead of dedicating one unused spare column for
repair information, CAM is used to store the word addresses
of the rows with a defective cell. CAM provides a performance
advantage over other memory search algorithms. The CAM-
based method hardware block diagram is depicted in Fig. 8.

The address goes into both an address decoder and CAM in
the proposed method. The CAM finds out if there is a matching
word address. If there is no matching data, it means that the
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Fig. 7. Block diagram of proposed scheme for storing repair information in memory.

Fig. 8. Block diagram of proposed scheme for using CAM.

addressed row has no defect and the error correction logic
works normally (i.e., Masking Info block generates r masking
bits with all 1s for ANDing since there is no defective cells
in the row). If there is a matching word address, the Masking
Info block generates masking bits and the defective bits are
masked when they flow into a syndrome generator.

In the CAM-based method, ECC capability can be higher
than the repair information stored in the unused spare column

method, since no repair column is used for storing defect infor-
mation and it can be used to store an additional check-bit.
Fig. 9 describes an example of CAM based method.

Fig. 10 shows a CAM structure which is used in the
proposed scheme. It has a similar structure with conventional
CAM [16], except for its encoder. The output of conven-
tional CAM is address information, which is encoded from
matchlines. However, the CAM structure used in the proposed
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Fig. 9. Example of the second method which utilizes CAM.

Fig. 10. CAM structure used to store addresses of rows with a defective cell.

TABLE I
MISCORRECTION PROBABILITY

scheme has OR gates which determine the number of bits to
discard. The number of OR gates is equal to the number of
spare columns in memory.

As can be seen in Fig. 9, the location of defective cells
restricts the utilization of WEARs. To overcome the limitation,
each partition of CAM stores the word addresses depending on
the defective cell location after column repair. When (i + 5)th
row is accessed, the rightmost one check-bit should be dis-
carded. An address of the (i + 5)th row is stored in the first
partition of CAM, and 1-bit masking signal is generated. In
the same manner, the addresses of (i + 1)th row and (i + 6)th

(a)

(b)

(c)

Fig. 11. Example of ECC enhancement with defective spare column case.
(a) Memory with two defective cells, one defective spare column (SP3), and
three good spare columns (SP1, SP2, SP4). (b) Logically described memory
array after repair process with proposed scheme for storing repair information
in memory. (c) Logically described memory array after repair process with
proposed scheme for using CAM.

row are stored in the second and third partition of CAM. They
generate 2-bit discard and 3-bit discard signals, respectively.
Since there are three spare columns replaced, the last partition
contains no addresses.

As a result, 15 out of 18 WEARs are used and 15 addi-
tional bits besides of one entire spare column can be utilized
to enhance the ECC capability. Depending on a defect map
which is generated during repair process, OR gate encoder in
the CAM can be configured and the size of partitioned can be
adjusted.

Memory defect locations can be classified as three cate-
gories: 1) only in memory array; 2) memory array and spare
column; and 3) only in spare column. The proposed method
can be applied to a memory with any defect scenarios. The
main idea is initially explained with a case 1) that has defects



HAN et al.: EXPLOITING UNUSED SPARE COLUMNS AND REPLACED COLUMNS TO ENHANCE MEMORY ECC 1587

(a)

(b)

Fig. 12. Example of ECC enhancement with only defective spare columns
case. (a) Memory with defects only in spare columns (SP1–SP4). (b) Logically
described memory array with proposed scheme for storing repair information
in memory.

only in memory array. In manufacturing, memory array and
spare columns/rows are tested. If there is a defective memory
cell, it can be repaired either by a spare row or column. If
there is a defective spare column—case 2), it cannot be used
for repair process. The proposed methods still utilize it for
memory reliability improvement. The defective spare column
can be considered as a column with WEARs. Fig. 11 shows
a similar example with Fig. 6. In Fig. 11(a), there is one
defect found in a spare column, SP3, hence, it cannot be
used for repair. SP1 and SP2 are used to replace defective
columns. There is still one unused spare column available,
SP4, in the example, SP4 is used to store repair informa-
tion in the proposed method. Fig. 11(b) shows the logically
described memory array after repair. ith, (i + 2)th, (i + 4)th,
and (i + 7)th rows in SP3 are used to store additional check-
bits, therefore, this can be considered as WEARs in defective
columns. If the proposed method for using CAM is used
with a defective spare column case, more additional check-
bits can be utilized and Fig. 11(c) shows how the memory can
be logically described after repair. Depending on the address
information in CAM, the encoding bits are generated accord-
ingly. (i + 1)th, (i + 3)th, and (i + 5)th addresses are stored in
CAM. For example, when (i+1)th is accessed, the bits for SP3
and defective memory cell replaced by SP2 are generated by
encoding logic to mask the corresponding syndrome bits. In
a worst case, defective cells can only be found from spare
columns—case 3). Fig. 12 shows an example with defects
found in SP1–SP4. Because there is no defect in the memory
array, a repair process will not occur. However, the proposed

Fig. 13. MTBER degradations in 1K×32 memory.

Fig. 14. MTBER degradations in 8K×64 memory.

method still can utilize the spare columns for ECC enhance-
ment. In Fig. 12(a), there is no available defect free spare
column. Since the proposed scheme for storing repair infor-
mation in memory requires one available column repair, this
method cannot be applied. However, the proposed method for
using CAM still can be used. The defective row addresses, ith,
(i + 1)th, (i + 2)th, (i + 3)th, and (i + 5)th are stored in CAM,
and the corresponding encoded bits are generated to mask the
bits in syndrome analysis. It should be noted that if there is one
available spare column with case 3), the proposed method for
storing repair information in memory can be applied. In this
manner, the proposed method provides a complete treatment
of all three defect cases—1) only in memory array; 2) memory
array and spare column; and 3) only in spare column.

Once a volume has been ramped up, the manufacturing pro-
cess becomes mature [6] and the number of defective cells
found in a memory would be very small. For the proposed
method, the spare rows can be used first for repair and this
helps to leave the spare columns unused. The CAM-based
method can achieve higher ECC capability and provides more
flexibility than the method that stores repair information in the
spare column.

VI. EXPERIMENTAL RESULTS

This section shows evaluations of the proposed scheme.
In Section VI-A, a reliability improvement of the proposed
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TABLE II
ESTIMATED MTBERS OF DIFFERENT MEMORY CONFIGURATIONS

scheme is evaluated and the overhead analysis on the proposed
CAM based approach is given in Section VI-B.

A. Reliability Evaluation

For reliability evaluation, we used a maximally tolerable
bit-error rate (MTBER). MTBER satisfying a specific memory
error rate requirement. The MTBER can be used to measure
how much BER is tolerated in the memory. Hence, this is used
as a reliability index in this paper.

For MTBER estimations, the miscorrection probabilities for
Hsiao SEC-DED codes are given in Table I with different
additional check-bit length and the number of errors. As can
be expected, the miscorrection probabilities are reduced with
larger check-bit length. A memory failure probability can be
calculated from the miscorrection probability, as

Pfailure(BER) =
n∑

e=0

BERe · (1 − BER)n−e
(

n
e

)
Pmiscorrection(e)

(3)

and MTBER is defined as the largest BER which satisfies

Pfailure(BER) < Memeory Error Rate. (4)

In this paper, the memory error rate requirement is assumed
as 3.398E-6, which is defined from six-sigma rule.

Table II shows the MTBER values. We assume that the
memory initially includes 4 repair columns and MTBER is
measured with different number of available repair columns
after repair process. The first column gives the number of
available column repairs after repair and the second column
shows a list of approaches used to enhance the reliability.
Method (a) is the conventional approach introduced in [1].
Method (b) is the proposed method for storing repair infor-
mation in memory, and method (c) is the proposed technique
for using CAM given in Sections VI-B and VI-D, respectively.
The last four columns show MTBER with different memory
sizes from 1K×32 to 8K×64. For experiments, we assumed
that the replaced column contains one defect. This leaves 1023

(1K − 1) and 8191 (8K − 1) WEARs left in the replaced col-
umn for 1K × word_size and 8K × word_size memories. It
should be noted that MTBER degradation is negligible with
different number of defects in the defective column. For exam-
ple, MTBER becomes worse by 0.5% when there are seven
defective cells in a single column with 1K×64 memory and
42 defective cells in a single column for 8K×64 memory.
Since there are still a number of WEARs in the replaced col-
umn, MTBER is not drastically affected by the number of
defects in the column.

The table assumes that there is no defect in the spare col-
umn. In manufacturing testing, spare rows and columns are
checked first. If there is a defective spare column, it may not
be used to replace a defective column. The defective spare col-
umn can also be taken care for memory ECC enhancement.
The defective spare column can be considered as a column
with WEARs.

Figs. 13 and 14 illustrate an MTBER degradation with
different numbers of available spare columns for 1K×32
and 8K×64 memories. As can be seen, when there is no
defect (4 available spare columns), the same MTBER is
achieved from method (a)–(c). As the number of available
spare columns decreases, MTBER significantly reduces in
method (a). In method (b), MTBER drops from 4 avail-
able spare columns to 3 available spare columns since one
entire spare column is used to store repair information not
for additional ECC check-bits. Because there are a num-
ber of WEARs with 3, 2, or 1 available column repairs,
the MTBER is negligibly changing and is kept constant in
method (b). However, when there is no available spare column,
the proposed method (b) achieves the same MTBER as the
method (a) since it cannot store repair information. However,
the proposed method (c), which stores repair information in
CAM, achieves the MTBER regardless of the number of
available column repairs.

B. CAM Overhead Analysis

In this section, an overhead by the proposed CAM-based
approach is evaluated. Table III describes the details of CAM



HAN et al.: EXPLOITING UNUSED SPARE COLUMNS AND REPLACED COLUMNS TO ENHANCE MEMORY ECC 1589

Fig. 15. DRAM timing diagram with CAM search operation.

TABLE III
CAM SPECIFICATIONS

TABLE IV
TIMING CONSTRAINTS OF DRAM [20]

TABLE V
ENERGY CONSUMPTION IN DRAM [19]

examples [15]–[18]. This table is used to estimate the hard-
ware and power consumption overhead caused by CAM in the
proposed scheme for using CAM.

To analyze a performance overhead by the CAM, an exam-
ple of DRAM timing constraints is described in Table IV. It
shows that main timing components are longer than 10 ns,
which is significantly larger than CAM latency given in
Table III.

The proposed scheme for using CAM in Fig. 8 receives
the address and the address is fed by address decoder and the
CAM. Hence, the search operation in CAM can be performed

TABLE VI
ESTIMATED AREA OVERHEAD

Fig. 16. Area overhead comparison: additional column versus implement-
ing CAM.

in parallel with DRAM array access. Fig. 15 describes a timing
diagram of DRAM with CAM. Table III shows that the CAM
search latency ranges from 0.26 ns to 1.07 ns which can be
covered by 2 clock cycles (2-CK) of DRAM in Table IV.
Based on the specification data sheet [20], the data read or
write latency (RL or WL) takes at least 9 clock cycles (9-CK).
Hence, it can be understood that the CAM operation occurs
in parallel with memory read or write operations and does not
cause any performance overhead.

To evaluate a power overhead, the energy consumption
in DRAM [19] is shown in Table V. While the energy
consumption for DRAM array access is around 20 nJ,
the energy consumed by CAM operation does not exceed
20 fJ assuming 32-bit long address, which is smaller by
orders of magnitude than DRAM. The power overhead
imposed by CAM operation is estimated to be less than 1e-6
(20 fJ/20 nJ) and, therefore, this can be generally considered
insignificant.

In the proposed method, the size of CAM is determined
by the average number of defects. If there are two defective
cells in a word, the defective word just occupies one CAM
entry, instead of two entries. In worst case, the number of
CAM entry is determined when every defect is distributed to
different word. However, as a manufacturing process becomes
stable, the number of defects significantly decreases and this
may leave spare columns unused. In this regard, the CAM
would not require many entries. Hence, the size of CAM is
expected to be reasonably small.

To show the benefit of adding a CAM instead of enlarg-
ing the memory array for additional check-bit, the CAM area
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overhead is estimated. A maximum capacity of memory which
can be handled by a single CAM is calculated as follows:

memory size /
CAM = # of (CAM entry)

(cell defect ratio)
(5)

where a defect cell ratio is calculated as the number of defec-
tive cells divided by the entire memory capacity. As the
equation indicates, the maximum memory capacity that can
be handled by a single CAM can increase with a large num-
ber of CAM entry and low defective cell ratio. Table VI shows
an estimated CAM area overhead with a CAM configura-
tion introduced in [18]. The first row indicates a memory cell
defect ratio, and it determines a CAM area overhead. The
second row shows the maximum memory capacity handled
by a single CAM by (5). The third and last row indicates the
average CAM area overhead required for 1 MB and 1 GB
array.

Fig. 16 shows an area overhead comparison between the
proposed CAM based approach and the way to widen memory
array for additional check-bits. For DRAM memory array size
increase analysis, 1–4 additional check-bits are considered and
the area overhead is illustrated as dashed lines. The area over-
head estimation assumes a 20-nm technology node with 64 bit
word DRAM. The following shows estimation details.

1) 6F2 Cell: 6 · (20 nm)2 = 2400 nm2 = 0.0024 µm2.
2) 1GB Memory (No ECC): 233 · 0.0024 µm2 =

20 615 843 µm2.
3) One Additional Column: 20 615 843 · (1/64) =

322 123 µm2.
4) n-Additional Column: n · 322 123 µm2.
If four additional columns are added to an array, the size

is estimated as 1 288 490 µm2 which is more than 2000 times
larger than the proposed CAM-based method.

VII. CONCLUSION

In this paper, the methods to enhance a memory ECC
capability are proposed exploiting unused repair columns
and replaced columns. Experimental results show that the
proposed methods achieve remarkable a memory reliability
enhancement. Better MTBER implies that the memory can
be designed with lower power and higher speed since BER
margins for design requirements are increased. CAM-based
methods achieve better and more consistent reliability than
the memory column-based scheme with an area overhead
for CAM. However, it is proven that the hardware over-
heads such as latency, power, and area overheads come from
implementing CAM are negligible.

As simulation results show, the memory reliability by the
proposed methods are not much influenced by the number of
defects. Because the proposed methods utilize both unused
spare columns and WEARs, the number of defective cells
hardly affects ECC capability and all memories would have
relatively similar ECC performances.
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